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Abstract 
 
In this article we consider a physical model describing time–dependent heat transfer by 
conduction and radiation. This model contains two conducting and opaque materials which are in 
contact by radiation through a transparent medium bounded by diffuse–grey surfaces. The aim of 
this work is to present a reliable framework to prove the existence and the uniqueness of a weak 
solution for this problem. The existence of the solution can be proved by solving an auxiliary 
problem by the Galerkin–based approximation method and Moser–type arguments which implies 
the existence of solution to the original problem. The uniqueness of the solution will be proved 
by using the same approach in our previous work for the stationary heat transfer model and some 
ideas from nonlinear heat conduction analysis. 
 
Keywords:  Heat transfer modes, Galerkin approximation method, existence and uniqueness of 

physical solutions 
 
AMS 2000 Mathematics Subject Classification Numbers: 35J65, 45P05 
 
 
1. Introduction  
 
Heat radiation plays a significant role in heat transfer in various cases, typically when a hot 
surface is in contact with a transparent or semitransparent medium with relatively low heat 
conductivity. In fact, these conditions are often met already at room temperatures–why else 
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would we call radiators by the name. In this paper we are going to study a heat radiation model 
that is, in some sense, about the simplest non–trivial case of conductive body with nonconvex 
opaque radiating surface.  
 
Before we can present the model, some background in the physics of heat radiation must be 
illustrated. In typical situation involving heat radiation, we have to combine radiation with other 
heat transfer mechanisms (conduction, convection) that are very slow compared to the speed of 
light. Hence, to a very good approximation, the radiactive heat transfer is instantaneous and can 
be modeled using stationary equations. In principle we have to solve the transfer equations at any 
point for each direction and wavelength of the rays. However, to simplify the situation we make 
the following important assumptions: We restrict ourselves to grey materials, which are bounded 
with grey and diffuse walls. This means that we can forget the angular and spectral distribution 
of radiation and model only the total intensities.  
 
In our previous work on heat radiation (see for example Bialecki (1993), Qatanani (2003), 
Qatanani and Barghouthi (2005), Qatanani and Schulz (2006)) the radiosity equation has 
received very much attention. There, we have focused on both the theoretical and the numerical 
aspects of this equation. Moreover, the problem of coupling radiation with other heat modes was 
also studied by many authors (see for example Bialecki (1993), Laitinen and Tiihonen (2001), 
Modest (1993), Qatanani (2007), Qatanani and Salah (2005), Qatanani et al. (2007)).  
 
Concerning the simplest nontrivial case of conductive body with nonconvex opaque radiating 
surface, we are a ware of the work (see Kelley (1996), Zeidler (1986)) and our previous work 
(see Qatanani (2007), Qatanani and Salah (2005)). They all studied some properties of the 
operators related to the radioactive transfer and showed the existence of a weak solution under 
some restrictions (no enclosed surfaces, limitations to material properties). In the case of 
semitransparent material the analysis has been carried out in one dimensional case with non 
reflecting surfaces (see Kelley (1996)) and in two and three–dimensional with diffusively 
reflecting surfaces (see Qatanani (2007)).  
 
The present work is an extension to our previous work (see Qatanani et al. (2007)) on the 
existence and the uniqueness of the solution of the heat transfer stationary model which is an 
abstraction of contactless heat transfer in protected environment arising for example in 
semiconductor applications. To this end, we will investigate the existence and the uniqueness of 
the time–dependent counterpart of the stationary model. This physical model describing heat 
transfer by conduction and radiation will be presented in section 2.  
 
The existence of a solution for this model will be proved by solving an auxiliary problem by the 
Galerkin method. The uniqueness of the solution will be proved by similar approach used for the 
stationary case and some ideas borrowed from the analysis of nonlinear heat conduction. 
Throughout this work we will use the following notations: 
  
(i)   The duality between  pL  and  qL   for a Borel measure    is defined as  

 

         , , p qf g f g d f L and g L       
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with   p1  , p and q are conjugate exponents, that is 1
11


qp
. 

 
(ii)  An operator K is positive if 0f  implies 0fK . 
       

We denote the positive and negative parts of a function by either sub–or superscript:     
    

)0,max( fff  
    and     )0,max( fff  

 .  
 
