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Abstract 
 
This paper develops the probability functions of a renewal process, whose interarrival times 
are independent and identically distributed (i.i.d.) random variables with Erlang distribution. 
The results are obtained and proved through relation between Poisson and Erlang and between 
Beta and Binomial distributions. The distribution of the number of renewals in 

  ,0,, babaA   and its expectation and their numerical values are given in the form of 
tables. An example is presented, to show the application. 
 
Keywords:  Renewal Process; Independent Increment; Stationary Increment; Erlang 

Distribution 
 
MSC (2000) No.: 60G55, 60G99 
 
 
1.   Introduction 
 
A renewal process is a point process characterized by the fact that successive interarrival 

times ,..., 21 TT  are i.i.d. non-negative random variables. Let 



n

i
in TS

1

 for ,1n 00 S . 
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Suppose A is a bounded Borel subset of  .,0   Let AN  be the number of the elements of the 

set }.:0{ ASn n   In the case ),0[ tA   we denote AN  by tN . 

 
It is well known that if interarrival times in a renewal process are i.i.d. ),exp(   random 

variables, then AN  has Poisson distribution with parameter ),(Am  m denoting the Lebesgue 

measure. In particular for   ,,, babaA   AN  has Poisson distribution with parameter 

)( ab   and hence tN  has Poisson distribution with parameter t  [Kingsman (1993), Varsei 

(2007)]. In fact, it is a Poisson renewal process. This process and its generalization have been 
studied by several authors both from mathematical and physical points of view [Mainardi et 
al. (2007), Barkai (2002)]. Cuff and Fridman (2006) obtained the exact distribution of tN , 

when interarrival times are sums of two independent exponential random variables with likely 
unequal parameters Cuffe and Friedman (2006). It can be shown that if interarrival times in a 
renewal process are i.i.d. Erlang random variables with parameters r and  ,  then p.d.f., c.d.f, 

and the expectation of tN  is 

 









1)1(

!

)(
)(

rk

kri

it

t i

te
kNp



 ,    0,1, ,k                                                                       (1) 

 


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)(
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
 






,                                                                (3) 

 

where 
2

,
i

rz e


  Parzen (1999). 
 
In this paper, the distribution of ,0),,[, babaAN A   and its expectation is obtained. It is 
shown that, as it is expected, this process may have neither independent nor stationary 
increments. The tables of p.d.f. and expectation of , [ , ), 0 ,AN A a b a b    for different 

values of a, b, r, and   are given. We also consider the case where r is random. 
 
2.   Distribution of AN  
 
In the renewal process let ,..., 21 TT be i.i.d. Erlang random variables with parameters r and   

and let 



n

i
in TS

1

 for ,1n 00 S .  Let  , , 0 .A a b a b    To obtain the distribution of 

AN , we first calculate the joint distribution of ).,( Aa NN  
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Theorem 1. 
  
In the renewal process the joint distribution of ),( Aa NN  is equal to 

 

  ijij
i

rk

kri

rks

rksij

jb

Aa b

a

b

a

j

be
sNkNp 











   )1()(
!

)(
),(

1)1( 1)1(

))(,max(



, , 0,1,2, .k s           (4) 

 
Proof:  
 
For different values of k and s we have 
 

)0()0,0(  bAa NpNNp ,                                                                           (5) 

)()1,0( 21 SbSapNNp Aa  ,                                                               (6) 

)()0,( 1 kkAa SbaSpNkNp     ,1k                                                 (7) 

)()1,( 21   kkkAa SbSaSpNkNp     ,1k                                        (8) 
)(),( 11   skskkkAa SbSSaSpsNkNp     ,1k 2.s                         (9) 

 
The equality (5) is obtained by (1), i.e., 
 









1

0 !

)(
)0(

r

j

jb

b j

be
Np



,                                                                                             (10) 

which equals 
 

 
1

0 0

( )
( ) (1 )

!

b j jr
j i j i
i

j i

e b a a

j b b

 


 

   
1 1

0

( )
( ) (1 ) .

!

b jr r
j i j i
i

i j i

e b a a

j b b

  


 

   

 
Hence, in the case ,0 sk  the theorem holds. Now we prove the theorem in the case 1k  
and 2s . Other cases are obtained similarly. 
 
Let 
 

11 YSX k  , 

2112 YYSX k   , 

3213 YYYSX sk   , 

432114 YYYYSX sk   ,                                                                                       (11) 

 
where 
 

),,(~1 krErlangY  ),(~2 rErlangY , ),)1((~3 rsErlangY  , ),(~4 rErlangY  

 
and ,,, 321 YYY and 4Y  are independent. 
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The value of (9) equals 
 

432143

0

21 ),,,(
3

dxdxdxdxxxxxg
b

b

a

x

a

a

   


,                                                                                (12) 

 
where g is the joint density function of ),,,( 4321 XXXX  which is obtained by applying 

transformation (11), Casella and Berger (1990). In fact, we have 
 

4( 1)
1 1 ( 1) ( 1)

1 2 1 3 2 4 3

1 4 1 2 3 4

( ) ( ) ( ) ,
( ) ( ) (( 1) ) ( )

( ,..., ) 0 ,

0, .

xk s r
kr r s r re

x x x x x x x
r s s r kr

g x x x x x x

otherwise

 
    

          




  (13) 

 
We can calculate the integral (12) and obtain (4) for 1k , 2s , by using the relation between 
Beta and Binomial distribution, i.e., 
 

 
1

1 1 1 1

0

( )
(1 ) (1 ) , 0 1 , 1,2,...,

( ) ( )

c m n
m n m n i m n i
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i m
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x x dx c c c m n

m n

 
      



 
     

    

 
and the relation between Erlang and Poisson distribution, i.e., 
 

1
1

0

( )
, 0, 0, 1,2, .

