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Abstract 
 
Oscillation criteria are obtained for solutions of forced and unforced second order neutral 
differential equations with positive and negative coefficients. These criteria generalize those of 
Manojlović, Shoukaku, Tanigawa and Yoshida (2006). 
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1. Introduction 
 
In the last few years, there has been an increasing interest in the study of oscillatory behavior of 
solutions of first order neutral delay differential equations with positive and negative coefficients 
(see, for example, Chuanxi and Ladas (1990), Farrel, Grove and Ladas (1988), Ruan (1991), Yu 
(1991). Compared to the first-order differential equations, the study of second-order equations 
with positive and negative coefficients has received considerably less attention. 
 
In this paper we consider the oscillation of the second order neutral delay differential equations 
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Sufficient conditions for oscillation of solutions of the equation )E( 1  for the case where 

0)( tqi  is considered by several authors (see, for example, Grace and Lalli (1987), Tanaka 

(2004)). Moreover, Parhi and Chand (1999) and Manojlović, Shoukaku, Tanigawa and Yoshida 
(2006) obtained some oscillatory criteria for equations )E( 1  and )E( 2  with 1)( tr . Namely, 

sufficient conditions for oscillation of all bounded solutions of equations )E( 1  and )E( 2  with 
1)( tr  are given in Parhi and Chand (1999). On the other hand, results established in the paper 

Manojlović, Shoukaku, Tanigawa and Yoshida (2006) are in fact improvement of results in Parhi 
and Chand (1999), in the sense that the assumption of boundedness of solutions was removed, 
i.e. sufficient conditions for oscillation of all solutions of equations )E( 1  and )E( 2  with 1)( tr  
are given in Manojlović, Shoukaku, Tanigawa and Yoshida (2006). 
 
The purpose of this paper is to derive sufficient conditions for every solution of )E( 1  and )E( 2  
to be oscillatory.  It is assumed throughout this paper that: 
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Definition 1: By a solution of )E( 1  or )E( 2  we mean a continuous function )(tx  which is 

defined for Ttt  0 , and satisfies   0  :  )(sup 1  tttx　  for all 01 tt  , where 

}.1  ,1  ,1:  ,  ,max{ nkmjliT kji    

 
Definition 2: A nontrivial solution of )E( 1  or )E( 2  is called oscillatory if it has arbitrary large 

zeros, otherwise, it is called nonoscillatory. The equation is called oscillatory if 
all its solutions are oscillatory. 

 
In Section 2 we give the sufficient conditions for oscillation of solutions of the equation )E( 1 , 

while in the Section 3 we deals with the equation )E( 2 . Oscillation results for nonhomogeneous 

cases of )E( 1  and )E( 2  are given in Section 4. 
 
 
2. Oscillation of solutions of the equation )(E1  
 
In this section we obtain the following oscillation criteria for the equation )E( 1 . 
 
Theorem 1:  Assume that 
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The equation )E( 1  is oscillatory if 
 








i

i

s

s i

n

i

dsdq
sr






 

 
1

 

0 
.1 )(

)(

1
                            (1) 

 
Proof:  Suppose that )(tx  is a nonoscillatory solution of )E( 1 .  Without any loss of generality, 

we assume that 0)( tx  for 0tt  , where 0t  is some positive number. We set 
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for Ttt  0 , then 
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Multiplying the above equation by )(tr  and differentiating both sides, we have 
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This leads to the following inequality for some  nj ,,2 ,1   and some 0jk , that 
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that is, )()( tztr   is nonincreasing. Then, we conclude that 0)(  tz  or 0)(  tz , 1tt   for some 

Ttt  01 .  We discuss the following two possible cases: 

 
Case 1.  0)(  tz  for all 1tt  . Integrating (3) over ],[ 1 tt  yields 
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not the case, then there exists a number 12 tt   such that 
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which is a contradiction, so that )(tx  is bounded from above. Hence for every 0L  there exists 
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Case 2.  0)(  tz  for 1tt  . Then, by integrating (3) over ],[ 1 tt , we obtain 
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which implies that )(tX  is nondecreasing. Therefore, )()( 1tXtX  , 1tt  , which yields that 

)),([)( 1
1  tLtX . This contradicts the fact that (5) holds. The proof is completed. 
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Example 1: We consider the equation 
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Therefore, Theorem 1 implies that every solution )(tx  of the equation (6) oscillates. Indeed, 

ttx sin)(   is an oscillatory solution of this equation. 
 
