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PARAMETER ESTIMATION IN NONLINEAR COUPLEDADVECTION-DIFFUSION EQUATIONRobert R. FerdinandDepartment of Mathematics, East Central University1100 East 14th Street, Ada, Oklahoma 74820-6899, USAEmail: rferdinand@ecok.eduReceived October 6, 2006; revised February 3, 2007; accepted February 21, 2007AbstractIn this paper a coupled system of two nonlinear advection-di�usion equations is presented.Such systems of equations have been used in mathematical literature to describe the dynam-ics of contaminant present in groundwater 
owing through cracks in a porous rock matrixand getting absorbed into it. An inverse method procedure that approximates in�nite-dimensional model parameters is described and convergence results for the parameter ap-proximants are proved. This is �nally followed by a computational experiment to comparetheoretical and numerical results to verify accuracy of the mathematical analysis presented.Keywords: advection, coupled, di�usion, in�nite-dimensional, parameter estimationMSC: 65M06, 65M32, 65N06, 65N211. IntroductionA nonlinear coupled system of advection-di�usion PDEs that describes the dynamics ofcontaminant concentration in groundwater as it 
ows through cracks in a rocky, porousmedium is presented below.8><>: ut + [a (u)]z = [b (u; uz)]z � �u+ �vx (t; 0; z)vt = [e (v; vx)]x � �v; (1)with initial and boundary conditions8><>: u (0; z) = � (z) ; u (t; 0) = 
 (t) ; u (t; zmax) = 0v (0; x; z) = � (x; z) ; v (t; 0; z) = � u (t; z) ; v (t; xmax; z) = 0: (2)The schematic diagram below illustrates the above phenomenon:
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Figure 1: Schematic Diagram of Porous Fractured RockIn the above model, the parameters are described as follows:� z 2 
 = [0; zmax]: Distance along fracture� x 2 � = [0; xmax]: Perpendicular distance into rock matrix� t 2 � = [0; Tmax]: Time� u (t; z): Contaminant concentration in liquid 
owing through fracture in porous rockmatrix at (t; z)� v (t; x; z): Contaminant concentration in liquid di�using into rock matrix while 
owingthrough fracture at (t; x; z)� a (u): Speed at which contaminant moves forward in liquid 
owing through fracture� b (u; uz): Rate at which contaminant di�uses in liquid 
owing through fracture� �: Rate at which contaminant (radioactive) decays in time� �: Rate at which contaminant in liquid moving in fracture gets absorbed into rockymatrix� e (v; vx): Rate at which contaminant di�uses into rocky matrix� � (z): Initial contaminant concentration in fracture� 
 (t): Contaminant concentration in fracture at x = 0� � (x; z): Initial contaminant concentration in rocky matrix� �: Fraction of contaminant di�using into rocky matrix at x = 0One may note that the generally nonlinear nature of the model parameters a, b and e indi-cates that the groundwater and rock matrix may not necessarily be homogeneous in theirchemical compositions. This was one of the major reasons for studying this model, since inSudicky and Frind (1982), these parameters are linear, indicating total homogeneity in thecomposition of the rock and water mediums. For a more detailed and exhaustive description