(iii) Let   be a subset of    where local heat transfer occurs and define an operator A through 
 

              
 

 dsgffdxgfagfA
p

iiij

1
,  ,    p > 1, 

 
where the coefficients 0andaij  are bounded. The domain of A is   

 
)()( 11  pLH  ,   

 
where the measure   is the surface measure of    weighed with the coefficient  .  The null 
space of A is denoted by  

 
                 0:)()()( 11   fALHfAN p

 .  

 
(iv)    ija  is strictly elliptic, that is, there exists a constant C > 0   such that 

 

                


 dxfCffA
2

,    for all  )(1 Hf  . 

 
(v)     We denote by C > 0 different positive constants appearing in the proofs. 
 
 
2.  The Physical Model 
 
Let 3

21 R be a union of two disjoint, conductive and opaque enclosures surrounded 

by transparent and non–conductive medium. Moreover, suppose that the radioactive surfaces 1  

and 2  are diffuse and grey, that is, the emissivity є of these surfaces depends neither on 
direction nor on the wavelength of radiation. Under the above assumptions the boundary value 
problem reads as 
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gTk  )(.   in  21  ,                                                                (2.1) 
 

       q
n

T
k 



   on   21  ,                                                                          (2.2) 

 
where k is the heat conductivity, n is the outward unit normal, g is the given heat generation 
distribution and q is the radiative heat flux, which is defined as the difference between the 
outgoing radiation oq  and the incoming radiation iq . є is the emissivity  coefficient ( 0 < є < 1) 

and T is absolute temperature. For convex 2  we can assume the external radiation is given. 

Therefore, the radiative flux on  2  consist only from local emission given by Stefan–Boltzmann 
Law,  
 


2

q є )( 4
0

4 TT  , 

 
where   is the Stefan–Boltzmann constant which has the value  )(10669996.5 428 KmW  

and 4
0T  is the effective external radiation temperature. The surface 1 , however, receives 

radiation from other parts of itself, leading to the relation 
 

  1on)()(  xqQxq oi ,                                                          (2.3) 

 
where Q is an integral operator with  kernel defined on  11  . Moreover, we note that the 

outgoing radiation oq on 1  is a combination of emission and reflected fraction of incoming 

radiation (see Modest (1993)), that is,  
 

oq є )(4 xT  + (1- є) )(xqi   є )(4 xT  + (1- є)Q )(xqi .                         (2.4) 

 
Solving, for oq   as a function of T we can write our problem in a variational form as  

 
 

 
 


21

)( 4 dsTGdxTk  є dsT  4
 

                                
 


2

dxg є dsT  4
,               (2.5) 

 
where the operator  G is defined as 
 

   1(IQITG  є)  1Q є T . 
 
In stationary case our problem reads as: given *Xg  , find XT   such that 
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1

3
, , ( ) , ,K T AT G T T d g X     



          ,            (2.6) 

 
where the solution space is given by )()()( 2

1
1

51  pLLHX  . One observes that since 

the Stefan–Boltzmann law is physical only for nonnegative values of temperature, we can 

replace the term 4T  by  TT
3

 for mathematical convenience. In fact problem (2.6) has already 

been investigated in our recent work (see Qatanani et al. (2007)). In the current work our main 
goal is to investigate the time dependent counterpart problem of (2.6). That is, for *Vg   and 

)(2
0  LT , we seek WT   such that 

 

XXX tgtTKtT   ),(),(),( ,                                       (2.7) 

 

                                               0)0( TT   ,                                                             (2.8) 

 
for all  X  and almost all  ,0t .  The operator K is defined as in (2.6).  For simplicity we 

assume p = 1 on 2 . This problem is nontrivial since for the Galerkin method we need an a priori 

estimate in the space  55 ,,0  LL  which does not follow from the coercivity of the operator 

*: XXK  (see Qatanani et al. (2007)).  
 
Metzger (1999) solved this problem for radiative systems without enclosure. However, our 
approach here is to assume more regularity from the data which allows us to derive the a priori 
estimate using Moser iteration (see Clement, Zacher (2008)). Our idea is to solve first an 

auxiliary problem for which the a priori estimate in  55 ,,0  LL  trivially holds: Fix   > 0 and 

seek T  such that 

  
3

( ), ( ), ( ) ( ) ( ),X X XT t K T t T t T t d g t                 ,          (2.9) 

              

 0)0( TT  ,                           (2.10) 

 

for all X and almost all  ,0t . Then, we will prove with Moser-type arguments that 

the auxiliary problem is in  ),,0( 55
 LL  independent of   > 0 which allows us to deduce that  T   

converges to the solution of the original problem.  
 
