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Mississippian tidal flat deposit (Hartselle
Sandstone) from Alabama
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2 Department of Geology & Geological Engineering, University of Mississippi, University,
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ABSTRACT
Trace fossil zonation in the Hartselle Sandstone of Mississippian age (Chesterian:
Visean-Serpukhovian) exposed on Fielder Ridge, Alabama is compared with
modern macro-tidal flat ichnocoenoses on the Bay of Fundy at Lubec, Maine, and
demonstrated to be analogous by sedimentologic and ichnotaxonomic criteria.
The modern flat has minimal influence from either waves or freshwater influx,
and can be divided into five distinct ichnocoenoses, characterized by surface traces
(epichnia) and four sedimentologic facies defined by gross grain texture or
hydrodynamic characteristics, but lacking significant surface traces. Several
characteristics of tidal flat deposits in a fetch-limited, marine (i.e., non-estuarine),
meso- to macro-tidal regime can be used to recognize similar environments as old as
the late Paleozoic. These criteria include (1) limited influence of wind and waves
on the depositional environment, (2) lack of significant freshwater influence and
therefore any persistent brackish environments, (3) a distinct spatial distribution of
microenvironments defined by substrate and exposure period, (4) high diversity of
epichnial traces directly associated with microenvironments across the tidal flat,
(5) generally low degree of reworking of traces by bioturbation but high degree of
reworking by tidal currents, and (6) preservation of traces of predation and
scavenging behavior on an exposed surface. These features, together with the regional
depositional pattern of the Hartselle Sandstone interpreted as tide-influenced bars
and shoals, support a meso- to macro-tidal interpretation of the depositional
environment.

Subjects Ecology, Paleontology
Keywords Ichnology, Littoral deposits, Trace fossils, Paleoecology, Invertebrates

INTRODUCTION
The height of tides and associated intertidal zones of the Bay of Fundy, bounded by
the coasts of Maine, New Brunswick, and Nova Scotia, were noted by the great Scottish
geologist Lyell (1845). Serious study of the sediments of the intertidal zone, reviewed by
Amos (1984), came much later, when Klein (1963) delineated four depositional
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environments in the Bay of Fundy: wave-cut benches, estuarine clay flats, tidal flats in
the lee of bedrock islands, and salt marshes. He further subdivided the tidal flats in the
lee of bedrock islands, which are fetch-limited (protected from large waves), into a higher
tidal flat characterized by gravel and sand, and a lower tidal flat with gravel, sand, silt,
and clay.

Rocky shores were the subjects of some of the first studies of the ecological zonation
of the intertidal zone (Benson, 2002), and these were soon followed by studies of sandy
beaches and tidal flats (McLachlan, 1983). Newcombe (1935b) studied the physical
environmental constraints of the intertidal zone at St. Andrews, New Brunswick, just
across Passamaquoddy Bay from the current study area at Lubec, Maine. He recognized
two “biomes” in the intertidal zone; one for the rocky shore and one for the sandy. Elmhirst
(1932) was able to define zonation of intertidal areas of Scotland based on crustaceans
(mostly amphipods) and Brady (1943) described and carefully quantified the infauna of
sandy and muddy tidal flats on the Northumberland coast of England. Brady (1943)
concluded that the zonation of the fauna was primarily due to the period of exposure and
interspecific competition for food, although excessive silt or finer material had a negative
impact on diversity and abundance. One of the first globally comprehensive studies of
ecological zonation was by Dahl (1952), who divided the sandy beach environment into
three vertically juxtaposed zones. He found that most of the organisms that leave the
safety of their burrows and move across the exposed intertidal zone were crustaceans.

There is a long history of literature relating trace fossil assemblages to
paleoenvironmental interpretation by analogy with neoichnological studies that can be
traced back to the publications of James Dwight Dana, Thomas Rupert Jones, and John
Walter Salter in the mid-1800s (Dawson, 1873). Tidal flats have been a substantial
source of such studies (Frey, Howard & Hong, 1987; Mángano et al., 2002; Uchman &
Pervesler, 2006), but there is less history for studies seeking to relate tidal regimes to
particular ichnocoenoses (Gingras, MacEachern & Dashtgard, 2012). Many of these are
focused on interpretation of traces as representative of organisms characteristic of tidal
flats rather than the predictive value of such traces in the geologic record, with a few
notable exceptions (Hertweck et al., 2005). A large number of these studies deal with
areas in which there is significant mixing of fluvial-derived freshwater and marine water,
and they focus on the distinction between brackish water and fully marine systems
(Buatois et al., 2005; Hauck et al., 2009; Mángano & Buatois, 2004).

