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Abstract 
 
In this paper, we apply the variational iteration method (VIM) for solving telegraph equations, 
which arise in the propagation of electrical signals along a telegraph line. The suggested 
algorithm is more efficient and easier to handle as compare to the decomposition method. 
Numerical results show the efficiency and accuracy of the proposed VIM.  
 
Keywords: Variational Iteration Method; Lagrange Multiplier; Telegraph Equations 
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1.   Introduction 
 
The telegraph equations appear in the propagation of electrical signals along a telegraph line, 
digital image processing, telecommunication, signals and systems, [see Abdou and Soliman 
(2005), Wazwaz (2002, 2006)]. The standard form of the telegraph equation is given as  
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       ,,,,, txcutxubtxuatxu tttxx   

 
where cba ,,  are constants related to resistance, inductance, capacitance and conductance of the 
cable. The basic motivation of this paper is the application of variational iteration method (VIM) 
for solving telegraph equations. The VIM was developed and formulated by He for solving 
various physical problems, [see He (1999, 2000, 2006, 2007, 2008)]. The method has been 
extremely useful for diversified initial and boundary value problems and has the potential to cope 
with the versatility of the complex nature of physical problems, [see Abbasbandy (2007), Abdou 
and Soliman (2005), He (1999, 2000, 2006, 2007, 2008), Noor and Mohyud-Din (2007, 2008),  
Mohyud-Din et al. (2008, 2009), Xu (2007)].  
 
A wide class of initial and boundary value problems including Riccati differential equations, 
unsteady flow through a porous medium, Burger’s and coupled Burger’s equations, nonlinear 
oscillators, higher-order boundary value problems of various order, seepage flow, autonomous 
ordinary differential systems, Fisher’s equations, Evolution equations, diffusion equations, 
singular problems, KdVs, parabolic equations, integro-differential equations, chemistry 
problems, Boussinesq equations, Schrödinger equations, Helmholtz equations, Sine-Gordon 
equations has been tackled successfully in accordance with their physical nature by the proposed 
variational iteration method (VIM), [see Abbasbandy (2007), Abdou and Soliman (2005), He 
(1999, 2000, 2006, 2007, 2008), Noor and Mohyud-Din (2007, 2008),  Mohyud-Din et al. (2008, 
2009), Xu (2007)].  
 
It is to be highlighted that the use of Lagrange multiplier in variational iteration method (VIM) 
reduces the successive applications of the integral operator, minimizes the computational work to 
a tangible level while still maintaining a very high level of accuracy and hence is a clear 
advantage of this technique over the decomposition method. The VIM is also independent of the 
small parameter assumption (which is either not there in the physical problems or difficult to 
locate) and hence is more convenient to apply as compare to the traditional perturbation method. 
It is worth mentioning that the VIM is applied without any discretization, restrictive assumption 
or transformation and is free from round off errors.  
 
We apply the proposed VIM for all the nonlinear terms in the problem without discretizing either 
by finite difference or spline techniques at the nodes, involves laborious calculations coupled 
with a strong possibility of the ill-conditioned resultant equations which is a complicated 
problem to solve. Moreover, unlike the method of separation of variables that requires initial and 
boundary conditions, the VIM provides the solution by using the initial conditions only, [see 
Abbasbandy (2007), Abdou and Soliman (2005), He (1999, 2000, 2006, 2007, 2008), Noor and 
Mohyud-Din (2007, 2008),  Mohyud-Din et al. (2008, 2009), Xu (2007)].  
 
The proposed variational iteration method (VIM) can be applied to a number of physical 
problems related to fluid mechanics including boundary layer flow with exponential or algebraic 
properties, Von Karman swirling viscous flow, nonlinear progressive waves in deep water, 
porous medium, financial mathematics, deep shallow water waves, electrical signals along a 
telegraph line, digital image processing, telecommunication, signals and systems, beam 
deflection theory, quantum field theory, relativistic physics, dispersive wave-phenomena, plasma 
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physics, astrophysics, nonlinear optics, engineering and applied sciences, [see  Mohyud-Din et 
al. (2009)]. Numerical results show the complete reliability of the proposed technique. 
 
