
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 3 Issue 2 Article 10 

12-2008 

Chebyshev Collocation Method for the Effect of Variable Thermal Chebyshev Collocation Method for the Effect of Variable Thermal 

Conductivity on Micropolar Fluid Flow over Vertical Cylinder with Conductivity on Micropolar Fluid Flow over Vertical Cylinder with 

Variable Surface Temperature Variable Surface Temperature 

Nasser S. Elgazery 
Ain Shams University 

Nader Y. Abd Elazem 
Ain Shams University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Numerical Analysis and Computation Commons 

Recommended Citation Recommended Citation 
Elgazery, Nasser S. and Abd Elazem, Nader Y. (2008). Chebyshev Collocation Method for the Effect of 
Variable Thermal Conductivity on Micropolar Fluid Flow over Vertical Cylinder with Variable Surface 
Temperature, Applications and Applied Mathematics: An International Journal (AAM), Vol. 3, Iss. 2, Article 
10. 
Available at: https://digitalcommons.pvamu.edu/aam/vol3/iss2/10 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol3
https://digitalcommons.pvamu.edu/aam/vol3/iss2
https://digitalcommons.pvamu.edu/aam/vol3/iss2/10
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol3/iss2/10?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol3%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


286 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 3, Issue 6 (December 2008)  pp. 286 – 307 
(Previously Vol. 3, No. 2) 

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
 

Chebyshev Collocation Method for the Effect of Variable Thermal 
Conductivity on Micropolar Fluid Flow over Vertical Cylinder with Variable 

Surface Temperature 
 

Nasser S. Elgazery1 
Nader Y. Abd Elazem2 
Department of Mathematics  

Ain Shams University 
Roxy, Heliopolis, Cairo, Egypt 

 
Received: June 14, 2007; Accepted: October 20, 2007  

 
Abstract 
 
An analysis is performed to study the role of a variable thermal conductivity on unsteady free-
convection in a micro-polar fluid past a semi-infinite vertical cylinder with variable surface 
temperature in the presence of magnetic filed and radiation. The surface temperature is measured 
to vary as a power of the axial coordinate measured from the leading edge of the cylinder. The 
governing non-linear partial differential equations are transformed into a linear algebraic system 
utilizing Chebyshev collocation method in spatial and Crank-Nicolson method in time. 
Numerical results for the velocity, angular velocity and temperature profiles as well as for the 
local skin friction, couple stress and Nusselt number are obtained and reported in tabular form 
and graphically for various parametric conditions to show interesting aspects of the solution. The 
velocity and temperature profiles are compared with the available results in the literature and it is 
found to be in good agreement. 
 
Keyword: Chebyshev Collocation Method, Micropolar Fluid, Variable Thermal   
                  Conductivity, Vertical Cylinder, Variable Surface Temperature 
 
AMS 2000 Subject Classification Numbers:  65N06, 76S05, 76D05 
 

1. Introduction 

Because of the increasing importance of materials flow in industrial processing and elsewhere, 
and the fact that shear behavior can not be characterized by Newtonian relationships, a new stage 
in the evaluation of fluid-dynamic theory is in progress. The theory of micro-polar fluids which 
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displays the effects of local rotary inertia and couple stresses was formulated by Erigen (1966). 
The theory can be used to explain the flow of colloidal fluids, liquid crystals, animal blood etc. 
Erigen (1972) extended the micro-polar fluid theory and developed the theory of thermomicro-
polar fluids. The study of micro-polar fluid flows with heat transfer has important engineering 
applications, for example, in power generators, refrigeration coils, transmission lines, electric 
transformers and heating elements.  
 
The most common type of body force, which acts on a fluid, is due to gravity, so that the body 
force can be defined as in magnitude and direction by the acceleration due to gravity. 
Sometimes, electromagnetic effects are important. The electric and magnetic fields themselves 
must obey a set of physical laws, which are expressed by Maxwell's equations. The solution to 
such problems requires the simultaneous solution of the equations of fluid mechanics and of 
electromagnetism. One special case of this type of coupling is the field known as 
magnetohydrodynamic (MHD). The effect of radiation on MHD flow and heat transfer problems 
has become industrially more important.  
 