This study describes a modern macro-tidal environment with minimal wave or
freshwater influence, thus limiting the complexities faced in other studies. The objective of
the study is the definition of criteria used to recognize analogous tidal flat deposits in
the geologic record. The targeted environments are meso- to macro-tidal regimes where
waves and freshwater influx are minimal or non-existent. Emphasis is placed on
ethological or behavioral aspects of modern tidal flat organisms as opposed to a strict
ichnotaxonomic treatment. There are several classifications used to describe toponomy—
the locations of traces relative to the substrate (Buatois & Mángano, 2011), and herein
we use the system of Martinsson (1970) which includes epichnia (traces found on the top
surface of strata), hypichnia (traces found on the bottom surface of strata), and endichnia
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(traces found wholly within a stratum). Because activity of the organisms at the interface
between the substrate and the air is most characteristic of the exposed environment,
ichnological zonation of the tidal flat is based on surface traces or epichnia. Grain size of
sediment is important because of its relationship to oxygen content, permeability, and food
availability (Dashtgard, Gingras & Pemberton, 2008). The direct effect of grain size on
epifauna is minimal but these characteristics are important indirectly because the tidal flat
fauna find refuge within the sediment when inundated. In a macro-tidal regime,
benthic organisms are extremely active on the surfaces of exposed flats, but seek refuge in
the substrate during inundation to avoid high-velocity tidal currents and predation
(Reise, 1977; Warren, 1990). Epichnia in these settings, therefore, represent more diverse
behaviors than endichnia. Significantly, in this study, intensive biological sampling in the
modern field area allows identification of each trace maker with certainty. The results
of the study of the modern tidal flat are compared with a Mississippian-age deposit for
which epichnia are well preserved.

GEOGRAPHIC AND GEOLOGIC SETTINGS
The modern tidal flat is located at the United States—Canada border (latitude 44.853�,
longitude -66.981�) near the town of Lubec, Maine (Fig. 1A), within the Lubec
Embayment, which opens into the lower portion of the Bay of Fundy. The tidal flat

Figure 1 Study locations. (A) Modern tidal flat at Lubec, Washington County, Maine. Gray-scale hillshade image of Lidar displayed over aerial
photograph to show area of interest. Dotted line shows approximate US/Canada border. (B) Hartselle Sandstone isopach map (contour interval
10 m) and outcrop extent, after Wilson (1987). Triangle marks locality at Fielder Ridge, Colbert County, Alabama.

Full-size DOI: 10.7717/peerj.6975/fig-1
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extends for more than a kilometer from the beach at low tide. Tide ranges from six to
seven m (Kelley, Belknap & Walsh, 2015), depending on lunar phase and time of year.
The Lubec Embayment is a fetch-limited, partly enclosed bay that is protected from
significant wave influence and has no appreciable sediment source other than coastal
erosion (Walsh, 1988). Tectonic subsidence in the immediate area is nine mm/year (Lee &
Diehl, 1989; Tyler & Ladd, 1980) and, with current rates of eustatic sea level rise,
depositional accommodation exceeds one cm/year. The sediments are derived from
the Pineo Ridge Moraine Complex glacial deposits (Gates, 1989; Kaplan, 2007) and these
source deposits are heterogeneous in both grain size and mineralogy. The shoreline is
backed by a freshwater marsh, which drains ephemerally though small streams or
by shallow phreatic flow into the tidal flat, but otherwise there is no significant influx
of freshwater and thus no brackish-water environment.

