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Abstract

An SEIR age-structured epidemic model is investigated when susceptible and immune
individuals are vaccinated indiscriminately and the force of infection of proportionate mix-
ing type. We determine the steady states and obtain an explicitly computable threshold
condition, and then study the stability of the steady states.
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1 Introduction

Several recent papers have dealt with age-dependent vaccination models, where age is the

chronological age i.e. the elpase of time since birth, for example, Hethcote (1983), (1989),
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(1997), (2000), Dietz, et al. (1985), Dietz (1981), Katzmann, et al. (1984), Schenzle

(1984), Anderson, et al. (1999), El-Doma (2000), (2001), Müller (1994), (1998), Hadeler,

et al. (1996), Knox (1980), McLean (1986), Coutinho, et al. (1993), Lopez, et al. (2000),

Greenhalgh (1990), (1988), Castillo-Chavez, et al. (1998), Li, et al. (2004), and Thieme

(2001). We note that some vaccines may wane over time which give rise to SIRS type

epidemic models considered in Li, et al. (2004) and El-Doma (2006).

In Thieme (2001), an SEIR age-structured epidemic model is investigated when sus-

ceptible and immune individuals are vaccinated indiscriminately, and vaccination provides

permanent immunity to the disease. Under suitable conditions, the uniform weak persis-

tence of the disease is proved and conditions for the extinction of the disease are derived.

In Li, et al. (2001), an SEIR age-structured epidemic model is investigated with-

out assuming vaccination for individuals in the population; also, γ(a), η(a), which are,

respectively, the cure rate and the rate at which exposed individuals become infective,

are assumed to be constants independent of age. However, the force of infection takes

a general form which includes proportionate mixing. Local stability results are given in

terms of the spectral radius of an operator and so, in contrast to our results in this paper,

their thresholds are not explicitly computable. Furthermore, they do not obtain global

stability results.

To the best of our knowledge, Thieme (2001) and Li, et al. (2001), are the only two

papers in the literature that have dealt with SEIR type epidemic models when age is also

considered.

In this paper, we consider the same model as in Thieme (2001), and determine the

steady states by proving a threshold theorem and obtain an explicitly computable thresh-

old parameter Rν , known as the reproduction number in the presence of vaccination

strategy ν as in Hadeler, et al. (1996) or the net replacement ratio as in Thieme (2001).

If Rν ≤ 1, then the only steady state is the disease-free equilibrium, and we show that this

steady state is globally stable if Rν < 1. If Rν > 1, then a disease-free equilibrium and an

endemic equilibrium are possible steady states, we prove that the disease-free equilibrium

is unstable if Rν > 1 and the endemic equilibrium, under suitable conditions, is locally

asymptotically stable, whenever it exists. Also, in some special cases, we prove that the

endemic equilibrium is globally stable.

The organization of this paper is as follows: in section 2 we describe the model and

obtain the model equations; in section 3 we reduce the model equations to several sub-

systems; in section 4 we determine the steady states; in section 5 we study the stability

of the steady states; and in section 6 we conclude our results.

2 The Model

In this section, we consider an age-structured population of variable size exposed to a

communicable disease which causes so few fatalities that they can be neglected. We
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assume the following:

1. s(a, t), e(a, t), i(a, t) and r(a, t), respectively, denote the age density for susceptible,

exposed, infective and immune individuals of age a at time t. Then∫ a2

a1

s(a, t)da = total number of susceptible individuals at time t of ages between a1

and a2,

∫ a2

a1

e(a, t)da = total number of exposed individuals at time t of ages between a1

and a2, and similarly for i(a, t) and r(a, t). We assume that the total population

consists entirely of susceptible, exposed, infective and immune individuals.

2. Let k(a, a′) denotes the probability that a susceptible individual with age a is in-

fected by an infective individual with age a′. We further assume that k(a, a′) =

k1(a)k2(a
′), which is known as “proportionate mixing assumption” (see Dietz, el al.