Let us introduce first some notations and outline the basic properties of the function spaces 

*, VV and W. The spaces V and W are defined as 
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   5512 ,,0)(,,0  LLHLV   

 

 *,: VTVTTW  . 
 
Throughout this work we will use the abbreviations: 
 

      )(2),(),(,,,



LX TTTT   , ),,0()( BLBL pp  . 

 
The function space V is equipped with the norm 
 

      )())(( 5512
LLHLV

TTT 
 . 

 

To define the norm for
*V , we observe that each 

*Vv can be expressed as  Tv  with 

   4545*12 )(  LLandHLT  ; (see for example Krizek and Liu (1996)).  Hence, 

we can define 
 

       
)())(( 4545*12* inf




 LLHLTvV
Tv 


  

 
and finally, we define the norm of W as 
  

     *VVW
TTT  . 

 
The most important properties of the space W are summarized in the following lemma: 
 

Lemma 1: The spaces  
*, VV and  W   are reflexive Banach spaces. Moreover, the embedding 

  )(,,0 2  LCW   is continuous and the following result holds 
 

                  
t

x

dyyTyyyTxxTttT )(,)()(,)()(,)()(,)(  , 

 

  .,,0,and,allfor txtxWT     
  

The most important properties of the stationary operator 
*: XXK  also extend to the time–

dependent case.    
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Lemma 2: The operator K: *VV  is bounded and pseudomonotone. 
 
 
Proof: From the boundedness of A and G (see Qatanani et al. (2007)) together with the Hölder 

inequality it follows that there is a constant  c > 0  such that 
  

  VTTTcTK
LLHLV




4

)())(( 5512*


.  

 
Moreover, *: VVA  is monotone because  *: XXA   is monotone.  

 
To prove the pseudomonotonicity of K, we assume that iT  converges weakly to T in V. 

Then, jj TT
3

 converges weakly to TT
3

 in ),,0( 4545
 LL by the arguments in (see 

Qatanani  et al. (2007)). Hence, 
 

3 3

0 0

lim , , , .j jj
G T T dt G T T dt V

 

 
          

 
Hence, the Fatou's lemma yields 
  

            








 
0

3

0

33
,lim,lim,lim dtTTGdtTTTGTTTG jj

j
jjj

j
Vjjj

j
 

 

                                                 








 
0

3

0

3
,lim,lim dtTTGdtTTTG jj

j
jjj

j
    

 

                                                
3 3

0 0

, , ,G T T T dt G T T dt
 

         

 

where the pseudomonotonicity  *3
: XXTTG  has been used. 

 
 
3. The Auxiliary Problem and Galerkin Approximation  
 
In order to introduce the Galerkin equation for the auxiliary problem (2.9)–(2.10), let 
 nvvv .......,,, 21  be a linearly independent set in X and define  nn vvvspanX .......,,, 21 . 

Further, set  
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



n

k
kknn vtatT

1

)()( .                                                                          (3.1) 

 
Then, we seek WTn  such that  

 

 
3

( ), ( ), ( ) ( ) ( ),n j n j n n j jT t v K T t v T t T t v d g t v                      (3.2) 

 
and 
 

          nnn XTT 
0

)0(                                                                                   (3.3) 

 

for nj ..,..........,1  and  
0nT  is chosen such that 

 

         nTTn as)(Lin 2
00

. 