The Mississippian-age locality, a road cut exposing the Hartselle Sandstone and
overlying Bangor Limestone, is a site in northwestern Alabama (latitude 34.648�, longitude
-87.889�) called Fielder Ridge (Fig. 1B). The Hartselle Sandstone is a quartz arenite, Late
Mississippian (Chesterian or Visean-Serpukhovian) in age (Pashin & Gastaldo, 2009).
The Hartselle is exposed in northern Mississippi and Alabama in an east-west trending
belt, extending southward in the subsurface, primarily within northwestern Alabama
and restricted to the Black Warrior Basin (Wilson, 1987). The formation is underlain
conformably by the Pride Mountain Formation, comprising shale and sandstone
with minor limestone. It is overlain conformably by the Bangor Limestone, comprising
limestone and shale. The Hartselle Sandstone has been interpreted as a barrier-bar system
(Thomas, 1974), with associated back-barrier lagoons and barrier flats (Thomas &
Mack, 1982). The Black Warrior Basin in the Late Mississippian was an enclosed
embayment constrained to the east and northeast by the continental landmass resulting
from the Appalachian orogeny, and to the south and southwest by the landmass formed by
the Ouachita orogeny during this stage in the formation of Pangaea (Lacefield, 2013).
Simulations have shown that the basin may have experienced meso- to macro-tidal fluxes
during the Carboniferous (Wells et al., 2007), although with a slightly shorter period
resulting from a shorter day (Williams, 2000). The northwest to southeast trend of the
barrier bars, indicated by paleocurrent and isopach data (Thomas & Mack, 1982), is
consistent with the existence of a strong tidal flux into and out of the Black Warrior Basin,
opening to the northwest into the midcontinent epeiric sea. The Hartselle Sandstone is
well exposed, although somewhat monotonous in character, within its outcrop belt.
The unique exposure at Fielder Ridge, Colbert Co., Alabama, was first reported by
Thomas (1972), who noted in particular the ripple-bedded section of interbedded shale
and sandstone with abundant trace fossils. The ichnology of the Hartselle was intensively
reviewed by Rindsberg (1994), with emphasis on collections from the Fielder Ridge outcrop.

MATERIALS AND METHODS
Observation and photography of modern surface traces of the Lubec ichnocoenoses
were made over the period from 2008 to 2018, almost entirely during summer months.
The actual invertebrate trace makers were collected in situ and identified, resulting in a
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direct association with respective trace suites. When possible, videos were made of organisms
during trace making activities. Representative samples of the trace making organisms
were preserved in ethanol. Slabs of ichnofossils were collected and recorded stratigraphically
from Fielder Ridge, Alabama. Ichnofossils were whitened with ammonium chloride for
photography using standard paleontological techniques (Feldmann, 1989; Sass, 1962).
All figured ichnofossils are curated and housed in the collections of the Mississippi Museum
of Natural Science (MMNS) in Jackson, Mississippi.

Descriptive terminology follows that of Trewin (1995) and Minter, Braddy & Davis
(2007). In this study, the focus is on epichnial traces, although endichnial traces are
considered where direct association with epichnial traces can be substantiated. Nearly all
the ichnotaxonomic treatment of Mississippian ichnofossils follows Rindsberg (1994),
with a few modifications as indicated in the text.

Identification of the modern fauna was greatly aided by a tabular key published by
Pollock (1998), and supported with field guides (Watling, Fegley &Moring, 2003;Whitlach,
1982) and faunal lists (Larsen & Gilfillan, 2004; Trott, 2004).

For the modern tidal flat, detailed topobathymetric data and aerial photographs were
obtained from a Lidar swath generated in 2014 by the New England District, U.S.
Army Corps of Engineers Joint Airborne Lidar Bathymetry Technical Center of eXpertise
and published byNOAA (2014) (https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4911).
These files were processed using ArcGIS� software. GIS files for Alabama were obtained
from publicly available data published by the state (https://www.gsa.state.al.us).

Grain size distribution of the modern tidal flat sediment was determined using bulk
sample dry sieving (Table S1). Sampling locations (Table S2) were recorded using GPS,
and all spatial interpolation and contouring used ArcGIS�. Statistical treatment of
results follows Folk (1980). Mean grain size is measured in phi (ø), where ø = -log2(D/D0)
and D is the intermediate-axis grain diameter of ellipsoidal-shaped grains, rendered
dimensionally consistent by division by the reference diameter D0 (equal to one mm).
Sorting is the inclusive graphic standard deviation (the square root of the variance
or second moment of the distribution). Skewness is a measure of the third moment or
symmetry of the distribution, positive when fine-skewed, negative when coarse-skewed,
and zero when symmetrical.

RESULTS
Modern ichnocoenoses
The study area of approximately 60 ha on the tidal flat at Lubec, Maine, can be divided into
a combined nine distinct facies and ichnocoenoses (Fig. 2A), all of which are described
below. The elevation gradient increases monotonically toward the beach where the
flat ends with a steep gradient to the mean high tide line (Fig. 2B). The surface of the flat is
biologically heterogeneous with areas of the mid-flat covered with green and brown algae.
The upper 10–15 cm of sediment are light-colored and oxic, with dark, H2S-rich
sediment below.

