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Abstract 
 
An SIS age-structured epidemic model for a vertically as well as horizontally 
transmitted disease is investigated when the fertility, mortality and cure rates depend on 
age and the force of infection of proportionate mixing assumption type. We determine 
the steady states and prove the global stability for the endemic equilibriums.  
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Epidemic; Global stability; Proportionate mixing  
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1. Introduction  
 
Several recent papers and books have dealt with SIS age-structured epidemic models. 
In Busenberg, et a1. (1988), (1991), (1993a,b) SIS age-structured epidemic models are 
studied and global stability results are proved. In Iannelli, et a1. (1992), some of the 
previously mentioned works are extended to obtain explicitly computable thresholds 
and to obtain numerical results. In EI-Doma (1999) an SIS age-structured epidemic 
model is considered and explicitly computable thresholds, stability results as well as 
the time dependent solutions are given. In EI-Doma (2003) the previous stability results 
are improved and the uniform weak disease persistence is proved. In Busenberg et a1. 
(1996) as well as Langlais et al. (1997) SIS age-structured epidemic models with  
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dispersal and seasonal periodicities are considered. In Iannelli et al. (1999) an SIS age-
structured epidemic model with vital rates which depend on age as well as the population  
size is considered. In Zhou el al. (2002) an SIS epidemic model with age and infection 
age is considered. In Inaba (2002), (2001), (1998) an SIS of Pease's evolutionary 
epidemic model for type A influenza is considered. In Feng et al. (2005) an SIS age-
structured epidemic model in a population with multiple groups is considered. For 
general references see Anderson et al. (1999), Diekmann et al. (2000) and Iannelli 
(1995).  
 
In this paper, we study an SIS age-structured epidemic model. The disease causes so few 
fatalities that they can be neglected and is horizontally as well as vertically transmitted. 
Horizontal transmission of infection is the transfer of infection through some direct or 
indirect contact with infected individuals, for example, malaria, influenza, gonorrhea and 
tuberculosis are horizontally transmitted. A particular form of horizontal transmission 
known as proportionate mixing is assumed in this paper. Vertical transmission of 
infection is the passing of infection to offspring of infected parentage, for example, 
AIDS, chagas and hepatitis B are vertically (as well as horizontally) transmitted diseases. 
This form of transmission plays an important role in maintaining some diseases, for 
example, see Busenberg et al. (1993b). We note that some infectious diseases such as 
malaria, influenza, gonorrhea and tuberculosis are of SIS type.  
 
We determine the steady states of the model, under the assumption that the total 
population has already reached its steady state distribution, and prove global stability 

results and show that if 2
0

( ) ( ) 1q a a daβ π
∞

≠∫ , see sections 2, 4 for definitions, then the 

endemic equilibrium is globally stable. We also show that if 2
0

( ) ( ) 1q a a daβ π
∞

=∫ , then 
either a unique endemic equilibrium exists, and we prove that this endemic equilibrium 
is globally stable, or the model gives rise to a continuum of endemic equilibriums, in the 
case of non-fertile infectibles, i.e., if individuals are susceptible only after the end of their 
reproductive period.  
 
We note that the local stability of the endemic equilibrium as well as the global stability 
of the disease-free equilibrium are reported in EI-Doma (2003), (1999).  
 
The global stability results that we obtain are under very general conditions, and, in fact, 
we do not require any condition other than the existence of a unique endemic 
equilibrium. Our results generalize those given in Busenberg, et al. (1988) and also 
partially improve those given in Iannelli, et al. (1992).  
 
The organization of this paper is as follows: in section 2 we describe the model and 
obtain the model equations; in section 3 we present preliminary analysis of the model; in 
section 4 we determine the steady states; in section 5 we prove global stability results; in 
section 6 we conclude our results.  
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2. The Model  
 
We consider an age-structured population of variable size exposed to a communicable 
disease. The disease is vertically as well as horizontally transmitted and causes so few 
fatalities that they can be neglected. We assume the following.  
 
1.  ( , )s a t  and ( , )i a t  respectively, denote the age-density for susceptible and infective of 

age a at time t. Then  
 

2

1

( , )
a

a

s a t da =∫  total number of susceptible at time t of ages between 1a  and 2a , 

2

1

( , )
a

a

i a t dt =∫  total number of infective at time t of ages between 1a  and 2a .  

We assume that the total population consists entirely of susceptible and infective. 
 
