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Abstract

The classical binary 4-point and 6-point interpolatery subdivision schemes are generalized to

a-ary setting for any integer a ≥ 3. These new a-ary subdivision schemes for curve design are

derived easily from their corresponding two-scale scaling functions, a notion from the context of

wavelets.
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1. Introduction

T
HE classical 4-point binary interpolatory subdivision scheme for curve design was intro-

duced more than twenty years ago in (Dyn, et al. [6]), and was given by

λ
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2k = λ
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k , (1)
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)
+

9

16

(
λ

(n)
k+1 + λ

(n)
k

)
, k ∈ Z. (2)

About two years later, it was extended to the 6-point scheme (Weissman [15]):
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Due to the development of the wavelet theory, both schemes (1)–(2) and (3)–(4) can be easily

re-discovered by the scaling functions φ4 and φ6 satisfying the two-scale equations

φ4(t) = φ4(2t) −
1

16
[φ4(2t + 3) + φ4(2t − 3)] +

9

16
[φ4(2t + 1) + φ4(2t − 1)] , t ∈ R, (5)

and

φ6(t) = φ6(2t) +
3

256
[φ6(2t + 5) + φ6(2t − 5)] − 25

256
[φ6(2t + 3) + φ6(2t − 3)]

+
75

128
[φ6(2t + 1) + φ6(2t − 1)] , t ∈ R, (6)

respectively. Here, again, the notion of scaling function is from the context of wavelets, a relatively

new subject area that has been heavily studied for the last two decades or so, and found many

successful applications. These scaling functions are sometimes also referred as father wavelets

in the wavelet literature. Due to the fact that there are many research papers and books in

wavelet analysis and its applications, we have no intention in this paper to list or elaborate many

unnecessary notions of wavelets in detail. The interested reader is referred to the two exemplary

books (Chui [1]) and (Daubechies [3]).

It is known that, with initial control net
{
λ

(0)
k

}

k∈Z

, both schemes (1)–(2) and (3)–(4) converge to

∑

k∈Z

λ
(0)
k φ4(t − k) and

∑

k∈Z

λ
(0)
k φ6(t − k),

respectively. Moreover, it is also known that φ4 provides polynomial preservation of order 4,

denoted by PP4 for short, and with the resulting limiting curve being C1; while φ6 ∈ PP6 and

with the resulting limiting curve being C2. See Fig. 1 for graphs of φ4 and φ6.
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(a) Graph of φ4(·)
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(b) Graph of φ6(·)

Fig. 1. The interpolatory scaling functions φ4(·) and φ6(·) determined from the two-scale equations in (5) and (6), and with

supp φ4 = [−3, 3] and supp φ6 = [−5, 5], respectively.

A natural question is: What if the dilation factor of a = 2 in (5) and (6) is replaced by any integer

a ≥ 3? Compactly supported orthonormal scaling functions and wavelets for the situation a = 3

has been considered in Lian’s Ph.D thesis (Lian [10]) and consequently published in (Chui &

Lian [2]). Ternary subdivision schemes were also considered in (Lian [10]). Later, the M-channel
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filter bank design, meaning the scale factor a = M , was also studied, cf., e.g., the two distinct

books (Vaidyanathanm [14], p. 223–271) and (Strang & Nguyen [13], p. 299–336).

One of the main objectives of this paper is to extend both schemes (1)–(2) and (3)–(4) to the a-ary

setting for any a ∈ Z+ with a ≥ 3. Our main results are listed in Section 2, with proofs given in

Section 3. Some applications to curve design are demonstrated in Section 4. Some remarks and

future work constitute Section 5.

2. Main Results

By taking the Fourier transforms of (5) and (6) we arrive at the two-scale equations of φ4 and

φ6, namely,

φ̂4(ω) = P4(z)φ̂4

(
ω

2

)
,

φ̂6(ω) = P6(z) φ̂6

(
ω

2

)
,

where z = exp(−iω/2), with the two finite Laurent polynomials P4 and P6 being given by

P4(z) =
(

1 + z

2

)4 −1 + 4z − z2

2z3
, (7)

P6(z) =
(

1 + z

2

)6 3 − 18z + 38z2 − 18z3 + 3z4

8z5
, (8)

which are called the two-scale symbols of φ4 and φ6, respectively. It is easy to see that both φ4

and φ6 are interpolatory:

φ(k) = δk,0, k ∈ Z, (9)

where δk,0 is the usual Kronecker delta, meaning δk,0 is 1 when k = 0 and 0 otherwise. Generally

speaking, any binary subdivision scheme corresponds to a scaling function. Observe that the

inperpolatory property of a subdivision scheme for curve design is equivalent to the interpolatory

property of its corresponding scaling function. Observe also that a scaling function φ satisfying

(9) is equivalent to that its two-scale symbol P satisfies

P (z) + P (−z) = 1, |z| = 1.