The type and abundance of organisms on the surface of the tidal flat during exposure
are influenced by both the total time of exposure and the grain size of the substrate.

Zachos and Platt (2019), PeerJ, DOI 10.7717/peerj.6975 5/32

https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4911
https://www.gsa.state.al.us
http://dx.doi.org/10.7717/peerj.6975/supp-1
http://dx.doi.org/10.7717/peerj.6975/supp-2
http://dx.doi.org/10.7717/peerj.6975
https://peerj.com/


Surface sediments are heterogeneous, ranging from fine gravel to silt. Within the study
area (Fig. 3), fine gravel sediments predominate along a narrow ridge to the southwest
(remnants of a Pleistocene esker) and on a mounded area to the northeast (which may be
partly derived from dredge fill from the adjacent channel). The remaining area is
characterized by medium to fine sand and silt. Some areas of the tidal flat experience up to
12 h of exposure each tidal cycle (high tide to high tide), although most of the area
experiences between 4 and 6 h of exposure (Fig. 4). Exposure is the predominant factor
defining the distribution of intertidal fauna (Dashtgard & Gingras, 2005), and thereby
surface traces. Besides the physical effects of temperature variability, evaporation, and
rainfall, exposure increases predation pressure. The apex natural predator on the tidal flat
is the herring gull, Larus argentatus smithsonianus, followed by smaller shorebirds.
The feeding gulls favor crabs (Ellis et al., 2005), including the species Cancer borealis,
Cancer irroratus, and Carcinus maenas, and the smaller shorebirds prey on smaller
crustaceans (Hamilton, Diamond & Wells, 2006).

The interaction of grain size and exposure time results in a distinct zonation of the flat
(Fig. 5). The study area can be divided into five distinct ichnocoenoses characterized
by surface traces (epichnia) and named for the single, most characteristic trace maker;
and four sedimentologic facies defined by gross grain texture or hydrodynamic
characteristics, but lacking significant surface traces. The latter are represented as
facies rather than ichnocoenoses because epichnia are sparsely distributed and unlikely
to be preserved.

Figure 2 Topobathymetric profile of the modern tidal flat at Lubec, Maine, based on elevation derived from Lidar coverage. (A) Line of N-S
profile with ichnocoenoses and facies delineation of tidal flat. (B) Profile from north (N) to south (S), vertical exaggeration 50:1. Horizontal lines
mark exposure times during a tide cycle. Abbreviations: US, upper shoreface facies; CH, Chiridotea ichnocoenosis; CO, Corophium ichnocoenosis;
MD, mud facies; MY, Mya ichnocoenosis; LI, Littorina ichnocoenosis; SW, sandwave facies. Full-size DOI: 10.7717/peerj.6975/fig-2
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Upper shoreface facies
The substrate of the upper shoreface in the study area (more than 8 h exposure per tidal
cycle) is primarily poorly sorted medium sand with abundant cobbles, some reaching
boulder size. The mean grain size, excluding the cobbles, is 1.37 ø (0.39 mm), with a
sorting index of 1.26 ø, and very coarse skew (skewness index -0.45). The surface is
characterized by sea wrack left after every high tide. The wrack comprises mostly
rockweed, Ascophyllum nodosum, but also includes a variety of kelp and other algal
species. The wrack is ecologically important (Behbehani & Croker, 1982; Colombini &
Chelazzi, 2003; MacMillan & Quijón, 2012; Stenton-Dozey, 1983) and several species of
talitrid and hyalid amphipod crustaceans are abundant in and beneath it (Video S1),
but leave no preservable traces. The predominant epichnial traces are those of vehicles
and footprints of humans and dogs, that is, large terrestrial animals. The upper
shoreface represents the eroding edge of moraine deposits, but attachment of cobbles to
the algae and sediment entrapment in floating winter ice washed onto shore have
been shown to be important depositional mechanisms in the Lubec embayment
(Kelley, Belknap & Walsh, 2015). However, no drag marks from attached cobbles are