(1985)). Therefore the transmission of the disease occurs at the following rate:

k1(a)s(a, t)

∫ ∞

0

k2(a
′)i(a′, t)da′ ,

where k1(a), and k2(a) are bounded, non-negative, continuous functions of a. The

term

k1(a)

∫ ∞

0

k2(a
′)i(a′, t)da′ ,

is called “force of infection” and we let λ(t) =

∫ ∞

0

k2(a
′)i(a′, t)da′.

3. The death rate µ(a) is the same for susceptible, exposed, infective and immune

individuals and µ(a) is a non-negative, continuous function and ∃ a0 ∈ [0,∞) such

that µ(a) > µ̄ > 0 ∀ a > a0 and µ(a2) > µ(a1) ∀ a2 > a1 > a0.

4. All offspring are susceptible, i.e. s(0, t) = B = constant, e(0, t) = 0, i(0, t) = 0 and

r(0, t) = 0.

5. The cure rate γ(a) is a bounded, non-negative, continuous function of a.

6. The vaccination rate ν(a) is a bounded, non-negative, continuous function of a.

7. The exposed individuals become infective at a rate η(a) which is a bounded, non-

negative, continuous function of a.

8. The initial age distributions: s(a, 0) = s0(a), e(a, 0) = e0(a), i(a, 0) = i0(a) and

r(a, 0) = r0(a) are continuous, non-negative and integrable functions of a ∈ [0,∞).
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These assumptions lead to the following system of nonlinear integro-partial differential

equations, which describes the dynamics of the transmission of the disease:





∂s(a, t)

∂a
+

∂s(a, t)

∂t
+ [µ(a) + ν(a)]s(a, t) = −k1(a)s(a, t)λ(t), a > 0, t > 0,

∂e(a, t)

∂a
+

∂e(a, t)

∂t
+ [µ(a) + η(a)]e(a, t) = k1(a)s(a, t)λ(t), a > 0, t > 0,

∂i(a, t)

∂a
+

∂i(a, t)

∂t
+ [µ(a) + γ(a)]i(a, t) = η(a)e(a, t), a > 0, t > 0,

∂r(a, t)

∂a
+

∂r(a, t)

∂t
+ µ(a)r(a, t) = ν(a)s(a, t) + γ(a)i(a, t), a > 0, t > 0,

s(0, t) = B, t ≥ 0,

e(0, t) = i(0, t) = r(0, t) = 0, t ≥ 0,

λ(t) =

∫ ∞

0

k2(a)i(a, t)da, t ≥ 0.

(2.1)

We note that problem (2.1) is an SEIR age-structured epidemic model that has been

partly analyzed in Thieme (2001), where the existence of a unique endemic equilibrium

is determined, and conditions for uniform weak disease persistence and disease extinction

are derived.

In what follows, we determine the steady states proving a threshold theorem and ob-

tain an explicitly computable threshold parameter Rν , known as the reproduction number

in the presence of a vaccination strategy ν as in Hadeler, et al. (1996) or the net replace-

ment ratio as in Thieme (2001). If Rν ≤ 1, then the only steady state is the disease-free

equilibrium, and we prove that this steady state is globally stable if Rν < 1. If Rν > 1,

then a disease-free equilibrium as well as an endemic equilibrium are possible steady

states, we prove that the disease-free equilibrium is unstable if Rν > 1, and under suit-

able conditions, we prove that the endemic equilibrium is locally asymptotically stable,

whenever it exists. Also, in some special cases, we prove that the endemic equilibrium is

globally stable.

3 Reduction of the Model

In this section, we develop some preliminary formal analysis of problem (2.1). We define

p(a, t) by

p(a, t) = s(a, t) + e(a, t) + i(a, t) + r(a, t).

Then from (2.1), by adding the equations, we find that p(a, t) satisfies the following:
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∂p(a, t)

∂a
+

∂p(a, t)

∂t
+ µ(a)p(a, t) = 0, a > 0, t > 0,

p(0, t) = B, t ≥ 0,

p(a, 0) = p0(a) = s0(a) + e0(a) + i0(a) + r0(a), a ≥ 0.