( ) !

r d ir
r x

id

e d
x e dx d r

r i

 
 



 
    

    

 
Remark 1.  
 
Let X  and Y be two random variables whose joint distribution is 
 

 ( )
( , ) ( ) (1 ) , 0,1, , ,

!

b j
j i j i
i

e b a a
p X i Y j i j

j b b




                                            (14) 

i.e., Y ~ Poisson )( b  and X|Y = y ~ Binomial ),(
b

a
y . The joint distribution of ),( Aa NN  is 

 
).)1()(,)1((),( rksYrksrkXkrpsNkNp Aa                            (15) 

 
Corollary 1. 
 
The distribution of aN  in the renewal process is 
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or in terms of the notation of Remark 1 
 

).)1()(,)1(()(
0

rksYrksrkXkrpsNp
k

A  




                                  (17) 

 
Table 2 shows the p.d.f. of )1,0[, AN A  for some values of r and   and table 3 shows the 

p.d.f. of )2,1[, AN A  for the same values. 
 
The expectation of AN  can be obtained by the p.d.f. of AN  and also by using (3) observing 

that )()()( abA NENENE  .  Hence, we have 

 

))1(exp()1((exp(
1

1)(
)(

1

1

kk
r

k
k

k

A zbza
z

z

rr

ab
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 
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
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,                           (18) 

 

where .

2

r

i

ez



  
 
Table 4 shows the expectation of )1,0[, AN A  and A= )2,1[  for some values r and  . The 
comparison between them is of interest. 
 
Corollary 2.  
 

If a is sufficiently large, then the expectation of ),[, baAN A   is approximately 
r

ab )( 
. 

 
Corollary 3. 
 
The conditional distribution of 1T  given 1tN  is 

 

,
)2(

)2,2(
)1|( 1 rYrp

rYrrXrp
NxTp t 


  

 
where X and Y are random variables whose joint distribution is (14) with parameters a=x, b=t. 
 
The conclusion is easily obtained in view of 
 

)()1,( 2111 TTtxTpNxTp t  , 

 
and equations (1) and (7). 
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The conditional distribution of ),[ dcN  given ),[ baN , bdca 0 , is obtained similarly. 

 
Remark 2. 
 
The renewal process may have neither independent nor stationary increment. For example let 

.2,2,2,1  rba  Using equations (1) and (16) we have 
 

  4622 5)0()0,0(,20,3)0(   eNpNNpeeNpeNp bAaAa . 

 
Hence obviously, 
 

)0()0(  Aa NpNp , 

 
and also 
 

)0()0()0,0(  AaAa NpNpNNp . 

 
 
3.   The Case where r is a Random Variable 
 
In this section, we let r be a random variable which henceforth is denoted by R. More exactly, 
suppose the interarrival times of a renewal process given R=r are i.i.d. random variables with 

),( rErlang  distribution. Some interesting results can be obtained when R is negative 
binomial and in particular has geometric distribution. 
 
It is easy to show that the following lemma, Casella and Berger (1990). 
 
Lemma. 
 
Suppose R has negative binomial distribution with parameters (n, p), n  , 10  p  and 
Y|R=r has Erlang distribution with parameters .0),,( r  The marginal distribution of Y is 

),,( pnErlang   and hence if R has geometric distribution with parameter p then the 
distribution of Y is )( pExp  . 
 
Now, the following result can be easily obtained. 
 
Theorem 2. 
 
Let the interarrival times of a renewal process be i.i.d. random variables whose distributions 
of the renewal process have ),,( RErlang  where ).,(~ pnNBR   The interarrival times of 
the renewal process have ).,( pnErlang   In particular if R has geometric distribution with 

6
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parameter p, then the distribution of interarrival times is )( pExp   and hence the renewal 
process is Poisson with rate .p  
 
4.   Example: Total Claims on a Life-Insurance Company for the Youth 
 
Let ,..., 21 WW  denote the occurrence times of the deaths of the policy holders of a certain Life-
Insurance company. Treating these times of insurance claims, the number of deaths can be 
treated as a Poisson process with rate . The company has to pay too much for deaths of 
youngsters which are considered particular deaths. So the company wants to know the total 
number of such deaths during the time period ).,[ ba  Suppose after r-1 ordinary deaths, one 
particular death occurs, i.e. the rth, 2rth,… deaths are particular, where r can be estimated by 
the observations. More exactly let 
 

...,,
2

1
2

1
1 




r

ri
i

r

i
i WTWT , 

where ...,, 21 TT  are i.i.d. random variables with Erlang(r, λ) distribution. Interarriaval 

times ...,, 21 TT  denote the occurrence times and AN  is the total number of particular deaths 
during the time period A = [a, b). We can obtain the distribution and expectation of NA, by 
the formulas (16) and (18). For example when λ = 1 (i.e., in average, one death occurs in each 
day) for r = 5, 10, 15 the expectation of the number of particular deaths in the first few 
months of the first year are given in Table 1. As it can be seen, in view of corollary 2, the 
expectation remains constant from a time onwards. 
 