 

Theorem 1: Let 
*2

0 ,)(L VgT   and assume that nT  is a solution of (3.2)–(3.3). Then 

there exists a constant C > 0 independent of n  such that 
 

                    CT
Vn                                                                                              (3.4) 

              

                    CTK
Vn *                                                                                          (3.5)  

 

                    CtT
Ln

t


 )(0
2)(max


.                                                                            (3.6) 

 

Proof:  We start by multiplying (3.2) by )(takn  and sum for  nk ...,,.........2,1   so that  

                   

  nnnnnn TgdTTTKTT ,,,
5  .                    (3.7) 

 
Since 

                  











2

)(2

2

1
,,

Lnnnnn T
dt

d
TTTT ,  

 
then, integration of (3.7) from 0  to t yields 
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                  2 5 2

2 2

( ) ( )
0 0 0

( ) 2 , 2 (0) 2 ,
t t t

n n n n n nL L L
T t KT T dx T dx T g T dx

 
           . (3.8)  

 
Hence, (3.6) is valid provided that (3.4) holds.  Moreover, by Theorem 10 (see Qatanani 

et al. (2007)) there exists a constant C
~

 such that 
 

 
 

2 1

2

0 0

2

( ( ))

2 , 2 1

2 2 .

n n n X

n L H

KT T dx C T dx

C T C

 



   

 

  

 
                                    (3.9) 

 
Upon using the inequality  

 

ba < ,
p q

q pa b

p q
    

1 1
1, , 0 ,a b

p q
   > 0,   

 
and writing 
    

                 21 ggg  ,    2 1 * 5 4 5 4
1 2( ) , ,g L H g L L    

 
we have 
  

 








0

2

0
)(1

0

,2,2,2 1 dxTgdxTgdxTg nHnn  

                                                 454555*1212 2)(1)(
22

 LLLLnHLHLn gTgT 
    

                                                2 1 2 1 * 5 4 5 4

2 2 5 4

1 2( ) ( )
( ) ( )n L H L H L L

C T C C g C g
 

    
.    (3.10)                           

                                                                                            
Collecting the estimates (3.8), (3.9) and (3.10) we obtain (3.4). Using the boundedness of 
K, the estimate (3.6) follows immediately from (3.4).   

 
 
Lemma 3: There exists a solution for the auxiliary problem (2.9)–(2.10). 
 
 
Proof: For simplicity, we denote the solution by T  instead  of  T . Next, we follow the steps: 
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1. Existence of solution for the Galerkin equations (3.2)–(3.3). These Galerkin 
equations can be viewed as a system of ordinary differential equations and hence the 
existence of solutions can be obtained from the theorem of Caratheodory (see 
Saldanha and Martins (1991), (1995)). In order to apply this theorem one needs to 
note the following: 

 
(a) If )(t is a solution of (3.2)–(3.3) then Ct

L


)(2)(  by (3.6). 

 
(b) The mapping    jvKt ,  is measurable on  ,0  and for all nX . 

 
(c) The mapping    jvK ,   is continuous on nX . Let  nT  be a sequence of 

solutions of (3.2)  (3.3). Then according to Lemma 2 there exist 
)(and, 2*  LyVvV  such that nT  converges weakly to T  in V, 

nTK  converges weakly to  v  in *V and )(nT  converges weakly to  y  in 

 nasL )(2 .  
 

2.  Show that  

                   dttTtttvtgTy   )(,)()(,)()()0(,)(,
0

0 


       (3.11) 

 
for all   XC    and,0 . First, let 
   

  nmXCt m   ,and,0)(  .  

 
Then, integrating by parts yields 
  

              dttTtttTTT nnnn   )(,)()(,)()0(,)0()(,)(
0




 

                                                                 dttTtttTKtg nn   )(,)()(,)()(
0




 

                                                                             VnVn TTKg  ,,  . 

If we let n  we obtain  
 

                  
 0, ( ) , (0)

, , , for all .V V

y T

g v T X

      

         

 
3.  We prove that T, v and y satisfy  
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WTgvT  ,                                                                           (3.12)  
 

0(0) , ( )T T T y  .                                                                   (3.13) 

 
From (3.11) it implies that  

 

                  dtttTdtttvtg   )()(,)(,)()(
00




                                (3.14) 

 

for all   ,0C . This means that T   exists and 
*VvgT  .  Hence, 

also WT  .  Moreover, the integration by parts yields  
 

                      
0

( ) , ( ) (0), (0) ( ), ( ) ( ) , ( )T T T t t t T t dt


                 ,   (3.15) 

 

for all   ,0C , X .  Hence, (3.11) and (3.15) imply 
 

                           )0(,)(,)0(,)0()(,)( 0TyTT         (3.16)   

 
so that 
  

     0)0(and)( TTyT  .  