(3.1)

We note that problem (3.1) is of McKendrick-Von Foerster type, therefore it has a

unique solution that exists for all time, see Bellman, et al. (1963), Hoppensteadt (1975)

and Feller (1941). The unique solution of problem (3.1) is given by

p(a, t) =





p0(a − t)π(a)/π(a− t), a > t,

Bπ(a), a < t,
(3.2)

where π(a) is defined as

π(a) = e−
∫ a
0 µ(τ)dτ .

Also, from (2.1), s(a, t), e(a, t), i(a, t) and r(a, t) satisfy the following systems of equations:





∂s(a, t)

∂a
+

∂s(a, t)

∂t
+ [µ(a) + ν(a)]s(a, t) = −k1(a)s(a, t)λ(t), a > 0, t > 0,

s(0, t) = B, t ≥ 0,

s(a, 0) = s0(a), a ≥ 0.

(3.3)





∂e(a, t)

∂a
+

∂e(a, t)

∂t
+ [µ(a) + η(a)]e(a, t) = k1(a)s(a, t)λ(t), a > 0, t > 0,

e(0, t) = 0, t ≥ 0,

e(a, 0) = e0(a), a ≥ 0.

(3.4)





∂i(a, t)

∂a
+

∂i(a, t)

∂t
+ [µ(a) + γ(a)]i(a, t) = η(a)e(a, t), a > 0, t > 0,

i(0, t) = 0, t ≥ 0,

i(a, 0) = i0(a), a ≥ 0.

(3.5)

r(a, t) = p(a, t) − [s(a, t) + e(a, t) + i(a, t)] . (3.6)

So, it is clear that (3.2)-(3.6) are equivalent to the original formulation (2.1).
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4 The Steady States

In this section, we look at the steady state solution of problem (2.1). A steady state

s∗(a), e∗(a),

i∗(a), λ∗ must satisfy the following equations:




ds∗(a)

da
+ [µ(a) + ν(a)]s∗(a) = −k1(a)s∗(a)λ∗, a > 0,

s∗(0) = B.

(4.1)





de∗(a)

da
+ [µ(a) + η(a)]e∗(a) = k1(a)s∗(a)λ∗, a > 0,

e∗(0) = 0.

(4.2)





di∗(a)

da
+ [µ(a) + γ(a)]i∗(a) = η(a)e∗(a), a > 0,

i∗(0) = 0.

(4.3)

λ∗ =

∫ ∞

0

k2(a)i∗(a)da. (4.4)

Anticipating our future needs, we define the following threshold parameter Rν by

Rν = B

∫ ∞

0

∫ a

0

∫ σ

0

k2(a)k1(c)π(a)e−
∫ σ
c η(τ)dτη(σ)e−

∫ a
σ γ(τ)dτe−

∫ c
0 ν(τ)dτdcdσda. (4.5)

Here, we note that the quantity R0 obtained by setting ν = 0 in the formula for Rν is

usually called the basic reproduction number, and is interpreted as the expected number

of secondary cases produced in a lifetime by an infectious individual in the absence of the

disease. Also, note that Rν < R0 and Rν is a decreasing function of ν.

In the following theorem, we determine the steady state solutions of problem (2.1).

Theorem (4.1).

(1) If Rν > 1, then λ∗ = 0 and λ∗ > 0 are possible steady states. The steady state with

λ∗ > 0 is unique when it exists, and it satisfies the following:

1 = B

∫ ∞

0

∫ a

0

∫ σ

0

k2(a)k1(c)π(a)e−
∫ σ

c η(τ)dτη(σ)e−
∫ a

σ γ(τ)dτe−
∫ c
0 [ν(τ)+k1(τ)λ∗]dτdcdσda.

