Applications and Applied Mathematics: An International
Journal (AAM)

Oscillatory Behavior of Second Order Neutral Differential Equations with Positive and Negative Coefficients

Jelena Manojlović
University of Niš
Yutaka Shoukaku
Kanazawa University
Tomoyuki Tanigawa
Joetsu University of Education
Norio Yoshida
University of Toyama

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Partial Differential Equations Commons

Recommended Citation

Manojlović, Jelena; Shoukaku, Yutaka; Tanigawa, Tomoyuki; and Yoshida, Norio (2008). Oscillatory Behavior of Second Order Neutral Differential Equations with Positive and Negative Coefficients, Applications and Applied Mathematics: An International Journal (AAM), Vol. 3, Iss. 1, Article 1. Available at: https://digitalcommons.pvamu.edu/aam/vol3/iss1/1

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Oscillatory Behavior of Second Order Neutral Differential Equations with Positive and Negative Coefficients

Jelena Manojlović
Faculty of Science and Mathematics
Department of Mathematics and Computer Science
University of Niš
Visegradska 33, 18000 Niš, Serbia
Yutaka Shoukaku
Faculty of Engineering
Kanazawa University
Ishikawa 920-1192, Japan
shoukaku@t.kanazawa-u.ac.jp
\section*{Tomoyuki Tanigawa}
Department of Mathematics
Faculty of Science Education
Joetsu University of Education
Yamayashiki 1, Joetsu, 943-8512, Japan
Norio Yoshida
Department of Mathematics
University of Toyama
Toyama 930-8555, Japan
nori@sci.u-toyama.ac.jp

Received September 26, 2007; accepted November 9, 2007

Abstract

Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

Key Words: Oscillation; second order; positive and negative coefficients
AMS 2000 Mathematical Subject Classifications: 35B05

1. Introduction

In the last few years, there has been an increasing interest in the study of oscillatory behavior of solutions of first order neutral delay differential equations with positive and negative coefficients (see, for example, Chuanxi and Ladas (1990), Farrel, Grove and Ladas (1988), Ruan (1991), Yu (1991). Compared to the first-order differential equations, the study of second-order equations with positive and negative coefficients has received considerably less attention.

In this paper we consider the oscillation of the second order neutral delay differential equations

$$
\begin{aligned}
& \left(\mathrm{E}_{1}\right)\left[r(t)\left[x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}\right]^{\prime}+\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)-\sum_{i=1}^{n} q_{i}(t) x\left(t-\sigma_{i}\right)=0, \quad t>0, \\
& \left.\left(\mathrm{E}_{2}\right)\left[r(t)\left[x(t)-\sum_{i=1}^{\prime} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}\right]^{\prime}\right]+\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)-\sum_{i=1}^{n} q_{i}(t) x\left(t-\sigma_{i}\right)=0, \quad t>0 .
\end{aligned}
$$

Sufficient conditions for oscillation of solutions of the equation $\left(E_{1}\right)$ for the case where $q_{i}(t)=0$ is considered by several authors (see, for example, Grace and Lalli (1987), Tanaka (2004)). Moreover, Parhi and Chand (1999) and Manojlović, Shoukaku, Tanigawa and Yoshida (2006) obtained some oscillatory criteria for equations $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ with $r(t)=1$. Namely, sufficient conditions for oscillation of all bounded solutions of equations $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ with $r(t)=1$ are given in Parhi and Chand (1999). On the other hand, results established in the paper Manojlović, Shoukaku, Tanigawa and Yoshida (2006) are in fact improvement of results in Parhi and Chand (1999), in the sense that the assumption of boundedness of solutions was removed, i.e. sufficient conditions for oscillation of all solutions of equations $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ with $r(t)=1$ are given in Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

The purpose of this paper is to derive sufficient conditions for every solution of $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ to be oscillatory. It is assumed throughout this paper that:
$\left(\mathrm{H}_{1}\right) \quad m \geq n$,
$\rho_{i}(i=1,2, \ldots, l), \delta_{i}(i=1,2, \ldots, m)$ and $\sigma_{i}(i=1,2, \ldots, n)$ are nonnegative constants, $\delta_{i} \geq \sigma_{i}(i=1,2, \ldots, n) ;$
$\left(\mathrm{H}_{2}\right) \quad r(t) \in C([0, \infty) ;(0, \infty))$,
$h_{i}(t) \in C([0, \infty) ;[0, \infty)) \quad(i=1,2, \ldots, l)$,
$p_{i}(t) \in C([0, \infty) ;[0, \infty))(i=1,2, \ldots, m)$,
$q_{i}(t) \in C([0, \infty) ;[0, \infty))(i=1,2, \ldots, n) ;$
$\left(\mathrm{H}_{3}\right) \quad \int_{\mathrm{T}_{0}}^{\infty} \frac{1}{\mathrm{r}(\mathrm{t})} d t=\infty \quad$ for some $\quad T_{0}>0 ;$
$\left(\mathrm{H}_{4}\right) \begin{cases}q_{i}(t) \leq q_{i}\left(t-\sigma_{i}\right) & (i=1,2, \ldots, n), \\ p_{i}(t) \geq q_{i}\left(t-\delta_{i}\right) & (i=1,2, \ldots, n) ;\end{cases}$
$\left(\mathrm{H}_{5}\right) \quad p_{j}(t)-q_{j}\left(t-\delta_{j}\right) \geq k_{j}>0$ for some $j \in\{1,2, \ldots, n\}$ and some $k_{j}>0$.
Definition 1: By a solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{2}\right)$ we mean a continuous function $x(t)$ which is defined for $t \geq t_{0}-T$, and satisfies $\sup \left\{|x(t)|: t \geq t_{1}\right\}>0$ for all $t_{1} \geq t_{0}$, where

$$
T=\max \left\{\rho_{i}, \delta_{j}, \sigma_{k}: 1 \leq i \leq l, 1 \leq j \leq m, 1 \leq k \leq n\right\} .
$$

Definition 2: A nontrivial solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{2}\right)$ is called oscillatory if it has arbitrary large zeros, otherwise, it is called nonoscillatory. The equation is called oscillatory if all its solutions are oscillatory.