Many engineering processes occur at high temperatures and the knowledge of radiation heat 
transfer has become very important for the design of pertinent equipment. Nuclear power plants, 
gas turbines and various propulsion devices for aircraft, missiles, satellites and space vehicles are 
examples of such engineering processes, i.e., at high operating temperature, radiation effect can 
be quite significant. Dring and Gebhart (1966) presented transient natural convection from thin 
vertical cylinders. Lee et al. (1988) studied the natural convection along slender vertical 
cylinders with variable surface temperature. Badr and Dennis (1985) carried out a time 
dependent viscous flow past an impulsively started rotating and translating circular cylinder. 
Collins and Dennis (1973) made a numerical extension of the method of expansion in powers of 
the time for an impulsively started circular cylinder by using an implicit time-dependent 
numerical integration procedure and symmetrical flow past a uniformly accelerated circular 
cylinder. Evans et al. (1980) studied transient natural convection in vertical cylinder.  
 
Chen and Yih (1980) studied combined heat and mass transfer in natural convection along 
vertical cylinder. Velusamy and Garg (1992) studied transient natural convection over a heat 
generating vertical cylinder. Ganesan and Rani (1998) studied transient natural convection along 
vertical cylinder with heat and mass transfer. Ganesan et al. (2000) studied transient natural 
convection flow over vertical cylinder with variable surface temperature. Ganesan and 
Loganathan (2001a, b, c, 2002, 2003, 2006) studied the problem of unsteady flow with heat and 
mass transfer past a moving vertical cylinder for different cases of constant heat flux, mass flux, 
chemically reactive species diffusion, uniform temperature and concentration at the cylinder 
surface and in the presence of constant applied magnetic filed normal to the surface of the 
cylinder.  
 
All these studies were not concerned with unsteady free-convection in a micro-polar fluid flow 
past a semi-infinite vertical cylinder with variable surface temperature in the presence of 
magnetic filed and radiation. Hence, the purpose of this work is to extend Ganesan et al. (2000), 
to study the more general problem, which includes variable thermal conductivity effect on MHD 
unsteady free-convection in a micro-polar fluid past a semi-infinite vertical cylinder with 
variable surface temperature in the presence of radiation. The fluid thermal conductivity is 
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assumed to vary linearly with temperature. The dimensionless non-linear partial differential 
equations are solved numerically by using Chebyshev collocation scheme. It is hoped that the 
results obtained will not only provided useful information for applications but also serve as a 
complement to the previous studies. 
 

2. Mathematical formulation 

Unsteady flow of an electrically conducting viscous micro-polar fluid past a semi-infinite 
vertical cylinder of radius 0r  with variable surface temperature is considered. The x-axis is 

measured vertically upward along the axis of the cylinder. The radial coordinate r-axis is 
measured normal to axis of the cylinder. A uniform magnetic field of strength 0  is imposed 

along the r-axis (see Fig. 1).  

 
 

Initially, at time ,0~ t  it is assumed that a vertical cylinder and the fluid are at the same 

temperature T . At time ,0~ t  the cylinder temperature is assumed to vary as the power of the 
axial coordinate. It is also assumed that the fluid properties are isotropic and constant, except for 
the fluid thermal conductivity, ,fk  which is assumed to vary as a linear function of 

temperature,T , in the form (Schlichting (1972)) )),(1(   TTakk f where ,fk  T  and T  are 

the fluid free-stream thermal conductivity, the temperature of the fluid in the boundary layer and 
the fluid free-stream temperature. a is a constant depending on the nature of the fluid, in general, 

0a  for fluids such as water and air, while 0a  for fluids such as lubrication oils. This form 
can be rewritten in the form ),1( Skk f   where ),(  TTaS w  is the thermal conductivity 

parameter and wT  is the average value of the plate temperature of the fluid in the boundary layer. 

The range of variation of S  can be taken as follows (see Schlichting (1972)) (for air ,60  S  
for water 12.00  S  and for lubrication oils 01.0  S ). The radiating gas is said to be a 
non-gray if the absorption coefficient  k  is dependent on the wavelength . The equation which 

describes the conservation of radiative transfer in a unit volume (includes the radiative energy 
incident from all directions) is given for all wavelength as 
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  ,)(4)(.
0

 dGTeTKq hr 


  

where he  is the Plank's function and the incident radiation G  is defined as 

 
4

1
,G e d  

  
   

where rq.  is the radiative flux divergence and   is the solid angle. Now, for an optically thin 

fluid exchanging radiation with an isothermal flat plate at temperature wT  and according to the 

above definition for the radiative flux divergence and Kirchhoffs law the incident radiation is 
given by  

),(4 wb TeG    
then, 

  .)()()(4.
0

 dTeTeTKq whhr 



 

Expanding K  and )( wh Te  in Taylor series around wT  for small ,wTT   then we can rewrite the 

radiative flux divergence as 
 

 
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r w w
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
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where 