(4.6)

And in this case s∗(a), e∗(a), i∗(a) and r∗(a) are given by

s∗(a) = Bπ(a)e−
∫ a
0 [ν(τ)+k1(τ)λ∗]dτ . (4.7)

e∗(a) = λ∗Bπ(a)

∫ a

0

k1(σ)e−
∫ a

σ η(τ)dτe−
∫ σ
0 [ν(τ)+k1(τ)λ∗]dτdσ. (4.8)

i∗(a) = λ∗Bπ(a)

∫ a

0

∫ σ

0

η(σ)k1(c)e
−

∫ σ
c η(τ)dτe−

∫ c
0 [ν(τ)+k1(τ)λ∗]dτe−

∫ a
σ γ(τ)dτdcdσ.

(4.9)

r∗(a) = Bπ(a)− [s∗(a) + e∗(a) + i∗(a)]. (4.10)
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If λ∗ = 0, we obtain the disease-free equilibrium given by

s∗(a) = Bπ(a)e−
∫ a
0 ν(τ)dτ , e∗(a) = i∗(a) = 0, r∗(a) = Bπ(a)

[
1 − e−

∫ a
0 ν(τ)dτ

]
.

(2) If Rν ≤ 1, then λ∗ = 0 (the disease-free equilibrium) is the only steady state.

Proof. By solving (4.1), and substituting it in (4.2) and then solving (4.2), and substituting

it in (4.3) and then solving (4.3), we obtain that s∗(a), e∗(a) and i∗(a) are given by (4.7),

(4.8) and (4.9), respectively. From (3.2) and (3.6), we obtain that r∗(a) satisfies (4.10).

From (4.4) and (4.9), we find that if λ∗ 6= 0, then λ∗ satisfies (4.6).

One can check that the right-hand side of (4.6) is a decreasing function of λ∗ and

approaches zero as λ∗ → ∞. Accordingly (4.6) has a unique solution λ∗ > 0 iff Rν > 1.

And in this case s∗(a), e∗(a), i∗(a) are given by (4.7), (4.8), (4.9) and (4.10), respectively.

Otherwise, if λ∗ = 0, then from (4.7), (4.8), (4.9) and (4.10), we obtain that s∗(a) =

Bπ(a)e−
∫ a
0 ν(τ)dτ , e∗(a) = i∗(a) = 0, and r∗(a) = Bπ(a)

[
1 − e−

∫ a
0 ν(τ)dτ

]
. This completes

the proof of the theorem.

Here, we note that the above theorem asserts the existence of an epidemic disease

if Rν > 1. So, in order to control the spread of the disease and prevent an epidemic

outbreak, one needs to apply a vaccination strategy νc to reduce Rν to a value equal to

one. If νc is constant then we have a unique way of obtaining Rνc = 1, but in general

ν depends on age and νc can be chosen according to some constraint that reduces the

cost of vaccination or in general to obtain what is called an optimal vaccination strategy,

for example, see Müller (1994), (1998), Hadeler, el al. (1996) and Castillo-Chavez, et al.

(1998).

The effects of certain vaccination strategies for the eradication of important commu-

nicable diseases such as Measles, Pertussis, and Rubella are dealt with in several papers,

for example, see Hethcote (1983), (1989), (1997), (2000), Dietz (1981), Katzmann, et al.

(1984), Knox (1980), McLean (1986), Schenzle (1984), Coutinho, et al. (1993), Anderson,

et al. (1999), and Greenhalgh (1990).

5 Stability of the Steady State

In this section, we study the stability of the steady states for problem (2.1) given by

theorem (4.1).

From (3.2), we note that the total population has its steady state distribution p∞(a) =

Bπ(a), and from (3.1), p∞(a) also satisfies the following:

dp∞(a)

da
+ µ(a)p∞(a) = 0. (5.1)

Now, we consider the following transformations, called the age profiles of susceptible,

exposed, infective and immune individuals, respectively.

u(a, t) =
s(a, t)

p∞(a)
, w(a, t) =

e(a, t)

p∞(a)
, z(a, t) =

i(a, t)

p∞(a)
, n(a, t) =

r(a, t)

p∞(a)
.
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Then with these transformations, problem (2.1) becomes





∂u(a, t)