2.  Let ( , )k a a′ denote the probability per unit of time that a susceptible individual of age a  

is infected by an infective of age a′ . We further assume that, 1 2( , ) ( ). ( )k a a k a k a′ ′=  which 
is known as the "proportionate mixing assumption", see Dietz, et al. (1985). Therefore, 
the horizontal transmission of the disease occurs at the following rate:  

 

1 2
0

( ) ( , ) ( ) ( , ) ,k a s a t k a i a t da
∞

′ ′ ′∫  

where 1( )k a  and 2 ( )k a are bounded, nonnegative, continuous functions of a. The term  
 

1 2
0

( ) ( ) ( , ) ,k a k a i a t da
∞

′ ′ ′∫  

 
is called "force of infection" and we let  
 

2
0

( ) ( ) ( , )t k a i a t daλ
∞

= ∫  

 
3.  The fertility rate ( )aβ  is a nonnegative, continuous function, with compact support 

[ ]0, , ( 0)A A > . The number of births of susceptible per unit of time is given by 

[ ] [ ]
0

(0, ) ( ) ( , ) (1 ) ( , ) , 0,1s t a s a t q i a t da qβ
∞

= + − ∈∫ , where q is the probability of vertically 

transmitting the disease. Accordingly all newborns from susceptible parents are 
susceptible but a portion q of newborns from infected parents are infective, i.e., they 
acquire the disease via birth (vertical transmission) and therefore,  

0

(0, ) ( ) ( , )i t q a i a t daβ
∞

= ∫ . 
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4.  The death rate, ( )u a , is the same for susceptible and infective and ( )u a  is a non-negative, 
continuous function and [0 0, )a∃ ∈ ∞  such that 0( ) 0,u a u a a> > ∀ > and 

2 1 2 1 0( ) ( ), .u a u a a a a> ∀ > >  

5.  The cure rate ( )aγ  is a bounded, nonnegative, continuous function of a . And the cure 
does not give immunity.  

 
6.  The initial age distributions 0 0( ,0) ( ) ( ,0) ( )s a s a and i a i a= =  are continuous nonnegative 

and integrable functions of [0, )a∈ ∞ .  
 
These assumptions lead to the following system of nonlinear integro-partial differential 
equations with non-local boundary conditions, which describes the dynamics of the 
transmission of the disease. 
 

[ ]

1

1

0

0

( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( , ), 0, 0,

( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( , ), 0, 0,

(0, ) ( ) ( , ) (1 ) ( , ) , 0,

(0, ) ( ) ( , ) , 0,

s a t s a t u a s a t k a s a t t a i a t a t
a t

i a t i a t u a i a t k a s a t t a i a t a t
a t

s t a s a t q i a t dt t

i t q a i a t da t

λ γ

λ γ

β

β

∞

∞

∂ ∂
+ + = − + > >

∂ ∂
∂ ∂

+ + = − > >
∂ ∂

= + − ≥

= ≥

∫

∫

2
0

0 0

( ) ( ) ( , ) , 0,

( ,0) ( ), ( ,0) ( ), 0.

t k a i a t da t

s a S a i a i a a

λ
∞














 = ≥

 = = ≥

∫

   (2.1) 

 
We note that problem (2.1) is an SIS age-structured epidemic model that has been studied in 
EI-Doma (2003), (1999), where the steady states are determined and the local asymptotic 
stability of the endemic equilibrium and the disease-free equilibrium as well as the global 
stability of the disease-free equilibrium and the time dependent solutions are reported. The 
same model but with different force of infection term is studied in Busenberg, et al. (1988), 
(1993), Iannelli, et al. (1992), and the same model, but with q = 0, the case of no vertical 
transmission, is studied in Busenberg, et al. (1991).  
 
In what follows, we determine the steady states of the model and prove the global stability of 

the endemic equilibrium when 2
0

( ) ( ) 1q a a daβ π
∞

≠∫ . We also show that if 

2
0

( ) ( ) 1q a a daβ π
∞

=∫ , then either a unique endemic equilibrium exists, and we prove that this 

endemic equilibrium is globally stable, or problem (2.1) gives rise to a continuum of endemic 
equilibriums in the case of non-fertile infectibles.  
 
3. Reduction of the Model  
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In this section, we develop some preliminary formal analysis of problem (2.1). We define 
( , ) ( , ) ( , ) ( , )p a t by p a t s a t i a t= + .  Then from (2.1), by adding the equations, we find that 
( , )p a t  satisfies the following McKendrick- Von Forester equation: 

 

0

0 0 0

( , ) ( , ) ( ) ( , ) 0, 0, 0,

(0, ) ( ) ( ) ( , ) , 0,

( ,0) ( ) ( ) ( ), 0.

p a t p a t u a p a t a t
a t

p t B t a p a t da t

p a p a s a i a a

β
∞

∂ ∂ + + = > > ∂ ∂
 = = ≥

 = = + ≥



∫       (3.1) 

 
Note that problem (3.1) has a unique solution that exists for all time, see Bellman, et al. 
(1963), Feller (1941) and Hoppensteadt (1975). The unique solution is given by  
 

0 ( ) ( ) / ( ),
( , )

( ) ( ),
p a t a a t a t

p a t
B t a a a t

π π
π

− − >
=  − <

                     (3.2) 

 
where ( )aπ  is given by  
 

 0

( )

( )

a

u d

a e
τ τ

π
−∫

=  
 
 
and B(t) has the following asymptotic behavior as t →∞   
 
 [ ] *

( ) ( ) p tB t c t eθ= +           (3.3) 
 
where *p  is the unique real number which satisfies the following characteristic equation: 
 

*

0

( ) ( ) 1pa a e daβ π
∞

− =∫            (3.4) 

 
( )tθ  is a function such that ( ) 0tθ →  as t →∞  and c is a constant.  