 .ww TKK    

Hence, an optical thin limit for a non-gray gas near equilibrium, the following relation holds 
(Cogley et al. (1968)) 
 

where,            
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Under the Boussinesq and boundary layer approximations, the governing continuity, momentum, 
angular momentum and energy conservation equations become (Ganesan et al. (2000)): 
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Where u and v are the velocity components in the x and r directions, respectively, and G is the 
component of microrotation whose direction of rotation in the (x-r) plane. T  is the temperature 
of the fluid in the boundary layer, t~  is the time, g is the acceleration due to gravity, the 
temperature of the surface is wT  and far away from the surface this value is invariant and is 

represented by T .  ν, ρ and β are the fluid kinematic viscosity, the density of the fluid and the 

volumetric coefficient of thermal expansion. ,rq 0  and σ are the radiation heat flux, the applied 

magnetic field and the electric conductivity, respectively. j, γ, k, ,fk  and pc  are the microinertia 

per unit mass, the spin gradient viscosity, the non-Newtonian consistency index, the fluid 
thermal conductivity and the fluid specific heat, respectively. 
 
The initial and boundary conditions are 
 

0: v 0, , 0,t u T T G for all x and r      

0

v 0, , 0, 0 ,

1
0, v 0, ,

0: 2

( ) , 0 ,

0, , 0, 0 .

m
w

u T T G at x for all r

u
u G

t r

T T T T x at x as r r

u T T G at x as r



 
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Knowing the following non-dimensional quantities:  
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               (6) 

0Gr  is the Grashof number, Pr  is the Prendtl number, M  is the magnetic parameter, F is the 

radiation parameter and μ  is the viscosity coefficient.  
 
We introduce the following dimensionless variable of the angular velocity and parameters of 
micropolar and material of fluid (Cheng and Huann (1994)) 
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where, *R  is the micropolar parameter, B and λ are materials parameters. 
 
We can obtain the governing equations in dimensionless form: 
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The initial and boundary conditions are now given 

 
0: V 0,t U g for all X and R       

0

V 0, 0 ,

0, V 0, ,
0: 1

, 0 ,
2

0, 0, 0, 0 .

m

U g at X for all R

U X
t U

g at X as R R
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3.  Skin Friction, Couple Stress and Nusselt Number 
 
The local skin friction factor is given by 
 

,
ˆ

2

U
C w

f 
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where, the wall shear stress may be written as 
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 and 
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is the characteristic velocity. In terms of the non-dimensional quantities, we have 
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The dimensionless wall couple stress coefficient is giving by 
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Finally, the local Nusselt number is giving by 
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Table (1): the effects of the parameter *R , S, F, M  and m on 

fC , uN  and wM  at  x = 1, Pr = 0.7, B = 0.0001, λ = 0.001 and t = 4.5 (steady state) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Chebyshev Collocation Method 
 

A numerical solution based on Chebyshev collocation approximations seems to be a very good 
choice in many practical problems. Recently, Elgazery (2008) explain that this method is given 
excellent result in this kind of problems. So, we shall present Chebyshev collocation method for 
our model problem because of the domain has a rectangular shape. The Chebyshev collocation 
method is used in spatial and the time derivatives are computed with Crank-Niclson method. The 

derivatives of the function f(x) at the Gauss-Lobatto points, ,cos 







L

k
xk


 which are the linear 

combination of the values of the function f(x) (Elbarbary and El-Sayed (2005)): 

,)()( fDf nn   

where 

,)](....,),(),([ 10
T

Lxfxfxff   

and 

*R  S F M m 
fC  uN  wM  

3 0.5 0.01 10 0.2 -0.02093885 0.32373270 0.03119453 
3.5     -0.02813669 0.32622709 0.00408195 
4     -0.2900894 0.32664124    0.00100512 
5     -0.02916221 0.32708868  -0.000912892 

 
5 0 0.01 10 0.2 -0.02520876 0.28400323 -0.00032548 
 0.5    -0.02916221 0.32708868 -0.00091289 
 1.0    -0.03245033 0.36168925 -0.00145325 
 2.0    -0.03742057 0.40920710 -0.00227851 
        

5 0.5 0.01 10 0.2 -0.02916221 0.03270886 -0.00091289 
  0.06   -0.03122853 0.34880765 -0.00135533 
  0.1   -0.03285530 0.36544803 -0.00168535 
  0.5   -0.04769786 0.50318258 -0.00364650 
        

5 0.5 0.01 0 0.2 -0.22213301 0.28955188 -0.01174184 
   3  -0.08612556 0.31692594 -0.00550343 
   5  -0.05665713 0.32198716 -0.00323339 
   10  -0.02916221 0.32708868 -0.00091289 

 
5 0.5 0.01 10 0 -0.03552461 0.38730649 -0.00389076 
    0.2 -0.02916221 0.32708868 -0.00091289 
    0.5 -0.02296963 0.25622420 0.0008322 
    1.0 -0.01617056 0.17502766 0.0014140 
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such that nmls 2  and ,1,1,20  icc i where Ljk ,...,2,1,0,   and * * *
0

1
, 1

2l j       

for 1,2,3,..., 1j L  . The round off errors incurred during computing differentiation matrices 
)(nD  are investigated in (Elbarbary and El-Sayed (2005)). 