In Section 2 we give the sufficient conditions for oscillation of solutions of the equation $\left(\mathrm{E}_{1}\right)$, while in the Section 3 we deals with the equation $\left(\mathrm{E}_{2}\right)$. Oscillation results for nonhomogeneous cases of $\left(E_{1}\right)$ and $\left(E_{2}\right)$ are given in Section 4.

2. Oscillation of solutions of the equation $\left(E_{1}\right)$

In this section we obtain the following oscillation criteria for the equation $\left(E_{1}\right)$.
Theorem 1: Assume that

$$
\left(\mathrm{H}_{6}\right) \quad 0 \leq \sum_{i=1}^{l} h_{i}(t) \leq h, \quad h=\text { const } .
$$

The equation $\left(E_{1}\right)$ is oscillatory if

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s \leq 1 \tag{1}
\end{equation*}
$$

Proof: Suppose that $x(t)$ is a nonoscillatory solution of $\left(\mathrm{E}_{1}\right)$. Without any loss of generality, we assume that $x(t)>0$ for $t \geq t_{0}$, where t_{0} is some positive number. We set

$$
\begin{equation*}
z(t)=x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s \tag{2}
\end{equation*}
$$

for $t \geq t_{0}+T$, then

$$
z^{\prime}(t)=\left[x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}-\frac{1}{r(t)} \sum_{i=1}^{n} \int_{t-\delta_{i}}^{t-\sigma_{i}} q_{i}(s) x(s) d s
$$

Multiplying the above equation by $r(t)$ and differentiating both sides, we have

$$
\begin{aligned}
&\left(r(t) z^{\prime}(t)\right)^{\prime}= {\left[r(t)\left[x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}\right]^{\prime} } \\
&-\sum_{i=1}^{n} q_{i}\left(t-\sigma_{i}\right) x\left(t-\sigma_{i}\right)+\sum_{i=1}^{n} q_{i}\left(t-\delta_{i}\right) x\left(t-\delta_{i}\right) \\
&=\left\{-\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)+\sum_{i=1}^{n} q_{i}(t) x\left(t-\sigma_{i}\right)\right\} \\
& \quad-\sum_{i=1}^{n} q_{i}\left(t-\sigma_{i}\right) x\left(t-\sigma_{i}\right)+\sum_{i=1}^{n} q_{i}\left(t-\delta_{i}\right) x\left(t-\delta_{i}\right) \\
&=-\sum_{i=1}^{n}\left\{q_{i}\left(t-\sigma_{i}\right)-q_{i}(t)\right\} x\left(t-\sigma_{i}\right) \\
& \quad-\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)+\sum_{i=1}^{n} q_{i}\left(t-\delta_{i}\right) x\left(t-\delta_{i}\right) \\
& \leq-\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)+\sum_{i=1}^{n} q_{i}\left(t-\delta_{i}\right) x\left(t-\delta_{i}\right) \\
& \leq-\sum_{i=1}^{n}\left\{p_{i}(t)-q_{i}\left(t-\delta_{i}\right)\right\} x\left(t-\delta_{i}\right), \quad t \geq t_{0}+T .
\end{aligned}
$$

This leads to the following inequality for some $j \in\{1,2, \ldots, n\}$ and some $k_{j}>0$, that

$$
\begin{equation*}
\left(r(t) z^{\prime}(t)\right)^{\prime} \leq-k_{j} x\left(t-\delta_{j}\right) \leq 0, \quad t \geq t_{0}+T \tag{3}
\end{equation*}
$$

that is, $r(t) z^{\prime}(t)$ is nonincreasing. Then, we conclude that $z^{\prime}(t) \geq 0$ or $z^{\prime}(t)<0, t \geq t_{1}$ for some $t_{1} \geq t_{0}+T$. We discuss the following two possible cases:

Case 1. $z^{\prime}(t)<0$ for all $t \geq t_{1}$. Integrating (3) over $\left[t_{1}, t\right]$ yields

$$
r(t) z^{\prime}(t) \leq r\left(t_{1}\right) z^{\prime}\left(t_{1}\right)<0, \quad t \geq t_{1} .
$$

Multiplying the above inequality by $\frac{1}{r(t)}$ and integrating over $\left[t_{1}, t\right]$, we obtain

$$
z(t) \leq z\left(t_{1}\right)+r\left(t_{1}\right) z^{\prime}\left(t_{1}\right) \int_{t_{1}}^{t} \frac{1}{r(s)} d s, \quad t \geq t_{1},
$$

and we see from $\left(\mathrm{H}_{3}\right)$ that $\lim _{t \rightarrow \infty} z(t)=-\infty$. We claim that $x(t)$ is bounded from above. If this is
not the case, then there exists a number $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
z\left(t_{2}\right)<0 \text { and } \max _{t_{1} \leq \leq \leq t_{2}} x(t)=x\left(t_{2}\right) \tag{4}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
0>z\left(t_{2}\right) & =x\left(t_{2}\right)+\sum_{i=1}^{l} h_{i}\left(t_{2}\right) x\left(t_{2}-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t_{2}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s \\
& \geq\left\{1-\sum_{i=1}^{n} \int_{t_{0}}^{t_{2}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{2}\right) \\
& \geq\left\{1-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{2}\right) \geq 0,
\end{aligned}
$$

which is a contradiction, so that $x(t)$ is bounded from above. Hence for every $L>0$ there exists a $t_{3} \geq t_{2}$ such that $x(t) \leq L$ for all $t \geq t_{3}$. We then have

$$
\begin{aligned}
z(t) & \geq-L \sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s \\
& \geq-L \sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s \geq-L>-\infty, \quad t \geq t_{3} .
\end{aligned}
$$

This contradicts the fact that $\lim _{t \rightarrow \infty} z(t)=-\infty$.