∂a
+

∂u(a, t)

∂t
+ [ν(a) + k1(a)λ(t)]u(a, t) = 0, a > 0, t > 0,

∂w(a, t)

∂a
+

∂w(a, t)

∂t
+ η(a)w(a, t) = k1(a)u(a, t)λ(t), a > 0, t > 0,

∂z(a, t)

∂a
+

∂z(a, t)

∂t
+ γ(a)z(a, t) = η(a)w(a, t), a > 0, t > 0,

∂n(a, t)

∂a
+

∂n(a, t)

∂t
= ν(a)u(a, t) + γ(a)z(a, t), a > 0, t > 0,

u(0, t) = 1, w(0, t) = z(0, t) = n(0, t) = 0, t ≥ 0,

λ(t) = B

∫ ∞

0

k2(a)z(a, t)π(a)da, t ≥ 0,

u(a, 0) = u0(a), w(a, 0) = w0(a), z(a, 0) = z0(a), n(a, 0) = n0(a), a ≥ 0.

(5.2)

From (5.2), u(a, t), w(a, t) and z(a, t) satisfy the following systems of equations:




∂u(a, t)

∂a
+

∂u(a, t)

∂t
+ [ν(a) + k1(a)λ(t)]u(a, t) = 0, a > 0, t > 0,

u(0, t) = 1, t ≥ 0,

u(a, 0) = u0(a) = s0(a)/Bπ(a), a ≥ 0.

(5.3)





∂w(a, t)

∂a
+

∂w(a, t)

∂t
+ η(a)w(a, t) = k1(a)u(a, t)λ(t)], a > 0, t > 0,

w(0, t) = 0, t ≥ 0,

w(a, 0) = w0(a) = e0(a)/Bπ(a), a ≥ 0.

(5.4)





∂z(a, t)

∂a
+

∂z(a, t)

∂t
+ γ(a)z(a, t) = η(a)w(a, t), a > 0, t > 0,

z(0, t) = 0, t ≥ 0,

z(a, 0) = z0(a) = i0(a)/Bπ(a), a ≥ 0.

(5.5)

By integrating problem (5.3) along characteristic lines t − a = const., we find that

u(a, t) satisfies:

u(a, t) =





u0(a − t)e−
∫ t
0 [ν(a−t+σ)+k1(a−t+σ)λ(σ)]dσ, a > t,

e−
∫ a
0 [ν(σ)+k1(σ)λ(t−a+σ)]dσ, a < t.

(5.6)

AAM: Intern. J., Vol. 1, No. 2 (2006) 103

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 1 [2006], Iss. 2, Art. 2

https://digitalcommons.pvamu.edu/aam/vol1/iss2/2



By integrating problem (5.4) along characteristic lines t − a = const., we find that

w(a, t) satisfies:

w(a, t) =





w0(a − t)e−
∫ t
0 η(a−t+τ)dτ +

∫ t

0

e−
∫ t

σ η(a−t+τ)dτk1(a − t + σ)u(a− t + σ, σ)λ(σ)dσ, a > t,

∫ a

0

e−
∫ a

σ η(τ)dτk1(σ)u(σ, t− a + σ)λ(t − a + σ)dσ, a < t.

(5.7)

By integrating problem (5.5) along characteristic lines t − a = const., we find that

z(a, t) satisfies:

z(a, t) =





z0(a− t)e−
∫ t
0

γ(a−t+τ)dτ +

∫ t

0

e−
∫ t
σ γ(a−t+τ)dτη(a − t + σ)w(a − t + σ, σ)dσ, a > t,

∫ a

0

e−
∫ a

σ γ(τ)dτη(σ)w(σ, t− a + σ)dσ, a < t.