 
2.   Variational Iteration Method (VIM) 
 
To illustrate the basic concept of the He’s VIM, we consider the following general differential 
equation 
 

),(xguNuL                 (1) 
 
where L  is a linear operator, N  a nonlinear operator and )(xg is the inhomogeneous term. 
According to variational iteration method, [see Abbasbandy (2007), Abdou and Soliman (2005), 
He (1999, 2000, 2006, 2007, 2008), Noor and Mohyud-Din (2007, 2008), Mohyud-Din et al. 
(2008, 2009), Xu (2007)], we can construct a correction functional as follows 
 

,))()(~)(()()(
0

1 dssgsuNsuLxuxu
x

nnnn              (2) 

 
where  is a Lagrange multiplier, [see He (1999, 2000, 2006, 2007, 2008)], which can be 
identified optimally via variational iteration method. The subscripts n denote the nth 
approximation, nu~  is considered as a restricted variation. i.e. ;0~ nu  (2) is called a correction 

functional. The solution of the linear problems can be solved in a single iteration step due to the 
exact identification of the Lagrange multiplier. The principles of variational iteration method and 
its applicability for various kinds of differential equations are given in [see He (1999, 2000, 
2006, 2007, 2008)]. In this method, it is required first to determine the Lagrange multiplier   
optimally. The successive approximation 0,1  nun  of the solution u will be readily obtained 

upon using the determined Lagrange multiplier and any selective function ,0u consequently, the 

solution is given by .lim n
n

uu


   

 
 
3.   Numerical Applications  
 
In this section, we apply the variational iteration method (VIM) for solving telegraph equations. 
Numerical results are very encouraging. 
 

Example 3.1.  

 
Consider the following telegraph equation 

,uuuu tttxx   
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with boundary conditions 

,),0(,),0( 22 t
x

t etuetu    

 
and the initial conditions 
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t
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The correction functional is given by 
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Making the correction functional stationary, the Lagrange multiplier can be identified as 
   ,tss   we obtain the following iterative formula 

 

    .,
2

2

2

2

0

22
1 dsu

t

u

t

u

s

u
tsxeetxu n

nnn
t

tt
n 





















 
  

 
Consequently, following approximants are obtained 
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The series solution is given by 
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and the closed form solution is given as 

  ,, 2txetxu   
 

which is the exact solution. 
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Example 3.2.  
 
Consider the following telegraph equation 
 

,44 uuuu tttxx   

 
with boundary conditions 
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and the initial conditions 

   2,0 1 , ,0 2.x
tu x e u x    

 
The correction functional is given by 

    .~4
~

4
~

21,
2

2

2

2

0

2
1 dsu

t

u

t

u

s

u
sxetxu n

nnn
t

t
n 





















 
   

 
Making the correction functional stationary, the Lagrange multiplier can be identified as 
   ,tss   we obtain the following iterative formula 
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Consequently, following approximants are obtained 
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and the closed form solution is given as 
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  ,, 22 xt eetxu    
 
which is the exact solution. 
 
 
Example 3.3.  
 
Consider the following telegraph equation 
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Making the correction functional stationary, the Lagrange multiplier can be identified as 
   ,tss   we obtain the following iterative formula 
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Consequently, following approximants are obtained 
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Proceeding as before, the exact solution is given as 
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4.   Conclusion 
 
In this paper, we applied variational iteration method (VIM) for solving telegraph equations. The 
method is applied in a direct way without using linearization, transformation, perturbation, 
discretization or restrictive assumptions. The fact that the proposed VIM solves nonlinear 
problems without using Adomian’s polynomials is a clear advantage of this algorithm over the 
decomposition method. 
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