 
We note that the well posedness of problem (2.1) can be established via the same method as 
in El- Doma (2005).  
 
 
4. The Steady States  
 
In this section, we look at the steady state solution of problem (2.1), under the assumption 
that the total population has already reached its steady state distribution ( ) ( )p a c aπ∞ = , i.e., 
we assume that the characteristic equation (3.4) is satisfied with * 0p = , see, for example, 
Busenberg, et al. (1988).  
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A steady state * * *( ), ( ) ands a i a λ  must satisfy the following equations:  
 

*
* * * *

1

* *

( ) ( ) ( ) ( ) ( ) ( ) ( ), 0

(0) (0),

ds a u a s a k a s a a i a a
da

s c i

λ γ


+ = − + >

 = −

   (4.1) 

 

 
[ ]

*
* * *

1

* *

0

( ) ( ) ( ) ( ) ( ) ( ) , 0

(0) ( ) ( ) ,

di a u a a i a k a s a a
da

i q a i a da

γ λ

β
∞


+ + = >


 =


∫
    (4.2) 

and  
* *

2
0

( ) ( )k a i a daλ
∞

= ∫         (4.3) 

Anticipating our future needs, we define threshold parameter 0R , and is given by 

( )

0 1 20
0

( )

1 2 2
0 0 0

2
0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

a

a

da

a d

R c k k a a e d da

cq a a k e d da k a a da

q a a da

σ

σ

γ τ τ

γ τ τ

σ π σ

β π σ σ π

β π

∞ −

∞ ∞−

∞

∫
=

∫  
 
 +

 
− 

 

∫ ∫

∫ ∫ ∫

∫

   (4.4) 

 
where 2 ( )aπ  is defined by  

   0

( )

2 ( ) ( )

a

d

a a e
γ τ τ

π π
−∫

=       (4.5) 
 
Here, we note that the threshold parameter Ro, usually called the basic reproduction number, 
and is interpreted as the expected number of secondary cases produced, in a lifetime, by an 
infective, in a totally susceptible population.  
 
In the following result, we determine the steady state solution of problem (2.1).  
 
Theorem 4.1:     

(1) If 0 1R >  and  2
0

( ) ( ) 1q a a daβ π
∞

≠∫  then * *0 0andλ λ= >  are possible steady states. A 

steady state with * 0λ >  is unique when it exists and satisfies  
 

*
1( ) ( )

1 2
0 0

1 ( ) ( ) ( )

a
a k d

c k k a a e d daσ

γ τ λ τ τ

σ π σ
 ∞ − + ∫

= ∫ ∫  

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 2 [2007], Iss. 1, Art. 4

https://digitalcommons.pvamu.edu/aam/vol2/iss1/4



38                                                                                                                                                   M. EI-Doma  
 
 

 

       

* *
1 1

0

*
1

0

( ) ( ) ( )

1 2 2
0 0 0

( )

2
0

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

a a

a

a k d k d

k d

cq a a e k d da k a a e da

q a a e da

σ

γ τ λ τ τ λ τ τ

λ τ τ

β π σ σ π

β π

 ∞ ∞− + − 

∞ −

 ∫ ∫ 
 
  +

 ∫ − 
  

∫ ∫ ∫

∫

.   (4.6) 

 
In this case *( )s a  and *( )i a  are given by 

 
 * *( ) ( ) ( )s a c a i aπ= − ,          (4.7) 
 
 

* *
1 1

0

( ) ( ) ( )
* * *

2 1
0

( ) (0) ( ) ( ) ( )

a a

ak d k d

i a i a e c a k e dσ

λ τ τ γ τ λ τ τ

π λ π σ σ
 − − + ∫ ∫

= + ∫ ,     (4.8) 

 
where *(0)i  satisfies  

 
*

1

*
1

0

( ) ( )
*

1
* 0 0

( )

2
0

( ) ( ) ( )
(0)

1 ( ) ( )

a

a

a k d

k d

cq a a k e d da
i

q a a e da

σ

γ τ λ τ τ

λ τ τ

λ β π σ σ

β π

 ∞ − + 

∞ −

∫

=
 ∫ − 
  

∫ ∫

∫

.       (4.9) 

(2) If 0 1R ≤ , then the disease-free equilibrium, * 0λ = , is the only steady state, i.e.,  
 

*( ) ( )s a c aπ=  and *( ) 0i a =   
 

(3) If 2
0

( ) ( ) 1q a a daβ π
∞

=∫ , and 
*

1
0

( )

2
0

( ) ( ) 1

a

k d

q a a e da
λ τ τ

β π
∞ − ∫

≠∫  then ∃  a unique endemic 

equilibrium.  
 

(4) If 
*

1
0

( )

2
0

( ) ( ) 1

a

k

q a a e da
λ τ

β π
∞ − ∫

=∫ , then problem (2.1) gives rise to a continuum of endemic 

equilibriums.  
 