5.   Tables 
 

Table1: The Expectation of NA , λ = 1 
r A = [0, 30) A = [30, 60) A = [60, 90) A = [90, 120) A = [120, 150)  

5 5.6 6 6 6 6 6
10 2.5492 3.0008 3 3 3 3
15 1.5296 2.028 2.0008 2.0001 2 2
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Table2: The p.d.f. of NA , A = [0, 1) 
r x λ = .5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 

2 0 .9098 .7358 .4060 .1991 .0916 .0404 
1 .0884 .1442 .4511 .4481 .3419 .2246 
2 .0018 .0184 .0263 .2689 .3516 .3510 
3 0 .0006 .0155 .0720 .1638 .2506 
4 0 0 .0011 .0118 .0430 .1016 
5 0 0 0 .0001 .0008 .0263 
6 0 0 0 0 .0001 .0048 
7 0 0 0 0 .0001 .0006 
8 0 0 0 0 0 .0001 

3 0 .9856 .9197 .6767 .4282 .2381 .1247 
1 .0144 .0797 .3067 .5829 .5470 .4913 
2 0 .0006 .0064 .0801 .1935 .3159 
3 0 0 .0002 .0037 .0205 .0626 
4 0 0 0 .0001 .0001 .0053 
5 0 0 0 0 0 .0002 

5 0 .9998 .9563 .9473 .8153 .6288 .4405 
1 .0002 .0037 .0527 .1836 .3621 .5297 
2 0 0 0 .0011 .0081 .0316 
3 0 0 0 0 0 .0002 
4 0 0 0 0 0 0

10 0 1.000 1.000 1.000 .9989 .9919 .9682 
1 0 0 0 .0011 .0081 .0318 
2 0 0 0 0 0 0
3 0 0 0 0 0 0
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Table3:The p.d.f. of NA , A = [1, 2) 
r x λ = .5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 

2 0 .8139 .5767 .2731 .1243 .05050 .0236 
1 .1803 .3798 .4954 .4108 .2809 .1713 
2 .0057 .0436 .1972 .3303 .3712 .3334 
3 0 .0019 .0315 .1115 .2121 .2862 
4 0 0 .0028 .0202 .06161 .1356 
5 0 0 0 .0023 .0129 .0404 
6 0 0 0 0 .0017 .0082 
7 0 0 0 0 0 0.0012 
8 0 0 0 0 0 0

3 0 .9337 .7460 .4115 .2226 .1157 .0572 
1 .0661 .2488 .5199 .5696 .4996 .3832 
2 0 .0052 .0667 .1913 .3235 .4131 
3 0 0 .0019 .0160 .0572 .1295 
4 0 0 0 0 .0038 .0160 
5 0 0 0 0 0 0

5 0 .9965 .9510 .6761 .4116 .2646 .1719 
1 .0035 .0490 .3212 .5624 .6498 .6525 
2 0 0 .0027 .0259 .0848 .1709 
3 0 0 0 0 0 .0046 
4 0 0 0 0 0 0

10 0 1.000 1.000 .9919 .9172 .7246 .4875 
1 0 0 .0081 .0828 .2753 .5113 
2 0 0 0 0 0 .0012 
3 0 0 0 0 0 0

 

 
Table 4: The Expectation of NA 

r A λ = .5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 
2 [0, 1) .0920 .2838 .7546 12506 1.7501 2.2500 

[1, 2) .1919 .4707 .9955 1.4994 1.9999 2.5000 
3 [0, 1) .0144 .0809 .3401 .6646 .9991 .1.3332 

[1, 2) .0665 .2592 .6589 1.0021 1.3343 1.6668 
5 [0, 1) .0002 .0037 .0527 .1858 .3793 .5916 

[1, 2) .0038 .0490 .3266 .6144 .8219 1.0082 
10 [0, 1) 0 0 0 .0011 .0081 .0318 

[1, 2) 0 0 .0081 .0828 .2753 .5113 
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6.   Discussion 
 
This paper develops the distribution function of a renewal process whose interarrival times are 
independent and identically distributed random variables with Erlang distribution. The 
distribution of the number of renewals in 0),,[ aba  is much more challenging and 

interesting than when 0a . This distribution is obtained using the joint distribution of ),0[ aN  

and ),[ baN . 

 
An interesting result is obtained where the first parameter of Erlang distribution as interarrival 
times in the renewal process is random variable. In particular, if it has geometric distribution 
then the renewal converts to Poisson process. 
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