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Abstract 
Many dynamical systems in population biology in which agents compete for resources may 
exhibit chaotic fluctuations. This short letter develops Gamarra and Solé's previous work. We 
briefly review a classical model of population with complex dynamics, and proceed to study 
the dynamics of an age-structured resource-consumer model, in which the fertility 
coefficients are density independent. Implicit or first integral solutions of the model are 
obtained, and conditions for which they are stable given. It is observed that resource 
availability at any time depends on the number of potential consumers present. 
 
Keywords:  Age-structure, population dynamics, resource-consumer model, stability of            

solutions 
AMS ClassificationNo.: 34C28, 92D25, 92D40 
 
1. Introduction 
 
The most basic framework for understanding the dynamics of biological populations 
recognizes that changes in population numbers are the result of two types of processes - on 
the one hand, there is the deterministic component of population dynamics that results from 
interactions between individuals and other predictable ecological processes - on the other, 
there is stochastic component of population dynamics that results from random variations in 
birth and death rates, for instance owing to the direct effects of weather or disturbance 
(Freckleton and Watkinson, 2002). It is fundamental to understand the dynamics of any 
population in order to determine the relative roles of these two processes in a year-to-year 
variation in population numbers. We shall consider the former in the present study. 
 
This paper is motivated by the fact that one of the most important development in ecology 
during the 1970s was the recognition that, even in the absence of stochastic variations, 
entirely deterministic systems are capable of producing patterns of population change that are 
apparently indistinguishable from random noise (May and Oster, 1976). This form of 
dynamics results when density dependence within populations is overcompensating, and the 
growth of populations from low densities is high (Freckleton and Watkinson, 2002). From 
this low level, growth is then rapid, and high levels are soon reached. Consequently, 
populations fluctuate around a long term average, and in the extreme, these patterns of 
fluctuations may be entirely unpredictable.  The existence of such dynamics could thwart 
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attempts to predict population dynamics from one year to the next. However, partially 
inspired by ideas of this kind, we propose a resource-consumer mechanism structured by age, 
and in which a time lag is introduced to account for the time it takes individuals to adapt to 
changes (in their feeding pattern, environmental changes etc...). Recently, Rao and Rao 
(2006), Murdoch et al, (2003) studied the stability of resource-consumer dynamic models 
involving distributed delays. They do not 1

 

take into account the age parameter.  Various age-
structured consumer-resource models in the form of predator-prey dynamics have been 
analyzed in the literature (Thomson, 1975; Cushing and Saleem, 1982; McCauley et al., 1996 
to name just a few and the references therein). No coupled consumer-resource age-structure 
model has been analyzed previously, except by simulation in the context of predator-prey 
interaction between fishes of different species in lakes (de Roos and Persson, 2002). 

Therefore, in this short letter, within-generation dynamics of and age-structured resource-
consumer interactions developing in time units t  is studied. In writing this short note which 
develops and naturally extends Gamarra and Solé (2002) previous work, we ask: Does age-
dependent vital rates play any important role in the dynamics of resource-consumer model? 
The proposed model is interesting in its own right, at least from the mathematical point of 
view. Also, some resources are more vulnerable to consumers at juvenile age, and this gives a 
biological relevance to this study. 
 
 
1.1 An Example  
 
The concept of chaos (a term first coined by May, 1974) or complex behavior in ecological 
population is widely known for non-overlapping generations.  The classical approach uses 
very simple models consisting of time discrete, first-order difference equations of the form  
 

)(1 ttt NfbNN =+ ,        (1) 
 
or simply 
 

1 ( )t tN g N+ =  .         (2) 
 

)( tNf  is the so-called density regulation factor which must be prescribed in such a way as to 
reflect the basic biology (fertility, mortality and growth rates) of the particular species being 
described (Cushing, 1988).  More often than not, the population tN  may either exhibit the 
Allee effect (Allee, 1931, 1938), or some typical effect of saturation in reproduction due to 
scarcity of resources. Thus, a stage is reached when the demands made by the existing 
population on the resources preclude further growth and the population is then at its 
saturation level, a value determined by the carrying capacity of the environment (Pielou, 
1969). In general )( tNf , has various forms, for instance, in Gamarra and Solé (2002), 