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of the physical phenomenon described by this model and de�nitions of the constants �, �and �, the reader may refer to Sudicky and Frind (1982).A forward E�uler �nite di�erence method is used by the author in Ferdinand (2007) to obtaina numerical solution of model Eq.(1-2). This method will be described brie
y, a little later inthis manuscript. The goal of this paper, however, is to estimate in�nite-dimensional param-eters in the model using an inverse method procedure. This in�nite-dimensional parameterestimation problem can be formally stated as follows:Problem: Given observed model solution data8>>>><>>>>: �i = Z zmax0 u (ti; z) dz�i = Z zmax0 Z xmax0 v (ti; x; z) dx dz;i = 0; � � � ; X, �nd an in�nite-dimensional parameter vector q = (a; b; e; �; 
; �) so that theleast-squares cost functional J (q) is minimized over the in�nite-dimensional parameter spaceQ, whereJ (q) = XXi=0  ����Z zmax0 u (ti; z; q) dz � �i����2 + ����Z zmax0 Z xmax0 v (ti; x; z; q) dx dz � �i����2! (3)and (u (t; z; q) ; v (t; x; z; q)) represents the parameter dependent solution of Eqs.(1-2).To solve the above problem, one proceeds in this paper as follows. In the next section, an in-verse method procedure is described which numerically approximates the in�nite-dimensionalparameter set q. Convergence results for these parameter approximants are proved while anumerical example illustrating the accuracy of these theoretical results is presented in section3. Some concluding remarks are reported in section 4 while section 5 contains the referenceinformation.2. Inverse MethodTo begin this section, the space D is de�ned asD = C [0;1)�C ([0;1)� (�1;1))�C ([0;1)� (�1;1))�C (
)�C (�)�C (�� 
) ;with Q being a compact subset of D. Further, the following conditions are also satis�ed byelements of set q 2 Q.(B1) a Lipschitz in u(B2) b Lipschitz in u; uz(B3) e Lipschitz in v; vx
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(B4) � 2 C1 (
)(B5) 
 2 C1 (�)(B6) � 2 C1 (�� 
)Techniques similar to those used in Ackleh (1999) and Ferdinand (2004) are used to solvethis inverse problem. This procedure is well established and involves two steps which follow.Step I: Numerically approximate parameter dependent model solution (u (t; z; q) ; v (t; x; z; q))of Eqs.(1-2) using the following �nite di�erence method from Ferdinand (2007):Let �t = TmaxY ; �x = xmaxN and �z = zmaxR ;be uniform mesh sizes used for discretizing the t, x and z axes, respectively. This leads totk = k �t; xj = j �x and zl = l �z;for k = 0; � � � ; Y , j = 0; � � � ; N and l = 0; � � � ; R being the axes mesh points. Use notationsuch as vkj;l to represent v (tk; xj; zl) and so on to arrive at the following numerical schemewhich computes the parameter dependent solution �ukl (q) ; vkj;l (q)�:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

uk+1l (q) = (1� � �t) ukl (q) + �1 ha �ukl (q)�� a �ukl+1 (q)�+b ukl (q) ; ukl+1 (q)� ukl (q)�z !� b ukl�1 (q) ; ukl (q)� ukl�1 (q)�z !#+� �2 �vk1;l (q)� � ukl (q)� for l = 1; � � � ; R� 1vk+1j;l (q) = (1� � �t) vkj;l (q) + �2 "e vkj;l (q) ; vkj+1;l (q)� vkj;l (q)�x !