 

 
5. Descriptions of the Method for the Governing Equations 

In this section the non-linear partial differential equations (8)-(11), with initial and boundary 
conditions (12) are approximated by using Chebyshev collocation method (Elbarbary and El-
Sayed (2005) and Elbarbary and El-Kady (2003)). In the time direction, the derivatives are 
replaced by implicit finite-difference approximations, whereas in spatial, the derivatives are 
replaced by Chebyshev collocation method. Let t  be the step sizes in time direction. The grid 

points ),,( kji txx  in this situation are given as 





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


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cos,cos
L

j
x

L

i
x ji


, for 

1,...,1,1,...,1 21  LjLi  and ,...2,1,0,  kkttk . The domain in the X-direction is 

],0[ maxX  where maxX  is the length of the dimensionless axial coordinate and the domain in the 

R-direction is ],0[ maxR  where maxR  corresponds to R  which lies very well outsides both the 

momentum and energy boundary layers. The domain ],0[ maxX × ],0[ maxR  is mapped into the 

computational domain [-1, 1] × [-1, 1] and the equations (8)-(11) are transformed into the 
following equations: 

 

],[ )(
,

)( n
jk
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Thus, by applying the Chebyshev collocation approximation to the equations (18-21), we obtain 
the following Chebyshev collocation equations: 
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This system contains )34( 121 LLL  equations for the unknown k
ji

k
ji

k
ji gU ,,, ,,   where 

1,...,1,,...,1 21  LjLi  and k
jiV ,  where 21 ,...,1,,...,1 LjLi   is solved by Newton method (take 

15,12,5.3,0.1 21maxmax  LLRX  and 001.0t ). The computer program of the numerical 

method was executed in MATHEMATICA MT2.5  running on a PC. 
 
 
6. Results and Discussion 

 
In this section, a comprehensive numerical parametric study is conducted and the results are 
reported in terms of graphs. This is done in order to illustrate special features of the solutions. 
So, the numerical solution was obtained for distributions of the dimensionless velocities U(X, R, 
t), g(X, R, t) and the dimensionless temperature θ(X, R, t) as well as the local skin-friction 
coefficient ,fC  wall couple stress coefficient wM  and the local Nusselt number uN .  

 
To study the behavior of these profiles, curves are drawn for various values of the parameters 
that describe the flow, e.g., the variable micropolar parameter *R , the variable thermal 
conductivity parameter S, the magnetic parameter M, the radiation parameter F and the power-
law exponent of variable surface temperature m. This values of studied parameters (which took 
from Ganesan and Rani (2000)) are shown in the Table (1) and the Figs. 2-15. To assess the 
accuracy of numerical results, the present study is compared with previous study.  
 
No analysis seems to have been presented for the effect of variable thermal conductivity on 
micropolar fluid flow over vertical cylinder with variable surface temperature. A comparison 
between the curves of the velocity and the temperature values computed by Ganesan and Rani 
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(2000) for steady state and their corresponding numerical results for values of x = 1, Pr = 0.7, m 
= 0.2, (M = F = S = *R = B = λ = 0) at t = 4.0 is given in Fig. 2. As is evident from this figure the 
agreement between these results is excellent. This comparison lends confidence in the numerical 
solutions and shows that the numerical method is adequate for the solution of the present 
problem. 
 
The variation of the velocity, the angular velocity and temperature profiles with time are shown 
in Figures (3-5) for various values of t, respectively at x = 1, Pr = 0.7, M = 10, F = 0.01, S = 0.5, 

5* R , m = 0.2, B = 0.0001, λ = 0.001 and t = 4.5. It is predicated that after a certain lapse of 
time, the velocity, the angular velocity and temperature reach steady state. It is also observed that 
transient profiles of the velocity u decreases in the flow direction but the angular velocity g is 
maximum near the upstream. The thermal boundary layer thickness and the surface temperature 
of the cylinder increase in the flow direction.  
 