Figure 3 Sediment grain size on the modern tidal flat at Lubec, Maine. (A) Sediment mean grain size contours, in phi (ø) where ø = -log2(D/D0)
and D is the intermediate-axis grain diameter of ellipsoidal-shaped grains, rendered dimensionally consistent by division by the reference diameter
D0 (equal to one mm). Shading indicates fine to coarse gradation. Sample locations are color-coded for (B). Elevation contour interval 0.5 m.
(B) Cumulative grain size distribution in phi units for samples keyed by color in (A). Mean values are marked by small dots. Grain size distributions with
mean values above the 50% median line (dotted) are fine skewed, those below are coarse skewed. Full-size DOI: 10.7717/peerj.6975/fig-3
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observed on the upper shoreface because the seaweed is not moved by wind or current
after settling on the beach.

Chiridotea ichnocoenosis
The lower shoreface is delineated by a distinct break in slope, forming a gently sloping
plane between the steep upper shoreface and the nearly horizontal tidal flats. The substrate
is poorly sorted, medium sand, with mean grain size 1.43 ø (0.37 mm), sorting index
1.23 ø, and very coarse skew (skewness index -0.47). A variety of small crustaceans,
notably the predatory (McDermott, 2005) isopod Chiridotea coeca, inhabit the sandy upper
reach of the flat (6–8 h exposure per tidal cycle). This isopod is known to be selective
for a medium grain size substrate (Griffith & Telford, 1985) and is abundant in this zone.
The pelecypod mollusk Macoma balthica is also locally common in this zone, leaving
a distinctive star-shaped feeding trace on the sediment surface (Brafield & Newell,
1961). Some small sand bars, topobathymetrically separated from the shoreline by minor

Figure 4 Hours of tidal exposure on the modern tidal flat at Lubec, Maine. Numbers represent
maximum hours of exposure between contours per tidal cycle. Underlying image is a hillshade of the
Lidar topobathymetry, with elevation contours (contour interval 0.5 m).

Full-size DOI: 10.7717/peerj.6975/fig-4
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sloughs, are also characterized by surface traces of Chiridotea and included in this
ichnocoenosis.

The surface trace produced by Chiridotea coeca initially consists of two parallel
continuous marks with raised outside edges averaging four mm apart. These parallel marks
deteriorate within minutes into a single groove with raised edges in damp fine-grained
sand (Fig. 6A). This isopod essentially plows its way through the sediment, creating a small

Figure 5 Ichnocoenoses and sedimentologic facies delineation on the modern tidal flat at Lubec,
Maine. Close correspondence with sediment grain size is indicated by shading and light contours.
Darker contours are elevation derived from Lidar coverage (contour interval 0.5 m).

Full-size DOI: 10.7717/peerj.6975/fig-5
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mounding of sediment at the forward end of the trail, which completely covers the
animal (Video S2). Trails are generally meandering and densely looped to convolute,
and concentrated in the troughs between ripples (Hauck, Dashtgard & Gingras, 2008).

Figure 6 Epichnial traces on the modern tidal flat at Lubec, Maine. (A) Chiridotea ichnocoenosis.
Trails of Chiridotea coeca on wet (image bottom) and dry (image top) sand. (B) Chiridotea ichnocoenosis.
Active trail of Nereis sp. visible through the biofilm coating on a sand surface. (C) Corophium ichno-
coenosis. Trails of Corophium volutator on wet sand. (D) Corophium ichnocoenosis. Fecal cast of Are-
nicola marina with trails of Corophium volutator on wet sand. (E) Mud facies. Filamentous green algae
mat covering saturated silt and fine sand. (F) Mya ichnocoenosis. Siphon openings of Mya arenaria
intersecting sand surface. Full-size DOI: 10.7717/peerj.6975/fig-6
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A thin, continuous biofilm is evident when the sand surface is wet, and tends to break up
into small masses with entrained sediment that settle into the ripple troughs near the end
of the exposure period. Nereid polychaetes are sometimes found moving through the
biofilm when only a few millimeters of water cover the sediment (Fig. 6B; Video S3).