� e vkj�1;l (q) ; vkj;l (q)� vkj�1;l (q)�x !#for j = 1; � � � ; N � 1 and l = 0; � � � ; R;

(4)
where �1 = �t�z and �2 = �t�x;while initial and boundary conditions give8><>: u0l (q) = �l; uk0 (q) = 
k; ukR (q) = 0v0j;l (q) = �j;l; vk0;l (q) = � ukl (q) ; vkN;l (q) = 0: (5)
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Use (B1)-(B6) (see Ferdinand (2007)) to get that the solution approximants n�ukl (q) ; vkj;l (q)�oobtained from Eqs.(4-5) above, converge to a unique parameter dependent solution, (u (q) ; v (q))of Eqs.(1-2) as �t; �x; �z ! 0. In fact, one can extend these approximants to a family offunctions as follows:(U�t;�z (t; z; q) ; V�t;�x;�z (t; x; z; q)) = �nukl (q)o ; nvkj;l (q)o� ;when t 2 [tk�1; tk) ; x 2 [xj�1; xj) ; z 2 [zl�1; zl) ;for k = 1; � � � ; Y; j = 1; � � �N; l = 1; � � � ; R:This leads to the following computational form for J :J�t;�x;�z (q) = XXi=0 ����Z zmax0 U�t;�z (ti; z; q) dz � �i����2+ ����Z zmax0 Z xmax0 V�t;�x;�z (ti; x; z; q) dx dz � �i����2! (6)
used in theorem 1 below.Theorem 1. Using the convergence result 


ukl � u


1 ! 0 and 


vkj;l � v


1 ! 0 as �t;�x;�z !0 in Ferdinand (2007), one arrives atJ�t;�x;�z (q)! J (q) uniformly 8q 2 Q: (7)Proof. Follows from convergence results for the solution approximants �nukl o ; nvkj;lo� pre-sented in detail in Ferdinand (2007).Step II: Approximate the in�nite-dimensional parameter space Q by a sequence nQMoof �nite-dimensional compact subsets of Q in the topology of D. An example of nQMo isgiven in section 3. This further leads to the �nite-dimensional computational formJ�t;�x;�z �qM� = XXi=0 ����Z zmax0 U�t;�z �ti; z; qM� dz � �i����2+ ����Z zmax0 Z xmax0 V�t;�x;�z �ti; x; z; qM� dx dz � �i����2! ; (8)
qM 2 QM being a �nite-dimensional parameter vector, and one arrives at Theorem 2.Theorem 2. For �xed values of �t;�x and �zJ�t;�x;�z �qM�! J�t;�x;�z (q)
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as qM ! q in Q.Proof. Let �nuk;Ml o ; nvk;Mj;l o� and �nukl o ; nvkj;lo� represent the families of functions�U�t;�z �t; z; qM� ; V�t;�x;�z �t; x; z; qM��and (U�t;�z (t; z; q) ; V�t;�x;�z (t; x; z; q)) ;respectively. Then let ��uk;Ml ; �vk;Mj;l � = �uk;Ml � ukl ; vk;Mj;l � vkj;l�for k = 0; � � � ; Y , j = 0; � � � ; N and l = 0; � � � ; R. Boundary and initial conditions from Eq.(5)give 8><>: �u0;Ml = �Ml � �l; �uk;M0 = 
k;M � 
k; �uk;MR = 0�v0;Mj;l = �Mj;l � �j;l; �vk;M0;l = � �uk;Ml ; �vk;MN;l = 0: (9)From the �rst of the two coupled equations in Eq.(4) get the operator formsuk+1;Ml = A1uk;Ml (10)and uk+1l = A1ukl (11)and subtract Eq.(11) from Eq.(10) to get����uk+1;Ml ��� � j1� ��tj ����uk;Ml ���+�1 ���aM �uk;Ml+1 �� aM �uk;Ml �� a �ukl+1�+ a �ukl ����+�1 �����bM  uk;Ml ; uk;Ml+1 � uk;Ml�z !� b ukl ; ukl+1 � ukl�z !�����+�1 �����bM  uk;Ml�1 ; uk;Ml � uk;Ml�1�z !� b ukl�1; ukl � ukl�1�z !�����+� �2 ���vk;M1;l � � uk;Ml � vk1;l + � ukl ��� ;
(12)

which gives ����uk+1;Ml ��� � j1� ��tj ����uk;Ml ���+ �1 I + �1 II + �1 III + � �2 IV: (13)Bounds need to be established for I, II, III and IV in Eq.(13). First let !; �!; !1 � !9 bepositive constants. Then start with I, add and subtract terms to get