Now, if we allow the scaling factor, denoted by a, to be ≥ 3, and denote such a scaling function

by aφ, then the two-scale equation of aφ becomes

âφ(ω) = aP (z) âφ
(

ω

a

)
, (10)

where z = exp(−iω/a), and, again, aP is its two-scale symbol. The interpolatory property of aφ

is then equivalent to aP satisfies

a−1∑

`=0

aP (w`z) = 1, |z| = 1, (11)

3
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where {w`}a−1
`=0 are the a distinct roots of za = 1, namely,

w` = exp

(
−2`πi

a

)
, ` = 0, . . . , a − 1.

For aφ4 ∈ PP4, we have the following.

Theorem 1: The scaling function aφ4 ∈ PP4 satisfying both (10) and (11), and with the smallest

support, is determined from the two-scale symbol aP4 of the form

aP4(z) = z1−2a

(
1

a

1 − za

1 − z

)4
(

1 − a2

6
+

2 + a2

3
z +

1 − a2

6
z2

)
. (12)
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(a) Graph of 3φ4(·)
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(b) Graph of 4φ4(·)

Fig. 2. The interpolatory scaling functions 3φ4(·) and 4φ4(·) determined from the two-scale equations in (12) when a = 3 and

4, where supp 3φ4 = [−5/2, 5/2] and supp 4φ4 = [−7/3, 7/3], respectively.

See Fig. 2 for the graphs of 3φ4 and 4φ4. For aφ6 ∈ PP6, we have the following.

Theorem 2: The scaling function aφ6 ∈ PP6 satisfying both (10) and (11), and with the smallest

support, is determined from the two-scale symbol aP6 of the form

aP6(z) = z1−3a

(
1

a

1 − za

1 − z

)6
[
(a − 1)(a + 1)(2a − 1)(2a + 1)

120

−(a − 1)(a + 1)(8a2 + 13)

60
z +

11 + 5a2 + 4a4

20
z2

−(a − 1)(a + 1)(8a2 + 13)

60
z3 +

(a − 1)(a + 1)(2a − 1)(2a + 1)

120
z4

]
. (13)

See Fig. 3 for the graphs of 3φ6 and 4φ6. Notice that, when a = 2, 2P4 in (12) and 2P6 in (13)

are exactly the P4 and P6 in (7) and (8). It is also easy to verify that

supp aφ4 =
[
−2a − 1

a − 1
,
2a − 1

a − 1

]
, supp aφ6 =

[
−3a − 1

a − 1
,
3a − 1

a − 1

]
.

If we write aP4 in (12) and aP6 in (13) by

aP4(z) =
1

a

2a−1∑

k=−2a+1

a
4pkz

k, aP6(z) =
1

a

3a−1∑

k=−3a+1

a
6pkz

k,
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(a) Graph of 3φ6(·)
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(b) Graph of 4φ6(·)

Fig. 3. The interpolatory scaling functions 3φ6(·) and 4φ6(·) determined from the two-scale equations in (13) when a = 3 and

4, where supp 3φ6 = [−4, 4] and supp 4φ6 = [−11/3, 11/3], respectively.

TABLE I

WEIGHTS OF a-ARY 4-POINT SUBDIVISION SCHEME

λ
(n)
k+2 λ

(n)
k+1 λ

(n)
k

λ
(n)
k−1

λ
(n+1)
ak

a

4p
−a

a

4p0
a

4pa

λ
(n+1)
ak+1

a

4p
−2a+1

a

4p
−a+1

a

4p1
a

4pa+1

λ
(n+1)
ak+2

a

4p
−2a+2

a

4p
−a+2

a

4p2
a

4pa+2

· · · · · · · · · · · · · · ·

λ
(n+1)
ak+a−1

a

4p
−a−1

a

4p
−1

a

4pa−1
a

4p2a−1

the a-ary 4- and 6-point interpolatory subdivision schemes for curve design can be given by