Corophium ichnocoenosis
The amphipod Corophium volutator is abundant in poorly sorted medium sand in the
upper reach of the flat (5–6 h exposure per tidal cycle). Mean grain size is 1.37 ø (0.39 mm)
with a sorting index of 1.25 ø, and fine skew (skewness index 0.03). In summer months,
the amphipods leave their burrows to breed (Forbes et al., 1996), and surface trails
cover significant areas of the flats within this ichnocoenosis (Fig. 6C). The trails form
shallow continuous grooves averaging 2.5 mm in width, with slightly raised edges.
The substrate is too coarse for development of the beaded pattern described by Häntzschel
(1939), which is more representative of European populations where the species inhabits
finer substrate (Meadows, 1964). Small (1.0 mm) fecal pellets of uncertain origin often
cover the sediment surface as well. A distinctive system of lined, U-shaped burrows
(Video S4), penetrating only a few centimeters within the sediment, is developed by
Corophium volutator (Meadows & Reid, 1966). The polychaete annelid Nephtys caeca is
observed in sediment with Corophium volutator, and forms horizontal burrows that
intersect with the Corophium volutator burrows. These and other nereids are known to
prey on Corophium species (Jensen & André, 1993). The polychaete Arenicola marina,
which is absent from the Chiridotea ichnocoenosis, is common, but with variable
density. Arenicola marina creates U-shaped burrows penetrating as deep as 15 cm into
the sediment (Christian et al., 2010) with distinctive mounds (Fig. 6D) at the excretory
openings of the burrows (Plante, 2010).

Mud facies
The mud facies has few, if any, surface traces because the sediment surface is covered with
algal mats (Fig. 6E), comprising primarily filamentous green algae (Rhizoclonium spp.,
Acrosiphonia spp., etc.) and brown algae (Fucus spp.). The visible organic content is
high and the sediment is a moderately well sorted fine sand to silt, with mean grain size
2.39 ø (0.19 mm), sorting index 0.71 ø, and coarse skew (skewness index -0.11).
The sediment maintains a fully-saturated state even during low tides (4–6 h exposure per
tidal cycle), represents the “soupy mud” environment described by Dashtgard, Gingras &
Pemberton (2008), and is not a significant substrate for epichnial traces.

Mya ichnocoenosis
The middle or mid-tidal reach sediment (4–5 h exposure per tidal cycle) is moderately
sorted medium sand with mean grain size 1.73 ø (0.30 mm), sorting index 0.90 ø, and
minimal skew (skewness index -0.01). The epichnia comprise primarily burrow openings
of pelecypod mollusks (notably Mya arenaria, but Macoma balthica is locally common),
with uniformly scattered mounded burrow openings of the annelid Arenicola marina
(Fig. 6F) and their associated fecal castings. The infauna also includes nereid polychaetes
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and is equivalent to the “Mya-Nereis virens Biome” of Newcombe (1935b). Sedimentologic
study in this zone is hampered by the extensive reworking caused by individuals clam
digging (restricted by permit) for this economically valuable mollusk.

Littorina ichnocoenosis
The lower portion of the middle reach (2–5 h exposure per tidal cycle) is moderately sorted
medium sand, with mean grain size 1.72 ø (0.30 mm), sorting index 0.81 ø, and minimal
skew (skewness index -0.03). The surface is generally unmarked except for the trails
of the invasive gastropod mollusk Littorina littorea (Fig. 7A). These distinctive, grooved
trails average one cm in width and are generally straight, often extending several
meters from start to end. The mollusks remain shallowly buried in the sediment until
exposed by a falling tide. These trails may be singular or tightly grouped depending on
the local density of the mollusks, and mating activity often brings trails together
(Johannesson et al., 2010).

Gravel facies
The gravel facies is characterized by poorly sorted fine gravel to coarse sand substrate with
mean grain size -1.65 ø (3.1 mm), sorting index of 2.04 ø, and coarse skew (skewness index
-0.12). Two separate parts of the study area are represented by this facies. A gravel bar
on the southwest boundary of the study area, the remnant of a glacial esker, is very coarse
and compacted, experiences from 4 to 8 h of exposure per tidal cycle, and is essentially
devoid of any surface traces or infauna. The other area is topobathymetrically low (0–4 h
exposure per tidal cycle), but hummocky and irregular. This area may in part represent
material dredged from the Lubec channel, but the gravel is in places less than one m
in thickness and underlain by dense clay of the Late Pleistocene Presumpscot Formation
(Oldale, 1989). The gravel surface prevents the generation of any surface traces, although
there is an abundant infauna (primarily polychaete annelids). The irregular surface
with permanent tidal pools supports a depauperate fauna of subtidal organisms
(including decapod crustaceans, echinoderms, and motile mollusks).