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I � ���aM �uk;Ml+1 �� a �uk;Ml+1 �+ a �uk;Ml+1 �� a �ukl+1����+ ���aM �uk;Ml �� a �uk;Ml �+ a �uk;Ml �� a �ukl ���� : (14)(B2) yieldsI � ���aM �uk;Ml+1 �� a �uk;Ml+1 ����+ ���aM �uk;Ml �� a �uk;Ml ����+ !1 ����uk;Ml+1 ���+ !2 ����uk;Ml ��� : (15)Add and subtract terms in II again to getII � �����bM  uk;Ml ; uk;Ml+1 � uk;Ml�z !� b uk;Ml ; uk;Ml+1 � uk;Ml�z !�����+ �����b uk;Ml ; uk;Ml+1 � uk;Ml�z !� b ukl ; ukl+1 � ukl�z !����� :Similarly (B3) givesII � �����bM  uk;Ml ; uk;Ml+1 � uk;Ml�z !� b uk;Ml ; uk;Ml+1 � uk;Ml�z !�����+ !3 �����uk;Ml ���+ ����uk;Ml+1 ���� (16)andIII � �����bM  uk;Ml�1 ; uk;Ml � uk;Ml�1�z !� b uk;Ml�1 ; uk;Ml � uk;Ml�1�z !�����+ !4 �����uk;Ml�1 ���+ ����uk;Ml ���� ; (17)while IV � ���vk;M1;l � vk1;l���+ � ���uk;Ml � ukl ��� = ����vk;M1;l ���+ � ����uk;Ml ��� : (18)Now Eqs.(15-18) make Eq.(13) yield����uk+1;Ml ��� � ���aM �uk;Ml+1 �� a �uk;Ml+1 ����+ ���aM �uk;Ml �� a �uk;Ml ����+ �����bM  uk;Ml ; uk;Ml+1 � uk;Ml�z !� b uk;Ml ; uk;Ml+1 � uk;Ml�z !�����+ �����bM  uk;Ml�1 ; uk;Ml � uk;Ml�1�z !� b uk;Ml�1 ; uk;Ml � uk;Ml�1�z !�����+!5 �����uk;Ml ���+ ����uk;Ml+1 ���+ ����uk;Ml�1 ���+ ����vk;M1;l ���� :
(19)
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Next, proceed with the second of the two equations in Eq.(4) to arrive atvk+1;Mj;l = A2vk;Mj;l (20)and vk+1j;l = A2vkj;l: (21)Subtract Eq.(21) from Eq.(20) to get����vk+1;Mj;l ��� � j1� ��tj ����vk;Mj;l ���+�2 ������eM 0@vk;Mj;l ; vk;Mj+1;l � vk;Mj;l�x 1A� e vkj;l; vkj+1;l � vkj;l�x !������+�2 ������eM 0@vk;Mj�1;l; vk;Mj;l � vk;Mj�1;l�x 1A� e vkj�1;l; vkj;l � vkj�1;l�x !������ ; (22)
which gives ����vk+1;Mj;l ��� � j1� ��tj ����vk;Mj;l ���+ �2 V + �2 V I;and bounds for V and V I are hence required. Start with V , use (B4) and follow techniquessimilar to those used in obtaining bounds for II and III to getV � ������eM 0@vk;Mj;l ; vk;Mj+1;l � vk;Mj;l�x 1A� e0@vk;Mj;l ; vk;Mj+1;l � vk;Mj;l�x 1A������+ !6 �����vk;Mj;l ���+ ����vk;Mj+1;1���� (23)andV I � ������eM 0@vk;Mj�1;l; vk;Mj;l � vk;Mj�1;l�x 1A� e0@vk;Mj�1;l; vk;Mj;l � vk;Mj�1;l�x 1A������+ !7 �����vk;Mj�1;l���+ ����vk;Mj;l ���� : (24)Thus Eq.(22) yields����vk+1;Mj;l ��� � ������eM 0@vk;Mj;l ; vk;Mj+1;l � vk;Mj;l�x 1A� e0@vk;Mj;l ; vk;Mj+1;l � vk;Mj;l�x 1A������+ ������eM 0@vk;Mj�1;l; vk;Mj;l � vk;Mj�1;l�x 1A� e0@vk;Mj�1;l; vk;Mj;l � vk;Mj�1;l�x 1A������+!8 �����vk;Mj;l ���+ ����vk;Mj+1;l���+ ����vk;Mj�1;l���� : (25)
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Now pass the limit qM ! q in Q.First, boundary and initial conditions in Eq.(9) yield����u0;Ml ��� ; ����uk;M0 ��� ; ����uk;MR ��� ; ����v0;Mj;l ��� ; ����vk;MN;l ���! 0: (26)Next, Eq.(19) gives ����uk+1;Ml ��� � !5 �����uk;Ml ���+ ����uk;Ml+1 ���+ ����uk;Ml�1 ���+ ����vk;M1;l ���� : (27)Further, Eq.(25) leads to ����vk+1;Mj;l ��� � !8 �����vk;Mj;l ���+ ����vk;Mj+1;l���+ ����vk;Mj�1;l���� ; (28)and �nally ���vk+1;M0;l ��� � � !5 �����uk;Ml ���+ ����uk;Ml+1 ���+ ����uk;Ml�1 ���+ ����vk;M1;l ���� : (29)Thus Eqs.(26-29) give����uk+1;Ml ���+ ����vk+1;Mj;l ��� � !9 �����uk;Ml ���+ ����uk;Ml+1 ���+ ����uk;Ml�1 ���+ ����vk;M1;l ���+ ����vk;Mj;l ���+ ����vk;Mj+1;l���+ ����vk;Mj�1;l���� : (30)Now de�ne �k;M = maxj=0;���;N ; l=0;���;R �����uk;Ml ���+ ����vk;Mj;l ���� :This results in Eq.