Case 2. $z^{\prime}(t) \geq 0$ for $t \geq t_{1}$. Then, by integrating (3) over $\left[t_{1}, t\right]$, we obtain

$$
\infty>r\left(t_{1}\right) z^{\prime}\left(t_{1}\right) \geq-r(t) z^{\prime}(t)+r\left(t_{1}\right) z^{\prime}\left(t_{1}\right) \geq k_{j} \int_{t_{1}}^{t} x\left(s-\delta_{j}\right) d s,
$$

and therefore $x(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. Thus, from the condition $\left(\mathrm{H}_{6}\right)$, we have

$$
\begin{equation*}
X(t)=x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right) \in L^{1}\left(\left[t_{1}, \infty\right)\right) . \tag{5}
\end{equation*}
$$

Moreover, it is clear that for $t \geq t_{1}$

$$
X^{\prime}(t)=\left[x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}=z^{\prime}(t)+\sum_{i=1}^{n} \frac{1}{r(t)} \int_{t-\delta_{i}}^{t-\sigma_{i}} q_{i}(s) x(s) d s \geq 0,
$$

which implies that $X(t)$ is nondecreasing. Therefore, $X(t) \geq X\left(t_{1}\right), t \geq t_{1}$, which yields that $X(t) \notin L^{1}\left(\left[t_{1}, \infty\right)\right)$. This contradicts the fact that (5) holds. The proof is completed.

Example 1: We consider the equation

$$
\begin{align*}
& {\left[e^{-t}\left[x(t)+\frac{1}{2} x(t-2 \pi)\right]^{\prime}\right]^{\prime}+\left(2 e^{t+2 \pi}+\frac{3}{2} e^{-t}\right) x(t-2 \pi)} \tag{6}\\
& \quad+2 e^{t+2 \pi} x(t-\pi)+\frac{3}{2} e^{-t} x\left(t-\frac{3}{2} \pi\right)-e^{-2 t-4 \pi} x(t-\pi)-e^{-2 t-4 \pi} x(t)=0, t>0
\end{align*}
$$

Here we have

$$
\begin{aligned}
& r(t)=e^{-t}, l=1, h_{1}(t)=\frac{1}{2}, \rho_{1}=2 \pi \\
& m=3, p_{1}(t)=2 e^{t+2 \pi}+\frac{3}{2} e^{-t}, p_{2}(t)=2 e^{t+2 \pi}, p_{3}(t)=\frac{3}{2} e^{-t}, \\
& \quad \delta_{1}=2 \pi, \delta_{2}=\pi, \delta_{3}=\frac{3}{2} \pi \\
& n=2, q_{1}(t)=q_{2}(t)=e^{-2 t-4 \pi}, \sigma_{1}=\pi, \sigma_{2}=0,
\end{aligned}
$$

so that, for $t>0$, it is clear that

$$
\begin{aligned}
& q_{1}(t)=e^{-2 t-4 \pi} \leq e^{-2 t-2 \pi}=q_{1}\left(t-\sigma_{1}\right)=q_{1}(t-\pi) \\
& q_{2}(t)=e^{-2 t-4 \pi}=q_{2}\left(t-\sigma_{2}\right) \\
& p_{1}(t)-q_{1}\left(t-\delta_{1}\right)=2 e^{t+2 \pi}+\frac{3}{2} e^{-t}-e^{-2 t} \geq 2 e^{2 \pi}-1 \equiv k_{1}>0 \\
& p_{2}(t)-q_{2}\left(t-\delta_{2}\right)=2 e^{t+2 \pi}-e^{-2 t-2 \pi} \geq 2 e^{2 \pi}-e^{-2 \pi}>0
\end{aligned}
$$

and

$$
\int_{0}^{\infty} e^{s} \int_{s-2 \pi}^{s-\pi} e^{-2 \xi-4 \pi} d \xi d s+\int_{0}^{\infty} e^{s} \int_{s-\pi}^{s} e^{-2 \xi-4 \pi} d \xi d s=\frac{1}{2}\left(1-e^{-4 \pi}\right)<1
$$

Therefore, Theorem 1 implies that every solution $x(t)$ of the equation (6) oscillates. Indeed, $x(t)=\sin t$ is an oscillatory solution of this equation.

Example 2: We consider the equation

$$
\begin{align*}
{\left[e^{-t}[x(t)\right.} & \left.\left.+\frac{e^{2 \pi}}{2} x(t-2 \pi)\right]^{\prime}\right]^{\prime}+\left(\frac{3}{2} e^{-t+2 \pi}+e^{-2 t-2 \pi}+\pi\right) x(t-2 \pi) \tag{7}\\
+ & \pi e^{-\pi} x(t-\pi)+\frac{3}{2} e^{-t+\frac{\pi}{2}} x\left(t-\frac{\pi}{2}\right)-e^{-2 t-4 \pi} x(t)=0, \quad t>0
\end{align*}
$$

Here we have

$$
\begin{aligned}
& r(t)=e^{-t}, l=1, h_{1}(t)=\frac{e^{2 \pi}}{2}, \rho_{1}=2 \pi, \\
& m=3, p_{1}(t)=\frac{3}{2} e^{-t+2 \pi}+e^{-2 t-2 \pi}+\pi, \delta_{1}=2 \pi, p_{2}(t)=\pi e^{-\pi}, \delta_{2}=\pi, \\
& \\
& \quad p_{3}(t)=\frac{3}{2} e^{-t+\frac{\pi}{2}}, \delta_{3}=\frac{\pi}{2}, \\
& n=1, q_{1}(t)=e^{-2 t-4 \pi}, \sigma_{1}=0,
\end{aligned}
$$

so that, for $t>0$, a straightforward verification shows that

$$
\begin{aligned}
& q_{1}(t)=q_{1}\left(t-\sigma_{1}\right), \\
& p_{1}(t)-q_{1}\left(t-\delta_{1}\right)=\left(\frac{3}{2} e^{-t+2 \pi}+e^{-2 t-2 \pi}+\pi\right)-e^{-2 t} \geq \pi-1 \equiv k_{1}>0
\end{aligned}
$$

and

$$
\int_{0}^{\infty} e^{s} \int_{s-2 \pi}^{s} e^{-2 \xi-4 \pi} d \xi d s=\frac{1}{2}\left(1-e^{-4 \pi}\right)<1
$$

Therefore, Theorem 1 implies that every solution $x(t)$ of the equation (7) oscillates. Indeed, $x(t)=e^{t} \cos t$ is an oscillatory solution of this equation.

