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Abstract  
 
The modified Kawahara equation is studied along with its perturbation terms. The adiabatic 
dynamics of the soliton amplitude and the velocity of the soliton are obtained by the aid of 
soliton perturbation theory. 
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1.   Introduction  
 
The theory of nonlinear evolution equations is an ongoing topic of research for decades 1to10. 
This paper is going to study one of the classical nonlinear evolution equations that is known as 
the modified Kawahara equation (mKE). The dimensionless form of the mKE that is going to be 
studied in this paper is given by  
             

02  xxxxxxxxxt cqbqqaqq ,           (1) 

 
where a , b and c are arbitrary constants. This dispersive equation was proposed by Kawahara in 
1972 as an important dispersive equation that arises in the context of shallow water waves 
(Kawahara (1972)). The mKE given by (1) is not integrable by the classical method of Inverse 
Scattering Transform as this equation will fail the Painleve test of integrability. However, in the 
last few years, very powerful methods of integration of nonlinear evolution equations of this type 

1

Biswas: Soliton Perturbation Theory for the Modified Kawahara Equation

Published by Digital Commons @PVAMU, 2008



AAM: Intern. J., Vol. 3, Issue 6 (December 2008)                                                                             219                        
 

were developed. They include the Wadati trace method, pseudo-spectral method, tanh-sech 
method, sine-cosine method and the Riccati equation expansion method (Chen (2007), Malfliet 
(1992), Parkes (1996), Wazwaz (2007)). It is to be noted that one of the major disadvantage of 
these modern methods of integrability is that one can only obtain the 1-soliton solution of such a 
nonlinear evolution equation and not a multi-soliton solution. Also these methods are unable to 
compute a closed form solution for the soliton radiation. Using the sine-cosine method, the 1-
soliton solution of (1) is given by (Sirendaoreji (2004), Wazwaz (2007)) 
 

)(cosh
),(

2 xxB

A
txq


 ,        (2) 

 
where,    
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b
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3
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b
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52
 .          (4) 

 
Here A represents the amplitude of the soliton, while B is the inverse width of the soliton and x  
represents the center position of the soliton and therefore the velocity of the soliton is given by 
 

dt

xd
v  .           (5) 

 
 
2.   Mathematical Properties  
 
Equation (1) has at least two integrals of motion (Zhidkov (2001)) that are known as linear 
momentum ( M ) and energy ( E ). These are respectively given by: 
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and   
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These conserved quantities are calculated by using the 1-soliton solution given by (2). The center 
of the soliton x is given by the definition 
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where M is defined in (6). Thus, the velocity of the soliton is given by 
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On using (1) and (9), the velocity of the soliton reduces to 
 

c

b
v

25

4 2
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3. Perturbation Terms  
 
The perturbed mKE that is going to be studied in this paper is given by 
      

Rcqbqqaqq xxxxxxxxxt  2 ,       (11) 

 
where in (11),  is the perturbation parameter and 0 < << 1 (Biswas (2006), Kivshar (1989), 
Osborne (1997)), while R gives the perturbation terms. In presence of perturbation terms, the 
momentum and the energy of the soliton do not stay conserved. Instead, they undergo adiabatic 
changes that lead to the adiabatic deformation of the soliton amplitude, width and a slow change 
in the velocity (Kivshar (1989), Osborne (1997)). Using (7), the law of adiabatic deformation of 
the soliton energy is given by (Biswas (2006), Chen (2007), Kawahara (1972), Kivshar (1989))  
 





 xRdx

dt

dE 2 ,          (12) 

 
while the adiabatic law of change of the velocity of the soliton is given by (Biswas (2006), Chen 
(2007), Kawahara (1972), Kivshar (1989))  
 
 





 xRdx

Mc

b
v


25

4 2

.         (13) 

 
In order to obtain (12), equation (11) is first multiplied both sides by q and then integrated with 
respect to x. Since for solitons, q , xq , xxq , xxxq  etc. all approach zero as x  approaches ±∞, it is 

only the first term in (11) that sustains, that leads to (12). Also, in order to obtain (13), equation 
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(9) is utilized where qt is replaced by all the terms in the right hand side of equation (11) and the 
same technique is applied that leads to (13).  
 
 
3.1. Examples  
 
In this paper, the perturbation terms that are going to be considered are  
 

xxxxxxx
m

xxxxx qqqqqqqqqqqR     

xxxxxxxxxxxxxxxxxxxxxxxxx qqqqqqqqq   3 .   (14) 

 
So, the perturbed mKE that is going to be considered in this paper is  
 

xxxxxxxxxt cqbqqaqq  2
xxxxxxx

m
xxxxx qqqqqqqqqqq   [   

       ]3
xxxxxxxxxxxxxxxxxxxxxxxxx qqqqqqqqq   .  (15) 

 
The perturbation terms due to   appear due to shoaling and  is a dissipative term (Chen 
(2007)). The coefficient of  is the higher nonlinear dispersion while the coefficient of 
 represents the higher spatial dispersion. In (14), m is a positive integer and 1 ≤ m ≤ 4. The 
term with the coefficient of ρ will provide the higher stabilizing term and must therefore be taken 
into account while   is the coefficient of higher order dispersion. The remaining coefficients 
appear in the context of Whitham hierarchy (Parkes (1996)).  
 
 
3.2. Applications 
 
In presence of these perturbation terms, the adiabatic variation of the energy of the soliton is 
given by: 
 

)5735(
105

16 2




A

dt

dE
.        (16) 

 
Using (7), one can integrate equation (16) to yield  
 

t
eAA

)5735(
35

0


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where 0A is the initial amplitude of the soliton. This leads to the long term behavior of the soliton 

amplitude as 
 

0 , : 7 35 5

lim ( ) , : 7 35 5

0, : 7 35 5 .
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A t
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        (18) 
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The law of the change of velocity for the given perturbation terms in (14) is  
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In order to evaluate (16) and (19), the 1-soliton solution given by (2) is substituted in (12) and 
(13) respectively. Although, technically, it is improper to substitute the unperturbed 1-soliton 
solution given by (2) into (12) and (13), this is only an approximate result and this is the 
technique that is widely used in the literature of soliton theory (Biswas (2006)). It is the radiation 
term that is not taken into consideration that makes this technique approximate.  
 
It is to be noted that in the evaluation of the adiabatic variation of the energy in (16), the integrals 
vanish for all the perturbation terms except  ,  and  . The remaining terms vanish because of 
the fact that those terms lead to an integrand that is an odd function. A similar situation is valid 
in the evaluation of the soliton velocity change in (19). 
 
 
4.   Conclusions  
 
In this paper, soliton perturbation theory is used to study the perturbed mKE. This theory gives 
the ability to compute the adiabatic variation of the soliton energy and hence the adiabatic 
variation of the soliton amplitude. This finally leads to the computation of the long term behavior 
of the soliton amplitude depending on the specific combination of the soliton parameters. Also, it 
is shown that the velocity undergoes a slow change due to these perturbation terms.  
 
In future, the integration of the perturbed mKE will be carried out by the aid of multiple-scale 
perturbation analysis. Thus, the quasi-stationary soliton (Biswas (2006)), in presence of such 
perturbation terms, will be obtained. These results will be reported in a future publication.  
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