),,()( τ−= ttt NNgNf  , which represents some non-linear function describing some degree 
of density-dependence, τ  defines a within-generation term for consumption and mortality. A  
 
 
                                            
1 A population experience Allee effect when the per capita growth rates decrease as a population decrease. When 
there is some sort of density-dependence, per capita growth rates also decrease when population increases. This 
creates a one-hump curve when the per capita rate is plotted against population size. 
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commonly used density function is ( ) tbN
tf N e−= , 0b > . The well-known equation describing 

a full range of dynamics was developed by Ricker (1954)  
 

tbN
tt eNN −

+ = σ1          (3) 
 
σ is the discrete initial growth rate, 0>b is the death modulus, or the measure of density-
dependent regulation; e.g., cannibalism, intra-specific interactions, etc.  Ricker (1954) 
assumed that adults cannibalize their own young so that the system is implicitly age-
structured.  As early as 1953, Slobodkin demonstrated that neither age nor size of Daphnia 
taken separately was sufficient information to predict its physiological reactions. 
 
In view of this, it should be more interesting to introduce age dependence explicitly into 
Gamarra and Solé's (2002) model. They used a hybrid continuous-discrete model, but I will 
use a purely continuous model. The modification of )( tNf  given by 
 
  1( ) tbN

t tf N N eωη −= ,        (4) 
 
allows for an Allee effect when 1ω > , and for models of the form 1

tbN
t tN N eωβ −
+ =  )( ηβ b= , 

the graph of the right hand side has one hump (Cushing et al., 1996).  
 
 
2.  The Consumer-Resource Model 
 
The model presented in this section generalizes Gamarra and Solé's (2002. By assuming a 
homogeneous interaction at any continuous time t , and by using the notation of Gamarra and 
Solé (2002), where R  stands for resources and C  for consumers, we have  

;)()()(
Γ

−=
tRtC

dt
tdR γ  0)0( RR = , 

);()(1)( tCtRm
dt

tdC








Γ
−−= λ  0)0( CC = ,      (5) 

where 0>λ  stands for the renewal of resources, and 0>λ  is a constant growth/renewal rate 
depicting some immigration of consumers from external pool. m represents the intrinsic 
death modulus in the absence of resources. )(lim tR=Γ  as ∞→t  is the carrying capacity of 
the environment in terms of resources or the maximum available resource ( Γ≤R ), a limit 
which holds only in the absence of consumers. 
 
Equation (5) is soluble, since the functions involved are continuous in + and integrable.  
Indeed, 1( ), ( )R t C t L∈ ( +; +). System (5) is a system of couple differential equations. 
Considering the first equation in (5) independently (this is a crude assumption), using a 
freshman integration, its first integral is of the form 

0 0 0 0

1 1( ) exp ( ) exp ( )
t t s

R t R C u du C u du dsγ    = + − −   Γ Γ   ∫ ∫ ∫     (6) 

where u  follows the limit described only in the absence of consumers. Equation (6) may be 
used in estimating the quantity of resources if the number on consumers is known a priori. 
The growth of any population in a restricted environment must eventually be limited by a 
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shortage of resources (Pielou, 1969). If production depends on previous resources, then 
system (5) now reads 

  )()()( tRtC
dt

tdR








Γ
−= γ , 

),()(1)()( tCtRm
dt

tdC
















Γ
−−= λ       (7) 

 
where 1<> λm  Otherwise, for λ>m , consumers will growth in the absence of resources. 
This may be due to an implicit assumption that consumers may grow from consumption of 
alternative resources when the common resources are scarce, a biologically reasonable 
condition as it relates directly to the adaptation of species. A more detail study on this can be 
found in Ma and Levin (2006). λ and m  are the growth rate and the intrinsic mortality rate in 
the absence of resources, respectively. 
 