3. Oscillation of solutions of the equation $\left(E_{2}\right)$

Now, we turn to the oscillation theorem for the equation $\left(\mathrm{E}_{2}\right)$.
Theorem 2: Assume that

$$
\left(\mathrm{H}_{7}\right) \quad h_{i}(t) \leq h_{i} \quad(i=1,2, \ldots, l),
$$

where h_{i} are nonnegative constants such that $\sum_{i=1}^{l} h_{i}<1$. If

$$
\begin{equation*}
\sum_{i=1}^{l} h_{i}+\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s<1 \tag{8}
\end{equation*}
$$ then every solution of $\left(\mathrm{E}_{2}\right)$ oscillates or satisfies $\lim _{t \rightarrow \infty} x(t)=0$.

Proof: Suppose that $x(t)$ is a nonoscillatory solution of $\left(\mathrm{E}_{2}\right)$ such that $x(t)>0$ for $t \geq t_{0}$, where t_{0} is some positive number. We denote by

$$
\begin{equation*}
w(t)=x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s \tag{9}
\end{equation*}
$$

Then as in the proof of Theorem 1, from the equation $\left(\mathrm{E}_{2}\right)$ we obtain

$$
\begin{equation*}
\left(r(t) w^{\prime}(t)\right)^{\prime} \leq-k_{j} x\left(t-\delta_{j}\right) \leq 0, \quad t \geq t_{0}+T \tag{10}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, n\}$. Therefore, $r(t) w^{\prime}(t)$ is nonincreasing, and hence $w^{\prime}(t)<0$ or $w^{\prime}(t) \geq 0$, $t \geq t_{1}$ for some $t_{1} \geq t_{0}+T$.

Case 1. $w^{\prime}(t)<0$ for $t \geq t_{1}$. Then, as in the proof of Theorem 1, taking into account the assumption $\left(\mathrm{H}_{3}\right)$, we have that $\lim _{t \rightarrow \infty} w(t)=-\infty$. We claim that $x(t)$ is bounded from above. If it is not the case, there exists a number $t_{2} \geq t_{1}$ such that (4) holds, so that we come to the following contradiction

$$
\begin{aligned}
0>w\left(t_{2}\right) & =x\left(t_{2}\right)-\sum_{i=1}^{l} h_{i}\left(t_{2}\right) x\left(t_{2}-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t_{2}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s \\
& \geq\left\{1-\sum_{i=1}^{1} h_{i}-\sum_{i=1}^{n} \int_{t_{0}}^{t_{2}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{2}\right) \\
& \geq\left\{1-\sum_{i=1}^{1} h_{i}-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{2}\right) \geq 0 .
\end{aligned}
$$

Therefore, $x(t)$ must be bounded from above. Consequently, for every $L>0$, there exists some $t_{3} \geq t_{1}$ such that $x(t) \leq L$ for $t \geq t_{3}$. It follows from (9) that

$$
\begin{aligned}
w(t) & \geq-L\left\{\sum_{i=1}^{l} h_{i}(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} \\
& \geq-L\left\{\sum_{i=1}^{l} h_{i}(t)+\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} \geq-L>-\infty, t \geq t_{3},
\end{aligned}
$$

which contradicts the fact that $\lim _{t \rightarrow \infty} w(t)=-\infty$.

Case 2. $w^{\prime}(t) \geq 0$ for $t \geq t_{1}$. Integration of (10) over $\left[t_{1}, t\right]$ yields that $x(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. From (9), it follows that

$$
\left[x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}=w^{\prime}(t)+\sum_{i=1}^{n} \frac{1}{r(t)} \int_{t-\delta_{i}}^{t-\sigma_{i}} q_{i}(s) x(s) d s \geq 0,
$$

so that, $X(t)=x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)$ is a nondecreasing function. If we let

$$
\lim _{t \rightarrow \infty} X(t)=\lim _{t \rightarrow \infty}\left\{x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right\}=\mu,
$$

taking into account the fact that $x(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$, we conclude that $\mu \neq \infty$, and therefore $\mu \in(-\infty, \infty)$.
(i) If $0<\mu<\infty$, then for any ε with $0<\varepsilon<\mu$, there exists a number $t_{4} \geq t_{1}$ such that

$$
X(t)>\mu-\varepsilon
$$

But, this implies that $x(t) \notin L^{1}\left(\left[t_{4}, \infty\right)\right)$, which is a contradiction.
(ii) If $-\infty<\mu<0$, then for any ε with $0<\varepsilon<-\mu$, there exists a number $t_{5} \geq t_{1}$ such that $X(t)<\mu+\varepsilon, \quad t \geq t_{5}$.

Hence we have

$$
\sum_{i=1}^{l} x\left(t-\rho_{i}\right)>-(\mu+\varepsilon), \quad t \geq t_{5}
$$

which again contradicts the fact that $x(t) \in L^{1}\left(\left[t_{5}, \infty\right)\right)$.
(iii) If $\mu=0$, then we claim that $x(t)$ is bounded from above. If this is not the case, then there exists a sequence $\left\{t_{\tilde{n}}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{\tilde{n} \rightarrow \infty} t_{\tilde{n}}=\infty, \max _{t_{1} \leq \leq t_{\tilde{n}}} x(t)=x\left(t_{\tilde{n}}\right), \lim _{\tilde{n} \rightarrow \infty} x\left(t_{\tilde{n}}\right)=\infty
$$

Then, we see that

$$
X\left(t_{\tilde{n}}\right)=x\left(t_{\widetilde{n}}\right)-\sum_{i=1}^{l} h_{i}\left(t_{\tilde{n}}\right) x\left(t_{\widetilde{n}}-\rho_{i}\right) \geq\left[1-\sum_{i=1}^{l} h_{i}\right] x\left(t_{\tilde{n}}\right),
$$

and taking the limit as $\widetilde{n} \rightarrow \infty$, we are led to a contradiction in view of the facts that $\lim _{\tilde{n} \rightarrow \infty} X\left(t_{\tilde{n}}\right)=\mu=0$ and $\lim _{\tilde{n} \rightarrow \infty} x\left(t_{\tilde{n}}\right)=\infty$. Hence, $x(t)$ is bounded from above. Using the assumption $\left(\mathrm{H}_{7}\right)$, we have that

$$
x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right) \geq x(t)-\sum_{i=1}^{l} h_{i} \cdot x\left(t-\rho_{i}\right) .
$$