Fig. 6 show the effect of radiation parameter F on the temperature θ profiles. These calculations 
have been carried out for values of the radiation parameter F = 0.01, 0.1, 0.3, 0.5 and for the time 
t = 4.5 (steady state), it is observed that with increasing the radiation parameter F the temperature 
increases. This result qualitatively agrees with expectations, since the effect of radiation and 
surface temperature is to increase the rate of energy transport to the fluid and accordingly 
increases the temperature of the fluid.  
 
Figures 7 and 8 show that, the velocity and the angular velocity decrease with increasing the 
parameter M. On the other words, the Lorentz force, which opposes the flow, increases with 
increasing the magnetic parameter M and leads to enchanched deceleration of the flow, this 
conclusion meets the logic of the magnetic field exerts a retarding force on the free convection 
flow. Figures 9 and 10 show that, all of profiles of the velocity and temperature increase with 
increasing the micropolar parameter *R .   
 
Fig. 11 shows that, the angular velocity decrease with increasing the micropolar parameter *R . 
Fig. 12 display result for the dimensionless temperature θ distribution in the case of steady state 
(t = 4.5) with the variable thermal conductivity. As shown, with increasing the variable thermal 
conductivity parameter S the temperature increases, where the positive values of S mean that the 
thermal conductivity fk  increases with an increase in temperature and this is the case for fluid 

such as water and air, while for negative values of S the thermal conductivity fk  decreases with 

an increase in temperature and this is the case for fluid such as lubrication oils, where (for air 
,60  S  for water 12.00  S  and for lubrication oils 01.0  S ) (Schlichting (1972)). 

Figures 13 and 14 show that, all of profiles of the velocity, the angular velocity decrease with 
increasing m.  
 
Fig. 15 show that, when m increases the temperature gradient along the cylinder near the leading 
edge decrease, that is, the impulsive force along the cylinder decreases with increasing m. 
Figures 8, 11 and 14 show that, the profiles of the angular velocity changes its shape from nearer 
to the boundary-layer than free-streem of it. By using Eqs. (15-17), the effects of variable 
micropolar parameter *R , thermal conductivity parameters S, the radiation parameter F, the 
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magnetic parameter M and the parameter of surface temperature m on the local skin friction ,fC  

the local Nusselt number uN  and the wall couple stress coefficient are given in table (1). Table 

(1) represents the values of ,fC  uN  and wM  for various values of the parameter *R , S, F, M and 

m at (x = 1, Pr = 0.7, B = 0.0001, λ = 0.001) and t = 4.5 (steady state). It is clear that, ,fC  

decreases as *R , S and F increase, whereas ,fC  increases as M and m increase. Also, uN  

increases as *R , S, F and M increase, however, uN decreases as m increases. Finally, wM  

decreases as *R , S and F increase. wM  increase as M and m increase. 

 

7.  Conclusions 

Chebyshev collocation method is used to compute the effect of variable thermal conductivity on 
unsteady free-convection in a micro-polar fluid past a semi-infinite vertical cylinder with 
variable surface temperature in the presence of magnetic filed and radiation. Boundary layer and 
Boussinesq approximations have been introduced together to describe the flow field. The domain 
of the problem is discretized according to Chebyshev collocation scheme. In this study, the 
boundary layer equations are transformed into a linear algebraic system by using Chebyshev 
collocation method in spatial and Crank-Nicolson method in time.  
 
The effects of different physical values of the dimensionless parameters that describe the flow 
like the variable micropolar parameter, the variable thermal conductivity parameter, the radiation 
parameter, the magnetic field parameter and the surface temperature parameter on the flow and 
heat transfer have been discussed. Numerical calculations are carried out for the various 
parameters used in the MHD convection problem. It is found that as time approaches infinity, the 
values of the velocity, the temperature and the angular velocity approach to the steady state 
values. The velocity distribution increases as micropolar parameter increases but the angular 
velocity distribution decreases with increasing micropolar parameter while the velocity and the 
angular velocity distributions decrease as the magnetic parameter and the surface temperature 
parameter increase.  
 
The temperature distribution increases as the micropolar parameter, the thermal conductivity 
parameter, the radiation parameter increase, but it decreases as the surface temperature parameter 
increases. Moreover, the friction factor fC   decreases as *R , S and F increase, whereas it 

increases as M and m increase. Also, the local Nusselt number uN  increases as *R , S, F and M 

increase, however, it decreases as m increases. The wall couple stress coefficient wM  decreases 

as *R , S and F increase, but it increase as M and m increase. Finally, taking into account the 
variation of the fluid properties especially the thermal conductivity with temperature and using 
the same analysis used in this work can improve many results obtained before, for example 
Ganesan and Rani (2000). It is hoped that the present work will serve as a vehicle for 
understanding more complex problems involving the various physical effects investigated in the 
present problem. 
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