The integral representation of equation (7)1 is  

0 0

1( ) exp ( ) ,
ttR t R e C u duγ  = − Γ ∫       (8) 

Which can be interpreted as: in the absence of consumers, resources will keep on growing, 
but will not exceed the carrying capacityΓ , and as a result of overcrowding, will start 
declining. For instance, plants compete for light, and those that cannot emerge fast die out. 
Similarly, equation (7) 2 yields 

( )
0 0

( ) exp ( ) .
tm t mC t C e R u duλ λ− − = − Γ ∫      (9) 

By allowing γ  in equation (5)1 to depend on time, an equation similar to that of 
concentration of drug in the blood stream (Hoppensteadt and Murray, 1981) is obtained, the 
drug being introduced in dosages )(tγ  and removed at a rate proportional to )(tR . The main 

difference is that the constant of proportionality ,)(:
Γ

−=
tCk  is not a constant.  This is 

extremely important, especially for seasonal or periodic resources.  In such cases, it could be 
assumed that )(tγ  is periodic, i.e., )()()( TttTt +==− λγγ  where T  is the period; and the 
initial resource (stock) depends on T  such that )(00 TRR =  gives the initial resource at the 
beginning of each period T . 
 
Also, any periodic change of climate will tend to impose its period upon oscillations of 
internal origin (Lalli and Zhang, 1994), and incorporating the periodicity of environment 
(seasonal effects, food supplies, mating habits...) into equation (8) yields 

0 0

( )( ) ( ) exp ( ) .
t C sR t T R T s T dsγ  + = − −  Γ  
∫       (10) 

As mention earlier, age structure is capital in the Resource-Consumer model because in the 
case of a food web, it takes some time for the plants to get mature for a proper interaction to 
take place.  It is therefore vital to account for this time retardation. More so, it takes a certain 
unit of time for consumers to respond to changes in the population size or environment 
(Wangerskey and Cunningham (1956/57), Lalli and Zhang (1994)). Aiyelo and Tchuenche 
(2005) referred to this process as adaptation parameter. 
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It is of interest to note however that true age of a biological entity is a matter of which sites 
are active. Hence, true age is a multidimensional variable, and this multidimensional 
characterization is called physiological age by biologists (Brewer, 1989).  By the continuity 
law, the evolution equations in (5) with some little modifications take the form of a system of 
non-linear first order partial differential equations of the McKendrick type, given by  
 

);,(),(),(),( atRatk
a

atR
t

atR
−=

∂
∂

+
∂

∂        ),(),0( 0 aRaR =  )()0,( tBtR R=   (11) 

 
          

);,(),(1),(),( αα
α

tCtRmatC
t

atC








Γ
−−=

∂
∂

+
∂

∂  ),(),0( 0 αα RC =  )()0,( tBtC C=  (12) 

 
where a is the age of resources while α  is the consumer's age. Since resource depletion is 
caused by consumption, the effect of consumers on resources of age a  at time t  can be 
generalized to take into account its age structure, and this will depend on how a consumer 
distributes its consumption effort among different ages of the resource population. In general, 

if we let 1 0
( , ) ( , ) ( , )k t a k p a C t dα α α

∞
= ∫  (with 1

1:k =
Γ

), then, the per capita loss rate of 

resources at time t  will depend on the probability distribution ),( αap . This distribution 
defines the age-specific resource-consumer coupling. For mathematical convenience, we 
assume that this distribution is Dirac’s δ , so only consumer of age a  predate on resources of 

the same age (a very crude assumption!), that is 1 0
( , ) ( ) ( , )k t a k p a C t dα α α

∞
= −∫  and 

consequently, this reduces to 
Γ

=
),(),( atCatk . a is the age of resources while α  is the 

consumer's age. )(tBC and )(tBR  represent the recruitment or renewal of consumers and 
resources, respectively; 0 ( )C α and )(0 aR  are the appropriate initial densities. 
 