Proof:   
 
We note that the proofs of (1)-(2) are given in El-Doma (1999).  To prove (3), we note that 

when 2 2
0 0

( ) ( ) 1, then ( ) ( ) 1q a a da a a daβ π β π
∞ ∞

= =∫ ∫ , and accordingly, 0R  is not defined. But if 
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we assume that 
*

1
0

( )

2
0

( ) ( ) 1

a

k d

q a a e da
λ τ τ

β π
∞ − ∫

≠∫ , then using equations (4.8)-(4.9), and equation 

(4.3), we obtain the characteristic equation (4.6). We notice that in such case the right-hand 
side of the characteristic equation (4.6) increases to *as 0λ+∞ → , and decreases to zero as 

*λ → +∞ , accordingly, ∃  a unique * 0λ > , which satisfies the characteristic equation (4.6) 
and gives rise to a unique endemic equilibrium.  
 

To prove (4), we note that if 
*

1
0

( )

2
0

( ) ( ) 1

a

k d

q a a e da
λ τ τ

β π
∞ − ∫

=∫ , then we first use equation (4.8) 

and equation (4.2) to obtain the following:  
 

* *
1 1

0

( ) ( ) ( )
* *

2 1
0 0 0

(0) 1 ( ) ( ) ( ) ( ) ( ) (4.10)

a a
ak d k d

i q a a e da cq a a e k d daσ

λ τ τ γ τ λ τ τ

β π λ β π σ σ
 ∞ ∞− − + 

 ∫ ∫ = − = 
  

∫ ∫ ∫  

From equation (4.10) it is easy to see that *(0)i  is undetermined, and therefore, we use 
equations (4.3) and (4.8) to obtain the following: 
 

* *
1 1

0

( ) ( ) ( )
* *

1 2 2 2
0 0 0

1 ( ) ( ) ( ) (0) ( ) ( )

a a

a k d k d

c k k a a e d da i k a a e daσ

γ τ λ τ τ λ τ τ

λ σ π σ π
 ∞ ∞− + − 

 ∫ ∫ − = 
  

∫ ∫ ∫  (4.11) 

 
We note that for a fixed ]*(0) (0,i c∈  the left-hand side of equation (4.11) equals zero when 

* 0λ = , and increases to +∞  when *λ → +∞ . Also, the right-hand side of equation (4.11) 
assumes a positive value when * 0λ = , and decreases to zero as *λ → +∞ . Accordingly, for 
each fixed ]*(0) (0,i c∈ , we can see that equation (4.11) gives rise to an endemic equilibrium, 
and hence problem (2.1) gives rise to a continuum of endemic equilibriums in this special 
case .•  
 
Here, we note that the disease will die out if 0 1R ≤  and persists if 0 1R > . The effect of 
vertical transmission via its parameter q is seen, since the right-hand side of equation (4.4) is 
an increasing function of q and therefore, a contributing factor for an endemic disease to 
occur.  
 
5. Global Stability Results  
 
In this section, we prove the global stability of the endemic equilibriums for problem 
(2.1). We consider the following transformation, called the age profile of infective: 

( , )( , )
( )

i a tv a t
p a∞

= , 

and note that ( , ) ( ) ( , )s a t p a i a t∞= − , since we are assuming that the total population has 
already reached its steady state distribution ( ) ( )p a c aπ∞ = . Therefore, from (2.1), ( , )v a t  
satisfies the following:  
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[ ]1

0

0 0

2
0

( , ) ( , ) ( ) ( , ) ( ) 1 ( , ) ( ), 0, 0,

(0, ) ( ) ( ) ( , ) , 0,

( ,0) ( ) ( ) / ( ), 0

( ) ( ) ( ) ( , ) , 0

v a t v a t a v a t k a v a t t a t
a t

v t q a a v a t da t

v a v a i a p a a

t c k a a v a t da t

γ λ

β π

λ π

∞

∞

∞

∂ ∂ + + = − > > ∂ ∂
 = ≥

 = = ≥



= ≥


∫

∫

  (5.1) 

 
By integrating (5.1) along characteristic lines t-a = const. We find ( , )v a t  satisfies 
 

[ ]

[ ]

[ ]

[ ]

1
0

1

1
0

1

( ) ( ) ( )

0

( ) ( ) ( )

1
0

( ) ( ) ( )

( ) ( ) ( )

1
0

( )

( ) ( ) ( ), ,
( , )

(0, )

( ) ( ) , .

t

t

a

a

a t k a t d

t a t k a t d

k t a d

a k t a d

v a t e

k a t e d a t
v a t

v t a e

k t a e d a t

σ

σ

γ τ τ λ τ τ

γ τ τ λ τ τ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ λ σ σ

σ λ σ σ

− − + + − +

− − + + − +

− + − +

− + − +

 ∫ −
 ∫+ − + >

 ∫
 −

 ∫
+ − + <


∫

∫

   (5.2) 

From (5.1),
0

(0, ) ( ) ( ) ( , )v t q a a v a t daβ π
∞

= ∫ , then using equation (5.2) and changing the order 

of integration several times and making appropriate changes of variables yields  
 

[ ]