Taking the upper limit of the above inequality as $t \rightarrow \infty$, we obtain

$$
\begin{aligned}
0 & \geq \limsup _{t \rightarrow \infty}\left[x(t)-\sum_{i=1}^{l} h_{i} \cdot x\left(t-\rho_{i}\right)\right] \\
& \geq \limsup _{t \rightarrow \infty} x(t)+\liminf _{t \rightarrow \infty}\left[-\sum_{i=1}^{l} h_{i} \cdot x\left(t-\rho_{i}\right)\right] \\
& \geq \limsup _{t \rightarrow \infty} x(t)-\sum_{i=1}^{l} h_{i} \cdot \limsup _{t \rightarrow \infty} x\left(t-\rho_{i}\right) \\
& \geq\left[1-\sum_{i=1}^{l} h_{i}\right] \limsup _{t \rightarrow \infty} x(t) .
\end{aligned}
$$

Therefore, we observe that $\lim _{t \rightarrow \infty} x(t)=0$. This completes the proof of the theorem.
Example 3: We consider the equation

$$
\begin{align*}
& {\left[\frac{1}{t}\left[x(t)-e^{2 \pi-7} x(t-2 \pi)\right]^{\prime}\right]^{\prime}+\left(1-e^{-7}\right)\left(\frac{1}{t^{2}}+1\right) e^{\frac{3}{2} \pi} x\left(t-\frac{3}{2} \pi\right)} \\
& \quad+\left(1-e^{-7}\right)\left(\frac{2}{t}+1\right) e^{\frac{\pi}{2}} x\left(t-\frac{\pi}{2}\right)+\left(1-e^{-7}\right) \frac{e^{2 \pi}}{t^{2}} x(t-2 \pi) \tag{11}\\
& \quad-\frac{1}{2} e^{-t-2 \pi} x(t-\pi)-\frac{1}{2} e^{-t-3 \pi} x(t)=0, \quad t>0 .
\end{align*}
$$

Here, it is easily checked that

$$
\begin{aligned}
& r(t)=\frac{1}{t}, l=1, h_{1}(t)=e^{2 \pi-7}, \rho_{1}=2 \pi, \\
& m=3, p_{1}(t)=\left(1-e^{-7}\right)\left(\frac{1}{t^{2}}+1\right) e^{\frac{3}{2} \pi}, \delta_{1}=\frac{3}{2} \pi, p_{2}(t)=\left(1-e^{-7}\right)\left(\frac{2}{t}+1\right) e^{\frac{\pi}{2}}, \delta_{2}=\frac{\pi}{2}, \\
& \quad p_{3}(t)=\left(1-e^{-7}\right) \frac{e^{2 \pi}}{t^{2}}, \delta_{3}=2 \pi, \\
& n=2, q_{1}(t)=\frac{1}{2} e^{-t-2 \pi}, q_{2}(t)=\frac{1}{2} e^{-t-3 \pi}, \sigma_{1}=\pi, \sigma_{2}=0 .
\end{aligned}
$$

Thus, the conditions $\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)$ for the coefficients of the equation (11) are fulfilled, since

$$
\begin{aligned}
& q_{1}(t)=\frac{1}{2} e^{-t-2 \pi}<\frac{1}{2} e^{-t-\pi}=q_{1}\left(t-\sigma_{1}\right), \\
& q_{2}(t)=\frac{1}{2} e^{-t-3 \pi}=q_{2}\left(t-\sigma_{2}\right)=q_{2}(t)
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}(t)-q_{1}\left(t-\delta_{1}\right)=\left(1-e^{-7}\right)\left(\frac{1}{t^{2}}+1\right) e^{\frac{3}{2} \pi}-\frac{1}{2} e^{-t-\frac{\pi}{2}} \geq\left(1-e^{-7}\right) e^{\frac{3}{2} \pi}-\frac{1}{2} e^{-\frac{\pi}{2}}>0, \\
& p_{2}(t)-q_{2}\left(t-\delta_{2}\right)=\left(1-e^{-7}\right)\left(\frac{2}{t}+1\right) e^{\frac{\pi}{2}}-\frac{1}{2} e^{-t-\frac{5}{2} \pi} \geq\left(1-e^{-7}\right) e^{\frac{\pi}{2}}-\frac{1}{2} e^{-\frac{5}{2} \pi} \equiv k_{1}>0 .
\end{aligned}
$$

Moreover, the condition (8) of Theorem 2 is also verified by

$$
\begin{aligned}
& e^{2 \pi-7}+\frac{1}{2} \int_{0}^{\infty} s \int_{s-\frac{3}{2} \pi}^{s-\pi} e^{-\xi-2 \pi} d \xi d s+\frac{1}{2} \int_{0}^{\infty} s \int_{s-\frac{\pi}{2}}^{s} e^{-\xi-3 \pi} d \xi d s \\
& =e^{2 \pi-7}+\frac{1}{2}\left(e^{-\frac{\pi}{2}}-e^{-\pi}\right)+\frac{1}{2}\left(e^{-\frac{5}{2} \pi}-e^{-3 \pi}\right)<1 .
\end{aligned}
$$

So, Theorem 2 implies that every solution $x(t)$ of eq. (11) is oscillatory or tends to zero limits as $t \rightarrow \infty$. In fact, $x(t)=e^{t} \cos t$ is the oscillatory solution of this equation.