 

4.  Finally, we prove that vTK  .  Since 
*: VVK   is pseudomonotone, it satisfies 

the so–called condition (M); (see Zeidler (1990), Ch.27). This means that the weak 

convergence of  nT  and nTK  together with  

            




TvTTK nn
n

,,lim                                                 (3.17) 

 
imply that    

                    
.K T v   

 
Integrating by parts gives 
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                 dtTTKgdttTtTTT nnnnLnLn  





00

2

)(

2

)(
,)(,)()0()(

2

1
22  

       
      or  

                 2

)(

2

)( 22 )()0(
2

1
,,




LnLnVnVnn TTTgTTK  . 

 
Hence, 

 

                  2

)(

2

)( 22 )()0(
2

1
,,lim




LnLnVnn
n

TTTgTTK     

                  

as )0()0( TTn   and 

      

                  )()( 22 )(lim)(



LnL

TT  .  

 
This yields (3.17) since,    

       

                     V

t

LnLn TgvdtTTTT  
,,)()0(

2

1

0

2

)(

2

)( 22  . 

 

Consequently, .K T v  
 
 
4.  Existence of Solution for the Original Problem 
 

Lemma 4:  Suppose that  )(5
0 LT  and assume   

  

    )(),0()( 21
3552    LLLtg   for   > 0 .       (4.1) 

 
Then, there exists a constant C > 0, independent of  , such that the solution of 

(2.9)–(2.10) satisfies  CT
W
 . 

 

Proof:  It is obvious that 
'
T  is bounded in 

*V provided that T  is bounded in .V    Moreover, in 

virtue of Lemma 2 we can easily see that CT
XL


)(2  independent of  . Hence, it 

suffices to prove that  
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                dtTtTCdttT
LLL

))(()(
5

)(
0

5

0

5

2
55

)(
5 

  










  

 
is bounded uniformly in  .  In fact we will prove a stronger statement  
 

                     
)(0)(),0( 2

21
105325 ,,

XLLLL
TTgCTT 

   .         (4.2) 

  

We use a Mosertype argument to derive abound for  T . The proof for  T is 

similar. For simplicity we denote  T  by T and define   RRB:  by ( ) ,B t t  

1  . Then, set 
  

                  kkTTk ,,min  > 0  

 
and define 
  

                  


  XTfTdttBTf kk

T

k

k

)(,
12

)()( 12
2

0

2 




.  

Next, suppose that T is a solution of (2.9)–(2.10), i.e. 0)0( TT   and  

 

                   ,)()()(,)(,)(
3

tgdtTtTtTKtT n  

                                                                                                   for all X  ,0 .  

Then, choosing  )( kTf  we have 

  

                 

6 4
1

2

2 2

( ) ( )

2

( )

, ( ) ( ) ( )

, ( ) ( ) .

k k kL L

k k L

T f T C B T C B T

g f T C B T

 



   

   
 

 

Next, integrating from 0 to t and let k , then 
       

 dtTBTfg
t

Lkk 


0

2

)(2)()(,  
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                        









   











tt

dtdzTgdtdzTTgC
0

12

0

12

21

)()(      (4.3) 

and 
 

  

 2 2

0 0

2

0

2 2

0( ) ( )

, ( ) , ( )

( )

( ) ( ) ( ) .

t t

k

t

L L

T f T dt T f T dt

d
C u dz dt

dt

C T t T



 










  

     



 

 

                (4.4) 

 
Hence, collecting all estimates we obtain 

 

     )(

2

)(

2

)( 21
42622  

 LLLLLL
TTT 

                                         

 

                     3)(

12
2)(

12
1

21
4321

)( CTCTCC
qqqq LLLL










  ,  (4.5) 

where  

    
2

)(03)(2)(1 2
21

4321 )(,,
 

LLLLL
TCgCTgC pppp


 

 

and the pairs of conjugate exponents ,, ii qp  i = 1, 2, 3, 4 are to be determined. 