[ ]

[ ]

1
0

1

1
0

( ) ( ) ( )

0

( ) ( ) ( )

1
0

( ) ( ) ( )

0

( ) ( ) (0, )

(0, ) ( ) ( ) ( ) ( )

( ) ( ) ( )

a

a

a

t

t k t a d

t k t a d

a t k a t d

t

a a v t a e da

v t q a a k a t e dad

a a v a t e da

σ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ

γ τ τ λ τ τ

β π

β π σ λ σ σ

β π

−

− + − +

∞ − + − +

∞ − − + + − +

 ∫ − 
 
 ∫ = + − − 
 
 

∫ 
+ − 

  

∫

∫ ∫

∫

 (5.3) 

Also, from (5.1) 2
0

( ) ( ) ( ) ( , )t c k a a v a t daλ π
∞

= ∫ , then using equation (5.2) and changing the 

order of integration several times and making appropriate changes of variables yields  
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[ ]

[ ]

[ ]

1
0

1

1
0

( ) ( ) ( )

2
0

( ) ( ) ( )

2 1
0

( ) ( ) ( )

2 0

( ) ( ) (0, )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

a

a

a

t

t k t a d

t k t a d

a t k a t d

t

k a a v t a e da

t c k a k a a t e dad

k a a v a t e da

σ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ

γ τ τ λ τ τ

π

λ σ π λ σ σ

π

−

− + − +

∞ − + − +

∞ − − + + − +

 ∫ − 
 
 ∫ = + − − 
 
 

∫ 
+ − 

  

∫

∫ ∫

∫

   (5.4) 

 
Note that by Assumptions 2, 4-6 of section 2 and the Dominated Convergence Theorem, 
we obtain  
 

[ ]1
0

( ) ( ) ( )

2 0( ) ( ) ( ) 0,

t

a t k a t d

t

k a a v a t e da
γ τ τ λ τ τ

π
∞ − − + + − +∫

− →∫  as t →∞ . 

 
Also, by similar reasoning as above, 
 

[ ]1
0

( ) ( ) ( )

0( ) ( ) ( ) 0, .

t

a t k a t d

t

a a v a t e da as t
γ τ τ λ τ τ

β π
∞ − − + + − +∫

− → →∞∫  

Therefore, setting (0, ) ( ), ( ) and ( )v t u t u t tλ= satisfy the following limiting equations (see 
Busenberg, et al. (1988)): 
 

[ ]

[ ]

1
0

1

( ) ( ) ( )

0

( ) ( ) ( )

1
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

a

a

a

k t a d

k t a d

u t q a a u t a e da

a a k a t e dadσ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ

β π

β π σ λ σ σ−

∞ − + − +

∞ ∞ − + − +

 ∫= −


∫ + − − 



∫

∫ ∫

  (5.5) 

 
[ ]

[ ]

1
0

1

( ) ( ) ( )

2
0

( ) ( ) ( )

2 1
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

a

k t a d

k t a d

t c k a a u t a e da

k a k a a t e dadσ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ

λ π

σ π λ σ σ−

∞ − + − +

∞ ∞ − + − +

 ∫= −


∫ + − − 



∫

∫ ∫

  (5.6) 

 
We integrate equations (5.5)-(5.6) to obtain the following: 
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[ ]

[ ]

1
0

1
0

1

( ) ( )

2
0

( ) ( ) ( )

0

( ) ( ) ( )

0

( ) ( ) ( ) ( )

( ) ( ) 1

( ) ( ) ( ) ,

a

a

a

k t a d

k t a d

a k t a d

u t q a a u t a e da

a a e da

a a e d daσ

τ λ τ τ

γ τ τ λ τ τ

γ τ τ λ τ τ

σ

β π

β π

β π γ σ σ

∞ − − +

∞ − + − +

∞ − + − +

 ∫= −


 ∫ + − 
  

∫ − 



∫

∫

∫ ∫

  (5.7) 

 

[ ]

[ ]

[ ]

1
0

1
0

1

( ) ( )

2 2
0

( ) ( ) ( )

2
0

( ) ( ) ( )

2
0 0

( ) ( ) ( ) ( )

( ) ( ) 1

( ) ( ) ( ) .

a

a

a

k t a d

k t a d

a k t a d

t c k a a u t a e da

k a a e da

k a a e d daσ

τ λ τ τ

γ τ τ λ τ τ

γ τ τ λ τ τ

λ π

π

π γ σ σ

∞ − − +

∞ − + − +

∞ − + − +

 ∫= −


 ∫ + − 
  

∫ − 



∫

∫

∫ ∫

  (5.8) 

 
 
Now, we set w(t) and g(t) to satisfy the following: 

*

*

( ) ( ) ,
( ) ( ) ,

w t u t u
g t tλ λ

= −

= −
 

where 
*

* * (0), iu
c

λ = , are defined as in section 4. Then after some computations, we obtain 

that ( )w t  and ( )g t  satisfy the following: 
 

*
1 1

0 0

*
1 1

0 0

*
1 1

( ) ( ) ( )