Equations (11) and (12) can readily be solved via the Laplace transform method if the right-
hand sides are modified to be of convolution type.  The method of characteristics can best be 
applied if it is heuristically assumed that ),( atk  above is age-independent. In this case the 
solution is given by 
 

0 0

0

( )exp ( ) ;

( )exp ( ) ;
( , )

t

a
R

R a t k a t d

B a k a t d
R t a

τ τ

α α

 − − + − 
 
 − − − + 
 

 ∫= 
∫

      (13) 

 

 Similarly, by letting ),(),( atkatC
=

Γ
,  the same method of solution yields 
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0 0

0

( )exp ( , ) ;

( )exp ( , ) ;
( , )

t

a
R

R a t k a t d

B a k a t d
R t a

τ τ τ

α α α

 − − + − 
 
 − − − + 
 

 ∫= 
∫

       (14) 

Equation (12) has a similar solution of the form (14) if 







Γ
−=

),(1:),( atRatk . In order to 

apply the Laplace transform technique (see Watson, 1981), it is convenient to introduce a 
time lag as follows: 

;),(),(),(),(
Γ
−

−=
∂

∂
+

∂
∂ atRatC

a
atR

t
atR τ              (15) 

 
          

);,(),(1),(),( ατα
α

−







Γ
−−=

∂
∂

+
∂

∂ tCtRmatC
t

atC        (16) 

Depletion of resources is a consequence of random encounters of consumers and resources at 
time t  in a well mixed scenario (mass-action principle). However, equation (15) above is 
biologically fuzzy since it says that the loss of resources is proportional to the product of 
consumers and resources of similar ages a  and α , but at different times. For this reason, we 
only accept this equation as a phenomenological ad-hoc assumption that allows for some 
analytical progress. The introduction of the same time lag swiftly renders the equations 
analytically tractable if the right hand side is of convolution type. 
 
Let L represents the operator of Laplace transform, while R is the transform of R with respect 
to t  and p∈  the transform variable. Then, equation (15) yields 

L 1[ ( , ) ( , )] 0.t aR R C a R t aτ τ+ + − =
Γ

        (17) 

That is, 


 

0
( , ) 1 ( , ) ( , ) ( ),d R p a p C p a R p a R a
da

 + + + Γ 
       (18) 

which implies, 
  

00 0 0

1 1( , ) exp ( , ) ( ) exp ( , )
a apa pR p a e C p d R e C p d d

ξξα α ξ α α ξ−    = −   Γ Γ   ∫ ∫ ∫  + 

              

0

1( ) exp ( , ) ,
a

K p p C p dα α  + − +  Γ  
∫       (19) 

where ( )K p  is the constant of integration given by the boundary condition  ( )RB p .  By 
letting 



0

1( ) : exp ( , ) ,
a

a C p dσ α α = − Γ ∫         (20) 

equation (19) now reads 

 

( ) 0
0

( )( , ) ( ) ( ) .
( )

a p a pa
R

RR p a a e d B p eξ ξσ ξ
σ ξ

− − − 
= + 

 
∫       (21)  

By inspection (see Tchuenche, 2006), 
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)()()()()()(),( 0 taHttaRatHsatBatR R −−+−−= σσ      (22)  

where 
)(

)(:)(
ta

at
−

=
σ
σσ ; )(⋅H  is the Heaviside function which forces solutions to be right 

continuous. Hence, they are positive and biologically relevant. Integrating equation (17) with 
respect to a  gives 
   

00

1( , ) ( ) ( )
apa ps pa

RR p a e e R s CR ds B p e− − − = − + Γ ∫ .      (23) 

Evaluation of the inverse of the first and last expressions on the right-hand side of equation 
(23) is done by inspection.  The middle term is a convolution integral whose inversion is 
immediate, and a little rearrangement of the solution yields  

0
( , )( , ) 1 { ( ) ( ) ( ) ( }.

( , ) R
C tR t a B t a H t a R a t H a t

C t
α
α

 
= − − − + − − Γ + 

    (24)  It is 

important here to note the absence of the survival function )(⋅σ  in equation (24). 

Nevertheless, this may be taken care of by the expression .1
),(

),(1 <







+Γ

−
α

α
tC

tC  The 

interpretation of equation (24) is not so obvious, but an intuitive look tells us that the quantity 
of resources available at time t  depends on the number of consumers ),( αtC  who actually 
go for the available resources. Also, if ),( αtC  is very large, then the resources ),( atR  will 
decrease very fast. 
 