(30) giving�k+1;M � !9�k;M ) �k;M � �!�0;M :Eq.(26) easily yields �0;M ! 0 which leads to �k;M ! 0. Hence, one gets that��uk;Ml ; �vk;Mj;l �! (0; 0)) �uk;Ml ; vk;Mj;l �! �ukl ; vkj;l� ;thereby leading to J�t;�x;�z �qM�! J�t;�x;�z (q) which concludes the proof of this theoremand leads to corollary 3 below.Corollary 3. J�t;�x;�z �qM�! J�t;�x;�z (q)! J (q) when �t;�x;�z ! 0 and qM ! q inQ as M !1.Proof. Follows from proofs of Theorems 1 and 2 above.
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Corollary 3 above shows J to be a continuous functional over each of the compact sub-sets QM of Q in the sequence nQMo and leads to J having a minimizer qM 2 QM over eachQM . Using the abstract least-squares theory presented in Banks and Kunisch (1989), thissequence of minimizers nqMo has a subsequence converging to a minimizer q 2 Q of J (q)over set Q in the topology of D. Hence one arrives at the existence of a solution to theinverse problem stated earlier.In the next and �nal section, a numerical example is presented to illustrate accuracy ofthe theoretical results proved in this section.3. Numerical ExperimentTo begin with, observed data is generated computationally. In order to accomplish this,parameters of the model equation Eqs.(1-2) are given the following known values:� xmax = zmax = 1:0; Tmax = 2:5� 10�2� �x = �z = 1:0� 10�1, �t = 10�4� � = � = � = 1:0� a (u) = u2, b (u; uz) = (uuz)2, e (v; vx) = (vvx)2� � (z) = (z � 1)2, 
 (t) = e�t, � (x; z) = (x� 1)2 (z � 1)2It would be worthwhile to mention that nonlinear a; b and e in the list above represent non-homogeneity in the composition of liquid and contaminant. It should also be noted thatthese parameter values are chosen for the sole purpose of validating the theoretical resultsproved earlier and may not necessarily represent a real-life phonemenon in particular.The parameter to be estimated numerically is the function a. The other unknown param-eters b; e; �; 
; � can be approximated in a similar fashion. To accomplish this, the modelequation Eqs.(1-2) is solved numerically to obtain the following data:8>>>><>>>>: �i = Z 10 u (ti; z) dz�i = Z 10 Z 10 v (ti; x; z) dz dx;where ti = 0:0005i; i = 0; � � � ; 50:Now choose the in�nite-dimensional parameter space Q for this experiment as the D-closureof the setfja (u)j � L; ja (u1)� a (u2)j � L ju1 � u2j ; 8u1; u2 2 [0;1) ; a = L for u � umaxg ; (31)
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L and umax being �xed constants. Hence, Q follows as a compact subset of D from theArz�ela-Ascoli theorem.To implement Step II, Q is approximated numerically by a sequence nQMo of �nite-dimensional compact subsets in the topology of D. Each QM uses the set of linear splinesn Mj (u; umax)oMj=0 on a uniform partition of [0; umax] as its approximating elements. Thus,the unknown parameter a (u) is approximated over each QM in the form of the interpolantIM (a) = MXj=0a �j umaxM �  Mj (u; umax) ; u 2 [0;1) (32)with a extended to a continuous function on [0;1) by letting  Mj (u; umax) =  Mj (umax; umax)when u � umax, for j = 0; � � � ;M .The Peano kernel theorem in Schultz (1973) leads to limM!1 IM (a) = a. Hence, if aM 2 QMis represented as aM (u) = MXj=0�Mj  Mj (u; umax) ;then the numerical parameter estimation problem involves the identi�cation of (M + 2) un-known constants �j : j = 0; � � � ;M and umax so that J�t;�x;�z �aM� is minimized. This isperformed computationally using Eq.