2
0

( ) ( ) ( )
*

2
0

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

1 ( ) ( ) 1

( ) ( ) ( ) 1

a a

a a

a a

k d k g t a d

k d k g t a d

a k d k g t a

w t q a a e w t a e da

u a a e e da

a a e eσ σ

λ τ τ τ τ τ

λ τ τ τ τ τ

γ τ λ τ τ τ τ

β π

β π

β π γ σ

∞ − − − +

∞ − − − +

 − + − − + 

 ∫ ∫= −


 ∫ ∫  + − −   
  

 ∫ ∫+ −
 

∫

∫

∫
0

,d daσ
∞ 

   
∫

 (5.9) 
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*
1 1

0 0

*
1 1

0 0

*
1 1

( ) ( ) ( )

2 2
0

( ) ( ) ( )
*

2 2
0

( ) ( ) ( ) ( )

2
0 0

( ) ( ) ( ) ( )

1 ( ) ( ) 1

( ) ( ) ( ) 1

a a

a a

a a

k d k g t a d

k d k g t a d

a k d k g t a

g t c k a a e w t a e da

u k a a e e da

k a a e eσ σ

λ τ τ τ τ τ

λ τ τ τ τ τ

γ τ λ τ τ τ τ

π

π

π γ σ

∞ − − − +

∞ − − − +

 ∞ − + − − + 

 ∫ ∫= −


 ∫ ∫  + − −   
  

∫ ∫
+ −

∫

∫

∫ ∫ .d daσ

       

 (5.10) 

 
In the following lemma, we give a condition under which *u is strictly less than one, and two 
conditions under which *u is equal to one. As we see later, these facts will help us determine 
some inequalities which in turn will help us determine the global stability of the endemic 
equilibriums. 
 

Lemma 5.1. If 2
0

( ) 1q a daβ π
∞

≠∫ , then * 1u < , and if 2
0

( ) 1q a daβ π
∞

=∫  and 

  

  
*

1
0

( )
*

2
0

( ) ( ) 1, then 1

a

k d

q a a e da u
λ τ τ

β π
∞ − ∫

≠ =∫ . 

 
Proof:  We note that from equation (4.9), *u  satisfies the following: 
 
 

* *
1 1

0

*
1

0

( ) ( ) ( )
*

2 1
0 0 0

*

( )

2
0

1 ( ) ( ) ( ) ( ) ( )

1

1 ( ) ( )

a a

a

ak d k d

k d

q a a e da q a a e k d da

u

q a a e da

σ

λ τ τ γ τ λ τ τ

λ τ τ

β π λ β π σ σ

β π

 ∞ ∞− − + 

∞ −

 ∫ ∫ − − 
  − =

 ∫ − 
  

∫ ∫ ∫

∫

 

  

[ ]
*

1

*
1

0

( ) ( )

0 0

( )

2
0

1 ( ) ( ) ( )

1 ( ) ( )

a

a

a k d

k d

q q a a e d da

q a a e da

σ

γ τ λ τ τ

λ τ τ

β π γ σ σ

β π

 ∞ − + 

∞ −

∫
− +

=
 ∫ − 
  

∫ ∫

∫

      (5.11) 
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We note that if 2
0

( ) ( ) 1q a a daβ π
∞

≠∫ , then from the characteristic equation (3.4) and * 0p = , 

either 1q ≠ , or the support of ( )aγ  does not lie to the right of the support of ( )aβ , hence 

from equation (5.11), * 1u < . We also note that if 2
0

( ) ( ) 1q a a daβ π
∞

=∫ , then from the 

characteristic equation (3.4) and * 0p = , we deduce that 1q =  and the support of ( )aγ lies to 
the right of the support of ( )aβ , and accordingly, from equation (5.11), * 1u = . 
 
In order to facilitate our future calculations, we state the following lemma, the proof of which 
is by using equation (5.11), lemma 5.1, and straightforward but tedious computation, and 
therefore, we omit the details of the proof. 
 
Lemma 5.2:  

Suppose that 2
0

( ) ( ) 1q a a daβ π
∞

≠∫ . Then  

 
*

1
0

*
1

( )
*

2 2 1
0 0

( ) ( )

2 1
0 0

1 ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

a k d

a a k d

D c u k a a e k d da

c k a a e k c dc d daσ

λ τ τ

γ τ λ τ τ

σ

π σ σ

π γ σ σ

∞ −

 ∞ − + 

∫
 = − 

∫
+

∫ ∫

∫ ∫ ∫

    (5.12) 

 

}

*
1

0

*
1

2 2 ( )
*0

2 1
0 0

2
0

( ) ( )

1
0 0

( ) ( )
1 ( ) ( ) ( )

1 ( ) ( )

( ) ( ) ( ) ( )

a

a

a k d

a a k d

cq k a a da
u a a e k d da

q a a da

a a e k c dc d daσ

λ τ τ

γ τ λ τ τ

σ

π
β π σ σ

β π

β π γ σ σ

∞

∞ −

∞

 ∞ − + 

∫
 + −  

− 
 

∫
+

∫
∫ ∫

∫

∫ ∫ ∫

 