Example 2:  We consider the equation 
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Here we have 
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so that, for 0t , a straightforward verification shows that 
 

01
2

3
)()(

),()(

1
2222

111

111







 



 keeetqtp

tqtq

ttt 



  

and 

  .11
2

1
 4 

2 

42 

0 
 





 



  edsdee
s

s

s  

 
Therefore, Theorem 1 implies that every solution )(tx  of the equation (7) oscillates. Indeed, 

tetx t cos)(   is an oscillatory solution of this equation. 
 
 
3. Oscillation of solutions of the equation )(E2  
 
Now, we turn to the oscillation theorem for the equation )E( 2 . 
 
Theorem 2: Assume that 
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then every solution of )E( 2  oscillates or satisfies 0)(lim 
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Proof:  Suppose that )(tx  is a nonoscillatory solution of )E( 2  such that 0)( tx  for 0tt  , 

where 0t  is some positive number. We denote by 
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So, Theorem 2 implies that every solution )(tx  of eq. (11) is oscillatory or tends to zero limits as 

t . In fact, tetx t cos)(   is the oscillatory solution of this equation. 
 
4. Oscillation of solutions of equations )(E1 and )(E2 with forcing terms 
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Every solution of the equation )E( 3  is oscillatory or satisfies 0)(lim 
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, if the 

condition (1) is satisfied. 
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Proof:  Suppose that )(tx  is a nonoscillatory solution of )E( 3  such that 0)( tx  for 0tt  , 
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Therefore, )(tx  is bounded from above, so that for arbitrary constant 0L , there exists a 
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which according to the assumption (1), yields the following contradiction 
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).,0[)(lim)(lim 


tXtY
tt

 

 

If  0 , then there exists a number 13 tt   such that 
 

3     ,)( tttX    
 

for arbitrary ),0(   . Hence, )),([)( 3
1  tLtX , which is a contradiction. If 0 , then since 





l

i
ii txthtxtx

1

)()()()(  , 1tt  , we find that 0)(lim 


tx
t

. This completes the proof. 

 
Example 4:  Consider the equation 

  .0       , 
2

1
3

2

1
6

)()2(
2

1
               

2

3

22

1
)(

2
)(   

453632

3
22

11

2

5

222

2

5

2

3

2


























 







 






 
























 

















teeeeeeeeee

txetxee

txetxeetx
e

txe

ttt

ttt

t
t












      (14) 

 
Here we have 
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we have that conditions )H( 4  and )H( 5  are satisfied. Moreover, there exists a function 
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satisfying )H( 8 . The condition (1) is also fulfilled, since we get 
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Accordingly, by Theorem 3, it follows that every solution of the equation (14) is oscillatory. In 

fact, teetx tt sin)( 2  
 is such a solution. 

 
Theorem 4: Assume that )H( 7  and )H( 8  hold. If the condition (8) holds, then every solution of 

the equation )E( 4  is oscillatory or satisfies 0)(lim 


tx
t

. 

 
Proof:  Suppose that )(tx  is a nonoscillatory solution of )E( 4  such that 0)( tx , 0tt  , where 

0t  is some positive number. Let we denote with 
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where )(tw  is defined by (9). Then, we see immediately that 
 

TtttxktWtr jj  0     ,0)())()((                                                             (15) 

 
for some },,2 ,1{ nj  . Therefore, we have the following two cases: 
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which is the contradiction. Therefore, )(tx  is bounded from above, so that for every 0L  there 
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where ],(  . The rest of the proof is similar to the proof Theorem 2, and so, we are led to 
the contradiction in the cases when 0 , while in the case of 0  we conclude that 
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. Therefore, the proof is completed. 

 
Example 5:  Consider the equation 
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Therefore, Theorem 4 implies that every solution of the equation (16) is oscillatory or 
satisfies 0)(lim 


tx

t
. In fact, tetx 2)(   is a solution of the equation (16) which tends to zero 

as t . 
 
 
5. Conclusion 
 
In this paper, we studied the oscillations of second order neutral differential equations with 
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positive and negative coefficients. We derived sufficient conditions for every solution of )E( 1  or 

)E( 2  to be oscillatory. Our results generalize those of Manojlović, Shoukaku, Tanigawa and 
Yoshida (2006). 
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