(4) and the FORTRAN subroutine LMDIF1, obtainedfrom NETLIB, that implements the Levenberg-Marquardt algorithm with all integrals com-puted numerically using Simpson's rule of integration. Next,�Mj = 0:5 : j = 0; � � � ;M and umax = 1are taken as initial guesses and the following results are obtained.(i) Figure 2 below shows a comparison between exact and estimated function a (u) =u2 when M = 9. Exact function here is given by the straight line graph while theestimated function is given by the dots. umax is estimated here as 0.98 and the valueof J�t;�x;�z (a9) at the end of the experiment is of the order of 10�5. This estimationtook about 2 hours of computing time on a UNIX machine.
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Figure 2: Exact Function - Solid Line; Estimated Function - Dots
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(ii) Figure 3 below shows the same for M = 11. Estimation of umax was once again 0.98and J�t;�x;�z (a11) at the end of the experiment came out to be of the order of 10�6.Computing time was about 2 hours on a UNIX machine.
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Figure 3: Exact Function - Solid Line; Estimated Function - Dots4. Closing CommentsIt would be worthwhile to mention that the computational estimation was performed inthe FORTRAN programming language executed on a UNIX machine at East Central Uni-versity in Ada, OK, USA. This facility is an SCO UNIX 5.0.5 machine, consisting of two 550MHz Xeon processors in parallel. Both the above graphs were plotted using MATHEMAT-ICA which proved to be extremely eÆcient for this purpose.Further, it may also be noted by looking at Figures 2 and 3, that the numerical estima-tion of a (u) = u2 is more accurate towards the interior of [0; umax]. This is owing to a muchhigher concentration of observed data present in the interior as opposed to the boundaries ofthis interval. Hence one concludes this section and also this paper by stating that numericalresults obtained herein illustrate the accuracy of the theoretical results proved in section 2.AcknowledgementThe author wishes to express gratitude to several anonymous referees who provided the mostconstructive comments and suggestions thereby enabling the author to revise and make thismanuscript most appealing to readers of the AAM journal.ReferencesA. S. Ackleh, Parameter Identi�cation in Size-Structured Population Models with Nonlin-ear Individual Rates, Mathematics Computation and Modeling, 30, pp. 81-93, (1999).H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,Birkh�auser, Boston, (1989).R. R. Ferdinand, Numerical Solution of a Nonlinear Coupled Advection-Di�usion Equation.To Appear in Journal of Computational Analysis and Applications (2007).
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