(5.8)

By substituting (5.6) in (5.7) and then substituting the resultant in (5.8), we obtain

that z(a, t) satisfies the following:

z(a, t) =





z0(a− t)e−
∫ t
0 γ(a−t+τ)dτ +

∫ t

0

e−
∫ t
σ γ(a−t+τ)dτη(a − t + σ)

{
w0(a − t)e−

∫ σ
0 η(a−t+τ)dτ

+u0(a− t)

∫ σ

0

e−
∫ σ

c η(a−t+τ)dτk1(a − t + c)e−
∫ c
0 [ν(a−t+τ)+k1(a−t+τ)λ(τ)]dτλ(c)dc

}
dσ, a > t,

∫ a

0

∫ σ

0

e−
∫ a

σ γ(τ)dτη(σ)e−
∫ σ
c η(τ)dτk1(c)e

−
∫ c
0 [ν(τ)+k1(τ)λ(t−a+τ)]dτλ(t − a + c)dcdσ, a < t.

(5.9)

From (5.2), λ(t) = B

∫ ∞

0

k2(a)z(a, t)π(a)da, then using (5.9), we find that λ(t) satisfies

the following:

λ(t) = B

∫ t

0

∫ a

0

∫ σ

0

e−
∫ a
σ γ(τ)dτη(σ)e−

∫ σ
c η(τ)dτe−

∫ c
0 [ν(τ)+k1(τ)λ(t−a+τ)]dτk1(c)k2(a)π(a)λ(t− a + c)dcdσda

+B

∫ ∞

t

k2(a)π(a)z0(a − t)e−
∫ t
0 γ(a−t+τ)dτda

+B

∫ ∞

t

k2(a)π(a)

∫ t

0

e−
∫ t

σ
γ(a−t+τ)dτη(a− t + σ)

{
w0(a − t)e−

∫ σ
0

η(a−t+τ)dτ

+

∫ σ

0

e−
∫ σ
c η(a−t+τ)dτk1(a − t + c)u0(a − t)e−

∫ c
0 [ν(a−t+τ)+k1(a−t+τ)λ(τ)]dτλ(c)dc

}
dσda.

(5.10)

We note that by assumptions (2), (3), (5) and (8) of section 2 and the dominated
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convergence theorem, we see that

∫ ∞

t

k2(a)π(a)z0(a − t)e−
∫ t
0

γ(a−t+τ)dτda → 0, as t → ∞.

Also, by similar reasoning as above, we find that

∫ ∞

t

k2(a)π(a)

∫ t

0

e−
∫ t

σ γ(a−t+τ)η(a−t+σ)dτ

{
w0(a − t)e−

∫ σ
0 η(a−t+τ)dτ

+

∫ σ

0

e−
∫ σ
c

η(a−t+τ)dτk1(a − t + c)u0(a − t)e−
∫ c
0
[ν(a−t+τ)+k1(a−t+τ)λ(τ)]dτλ(c)dc

}
dσda → 0,

as t → ∞.

Consequently, from (5.10), λ(t) has the following limiting equation (also, see Busenberg,

et al. (1988)):

λ(t) = B

∫ ∞

0

∫ a

0

∫ σ

0

e−
∫ c
0 [ν(τ)+k1(τ)λ(t−a+τ)]dτλ(t − a + c)η(σ)k1(c)e

−
∫ a
σ γ(τ)dτk2(a)π(a)×

e−
∫ σ

c
η(τ)dτdcdσda. (5.11)

Now, we linearize the limiting equation (5.11) by considering perturbation ξ(t) defined

by

ξ(t) = λ(t) − λ∗.

If we define K(c) by

K(c) = B

[∫ ∞

c

∫ a

a−c
e−

∫ a−c
0 [ν(τ)+k1(τ)λ∗]dτη(σ)k1(a − c)k2(a)π(a)e−

∫ a
σ γ(τ)dτe−

∫ σ
a−c η(τ)dτdσda

−λ∗
∫ ∞

c

∫ a

a−c

∫ σ

a−c
e−

∫ τ
0 [ν(s)+k1(s)λ∗]dsk1(a − c)k1(τ)k2(a)π(a)η(σ)e−

∫ a
σ γ(s)dse−

∫ σ
τ η(s)dsdτdσda

]
,

(5.12)

then the linearization of the limiting equation (5.11) can be rewritten as

ξ(t) =

∫ ∞

0

K(c)ξ(t − c)dc. (5.13)

The characteristic equation for (5.13) is given by

K̂(s) = 1, (5.14)

where K̂(s) =

∫ ∞

0

e−scK(c)dc.

