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Abstract

In this paper a coupled system of two nonlinear advection-diffusion equations is presented.
Such systems of equations have been used in mathematical literature to describe the dynam-
ics of contaminant present in groundwater flowing through cracks in a porous rock matrix
and getting absorbed into it. An inverse method procedure that approximates infinite-
dimensional model parameters is described and convergence results for the parameter ap-
proximants are proved. This is finally followed by a computational experiment to compare
theoretical and numerical results to verify accuracy of the mathematical analysis presented.
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1. Introduction

A nonlinear coupled system of advection-diffusion PDEs that describes the dynamics of

contaminant concentration in groundwater as it flows through cracks in a rocky, porous
medium is presented below.

up + a(u)], = b (u,u,)], — Au+ pu, (t,0, 2)
(1)

v = le (v, v,)], — Av,

with initial and boundary conditions
u(0,2) =a(z), u(t,0)=7(), u(t zmx) =0

v(0,z,2) =n(x,2), v(t,0,2)=pul(t,z), v(tTmax, 2)=0.

The schematic diagram below illustrates the above phenomenon:
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Figure 1: Schematic Diagram of Porous Fractured Rock

In the above model, the parameters are described as follows:

2 € Q = [0, Zmax): Distance along fracture
x € A = [0, Zmay): Perpendicular distance into rock matrix
t € = [0, Tinax): Time

u (t,z): Contaminant concentration in liquid flowing through fracture in porous rock
matrix at (t, 2)

v (t, z, z): Contaminant concentration in liquid diffusing into rock matrix while flowing
through fracture at (¢, z, 2)

a (u): Speed at which contaminant moves forward in liquid flowing through fracture
b (u,u,): Rate at which contaminant diffuses in liquid flowing through fracture
A: Rate at which contaminant (radioactive) decays in time

fB: Rate at which contaminant in liquid moving in fracture gets absorbed into rocky
matrix

e (v,v;): Rate at which contaminant diffuses into rocky matrix
a (z): Initial contaminant concentration in fracture

7 (t): Contaminant concentration in fracture at x = 0

n (x, z): Initial contaminant concentration in rocky matrix

p: Fraction of contaminant diffusing into rocky matrix at x = 0

One may note that the generally nonlinear nature of the model parameters a, b and e indi-
cates that the groundwater and rock matrix may not necessarily be homogeneous in their
chemical compositions. This was one of the major reasons for studying this model, since in
Sudicky and Frind (1982), these parameters are linear, indicating total homogeneity in the
composition of the rock and water mediums. For a more detailed and exhaustive description
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of the physical phenomenon described by this model and definitions of the constants A\, 3
and p, the reader may refer to Sudicky and Frind (1982).

A forward Eiiler finite difference method is used by the author in Ferdinand (2007) to obtain
a numerical solution of model Eq.(1-2). This method will be described briefly, a little later in
this manuscript. The goal of this paper, however, is to estimate infinite-dimensional param-
eters in the model using an inverse method procedure. This infinite-dimensional parameter

estimation problem can be formally stated as follows:

Problem: Given observed model solution data

Zmax
I1; :/ u (t;,2) dz
0

(")7; = / - /”maxU (ti,]},Z) dx dZ,
0 0

i =0,---, X, find an infinite-dimensional parameter vector ¢ = (a,b,e, «,,n) so that the
least-squares cost functional .J (¢) is minimized over the infinite-dimensional parameter space

(), where
) ®

and (u (t,z,q),v (t,z, z,q)) represents the parameter dependent solution of Eqs.(1-2).

J(q)zi( 2+

=0

/ " (tiyz,q) dz —TI;
0

Zmax Tmax
/ / v (ti,x,2,q) de dz — ©;
0 0

To solve the above problem, one proceeds in this paper as follows. In the next section, an in-
verse method procedure is described which numerically approximates the infinite-dimensional
parameter set q. Convergence results for these parameter approximants are proved while a
numerical example illustrating the accuracy of these theoretical results is presented in section
3. Some concluding remarks are reported in section 4 while section 5 contains the reference
information.