4. Oscillation of solutions of equations $\left(E_{1}\right)$ and $\left(E_{2}\right)$ with forcing terms

In this section we consider equations $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$ with forcing term

$$
\begin{aligned}
& \left(\mathrm{E}_{3}\right)\left[r(t)\left[x(t)+\sum_{i=1}^{1} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}\right]^{\prime}+\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)-\sum_{i=1}^{n} q_{i}(t) x\left(t-\sigma_{i}\right)=f(t), t>0, \\
& \left.\left(\mathrm{E}_{4}\right)\left[r(t)\left[x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right]^{\prime}\right]^{\prime}\right]+\sum_{i=1}^{m} p_{i}(t) x\left(t-\delta_{i}\right)-\sum_{i=1}^{n} q_{i}(t) x\left(t-\sigma_{i}\right)=f(t), t>0,
\end{aligned}
$$

where

$$
f(t) \in C([0, \infty) ; \mathbf{R}) .
$$

Theorem 3: Assume that $\left(\mathrm{H}_{6}\right)$ holds and that

$$
\left\{\begin{array}{l}
\text { there exists a function } F(t) \in C^{1}([0, \infty) ; \mathbf{R}) \text { such that } \tag{8}\\
r(t) F^{\prime}(t) \in C^{1}([0, \infty) ; \mathbf{R}) \\
{\left[r(t) F^{\prime}(t)\right]^{\prime}=f(t)} \\
\lim _{t \rightarrow \infty} F(t)=0 .
\end{array}\right.
$$

Every solution of the equation $\left(\mathrm{E}_{3}\right)$ is oscillatory or satisfies $\lim _{t \rightarrow \infty} x(t)=0$, if the condition (1) is satisfied.

Proof: Suppose that $x(t)$ is a nonoscillatory solution of $\left(\mathrm{E}_{3}\right)$ such that $x(t)>0$ for $t \geq t_{0}$, where t_{0} is some positive number. If we choose

$$
\begin{equation*}
Z(t)=z(t)-F(t), \tag{12}
\end{equation*}
$$

where $z(t)$ is defined by (2), then we obtain from the eq. (E_{3})

$$
\begin{equation*}
\left(r(t) Z^{\prime}(t)\right)^{\prime} \leq-k_{j} x\left(t-\delta_{j}\right) \leq 0, \quad t \geq t_{0}+T \tag{13}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, n\}$. We claim that $Z^{\prime}(t)$ is eventually nonnegative function. If we suppose on the contrary that $Z^{\prime}(t)<0, t \geq t_{1}$ for some $t_{1} \geq t_{0}+T$, then using $\left(\mathrm{H}_{3}\right)$ we have that $\lim _{t \rightarrow \infty} Z(t)=-\infty$. First, we prove that $x(t)$ is bounded from above. As a matter of fact, if $x(t)$ is unbounded from above, there exists a sequence $\left\{t_{\hat{n}}\right\}_{\hat{n}=1}^{\infty}$ satisfying

$$
\begin{gathered}
\lim _{\hat{n} \rightarrow \infty} t_{\hat{n}}=\infty, \quad \lim _{n \rightarrow \infty} Z\left(t_{\hat{n}}\right)=-\infty, \quad \lim _{\hat{n} \rightarrow \infty} F\left(t_{\hat{n}}\right)=0, \\
\max _{t_{1} \leq \leq \leq t_{n}} x(t)=x\left(t_{\hat{n}}\right), \quad \lim _{\hat{n} \rightarrow \infty} x\left(t_{\hat{n}}\right)=\infty
\end{gathered}
$$

Then, we have

$$
\begin{aligned}
Z\left(t_{\hat{n}}\right) & =x\left(t_{\hat{n}}\right)+\sum_{i=1}^{l} h_{i}\left(t_{\hat{n}}\right) x\left(t_{\hat{n}}-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t_{\hat{n}}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s-F\left(t_{\hat{n}}\right) \\
& \geq\left\{1-\sum_{i=1}^{n} \int_{t_{0}}^{t_{\hat{n}}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{\hat{n}}\right)-F\left(t_{\hat{n}}\right) \\
& \geq\left\{1-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{\hat{n}}\right)-F\left(t_{\hat{n}}\right)
\end{aligned}
$$

and taking the limit as $\hat{n} \rightarrow \infty$, leads to the contradiction

$$
\lim _{\hat{n} \rightarrow \infty} Z\left(t_{\hat{n}}\right) \geq\left\{1-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} \lim _{\hat{n} \rightarrow \infty} x\left(t_{\hat{n}}\right)=\infty
$$

Therefore, $x(t)$ is bounded from above, so that for arbitrary constant $L>0$, there exists a number $t_{2} \geq t_{1}$ such that $x(t) \leq L$ for $t \geq t_{2}$. Hence, from (12) we have

$$
Z(t) \geq-L \sum_{i=1}^{n} \int_{0}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s-F(t), \quad t \geq t_{2}
$$

which according to the assumption (1), yields the following contradiction

$$
\lim _{t \rightarrow \infty} Z(t) \geq-L \sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s \geq-L
$$

to the fact that $\lim _{t \rightarrow \infty} Z(t)=-\infty$. Accordingly, $Z^{\prime}(t)$ is eventually nonnegative i.e. $Z^{\prime}(t) \geq 0$ for $t \geq t_{1}$. Now, we denote by

$$
X(t)=x(t)+\sum_{i=1}^{1} h_{i}(t) x\left(t-\rho_{i}\right), \quad Y(t)=X(t)-F(t) .
$$

From (13), we have that $x(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$ and consequently $X(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. From (12), we obtain

$$
Y^{\prime}(t)=Z^{\prime}(t)+\sum_{i=1}^{n} \frac{1}{r(t)} \int_{t-\delta_{i}}^{t-\sigma_{i}} q_{i}(s) x(s) d s \geq 0,
$$

so that $Y(t)$ is a nondecreasing function. Therefore, using the hypothesis $\left(\mathrm{H}_{8}\right)$, we have

$$
\lim _{t \rightarrow \infty} Y(t)=\lim _{t \rightarrow \infty} X(t)=\mu \in[0, \infty) .
$$

If $0<\mu<\infty$, then there exists a number $t_{3} \geq t_{1}$ such that

$$
X(t)>\mu-\varepsilon, \quad t \geq t_{3}
$$

for arbitrary $\varepsilon \in(0, \mu)$. Hence, $X(t) \notin L^{1}\left(\left[t_{3}, \infty\right)\right)$, which is a contradiction. If $\mu=0$, then since $x(t) \leq x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right), t \geq t_{1}$, we find that $\lim _{t \rightarrow \infty} x(t)=0$. This completes the proof.

