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Abstract 
 
In this paper, the Homotopy Analysis Method (HAM) is used to implement the homogeneous 
gas dynamic equation. The analytical solution of this equation is calculated in form of a series 
with easily computable components. 
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1.   Introduction 
 
Recently various iterative methods are employed for the numerical and analytical solution of 
partial differential equation. In this paper, the Homotopy analysis method (1992) is applied to 
solve a kind of partial differential equations. 
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In 1992, Liao employed the basic ideas of the homotopy in topology to propose a general 
analytic method for nonlinear problems, namely Homotopy Analysis Method (HAM), [Liao 
(1992, 1995, 2002, 2003, 2005)]. This method has been successfully applied to solve many types 
of nonlinear problems see Ayub (2004a, 2004b), Jafari (2009) and Liao (2004c, 2005a). 
 
The HAM offers certain advantages over routine numerical methods. Numerical methods use 
discretization which gives rise to rounding off errors causing loss of accuracy, and requires large 
computer memory and time. This computational method yields analytical solutions and has 
certain advantages over standard numerical methods. The HAM method is better since it does 
not involve discretization of the variables and hence is free from rounding off errors and does not 
require large computer memory or time.  
 
The paper has been organized as follows. In Section 2 the Homotopy Analysis Method is 
described. In Section 3 HAM is applied for nonlinear homogeneous gas dynamics equation. 
Discussion and conclusions are presented in Section 4.  
 
 
2. Basic idea of HAM 
 
Consider the following differential equation  
 

[ ( , )] 0,N u r t                 (1) 
 
where N

 
is a nonlinear operator, r and t are independent variables, u(r, t) is an unknown 

function, respectively. For simplicity, we ignore all boundary or initial conditions, which can be 
treated in the similar way. By means of generalizing the traditional homotopy method, Liao 
(2003) constructs the so called zero order deformation equation  

(1- ) [ ( , ; ) - ( , )] ( , ) [ ( , ; )],
0

p L r t p u r t phH r t N r t p             (2) 

 
where [0,1]p  is the embedding parameter, 0  is a nonzero auxiliary parameter, ( , ) 0H r t   

is non zero auxiliary function, L
 
is an auxiliary linear operator, ( , )

0
u r t  is an initial guess of 

( , )u r t , ( , : )u r t p  is a unknown function, respectively. It is important, that one has great freedom 
to choose auxiliary things in HAM. Obviously, when p = 0 and p =1, it holds  

0( , ;0) ( , ) , ( , ;1) ( , ),r t u r t x t u r t                   (3) 

 
respectively. Thus, as p increases from 0 to 1, the solution ( , ; )x t p  varies from the initial 

guesses ( , )0u r t to the solution ( , )u r t . Expanding ( , ; )x t p  in Taylor series with respect to p, we 

have  
 

( , ; ) ( , ) ( , ) ,0 1
mr t p u r t u r t pm

m



  


               (4) 
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where  

1 ( , ; )
( , ) | .0!

m r t p
u r tm m pm p


 

              (5) 

 
If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary 
function are so properly chosen, the series (4) converges at p = 1, then we have  







1

0 ),(),(),(
m

m trutrutru .              (6) 

Define the vector 

 , ,...,0 1u u u un n


  . 

 
Differentiating equation (2) m  times with respect to the embedding parameter p and then setting 
p =0 and finally dividing them by !m , we obtain the thm order deformation equation  

[ ] ( , ) ( ),1 1L u u hH r t um m mm m


                (7) 

 
where  

11 [ ( , ; )]
( ) ,1 1( 1)!

m N r t p
um m mm p

 
   

  

and  

0, 1,

1, 1.

m
m m


  

                (9) 

 

Applying 1L  on both side of equation (7), we get  
 

1( , ) ( , ) [ ( , ) ( )]1 1u r t u r t h L H r t xm m mm m
    .          (10) 

 
In this way, it is easily to obtain um  for 1m , at thM  order, we have  

( , ) ( , )
0

M
u x t u x tm

m
 


.             (11) 

 
When ,M   we get an accurate approximation of the original equation (1). For the 
convergence of the above method we refer the reader to Liao (2003). If equation (1) admits 
unique solution, then this method will produce the unique solution. If equation (1) does not 
possess unique solution, the HAM will give a solution among many other (possible) solutions.  
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3.   Applying HAM  
 
In this section, we apply this method for solving the nonlinear gas dynamic equation.  
 