2. Inverse Method
To begin this section, the space D is defined as
D =C10,00)xC([0,00) X (—00,00)) xC ([0,00) X (—00,00)) xC () xC (T')xC (A xQ),

with @) being a compact subset of D. Further, the following conditions are also satisfied by
elements of set ¢ € ().

(B1) a Lipschitz in u
(B2) b Lipschitz in u, u,

(B3) e Lipschitz in v, v,
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(B4) a e C'(Q)
(B5) v € C'(I)
(B6) ne C'(AxQ)

Techniques similar to those used in Ackleh (1999) and Ferdinand (2004) are used to solve
this inverse problem. This procedure is well established and involves two steps which follow.

Step I: Numerically approximate parameter dependent model solution (u (¢, z,q) ,v (¢, x, z,q))
of Eqs.(1-2) using the following finite difference method from Ferdinand (2007):
Let

Tmax Zmax
Ax = and Az =

Y N R’
be uniform mesh sizes used for discretizing the ¢, x and z axes, respectively. This leads to
t, = k At, r;=J Ax and z1 =1 Az,

fork=0,---,Y,5=0,---,Nand [ =0,---, R being the axes mesh points. Use notation
such as v}, to represent v (fx,;,2) and so on to arrive at the following numerical scheme

which computes the parameter dependent solution (uﬁ'C (q), 05, (q)):

(uf* (q) = (1=XADuf (q) +pm [a(uf (0) — a(ufy (0)

b (71/{“ . upy (Q)AZ uf (q)> 71) (11% . uf (q) ; :{“1 (q)ﬂ

+3 1y (vh,(q) = puf (q)) fori=1,--- R—1

Vi (@) — v ()
AW = 0 AA )+ e (o (0, Tl

k k
C ) ()
— e (Uj],l (q) 3 / AQ’,‘]
{ forj=1,--- N—1landl=0,---, R,
where

At q At

= — an = —

a Az 2 Az’

while initial and boundary conditions give

ud (@) =, uf(q)=+* uh(q)=0

https://digitalcommons.pvamu.edu/aam/vol2/iss1/1



Ferdinand: Parameter Estimation Nonlinear Coupled Advection-Diffusion Equation
AAM: Intern. J., Vol. 2, No. 1 (June 2007) 5
Use (B1)-(B6) (see Ferdinand (2007)) to get that the solution approximants {(uﬁ'C (q), 5, (q))}
obtained from Eqs.(4-5) above, converge to a unique parameter dependent solution, (u (q) ,v (q))
of Egs.(1-2) as At, Az, Az — 0. In fact, one can extend these approximants to a family of
functions as follows:

(Uanaz (t,2,9) , Varasa: (6,2, 2,q) = ({Ufc (Q)} ; {Uf,z (Q)}) ;

when
le [tkf] ) tk) ) T € [Tyf]aq?]) ’ z € [Zlf] ) Zl) )

for
k=1,---.Y, j=1,---N, I=1,---,R.

This leads to the following computational form for .J:

X Zmax 2
JAt,Am,Az (Q) = Z (‘ . UAt,Az (t7, Z, q) dz — H7
=0
(6)
Zmax Tmax 2
+ /0 ; Vatasaz (ti, x,2,q) dx dz — ©; )

used in theorem 1 below.

Theorem 1. Using the convergence result Huf — uH — 0 and val — UH — 0as At, Az, Az —
0 in Ferdinand (2007), one arrives at

Jat.azaz (@) = J (g) uniformly Vg € Q. (7)

Proof. Follows from convergence results for the solution approximants ({uf} , {vfl}) pre-
sented in detail in Ferdinand (2007).