In order to buttress further the motivation behind this study, we note that the passenger 
pigeon was present in the United States in vast numbers until late in the nineteenth century. It 
was heavily hunted for sport and for food and consequently its numbers were drastically 
reduced by the1880s (Austin, 1983). Unfortunately, the passenger pigeon could apparently 
breed successfully only when in a large concentration. The precipitous decline in the 
passenger pigeon population from huge numbers to extinction calls for great concern and this 
seems to be one of the basic factors which contributed to the quest for species conservation. 
Therefore, a study related to resource consumption is ecologically meaningful. 
 
3.  Stability 
 
In the regulation of population growth, boundedness and stability are two concepts to be 
given prominence (Sowunmi, 2002).  Though it is a jeu d'esprit to show that all the solutions 
obtained above are bounded, local stability is considered in its entirety.  
Equilibrium solutions are often of interest because they are easy to analyze qualitatively, and 
they often provide important information about the dynamical behavior of the system 
(Tchuenche, 2002).  At equilibrium, 

)(),( αα CtC = ; ).(),( aRatR =        (25) 
That is, C  and R  are time independent.  Densities of these types will satisfy 

;)()()(
Γ

−=
aRC

da
adR α   0)0( RBR =   and     (26) 

);()(1)( αα
α
α CRm

d
dC









Γ
−−=  0)0( CBC =        (27) Thus, 

we recover Gamarra and Solé's (2002) model equations given in terms of age, but with 
different initial conditions.  Assume that the renewal equations are given by 
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2

1

( ) ( , ) ( ),
w

i iw
B t i t a da F tβ= +∫          (28) 

with i representing R  or C , and )(tF  being added for technical reasons to allow for renewal 
to those already alive at the beginning of the process (Rubinov, 1972), ),( 21 ww is the 
fecundity interval with 21 ww < ; then 

2

1
0 0 0,( )

w

R Rw
B R a da Fβ= +∫          (29) 

2

1
0 0 0,( )

w

C Cw
B C d Fβ α α= +∫  (30) β  and β~  represent the birth rate of resources and 

consumers, respectively. In order to solve equations (26) and (27), we assume that the age of 
a consumer is biologically different from that of a resource. More so, their domains, although 
subsets of +

 are also different; that is 
],0[ Ω∈a , w,0[∈α where Ω  and w  are the life spans of resource and consumers, 

respectively. The relationship between Ω  and w  cannot be generalized, but for any specific 
and well-known resource-consumer relationship, we may either have Ω>w  or w>Ω . 
Equality may hold in very few restrictive and exceptional cases. 
 
Integrating equations (26) and (27) with respect to their respective variables yields 









Γ
−= )(exp)( 0 αCaRaR ,         (31) 


























Γ
−

Γ
−−= )(exp1exp)( 0

0 ααα CaR
mCC       (32)  

For the sake of completion, let Lw =Ω),max(  such that +⊂∈ RLa ],0[,α , then equations 
(31) and (32) become 

0 0

1( ) exp ( )
a

R a R C dα α = − Γ ∫ ,        (33) 

 0
0 0

0

1( ) exp 1 exp ( )
s

a RC C m C dα α α
    = − − −    Γ Γ     

∫ ∫       (34)  

If 1=m , then using a discrete unit age step of the standard Runge-Kutta fourth-order 
approach for ODEs integration, equation (3) of Gamarra and Solé (2002) is recovered. At this 
point we can affirm that age-structure has an effect on the dynamics of both resources and 
consumers as seen from both equations (31) and (32). 
 