 

]

*
1

*
1

( )
* *

2 2 1 1
0 0 0

( ) ( )

2 1 1
0 0 0

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

a c k d

a c k d

c u k a a e k k c d dc da

k a a e k c k d dc da

σ

σ

λ τ τ

γ τ λ τ τ

λ π σ σ

π σ σ

∞ −

 ∞ − + 

∫
= + 

∫
−

∫ ∫ ∫

∫ ∫ ∫
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{

]

*
1

0

*
1

*
2 2 ( )

*0
2 1 1

0 0 0
2

0

( ) ( )

1 1
0 0

( ) ( )
( ) ( ) ( ) ( )

1 ( ) ( )

( ) ( ) ( ) ( ) 1.

a

a

a c k d

a a k d

cq k a a da
u a a e k k c d dcda

q a a da

a a e k c k d dcdaσ

λ τ τ

γ τ λ τ τ

σ

λ π
β π σ σ

β π

β π σ σ

∞

∞ −

∞

 ∞ − + 

∫
 +   

− 
 

∫
− <

∫
∫ ∫ ∫

∫

∫ ∫ ∫

 

 
In the following theorem, we prove the global stability of the endemic equilibrium when 

2
0

( ) ( ) 1q a a daβ π
∞

≠∫ . We note that by Lemma 5.1, this condition implies that * 1.u <  

 

Theorem 5.3: If 2
0

( ) ( ) 1q a a daβ π
∞

≠∫ , then the unique endemic equilibrium, given  by 

Theorem 4.1 (1), is globally stable.  
 
Proof:  
Let limsup ( ) limsup ( )

t t
w w t and g g t∞ ∞

→∞ →∞
= = . Then if we use the fact that 

1
0

( ) ( )

1
0

1 ( ) ( )
k g t a d

e k g t a d

σ

στ τ τ

τ τ τ
− − +∫

− ≤ − +∫  and then use Fatou's Lemma in equations (5.9), 

(5.10), we obtain that  
 

*
1

0

*
1

0

( )
*

2 1
0 0

2
0

( ) ( )

1
0 0

1 ( ) ( ) ( )
1 ( ) ( )

( ) ( ) ( ) ( ) ,

a

a a

a k d

a a k d

q g
w u a a e k d da

q a a da

a a e k d d daσ

λ τ τ

γ τ λ τ τ

σ

β π σ σ
β π

β π τ γ σ τ σ

∞ ∞ −
∞

∞

 
 ∞ − +
  

 ∫ ≤ −   −  
 

∫ ∫ + 



∫ ∫
∫

∫ ∫ ∫

(5.13) 

 
 

{
*

1
0

*
1

0

( )
*

2 2 2 2 1
0 0 0

( ) ( )

2 1
0 0

( ) ( ) 1 ( ) ( ) ( )

( ) ( ) ( ) ( ) .

a

a a

a k d

a a k d

g c w k a a da u k a a e k d da

k a a e k d d da c gσ

λ τ τ

γ τ λ τ τ

σ

π π σ σ

π τ γ σ τ σ

∞ ∞ −
∞ ∞

 
 ∞ − +
  ∞ 

∫
 ≤ + − 

∫ ∫ + 



∫ ∫ ∫

∫ ∫ ∫
(5.14) 

 
Now, using inequality (5.13) in (5.14), we obtain that  
 
 

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 2 [2007], Iss. 1, Art. 4

https://digitalcommons.pvamu.edu/aam/vol2/iss1/4



46                                                                                                                                                   M. EI-Doma  
 
 

 

.g D g∞ ∞≤          (5.15) 
 
And hence, by Lemma 5.2, 0g ∞ = . And then using inequality (5.13), we obtain that 

0w ∞ = .  Therefore, the endemic equilibrium is globally stable.  
 
In the following lemma, we prove that the constant D, given in Lemma 5.2, is strictly less 
than one when the following two conditions are satisfied: 
 

2
0

( ) ( ) 1,q a a daβ π
∞

=∫         (5.16) 

*
1

0

( )

2
0

( ) ( ) 1.

a

k d

q a a e da
λ τ τ

β π
∞ − ∫

≠∫       (5.17) 

 
  
We note that., if condition (5.16) is satisfied then 0R  is not. defined, and in this case either 
there exists a unique endemic equilibrium when condition (5.17) is also satisfied, which is 
globally stable, or problem (2.1) gives rise to a continuum of endemic equilibriums, in the 
case of non-fertile infectibles ( i.e. when the support of 1( )k a  lies to the right of the support 
of ( )).aβ  
 
Lemma 5.4:   
Suppose that conditions (5.16), (5.17) are satisfied, then the constant D satisfies the 
following:  
 

]

*
1

*
1

( )
*

2 2 1 1
0 0 0

( ) ( )