In the following theorem, we show that the disease-free equilibrium, λ∗ = 0, is unstable

if Rν > 1, and locally asymptotically stable if Rν < 1.

Theorem (5.1). The disease-free equilibrium, λ∗ = 0, is unstable if Rν > 1, and locally
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asymptotically stable if Rν < 1.

Proof. We note that if λ∗ = 0, then from (5.12), K(c) satisfies the following:

K(c) = B

∫ ∞

c

∫ a

a−c

e−
∫ a−c
0

ν(τ)dτη(σ)k1(a − c)k2(a)π(a)e−
∫ a

σ
γ(τ)dτe−

∫ σ
a−c η(τ)dτdσda.

Changing the order of integration several times and making appropriate changes of vari-

ables yields ∫ ∞

0

K(c)dc = Rν .

In (5.14), if we take s = x, where x is real, and noticed that

∫ ∞

0

e−xcK(c)dc is a

decreasing function for x > 0 and has a value Rν > 1 for x = 0, and approaches zero as

x → ∞, accordingly ∃ x∗ > 0 such that the characteristic equation (5.14) is satisfied, and

therefore the disease-free equilibrium, λ∗ = 0, is unstable if Rν > 1.

If Rν < 1, we note that the characteristic equation (5.14) will not be satisfied for any

s with Re s ≥ 0 because K(c) is non-negative and therefore,

|K̂(s)| ≤
∫ ∞

0

e−(Re s)cK(c)dc ≤
∫ ∞

0

K(c)dc = Rν < 1,

therefore, the characteristic equation (5.14) will not be satisfied for any s with Re s ≥ 0.

Hence the disease-free equilibrium, λ∗ = 0, is locally asymptotically stable if Rν < 1.

This completes the proof of the theorem.

In the next result, we show that the disease-free equilibrium is globally stable when

Rν < 1.

Theorem (5.2). Suppose that Rν < 1. Then the disease-free equilibrium is globally

stable.

Proof. Let λ∞ = lim sup
t→∞

λ(t), then by using the limiting equation (5.11) and Fatou′s

Lemma, we obtain the following:

λ∞ ≤ λ∞B

∫ ∞

0

∫ a

0

∫ σ

0

e−
∫ c
0 ν(τ)dτη(σ)e−

∫ σ
c η(τ)dτk1(c)e

−
∫ a

σ γ(τ)dτk2(a)π(a)dcdσda

= λ∞Rν < λ∞,

which gives λ∞ = 0. That is, the disease-free equilibrium is globally stable. This completes

the proof of the theorem.

In order to study the stability of the endemic equilibrium, λ∗ > 0, we need to show

that the kernel K(c) is non-negative, therefore, we impose the following condition:

λ∗
∫ ∞

0

e−
∫ τ
0 [λ∗k1(s)−η(s)]dsk1(τ )dτ < 1. (5.15)

To see how condition (5.15) would imply that K(c) ≥ 0, we shall prove the following

lemma.
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Lemma (5.1). Suppose that (5.15) holds, then g(x) = λ∗ ∫ D

x
e−

∫ τ
x

[λ∗k1(s)−η(s)]dsk1(τ )dτ <

1,

∀ x ∈ [0,D], where D is any non-negative real number.

Proof. Observe that by (5.15), g(0) < 1, and by definition, g(D) = 0. Also, note that

g′(x) = −λ∗k1(x) − [η(x)− λ∗k1(x)]g(x). Thus, if we assume that g(x) < 1, then

g′(x) ≤
{

−λ∗k1(x) if [η(x)− λ∗k1(x)] ≥ 0,
−η(x), if [η(x)− λ∗k1(x)] < 0.