Equations (32) and (33) in matrix form read 

( ) ( )1 0
1 1

( )( )aR
C

R aC m
α

α −
   = − +   Γ 

,        (35) where 

da
adRRa

)(:=  for simplicity.  By writing 

);,(:)( CRH
d

dC
=

α
α  ),,(:)( CRG

da
adR

=        (36) we 

obtain a system of two simultaneous differential equations with ),( CRG  and 
),( CRH continuous (in their variables) and having continuous partial derivatives in 

1 2( , );C + +
   , [0, ]a Lα ∈  so that 1 2 1, ( : ([0, , )).G H C L L+ +∈    If ),( 00 CR  is a point in the 
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domain of G  and H  in the RC -plane, then there exists a unique solution ),()( aaR φ=  
)()( αψα =C of (36) satisfying the initial conditions 

;)( 00 RaR =  ;)( 00 CC =α         (37) 
where 0a  and 0α  are the initial ages at which both processes started. 
The initial-value problem given by equations (36) and (37) can be written in the well-known 
vectorial form 

);(Xf
da
dX

=   0
0 )( XaX =        (38) 

where jCiRX


+= , jCRHiCRGXf


),(),()( +=  and jCiRX


00
0 +=  ( ji



,  are the unit 
vectors in the Cartesian plane). In this case, the solution is expressed as 

jaiaX


)()( ψφ += .        (39) 
Let |||| ⋅ represents the usual 1L -norm (with 1 : ( , )L + +=   ), define 

111 |||||||||||| LLL CRX +=  .       (40) 
The isolated critical points of equations (11) and (12), which also satisfy (35) are )0,0(  and 

).,( ** CR           
 
A critical point of (35) is said to be stable if given 0>ε , there exists a 0>δ  such that every 
solution X  of system (38) which at 0=a  satisfies δ<− 1||)0(|| *

LXX  exists, and also 

satisfies ε<− ||)(|| *XaX . In particular, )(* aRR = , and δ<− ||)(),0(|| aRaR , whenever 
ε<− || at . Similarly, δαα <− ||)()(|| 0 CC , whenever ε<− || at . 

 
Some algebraic manipulations coupled with the application of the classical Gronwall's 
Lemma (Bainov and Simeonov, 1992) yield 

tleCtC )1(0)( −≤          (41) 

where 0
0 ( )

t
C C a t da

∞
= −∫  and 1≥l  is the common lower bound of the natural rate of 

resource depletion and consumer's death modulus. 
 
The value 1=l  defines a bifurcation point, and both fixed points are conditionally 
convergent. Thus, the non-trivial equilibrium points are exponentially asymptotically stable 
for 1>l , and may become unstable as 1<l  implies unbounded growth, which in turn implies 
high demand of resources. In general, non-zero and asymptotically bounded population 
models are structurally unstable (Dilao and Domingos, 2001). Real populations are far from 
equilibrium (Hastings et al., 1993; Ario and Pimm, 1995). In fact, complex fluctuations 

)1( <l  are found in most species which have characteristic lifespan. The steady state 
solutions of equations (11) and (12) are 

{ }0 0 0 00
( ) exp ( ) : ( )

a

R RR a B k s ds B aπ= − =∫        (42) 

0 0
0 0 00

( )( ) exp 1 exp .R R
C C

B s BC B m ds B m a
α πα       = − − = − −      Γ Γ      
∫  (43) 

Equation (43) is obtained under the assumption that (without any ambiguity and without loss 
of reality)  
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{ }0 00
exp ( ) : ( )

a
k s ds aπ=∫ is a non-negative, non-increasing and monotone integrable function, 

and 00
( ) 1

a
s dsπ =∫ . That is, )(0 ⋅π  is normalized (Tchuenche, 2006).  

 
In a study which is closely related to the present one in spirit, Dilao and Domingos (2001) 
found that in the case of non-trivial bounded solutions, the discrete evolution equations are 
not structurally stable, a result which perfectly agrees with the conclusion of Hastings et al., 
(1993) and Ario and Pimm (1995). 
 
In the absence of consumers, resources are auto-regulated by factors external to the 
population and evolve in time. For instance, the simplest situation is when resources attain a 
stable equilibrium (when they are not consumed). 
 
For 0>Γ=R , )0,(Rf  is strictly monotone and predation drops to zero in the absence of 

consumers (Cushing and Saleem, 1982), with 1)0,0( >
∂
∂
R
f , while 1)0,( <Γ

∂
∂
R
f .  Thus, 0=R  

is an unstable fixed point. This may be due to fluctuations which can be highly variable, and 
in some cases have been identified as evidence of deterministic chaos (Schaffer, 1985; 
Gamarra and Solé, 2000). From the aforementioned, the following two conditions are 
immediate consequences. 
-  ),( CRf  is a smooth and decreasing function of C , with 0),( →CRf  as ∞→C , and 

0<
∂
∂
C
f , for 0>C .  