Table I and Table II, i.e., the 4-point scheme is given by

λ
(n+1)
ak+` =

1∑

j=−2

a
4paj+`λ

(n)
k−j , ` = 0, . . . , a − 1; n ∈ Z+, (14)

while the 6-point a-ary scheme is given by

λ
(n+1)
ak+` =

2∑

j=−3

a
6paj+`λ

(n)
k−j , ` = 0, . . . , a − 1, n ∈ Z+. (15)

Here, {a
4pk}k∈Z and {a

6pk}k∈Z are called two-scale sequences in wavelet literature and weights in

CAGD, which are listed explicitly in the following,

a
4p−k = a

4pk =
1

2a3
(a + k)(a − k)(2a − k), k = 0, . . . , a − 1; (16)

a
4p−k = a

4pk =
1

6a3
(a − k)(2a − k)(3a − k), k = a, . . . , 2a − 1; (17)

a
4pk = 0, |k| ≥ 2a, (18)
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and

a
6p−k = a

6pk =
1

12a5
(a − k)(a + k)(2a − k)(2a + k)(3a − k), k = 0, . . . , a − 1; (19)

a
6p−k = a

6pk =
1

24a5
(a − k)(a + k)(2a − k)(3a − k)(4a − k), k = a, . . . , 2a − 1; (20)

a
6p−k = a

6pk =
1

120a5
(a − k)(2a − k)(3a − k)(4a − k)(5a − k), k = 2a, . . . , 3a − 1;(21)

a
6pk = 0, |k| ≥ 3a. (22)

The interpolatory property of both schemes in (14) and (15) is now clear from (16)–(18) and

(19)–(22).

TABLE II

WEIGHTS OF a-ARY 6-POINT SUBDIVISION SCHEME

λ
(n)
k+3 λ

(n)
k+2 λ

(n)
k+1 λ

(n)
k

λ
(n)
k+1 λ

(n)
k+2

λ
(n+1)
ak

a

6p
−2a

a

6p
−a

a

6p0
a

6pa
a

6p2a

λ
(n+1)
ak+1

a

6p
−3a+1

a

6p
−2a+1

a

4p
−a+1

a

4p1
a

4pa+1
a

4p2a+1

λ
(n+1)
ak+2

a

6p
−3a+2

a

6p
−2a+2

a

4p
−a+2

a

4p2
a

4pa+2
a

4p2a+2

· · · · · · · · · · · · · · · · · · · · ·

λ
(n+1)
ak+a−1

a

6p
−2a−1

a

6p
−a−1

a

4p
−1

a

4pa−1
a

4p2a−1
a

4p3a−1

3. Proofs of Main Results

Proof of Theorem 1.

First, an a-ary 4-point scheme needs at most 4a weights, i.e., the two-scale sequence {a
4pk}k∈Z of

aφ4 has at most 4a consecutive nontrivial entries. For aφ4 to be symmetric and interpolatory, the

length of {a
4pk}k∈Z has to be reduced by 1. Secondly, for aφ4 to have the highest possible m of

PPm, its two-scale symbol aP4 has to have the highest possible order of factor of (1+z+· · ·+za−1).

This leads to both m = 4 and aP4 must have the form

aP4(z) = z1−2a

(
1

a

1 − za

1 − z

)4 (
s0 + s1z + s2z

2
)

for some constant s0, s1, and s2 satisfying s2 = s0 and s0 + s1 + s2 = 1. By using (1 − z)−4 =
∑

∞

`=0

(
3+`

3

)
z` we have

(
s0 + s1z + s2z

2
)

(1 − z)−4 =
∞∑

`=0

g`z
`, where

g` =

(
` + 3

3

)
s0 +

(
` + 2

3

)
s1 +

(
` + 1

3

)
s2, ` ∈ Z+. (23)
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Hence, by defining g` = 0 for all ` < 0 and multiplying by the expansion of (1− za)4 we obtain

the explicit expressions for {a
4pk}k∈Z in terms of {g`}, namely,

a
4pk =

1

a3
(g2a−1+k − 4ga−1+k + 6g−1+k

−4g−a−1+k + g−2a−1+k), k = −2a + 1, . . . , 2a − 1. (24)

Next, the three identities a
4p−a = 0, a

4p0 = 1, and a
4pa = 0, in turn, become

1

a3
ga−1 = 0,

1

a3
(g2a−1 − 4ga−1) = 1,

1

a3
(g3a−1 − 4g2a−1 + 6ga−1) = 0,

or simply ga−1 = 0, g2a−1 = a3, g3a−1 = 4a3, or, equivalently,
(
a + 2

3

)
s0 +

(
a + 1

3

)
s1 +

(
a

3

)
s2 = 0,

(
2a + 2

3

)
s0 +

(
2a + 1

3

)
s1 +

(
2a

3

)
s2 = a3,

(
3a + 3

3

)
s0 +

(
3a + 1

3

)
s1 +

(
3a

3

)
s2 = 4a3.