Interpolating between the norms we obtain 
 

      
)()(),0( 622310 

  LLLLL
C 

  , 

 

for all    )()( 222   LLLL  (see for example Laitinen and Tiihonen 

(2001)). Finally, the conclusion follows by iteration of (4.5) if the constants  21 ,CC  and 

3C  are finite and the powers of 
T are greater on the left–hand side of (4.5) than on the 

right–hand side for all 251  . Namely we require 310 > )12(1 q , 

310 > )12(2 q , 2 > )12(3 q , 4 > )12(4 q . In fact 321 ,, ppp  and 

321 ,, qqq can be determined if 0T and g have assumed regularity. Moreover, the terms 
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on the right–hand side of (4.5) can be bounded by  )(2 XL
T  when 1  and hence the 

bounding constant in (4.3) does not depend on  . 
 
 
Theorem 2:  Suppose that the hypotheses of Lemma 4 hold, then there exists a solution for 

(2.7)–(2.8). 
 
 

Proof: From the priori estimate of Lemma 4, it follows that the sequence kT  is bounded in W. 

Hence, there is WT  such that T  converges weakly to T  in W as 0 . By 

repeating the arguments of Lemma 3 one sees easily that T solves (2.7) – (2.8). 
 
 
5.  Uniqueness of the Solution 

   

Theorem 3: Assume that 1T and 2T  are solutions of (2.7)–(2.8) corresponding to the right–hand 

sides
*

21 , Vgg  and the initial data )(, 22
0

1
0 LTT satisfying 

  

               1 2 , 0, 0 ,Vg g v v v W        

  

               1 2 2
0 0 , 0, 0 , ( ).T T L         

  

Then, 21 TT   almost everywhere in ),0(   with respect to the measures 
nLL 1

, 1L  and 1L . Consequently, if the solution of (2.7)–(2.8) exists, 
then it is unique. 

 
 
Proof: To prove the uniqueness of the solution we follow the same approach used for the 

stationary case in (see Qatanani et al. (2007)). The only difference is instead of 

0 defined in the proof of Theorem 11 (see Qatanani et al. (2007)), we consider the 

following set 
              

 ),(),(:],0[),( 21 tzTtzTtz    ,  
 

which is of measure zero. For any ],0[ t  we define )(,)(0 tt   and  ),( tz  

as in (see Qatanani et al. (2007)). Our goal is to prove that  
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 

5 2 5

1 5

1 5

0 0 ( ) 0 ( )

1 1

( )
0

( )

( ) 0.

t t

L L L

t dt d dt d dt

dt C

 

 

  





 

    

    



 

 

 
     

 

  

    


 

 
This is done by showing that      

 

                    

  












































 








0

52

4

0

12

1

0 0

2

12

2

dtdGCdxC

dtdzaCdt

p

p

jiijL

 

and  
  

                  






 fgdtdza
LLjiij  


)(

0

52                         (5.1) 

 

                  2 5

2 52 1

1 4

0

( )
,

p

p

L L

dx G d dt

g h




  

  

    

 




 

  
   

   
 

  

       (5.2) 

where 0g  and  fh  can be neglected for sufficiently small  . The derivation 

of the estimates (5.1) and (5.2) is done as in (see Qatanani et al. (2007)) except for adding 

integration over ),0(   to all terms. The main difference is the appearance of the time 
derivative when deriving (5.1). However, this additional term can be treated in the 
following manner:  

 
First integrating by parts we obtain  
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 .)(,)()(,

)(,)()(

12

0

12

0

2

TTTdtTT

dtTtTtT n






















 

 

Since  12 TT  in )(0 t \ )(t  and 0)(  t  in the complement of 

)(0 t \ )(t , we have  

 

                  )(,)(
2

1
,,

00

12  







   dtdtTT , 

 
and therefore  

 

                   0)()()(
2

1
,)(, 12

0

12 





    



 TTdtTT . 

 
Hence, the additional term can be ignored and the proof of uniqueness can be completed 
as in the proof of Theorem 11 (see Qatanani et al. (2007)). 

 
 
6.  Conclusion 
 
In this article, we proved the existence and the uniqueness for the time–dependent conductive–
radiative problem. We have restricted ourselves to grey materials, that is, the radiative 
coefficients of these materials do not depend on a wavelength. Also temperature dependent 
material properties are beyond the scope of this work. The results presented in this work could be 
generalized to some cases involving materials with wavelength on temperature dependent 
radiative properties, but this part of the theory will be treated in later works. The mathematical 
analysis of non–grey models is entirely an open problem.       
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