Example  

Consider the homogeneous differential [Evans (2002)]  
 

2

2

1
(1 ) 0; 0 1, 0,

2

u u
u u x t

t x

 
      

              
(12) 

 
with initial conditions ( ,0) xu x ae .  
 
To solve the equation (12) by means of homotopy analysis method, according to the initial 
conditions denoted in equation (12), it is natural to choose  
 

( , )0
xu x t ae .              (13) 

 
We choose the linear operator  
 

( , ; )
[ ( , ; )] ,

x t p
L x t p

t

 



              (14) 

 
with the property [ ] 0L c  . Where c  is constant. We now define a nonlinear operator as  
 

[ ( , ; )] ( , ; ) ( , ; ) ( , ; ) ( , ; )(1 ( , ; )).N x t p x t p x t p x t p x t p x t pxt                (15) 

 
Using above definition, with assumption ( , ) 1.H x t   We construct the zeroth order deformation 
equation  
 

(1 ) [ ( , ; ) ( , )] ( , ) [ ( , ; )],0p L r t p u r t p H r t N r t p      
 
obviously, when 0p  and 1p ,  
 

( , ;0) ( , ), ( , ;1) ( , ),0x t u x t x y u x t                 (17) 

 
Thus, we obtain the mth order deformation equations 
  

1 1[ ] ( ),m m m m mL u u h u


                           (18) 

 
where  
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1

1111 0( )1 1 12 0

m
u uu i mm im iu u u um im m i mt x i


             

 . 

 
Now, the solution of the mth order deformation equation (18)  
 

1( , ) ( , ) [ ( )].1 1u x t u x t h L xm m mm m

             (19) 

 
Finally, we have  
 

( , ) ( , ) ( , ).0 1
u r t u x t u x tm

m


  

  
 
From equations (13) and (19) and subject to initial condition 
 

( ,0) 0 , 1,u x mm    
 
we obtain 
 

0 ( , ) ,xu x t ae  

1( , ) ,xu x t ae ht   

2 2 2
2

1
( , ) ,

2
.

x x xu x t ae t h ae th ae th    



 

 
Hence,  
 

0 1

3 3 2 4 3 4 4 4
2 2 2 3 2 3 4

( , ) ( , ) ( , ) ...

2 3
(1 4 6 3 4 4 ...).

3 3 2 24
x

u x t u x t u x t

t h t h t h t h
ae th th t h th t h th

  

           
 

 
When 1h = -  we have  
 

2 3 4
( , ) (1 ) ,

2 6 24 !0

it t t tx x t xu x t ae t ae ae
ii

         



 

 
which is the exact solution of equation (12). 
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4.   Conclusion  
 
In this paper, the Homotopy Analysis Method has been applied to study the nonlinear gas 
dynamic equation. The explicit series solutions gas dynamics equation are obtained, which are 
the same as those results given by Adomian decomposition method for 1h . This accords with 
the conclusion that the homotopy analysis method logically contains the Adomian decomposition 
method in other words the ADM is only a special case of the HAM [Liao (2004c, 2005)]. It is 
worth pointing out that this method presents a rapid convergence for the solutions. In conclusion, 
HAM provides accurate numerical solution for nonlinear problems in comparison with other 
methods. It also does not require large computer memory and discretization of the variables t and 
x. The results show that HAM is powerful mathematical tool for solving nonlinear partial 
differential equations. Mathematica has been used for computations in this paper.  
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