By solving this linear system, s0, s1, and s2 are given by

s0 = s2 =
1 − a2

6
, s1 =

a2 + 2

3
,

as they were in (12). Substituting s0, s1, and s2 into (23) leads to

g` =
1

6
(` + 1)((` + 1)2 − a2), ` ∈ Z+.

Finally, by substituting g`’s into (24) we arrive at the explicit expressions for a
4pk’s in (16)–(18).

This completes the proof of Theorem 1.

Proof of Theorem 2.

Similar to the proof of Theorem 1, the two-scale symbol aP6 of aφ6 must have the form

aP6(z) = z1−3a

(
1

a

1 − za

1 − z

)6 (
s0 + s1z + s2z

2 + s3z
3 + s4z

4
)

for some constants s0, . . . , s4 satisfying s4 = s0, s3 = s1, and s0 + · · · + s4 = 1. First, multiply

s0 + s1z + s2z
2 + s3z

3 + s4z
4 and (1 − z)−6 =

∑
∞

`=0

(
5+`

5

)
z` to get

(
s0 + s1z + s2z

2 + s3z
3 + s4z

4
)

(1 − z)−6 =
∞∑

`=0

h`z
`, where

h` =

(
` + 5

5

)
s0 +

(
` + 4

5

)
s1 +

(
` + 3

5

)
s2 +

(
` + 2

5

)
s3 +

(
` + 1

5

)
s4, ` ∈ Z+. (25)
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Secondly, multiply by the expansion of (1− za)6, {a
6pk}k∈Z can be expressed in terms of {h`} in

(25). Then, with h` = 0 for all ` < 0, all coefficients of aP6(z) are now in terms of s0, . . . , s4,

namely,

a
6pk =

1

a5
(h3a−1+k − 6h2a−1+k + 15ha−1+k − 20h−1+k + 15h−a−1+k

−6h−2a−1+k + h−3a−1+k), k = −3a + 1, . . . , 3a − 1. (26)

The five requirements

a
6p−2a = a

6p−a = 0, a
6p0 = 1, a

6pa = a
6p2a = 0

yield

1

a5
ha−1 = 0,

1

a5
(h2a−1 − 6ha−1) = 0,

1

a5
(h3a−1 − 6h2a−1 + 15ha−1) = 1,

1

a5
(h4a−1 − 6h3a−1 + 15h2a−1 − 20ha−1) = 0,

1

a5
(h5a−1 − 6h4a−1 + 15h3a−1 − 20h2a−1 + 15ha−1) = 0,

which is equivalent to
(
a + 4

5

)
s0 +

(
a + 3

5

)
s1 +

(
a + 2

5

)
s2 +

(
a + 1

5

)
s3 +

(
a

5

)
s4 = 0,

(
2a + 4

5

)
s0 +

(
2a + 3

5

)
s1 +

(
2a + 2

5

)
s2 +

(
2a + 1

5

)
s3 +

(
2a

5

)
s4 = 0,

(
3a + 4

5

)
s0 +

(
3a + 3

5

)
s1 +

(
3a + 2

5

)
s2 +

(
3a + 1

5

)
s3 +

(
3a

5

)
s4 = a5,

(
4a + 4

5

)
s0 +

(
4a + 3

5

)
s1 +

(
4a + 2

5

)
s2 +

(
4a + 1

5

)
s3 +

(
4a

5

)
s4 = 6a5,

(
5a + 4

5

)
s0 +

(
5a + 3

5

)
s1 +

(
5a + 2

5

)
s2 +

(
5a + 1

5

)
s3 +

(
5a

5

)
s4 = 21a5.

Solving this linear system we have s0, . . . , s4 in (13), i.e.,

s0 = s4 =
1

120
(a2 − 1)(4a2 − 1),

s1 = s3 = − 1

60
(a2 − 1)(8a2 + 13),

s2 =
1

20
(11 + 5a2 + 4a4).

By substituting s0, . . . , s4 into (25) to get

h` =
1

120
(` + 1)((` + 1)2 − a2)((` + 1)2 − 4a2), ` ∈ Z+,
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and subsequently substituting h`’s into (26), we have a
6pk’s in (19)–(22). This completes the proof

of Theorem 2.