Step II: Approximate the infinite-dimensional parameter space () by a sequence {QM}
of finite-dimensional compact subsets of () in the topology of D. An example of {QM} is

given in section 3. This further leads to the finite-dimensional computational form

X

ININ RS (QM) = Z (‘ OzmaxUAt,Az (ti; z, qM) dz — 11;

=0

2

(8)

+

Zmax Tmax
M
/0 /0 VAt,AcL‘,Az (fza T,z,q ) dr dz — @z

2)
)
g™ € QM being a finite-dimensional parameter vector, and one arrives at Theorem 2.

Theorem 2. For fixed values of At, Az and Az

JAt, Az, Az (CIM) — Jar,azaz (Q)
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as ¢ — ¢ in Q.

Proof. Let ({ufc M} {7)flM}) and ({uf} , {7);?71}) represent the families of functions

(UAt,AZ (t, z, qM) s Vat,az,Az (t, T,z, QM))

and
(UAt,Az (f’ Z, Q) ) VAt,Am,Az (fa r, z, Q)) )

respectively. Then let

kM kMY (kM kM k
w v ) = w v — g

fork=0,---,Y,j=0,---,Nand [ =0, ---, R. Boundary and initial conditions from Eq.(5)

give
~0,M _ M kM __ kM k —k.M _
Uy =0 —Q Ug =7 -7 Upg =0
OM M . —k,M __ —k,M —k,M __ 0
Ui = M0 — N4 Yoy = PU Uy, = U

From the first of the two coupled equations in Eq.(4) get the operator forms

k+1,M k,M
u TP = Ay

and
k+1 Alu]

and subtract Eq.(11) from Eq.(10) to get

‘ﬁf“’M‘ < 1 — AA{ ‘“z

M (, kM M [, kM
+uq |a (“l+1 ) —a (“z ) (11l+1) +a (ulﬂ
uk’M 11k’M uk uk
kMW —u 4 —u
+/"L] bM ul’ , M _ b 'U,{C, M
Az Az

k.vMm kM k k
oM [ T W), W =t
Ha Uy, /l 1

Az Az

k, M k.M k k
+5 po ‘7)171 —pu =y, +pup|,

which gives

[y ™M) < 0= AN @M g T TT gy TIT + 8 i TV,

(12)

(13)

Bounds need to be established for I, IT, ITT and IV in Eq.(13). First let w,®,w; — wg be

positive constants. Then start with 7, add and subtract terms to get

https://digitalcommons.pvamu.edu/aam/vol2/iss1/1
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o<t () = a () + a () — a (uf)]

o (i) —a (i) +a(ur) - aur)].

(14)

(B2) yields

I< ‘a,M (ufﬂ/[) —a (7/l+] )‘ + ‘ M (uf M) —a (“z )‘ + wy ‘UH] ‘ + wy ‘uf M‘ . (15)
Add and subtract terms in I again to get

kM kM kM kM
7 < |pM [ oM U — Y _putM Uppr — Uy
—_ l Y AZ ]

uk M uk M Uk Uk

k M

b l 7 I+1 [ b U{C, I+1 l )
Az Az

Similarly (B3) gives

171 <

YoM kM YR M kM
Mo kM Y koM Wi — U kM e, M
’ ( = Az > - (ul = Az )‘ e (‘ul ‘ + ‘ulﬂ ) (16)

and
yEM kM yEM kM
T L R
111 < bM<ul],Tl>—b<ul],Tl>+w4(ul1‘—i—‘ MY, an
while
IV < ‘v” 7)f,l‘+p ‘ufM—uH = ‘v” ‘+p ‘ufM . (18)
Now Egs.(15-18) make Eq.(13) yield
k41, k k, k, k,
‘U,ZH M< ‘(IM (71[+]‘]/[) —a (ulﬁ?)‘ + ‘aM (ul M) —a (ul M)‘
yEM kM yEM kM
pM [ M Hid ! _p b, Y !
* ( e Az Az
(19)
s u — s w ! —
o e ) g o)

—i—wg(‘ul M‘—i—‘ulﬂ‘—i-‘ul 1‘—1—‘2}“ )