2 1 1
0 0 0

0 1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

a c k d

a c k d

D c k a a e k k c d dcda

k a a e k k c d dc da

σ

σ

λ τ τ

γ τ λ τ τ

λ π σ σ

π σ σ

∞ −

 ∞ − + 

 ∫< < + 


∫
−

∫ ∫ ∫

∫ ∫ ∫

 

*
1

0
*

1
0

*
1

0

*
1

( )

2 2 ( )
0

2 1
( ) 0 0

2
0

( ) ( )

1
0 0

( ) ( )
( ) ( ) ( )

1 ( ) ( )

( ) ( ) ( ) 1.

a

a

a

a

k d

a k d

k d

a k d

c k a a e
a a e k d da

q a a e da

a a e k d daσ

λ τ τ

λ τ τ

λ τ τ

γ τ λ τ τ

π
β π σ σ

β π

β π σ σ

∞ −

∞ −

∞ −

 ∞ − + 

∫
 ∫+  ∫  − 

  
∫ − <


∫
∫ ∫

∫

∫ ∫

 

 
Proof: 
  
We note that by first assuming that 1q ≠ , and straightforward computations using equations  
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(5.11), (5.16), (4.6), and condition (5.17), and then letting 1q → , we obtain  
 

*
1

0

*
1

( )

2 2 1
0 0

( ) ( )
*

2 1 1
0 0 0

0 1 ( ) ( ) ( )

( ) ( ) ( ) ( )

a

a

a k d

a c k d

D c k a a e k d da

c k a a e k k c d dcdaσ

λ τ τ

γ τ λ τ τ

π σ σ

λ π σ σ

∞ −

 ∞ − + 

∫
< = −

∫
−

∫ ∫

∫ ∫ ∫

   (5.18) 

 
 

]

*
1

0
*

1
0

*
1

0

*
1

( )

2 2 ( )
0

2 1
( ) 0 0

2
0

( ) ( )

1
0 0

( ) ( )
( ) ( ) ( )

1 ( ) ( )

( ) ( ) ( )

a

a

a

a

k d

a k d

k d

a k d

c k a a e da
a a e k d da

a a e da

a a e k d daσ

λ τ τ

λ τ τ

λ τ τ

γ τ λ τ τ

π
β π σ σ

β π

β π σ σ

∞ −

∞ −

∞ −

 ∞ − + 

∫
 ∫+  ∫  − 

  

∫
−

∫
∫ ∫

∫

∫ ∫

 

 
*

1
0

*
1

*
1

0

( )
*

2 1 ( )
0 0

2 2 1
( ) 0 0

2
0

( ) ( ) ( )
( ) ( ) ( ) .

1 ( ) ( )

a

a

a

a k d

a k

k d

a a e k d da
c k a a e k d da

a a e da

σ

λ τ τ

λ τ

λ τ τ

λ β π σ σ
π σ σ

β π

∞ −

∞ −

∞ −

∫
 ∫ + ×    ∫   − 

  

∫ ∫
∫ ∫

∫

 

 
Now, we notice that by equation (5.11) and Lemma 5.1,  
 

*
1

0

*
1

0

( )
*

2 1
0 0

( )

2
0

( ) ( ) ( )
1,

1 ( ) ( )

a

a

a k d

k d

a a e k d da

a a e da

λ τ τ

λ τ τ

λ β π σ σ

β π

∞ −

∞ −

∫

<
 ∫ − 
  

∫ ∫

∫

 

 
and accordingly the conclusion of the Lemma follows from (5.18).  
 
In the following theorem, we will prove that the endemic equilibrium, given by Theorem 
4.1 (3), is globally stable.  
 
Theorem 5.5: Suppose that conditions (5.16), (5.17) are satisfied. Then the endemic 

equilibrium, given by Theorem 4.1 (8), is globally stable.  
 
Proof:  
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We note that from Lemma 5.4, we obtain that g D g g∞ ∞ ∞≤ < , and hence, 0g ∞ =  Now, 

using 0g ∞ =  in inequality (5.13), we obtain that 0w ∞ = . Accordingly, we obtain the global 
stability for the endemic equilibrium. 
 
6. Conclusion  
 
We studied an SIS age-structured epidemic model when the disease is vertically as well as 
horizontally transmitted and the force of infection of proportionate mixing assumption type. 
The mortality, fertility and cure rates are age-dependent. We note that malaria, influenza, 
gonorrhea and tuberculosis are examples of SIS epidemics. We determined the steady 
states of the model and proved global stability results for the endemic equilibriums. If 

2
0

( ) ( ) 1q a a daβ π
∞

≠∫ , then the endemic equilibrium is globally stable. And if 

2
0

( ) ( ) 1q a a daβ π
∞

=∫  , then either a unique endemic equilibrium exists, and we proved that this 

endemic equilibrium is globally stable, or the model gives rise to a continuum of endemic 
equilibriums, if individuals are susceptible only after the end of their reproductive period.  
 
The global stability results that we obtained are under very general conditions, and, in 
fact, we did not require any condition other than the existence of a unique endemic 
equilibrium. Our results generalized those given in Busenberg, et al. (1988) and also 
partially improved those given in Iannelli, et al. (1992).  
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