-  )0,(Rf  is a smooth and increasing function of R , with one stable fixed point at Γ=R , 
∞<Γ<0 , and one unstable fixed point at 0=R .  

 
Dilao and Domingos (2001) for their resource-consumer map used a prototype separable 
function of the form )()(),( ChRgCRf = .  In a future study, the use of the concept of 
saturable interactions as a framework for modeling resource-consumer interactions will be 
explored. The first step will be to assume that the function ),( CRf  satisfies the generalized 
law of the minimum (Sowunmi, 1988), because it seems safe to assume that such interactions 
are saturable processes. 
 
4. Concluding Remarks 
 
The consumer-resource interaction is a fundamental issue in ecology (Mac Arthur, 1972) due 
to the fact that living organisms do not survive or reproduce without resources (Dilao and 
Domingos, 2001). To derive the functional form of a robust population dynamics model with 
resources, we started with a well-known classical example and proceeded with an age-
structured model, which extends Gamarra and Solé's model.  The reason for choosing a 
specific functional form ),( CRf  (which is a smooth function of its variables R  and C , with 

0),( →CRf  as ∞→C  is because resources have an independent dynamics if they are not 
consumed. Indeed, the simplest assumption one can make about a population is that it dies 
out without resources, resources evolve in time, and its dynamics depends on its availability 
and on the total population number. 
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The derivation of the age-structured model describing the dynamical interactions between 
populations of consumers and resources began with a generalization of the non-linear 
Gamarra and Solé's (2002) model, where the fertility coefficients are resource and consumer 
independent. That is, the effect of overcrowding which often causes fluctuations is not 
considered. It is generally followed in parallel with depletion of resources, leading to drastic 
changes of population numbers (Dilao and Domingos, 2001). But luckily, this problem has 
been analyzed from the point of view of consumer choices (MacArthur, 1972, Chapter 3), 
which depends on the evolutionary history and adaptability of populations.  This adaptability 
justifies the introduction of a time lag in equations (15) and (16), which is necessary to 
describe the units of time it takes the resource/consumer to respond to changes in the 
population size or environment. 
 
The interdependence between resource availability and survival of the population 
(consumers) can be incorporated into equation (7)2. In such a case, the intrinsic growth 
rate mr −= λ , say, takes the form ))(( tRrr =  such that in the complete absence of resources 
i.e., for 0)( =tR ,  0)0( 0 <= rr , and consumers die out. Otherwise, they relocate to new sites 
(favorable localities) by migration. Thus in a follow up study, we shall introduce diffusion or 
advection into the model equations in order to account for the possible migratory effect. 
 
The model derived herein is not only an extension, but a study of a resource-consumer model 
structured by age in its own right. The following biological conclusions can be derived from 
our analysis:  
-  When the non trivial steady state of the population is reached, resources also reaches a 
constant value *R , say where Γ<< *0 R . Therefore, the existence of resource-free steady 
state is not conceivable (Dilao and Domingos, 2001), except when the species (resource) goes 
extinct. 
-  Equation (24) tells us that the quantity of resources available at any time t depends on 
the number of potential consumers present at that same time. The available resources R(t, a) 
depend on the number of consumers ),( αtC . If ),( αtC  is large, depletion of available 
resources is fast, and if this does not keep pace with renewal, there might be scarcity 14 of the 
former and consumers will be forced to look for alternative if they can adapt, or some will die 
out from intra and inter-competition for food. 
-  Comparing equations (8), (13) and (24), it is an easy matter to note that the age 
parameter has an important effect on the dynamics of the model. In most cases, older 
individuals consume more resources than their juvenile counterparts. This is taken care of as 
the age of resources and consumers are different (cf. 24).  
 
Our model view differently may be considered as predation, where the prey is the resource 
and the consumers the predators with or without other external resource forms. 
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