Example 4: Consider the equation

$$
\begin{align*}
& {\left[e^{-t}\left[x(t)+\frac{e^{\pi}}{2} x(t-\pi)\right]^{\prime}\right]^{\prime}+\left(\frac{1}{2} e^{-t+\frac{\pi}{2}}+e^{\frac{3}{2} \pi}\right) x\left(t-\frac{\pi}{2}\right)+e^{\frac{5}{2} \pi} x\left(t-\frac{3}{2} \pi\right)} \\
& \quad+\left(\frac{1}{2} e^{-t+2 \pi}+e^{-2 t+\pi}\right) x(t-2 \pi)-e^{-2 t-\pi} x(t) \tag{14}\\
& =\left(e^{\frac{5}{2} \pi}+e^{\frac{11}{2} \pi}\right) e^{-2 t}+\left(6+\frac{1}{2} e^{\frac{3}{2} \pi}+3 e^{3 \pi}+\frac{1}{2} e^{6 \pi}\right) e^{-3 t}+\left(e^{5 \pi}-e^{-\pi}\right) e^{-4 t}, \quad t>0 .
\end{align*}
$$

Here we have

$$
\begin{aligned}
& r(t)=e^{-t}, l=1, h_{1}(t)=\frac{e^{\pi}}{2}, \rho_{1}=\pi, \\
& m=3, p_{1}(t)=\frac{1}{2} e^{-t+\frac{\pi}{2}}+e^{\frac{3}{2} \pi}, \delta_{1}=\frac{\pi}{2}, p_{2}(t)=e^{\frac{5}{2} \pi}, \delta_{2}=\frac{3}{2} \pi, \\
& p_{3}(t)=\frac{1}{2} e^{-t+2 \pi}+e^{-2 t+\pi}, \delta_{3}=2 \pi, \\
& n=1, q_{1}(t)=e^{-2 t-\pi}, \sigma_{1}=0, \\
& f(t)=\left(e^{\frac{5}{2} \pi}+e^{\frac{11}{2} \pi}\right) e^{-2 t}+\left(6+\frac{1}{2} e^{\frac{3}{2} \pi}+3 e^{3 \pi}+\frac{1}{2} e^{6 \pi}\right) e^{-3 t}+\left(e^{5 \pi}-e^{-\pi}\right) e^{-4 t} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& q_{1}(t)-q_{1}\left(t-\sigma_{1}\right)=0, \\
& p_{1}(t)-q_{1}\left(t-\delta_{1}\right)=\frac{1}{2} e^{-t+\frac{\pi}{2}}+e^{\frac{3}{2} \pi}-e^{-2 t} \geq e^{\frac{3}{2} \pi}-1 \equiv k_{1} \geq 0,
\end{aligned}
$$

we have that conditions $\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)$ are satisfied. Moreover, there exists a function

$$
F(t)=\frac{1}{2}\left(e^{\frac{5}{2} \pi}+e^{\frac{11}{2} \pi}\right) e^{-t}+\frac{1}{6}\left(6+\frac{1}{2} e^{\frac{3}{2} \pi}+3 e^{3 \pi}+\frac{1}{2} e^{6 \pi}\right) e^{-3 t}+\frac{1}{12}\left(e^{5 \pi}-e^{-\pi}\right) e^{-4 t}
$$

satisfying $\left(\mathrm{H}_{8}\right)$. The condition (1) is also fulfilled, since we get

$$
\int_{0}^{\infty} e^{s} \int_{s-\frac{\pi}{2}}^{s} e^{-2 \xi-\pi} d \xi d s=\frac{1}{2}\left(1-e^{-\pi}\right)<1
$$

Accordingly, by Theorem 3, it follows that every solution of the equation (14) is oscillatory. In fact, $x(t)=e^{-2 t}+e^{t} \sin t$ is such a solution.

Theorem 4: Assume that $\left(\mathrm{H}_{7}\right)$ and $\left(\mathrm{H}_{8}\right)$ hold. If the condition (8) holds, then every solution of the equation $\left(\mathrm{E}_{4}\right)$ is oscillatory or satisfies $\lim _{t \rightarrow \infty} x(t)=0$.

Proof: Suppose that $x(t)$ is a nonoscillatory solution of $\left(\mathrm{E}_{4}\right)$ such that $x(t)>0, t \geq t_{0}$, where t_{0} is some positive number. Let we denote with

$$
W(t)=w(t)-F(t),
$$

where $w(t)$ is defined by (9). Then, we see immediately that

$$
\begin{equation*}
\left(r(t) W^{\prime}(t)\right)^{\prime} \leq-k_{j} x\left(t-\delta_{j}\right) \leq 0, \quad t \geq t_{0}+T \tag{15}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, n\}$. Therefore, we have the following two cases:

Case 1. $W^{\prime}(t)<0, t \geq t_{1}$ for some $t_{1} \geq t_{0}+T$ which implies that $\lim _{t \rightarrow \infty} W(t)=-\infty$. On the other hand, $x(t)$ must be bounded from above. Otherwise, there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ satisfying

$$
\begin{gathered}
\lim _{n \rightarrow \infty} t_{\bar{n}}=\infty, \lim _{n \rightarrow \infty} W\left(t_{\check{n}}\right)=-\infty, \lim _{n \rightarrow \infty} F\left(t_{\bar{n}}\right)=0, \\
\max _{t_{1} \leq \leq t_{n}} x(t)=x\left(t_{\bar{n}}\right), \lim _{\bar{n} \rightarrow \infty} x\left(t_{\breve{n}}\right)=\infty .
\end{gathered}
$$