Therefore g′(x) ≤ 0, provided that g(x) < 1. Since g(0) < 1, this implies that

g(x) < 1, ∀x ∈ [0,D]. This completes the proof of the lemma.

From Lemma (5.1), we deduce that K(c) is non-negative.

In the next result, we show that the endemic equilibrium, λ∗ > 0, is locally asymptot-

ically stable when Rν > 1 and condition (5.15) holds.

Theorem (5.3). Suppose that

(1) Rν > 1,

(2) condition (5.15) is satisfied.

Then the endemic equilibrium, λ∗ > 0, is locally asymptotically stable.

Proof. For the characteristic equation K̂(s) = 1, suppose that Re s ≥ 0 then |K̂(s)| ≤∫ ∞

0

e(−Re s)c K(c)dc ≤
∫ ∞

0

K(c)dc < 1, note that the first inequality because K is non-

negative by assumption 2, and the second inequality because Re s ≥ 0 and the last

inequality because of assumption 2, Lemma (5.1) and equation (4.6). Therefore, the

characteristic equation cannot be satisfied for any s with Re s ≥ 0, i.e. the endemic

equilibrium is locally asymptotical stable, whenever it exists, provided that condition (2)

is satisfied. This completes the proof of the theorem.

In the next result, we prove the global stability of the endemic equilibrium under a

suitable condition.

Theorem (5.4). Suppose that ν(a) ≡ η(a). Then the endemic equilibrium is globally

stable.

Proof. Using the limiting equation (5.11), we obtain that λ(t) satisfies the following:

λ(t) = B

∫ ∞

0

∫ a

0

k2(a)π(a)η(σ)e−
∫ σ
0 η(τ)dτe−

∫ a
σ γ(τ)dτ

[
1 − e−

∫ σ
0 k1(τ)λ(t−a+τ)dτ

]
dσda.

Now, letting v(t) = λ(t) − λ∗, we obtain the following:

v(t) = B

∫ ∞

0

∫ a

0

k2(a)π(a)η(σ)e−
∫ σ
0 η(τ)dτe−

∫ a
σ γ(τ)dτe−λ∗ ∫ σ

0 k1(τ)dτ
[
1 − e−

∫ σ
0 k1(τ)v(t−a+τ)dτ

]
dσda.

(5.16)

Now, If we use the fact that 1−e−
∫ σ
0

k1(τ)v(t−a+τ)dτ ≤
∫ σ

0
k1(τ )v(t−a+τ )dτ in (5.16), and

then use Fatou′s Lemma and equation (4.6), we obtain that limsup
t→∞

|v(t)| = 0. Therefore,

the endemic equilibrium is globally stable. This completes the proof of the theorem.
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6 Conclusion

We studied an SEIR age-structured epidemic model when susceptible and immune indi-

viduals are vaccinated indiscriminately and assumed proportionate mixing for the force

of infection. The importance of this work stems from the fact that, to the best of our

knowledge, Thieme (2001) and Li, et al. (2001), are the only two papers in the literature

that have dealt with SEIR type epidemic models with age-structure.

We determined the steady states of the model and examined their stability by deter-

mining a computable threshold parameter Rν, usually known as the reproduction number

in the presence of the vaccination strategy ν(a) or the net replacement ratio. Rν decreases

with ν(a) and is used to determine a critical vaccination coverage which will eradicate the

disease with minimum vaccination coverage.

If Rν ≤ 1, then the only steady state is the disease-free equilibrium and is globally

stable, if Rν < 1. If Rν > 1, then a disease-free equilibrium as well as an endemic

equilibrium (unique when it exists) are possible steady states, the disease-free equilibrium

is unstable and the endemic equilibrium is locally asymptotically stable, if condition (5.15)

is satisfied. Furthermore, if ν(a) ≡ η(a), then the endemic equilibrium is globally stable.

We note that for an SIR age-structured epidemic model with proportionate mixing for

the force of infection, Thieme (1990), showed that under certain conditions, the endemic

equilibrium could undergo stability change. This may be the case here as well.
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