Published by Digital Commons @PVAMU, 2007
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Next, proceed with the second of the two equations in Eq.(4) to arrive at

1);-9}'1’M Ag'l)k M (20)
and
vif = Agf,. (21)

Subtract Eq.(21) from Eq.(20) to get

oM <= Aol

Jvl -
oM kM vk — ¥
it Az b Ax (22)
kM kM E ok
v [ ko U5 Vil o YT Y1
+H2 e Vi1, €LY ’
: Az Az
which gives
Sk+1,M
M < = AN [ | 4 e VA VT

and bounds for V' and VI are hence required. Start with V', use (B4) and follow techniques
similar to those used in obtaining bounds for I1 and I11 to get

SM kM SM kM
koM Vi1l ! ko Vi1 — U5 kM kM
V< leM v ,% —elv, % A ¢ + we (‘vﬂ ‘+‘7)J+11) (23)
J .rl’/l .rl’/l J
and
oMk M oM gk M
M N N S kMo Vgl Vi1
VI <|e Ujfl,h# —e|v” “,# +w7(‘J1]‘+‘ ) (24)
Thus Eq.(22) yields
k.M kM k,M k M
GELM| M [ RM Uit — Y o | oFM Vi1 T Y
Jil gl gl
Az Az
kM kM kM ,
MM Vi Vit v Vil — Vit (25)
+ le Tl —elw .
=L =L
Az Az
+w8(‘ ‘+‘J+ll‘+‘317)

https://digitalcommons.pvamu.edu/aam/vol2/iss1/1
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Now pass the limit ¢ — ¢ in Q.

First, boundary and initial conditions in Eq.(9) yield

™| Jag™ | M| et R = o (26)
Next, Eq.(19) gives
R (] a2+ o+ ). on
Further, Eq.(25) leads to
A o (s o+ 2. 2
and finally
AT < s, (5 a2+ o]+ ). o

Thus Eqs.(26-29) give

RH1LM| | k1M
™M o< (] o

).

(30)

‘ ‘“L‘JHI‘JF‘JU

Now define
koM _ kM| kM
T = max (e [e])
This results in Eq.(30) giving
’rk+1,M S ngk’M = Tk’M S (I)TO’M.

Eq.(26) easily yields Y%" — 0 which leads to Y5 — 0. Hence, one gets that

kM kM kM kM
(“z U5 )—>(O,0):>(11l V5 )—>(uf,vfl>

thereby leading to JasazAz (qM) — Jat.azaz (@) which concludes the proof of this theorem
and leads to corollary 3 below.

Corollary 3. Jatazaz (QM) — Jaaza: (@) = J (¢) when At, Az, Az — 0 and ¢" — ¢ in
Q as M — oc.

Proof. Follows from proofs of Theorems 1 and 2 above.

Published by Digital Commons @PVAMU, 2007
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Corollary 3 above shows .J to be a continuous functional over each of the compact sub-
sets QM of () in the sequence {QM} and leads to .J having a minimizer g" € Q™ over each

QM. Using the abstract least-squares theory presented in Banks and Kunisch (1989), this

sequence of minimizers {EM} has a subsequence converging to a minimizer § € @ of J (q)
over set () in the topology of D. Hence one arrives at the existence of a solution to the
inverse problem stated earlier.

In the next and final section, a numerical example is presented to illustrate accuracy of
the theoretical results proved in this section.

3. Numerical Experiment

To begin with, observed data is generated computationally. In order to accomplish this,
parameters of the model equation Eqgs.(1-2) are given the following known values:

® Tmax — Zmax — 107 Tmax =25 X 1072

e Av =Az=10x10"" At=10"*

A=pF=p=1.0
20b (u,u,) = (uu)?, e (v,v,) = (vv,)?

e a(x)= (1% (H) =e "l n(n2) = (@—1)* (= 1)’

e a(u)=u

It would be worthwhile to mention that nonlinear a, b and e in the list above represent non-
homogeneity in the composition of liquid and contaminant. It should also be noted that
these parameter values are chosen for the sole purpose of validating the theoretical results
proved earlier and may not necessarily represent a real-life phonemenon in particular.