Since we have that

$$
\begin{aligned}
W\left(t_{\breve{n}}\right) & =x\left(t_{\breve{n}}\right)-\sum_{i=1}^{l} h_{i}\left(t_{\check{n}}\right) x\left(t_{\breve{n}}-\rho_{i}\right)-\sum_{i=1}^{n} \int_{t_{0}}^{t_{n}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) x(\xi) d \xi d s-F\left(t_{\check{n}}\right) \\
& \geq\left\{1-\sum_{i=1}^{l} h_{i}-\sum_{i=1}^{n} \int_{t_{0}}^{t_{n}} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{\breve{n}}\right)-F\left(t_{\breve{n}}\right) \\
& \geq\left\{1-\sum_{i=1}^{1} h_{i}-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} x\left(t_{\check{n}}\right)-F\left(t_{\check{n}}\right),
\end{aligned}
$$

letting $\breve{n} \rightarrow \infty$ we obtain

$$
\lim _{n \rightarrow \infty} W\left(t_{\tilde{n}}\right) \geq\left\{1-\sum_{i=1}^{1} h_{i}-\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} \lim _{n \rightarrow \infty} x\left(t_{\tilde{n}}\right)>0,
$$

which is the contradiction. Therefore, $x(t)$ is bounded from above, so that for every $L>0$ there exists a number $t_{2} \geq t_{1}$ such that $x(t) \leq L$ for $t \geq t_{2}$. Then

$$
W(t) \geq-L \sum_{i=1}^{l} h_{i}-L \sum_{i=1}^{n} \int_{0}^{t} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s-F(t), \quad t \geq t_{2},
$$

and letting $t \rightarrow \infty$, we get

$$
\lim _{t \rightarrow \infty} W(t) \geq-L\left\{\sum_{i=1}^{l} h_{i}+\sum_{i=1}^{n} \int_{0}^{\infty} \frac{1}{r(s)} \int_{s-\delta_{i}}^{s-\sigma_{i}} q_{i}(\xi) d \xi d s\right\} \geq-L
$$

which contradicts the fact that $\lim _{t \rightarrow \infty} W(t)=-\infty$.

Case 2. $W^{\prime}(t) \geq 0$ for $t \geq t_{1}$. From (15) we obtain $x(t) \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. We see that

$$
\left[x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)-F(t)\right]^{\prime}=W^{\prime}(t)+\sum_{i=1}^{n} \frac{1}{r(t)} \int_{t-\delta_{i}}^{t-\sigma_{i}} q_{i}(s) x(s) d s \geq 0, \quad t \geq t_{1},
$$

so that

$$
\lim _{t \rightarrow \infty}\left\{x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)-F(t)\right\}=\lim _{t \rightarrow \infty}\left\{x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(t-\rho_{i}\right)\right\}=\mu,
$$

where $\mu \in(-\infty, \infty]$. The rest of the proof is similar to the proof Theorem 2 , and so, we are led to the contradiction in the cases when $\mu \neq 0$, while in the case of $\mu=0$ we conclude that $\lim _{t \rightarrow \infty} x(t)=0$. Therefore, the proof is completed.

Example 5: Consider the equation

$$
\begin{equation*}
\left[e^{-t}\left[x(t)-\frac{1}{2 e^{2}} x(t-1)\right]^{\prime}\right]^{\prime}+\left(1+e^{-2 t-5}\right) x(t-1)-e^{-2 t-3} x(t)=3 e^{-3 t}+e^{-2 t+2}, \quad t>0 \tag{16}
\end{equation*}
$$

Here we have

$$
\begin{aligned}
& l=m=n=1, r(t)=e^{-t}, h_{1}(t)=\frac{1}{2 e^{2}}, \rho_{1}=1, \\
& p_{1}(t)=1+e^{-2 t-5}, \delta_{1}=1, q_{1}(t)=e^{-2 t-3}, \sigma_{1}=0 \\
& f(t)=3 e^{-3 t}+e^{-2 t+2}
\end{aligned}
$$

so that, for $t \geq 0$, it is obvious that

$$
\begin{aligned}
& q_{1}(t)-q_{1}\left(t-\sigma_{1}\right)=0, \\
& p_{1}(t)-q_{1}\left(t-\delta_{1}\right)=\left(1+e^{-2 t-5}\right)-e^{-2 t-1} \geq 1-e^{-1} \equiv k_{1}>0 .
\end{aligned}
$$

Moreover, there exists a function

$$
F(t)=\frac{e^{-2 t}}{2}\left(e^{t+2}+1\right)
$$

satisfying $\left(\mathrm{H}_{8}\right)$, which can be easily verified. The condition (8) is also satisfied, since we have that

$$
\int_{0}^{\infty} e^{s} \int_{s-1}^{s} e^{-2 \xi-3} d \xi d s=\frac{1}{2 e}\left(1-e^{-2}\right)<1-h_{1}=1-\frac{1}{2 e^{2}}
$$

Therefore, Theorem 4 implies that every solution of the equation (16) is oscillatory or satisfies $\lim _{t \rightarrow \infty} x(t)=0$. In fact, $x(t)=e^{-2 t}$ is a solution of the equation (16) which tends to zero as $t \rightarrow \infty$.

5. Conclusion

In this paper, we studied the oscillations of second order neutral differential equations with
positive and negative coefficients. We derived sufficient conditions for every solution of (E_{1}) or $\left(E_{2}\right)$ to be oscillatory. Our results generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

REFERENCES

Farrel, K., E. A. Grove and G. Ladas (1988). Neutral delay differential equations with positive and negative coefficients, Appl. Anal., 27, 181-197.
Grace, S. R. and B. S. Lalli (1987). Oscillations of nonlinear second order neutral delay differential equations, Rad. Mat., 3, 77-84.
Ladas, G. and C. Qian (1990). Oscillation in differential equations with positive and negative coefficients, Canad. Math. Bull., 33, 442-451.
Manojlović, J., Y. Shoukaku, T. Tanigawa and N. Yoshida (2006). Oscillation criteria for second order differential equations with positive and negative coefficients, Appl. Math. Comput., 181, $853-863$.
Parhi, N. and S. Chand (1999). Oscillation of second order neutral delay differential equations with positive and negative coefficients, J. Indian Math. Soc., 66, 227-235.
Ruan, S. (1991). Oscillations for first-order neutral differential equations with variable coefficients, Bull. Austral. Math. Soc., 43, 147-152.
Tanaka, S. (2004). Oscillation criteria for a class of second order forced neutral differential equations, Math. J. Toyama Univ., 27, 71-90.
Yu, J. S. (1991). Neutral differential equations with positive and negative coefficients, Acta Math. Sinica, 34, 517-523.