4. Applications to Curve Design

The 4- and 6-point schemes can be applied to any curve design in any dimension. In Fig. 4 and

Fig. 5 we demonstrate a planar curve and a 3D curve by using the 4-point ternary interpolatory

subdivision scheme from Table I and (16)–(18) with a = 3, namely,

λ
(n+1)
3k = λ

(n)
k ,

λ
(n+1)
3k+1 = − 4

81
λ

(n)
k+2 +

10

27
λ

(n)
k+1 +

20

27
λ

(n)
k − 5

81
λ

(n)
k−1,

λ
(n+1)
3k+2 = − 5

81
λ

(n)
k+2 +

20

27
λ

(n)
k+1 +

10

27
λ

(n)
k − 4

81
λ

(n)
k−1, k ∈ Z+.

The planar curve in Fig. 4(d) was from a closed polygon formed by nine initial control points

in Fig. 4(a), and the 3D curve in Fig. 5(d) was from a closed polygon formed by nine initial

control points on corners of a cube, as shown in Fig. 5(a).

−4 −3 −2 −1 0 1 2 3 4
−6
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0

1
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3

4

(a) Initial polygon
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(b) Initial polygon & 1st level subdivision
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(c) Initial polygon, & 1st & 2nd level subdivisions
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0

1
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4

(d) Result after 5th subdivision

Fig. 4. A planar curve with eight initial control points.

In Fig. 6, we demonstrate a space curve by using the 6-point quaternary interpolatory subdivision

9
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(b) Initial polygon & 1st level subdivision
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(c) Initial polygon & 2nd level subdivision
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(d) Result after 6th subdivision

Fig. 5. A space curve with initial control points selected from some corners of a cube.

scheme from Table II and (19)–(22) with a = 4, namely, for k ∈ Z+,

λ
(n+1)
4k = λ

(n)
k ,

λ
(n+1)
4k+1 =

63

8192
λ

(n)
k+3 −

495

8192
λ

(n)
k+2 +

1155

4096
λ

(n)
k+1 +

3465

4096
λ

(n)
k − 693

8192
λ

(n)
k−1 +

77

8192
λ

(n)
k−2,

λ
(n+1)
4k+2 =

3

256
λ

(n)
k+3 −

25

256
λ

(n)
k+2 +

75

128
λ

(n)
k+1 +

75

128
λ

(n)
k − 25

256
λ

(n)
k−1 +

3

256
λ

(n)
k−2,

λ
(n+1)
4k+3 =

77

8192
λ

(n)
k+3 −

693

8192
λ

(n)
k+2 +

3465

4096
λ

(n)
k+1 +

1155

4096
λ

(n)
k − 495

8192
λ

(n)
k−1 +

63

8192
λ

(n)
k−2.

The 3D closed polygon in Fig. 6(a) was formed by 11 initial control points selected from the

closed space curve ((cos t)/
√

2, (cos2 t)/2, sin t), t ∈ [0, 2π], which is the intersection of the unit

sphere x2 + y2 + z2 = 1 and the cylindrical surface y = x2. The 3D closed space curve in

Fig. 6(d) was the result after 4 consecutive subdivisions.

We also remark that these scaling functions can also be applied to curve editing. For some early

studies of the multiresolution representation of parametric curves, the reader is referred to both

(Finkelstein & Salesin [7]) and (Reissell [12]).

5. Conclusion

The classical binary 4- and 6-point interpolatery subdivision schemes for curve design were
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(a) Initial 3D polygon
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(b) Initial polygon & 1st level subdivision
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(c) Initial polygon & 2nd level subdivision
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(d) Result after 4th subdivision

Fig. 6. A closed space curve with initial closed control polygon formed by 11 points selected from the intersection of the unit

sphere x2 + y2 + z2 = 1 and the cylindrical surface y = x2.

extended to a-ary for any integer a ≥ 3. For both schemes the polynomial preservation order is

fixed, namely, either 4 or 6, which is independent of a. The smoothness of the corresponding

scaling functions for various values of a ≥ 3 are needed to and will be studied in detail in

the forthcoming paper. Certainly, scaling functions for a-ary approximation subdivision schemes

with highest possible polynomial preservation orders are the classical B-splines and are no need

for any further study. The interpolatory schemes can be applied to curve editing, data fitting and

regression, and image rescaling. It is also expected that interpolatory schemes for curve designs

can be combined with subdivision schemes for surface design to make the latter more adaptive

and flexible along the boundaries of a 3D polyhedron.
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