The parameter to be estimated numerically is the function a. The other unknown param-

eters b, e, a,y,n can be approximated in a similar fashion. To accomplish this, the model
equation Egs.(1-2) is solved numerically to obtain the following data:

1
Hiz/ u(t;, z) dz

0
1 1
0, = / v (t;,x, z) dz dx,
0 Jo

where
t;, = 0.00057, i=20,---,50.

Now choose the infinite-dimensional parameter space () for this experiment as the D-closure
of the set

{la(u)| < L,la(uy) —a(ug)| < L|uy — us|,Vuy,us € [0,00),a =L for u > tumay}, (31)

https://digitalcommons.pvamu.edu/aam/vol2/iss1/1
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L and wupy., being fixed constants. Hence, () follows as a compact subset of D from the
Arzela-Ascoli theorem.

To implement Step II, ) is approximated numerically by a sequence {QM} of finite-
dimensional compact subsets in the topology of D. Each Q™ uses the set of linear splines

{1/)5‘4 (u; uma")}j—o on a uniform partition of [0, .y as its approximating elements. Thus,

the unknown parameter a (u) is approximated over each @M in the form of the interpolant

1™ (a) = f:a .umaxj| M (g
- . 7 M wj (u: umax) ’ u € [07 OO) (32)
7=0

with a extended to a continuous function on [0, co) by letting 1} (u; thmax) = ¥} (Umax; Umax)
when u > tpay, for j =0,---, M.

The Peano kernel theorem in Schultz (1973) leads to limy; o, IM (a) = a. Hence, if a™ € QM
is represented as

M
a™ (u) = ZC]Mzb;w (U3 Umax) 5
Jj=0

then the numerical parameter estimation problem involves the identification of (M + 2) un-
known constants (j : j = 0,---, M and upmay S0 that Jasazaz (aM) is minimized. This is

performed computationally using Eq.(4) and the FORTRAN subroutine LMDIF1, obtained
from NETLIB, that implements the Levenberg-Marquardt algorithm with all integrals com-
puted numerically using Simpson’s rule of integration. Next,

¢M=05:5=0,--,M  and  Upu =1
are taken as initial guesses and the following results are obtained.

(i) Figure 2 below shows a comparison between exact and estimated function a (u) =
u? when M = 9. Exact function here is given by the straight line graph while the
estimated function is given by the dots. .y is estimated here as 0.98 and the value
of Jarazna: (a”) at the end of the experiment is of the order of 107°. This estimation
took about 2 hours of computing time on a UNIX machine.

a(u)
1

0.8

Figure 2: Exact Function - Solid Line; Estimated Function - Dots

Published by Digital Commons @PVAMU, 2007
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(ii) Figure 3 below shows the same for M = 11. Estimation of un.x was once again 0.98
and Jazaz . (a'') at the end of the experiment came out to be of the order of 107°.
Computing time was about 2 hours on a UNIX machine.

a(u)
1.4
1.2

1
0.8
0.6
0.4
0.2

Figure 3: Exact Function - Solid Line; Estimated Function - Dots
4. Closing Comments

It would be worthwhile to mention that the computational estimation was performed in
the FORTRAN programming language executed on a UNIX machine at East Central Uni-
versity in Ada, OK, USA. This facility is an SCO UNIX 5.0.5 machine, consisting of two 550
MHz Xeon processors in parallel. Both the above graphs were plotted using MATHEMAT-
ICA which proved to be extremely efficient for this purpose.

Further, it may also be noted by looking at Figures 2 and 3, that the numerical estima-
tion of a (u) = u? is more accurate towards the interior of [0, tmay]. This is owing to a much
higher concentration of observed data present in the interior as opposed to the boundaries of
this interval. Hence one concludes this section and also this paper by stating that numerical
results obtained herein illustrate the accuracy of the theoretical results proved in section 2.
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