Mytilus ichnocoenosis
A band of sediment surrounding the gravel ichnocoenosis (2–4 h exposure per tidal cycle)
represents a mix of poorly sorted coarse sand and scattered medium gravel. The mean
grain size is 0.29 ø (0.82 mm), with sorting index of 1.64 ø, and minimal skew (skewness
index -0.03). The gravel is an attractive attachment substrate for the pelecypod mollusk
Mytilus edulis, and the surface is densely covered with small agglomerations of them
(Fig. 7B). During spring and early summer, the zone is host to abundant green and brown
algae, which are reduced in extent and prevalence later in the season. The gastropod
Littorina littorea is common when algae are present, representing the opportunistic nature of
this species (Wilhelmsen & Reise, 1994). The polychaete Arenicola marina is present in low
density and leaves the only significant surface trace with burrow mounds and tubular
fecal casts. This zone, in combination with the Littorina ichnocoenosis, is equivalent to the
“Balanus-Mytilus edulis Association” of Newcombe (1935a) or “Balanus-Littorina-Fucus
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Biome” of Newcombe (1935b), although the barnacle Balanus is only a minor component in
the study area because of the relative scarcity of large rocks for attachment.

Sandwave facies
Intertidal sandwaves are a characteristic feature of the outer littoral zone of the Bay of
Fundy region (Dalrymple, 1984). In the study area, sandwaves average 0.4 m in height and
vary from 12 to 18 m crest to crest. This zone is submerged longer than any other part

Figure 7 Epichnial traces on the modern tidal flat at Lubec, Maine. (A) Littorina ichnocoenosis. Active
trails of Littorina littorea on wet sand. (B) Mytilus ichnocoenosis. Aggregations of Mytilus edulis on
muddy sediment. (C) Sandwave facies. Mega-ripples covering surface of large wavelength sandwaves with
standing water in interdune troughs. (D) Sandwave facies. Trail from crab Carcinus maenas stranded by a
falling tide. (E) Sandwave facies. Drag mark from a cobble with attached seaweed. (F) Congregating
tracks of Larus argentatus smithsonianus characteristic of “feeding frenzy” scavenging behavior.

Full-size DOI: 10.7717/peerj.6975/fig-7
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of the flat and experiences strong tidal currents with shifting mega-ripples up to 10 cm
in height capping the sandwaves (Fig. 7C). Dominant current direction is toward the
southwest (aligned with the outgoing tide), resulting in large-scale crossbeds on a scale
equivalent to that of the height and wavelength of the sandwaves, modified by small-scale
crossbeds developed from the mega-ripples. The sediment is well sorted fine sand with
mean grain size 2.20 ø (0.2 mm), sorting index of 0.44 ø, and coarse skew (skewness index
-0.16), and usually remains nearly or fully saturated. Decapod crustaceans, gastropods,
and echinoderms are found in the lower reach of the flat (0–4 h exposure) where they are
often stranded by spring tides. Infaunal annelids, both polychaetes and oligochaetes,
are abundant in this zone, and, locally, tubes of the annelid Clymenella torquata form
dense accumulations—a pattern seen throughout the Bay of Fundy region (Featherstone &
Risk, 1977). Surface traces of invertebrates are sparsely scattered, comprising trails of
Littorina littorea and other gastropods, decapod crustaceans including Carcinus maenas
(Fig. 7D) and Pagurus spp., and common drag marks from cobbles bound to drifting
seaweed (Fig. 7E). Spring low tides expose the sand dollar echinoid Echinarachnius parma
for short periods, and these often leave short, wide trails. The most prevalent surface traces
are footprints of the gull Larus argentatus smithsonianus (Fig. 7F), the apex predator/
scavenger on the tidal flats.

Paleoichnocoenoses
The geologic column covering the upper portion of the Fielder Ridge section of the Hartselle
Sandstone exposure (Fig. 8) comprises a regressive succession of subtidal, intertidal,
and upper shoreface deposits, followed by a rise in relative sea level and transition into
the Bangor Limestone. The base of the Hartselle is no longer exposed here (because
of slumping and vegetation overgrowth), but a complete section was described by
Kopaska-Merkel & Rindsberg (2016). Within the study section, the lower unit (Unit 1) is a
medium-bedded (10–35 cm bed thickness), fine- to medium-grained quartz sandstone
(Fig. 9A), with low-angle directionally-oriented and flaser crossbeds, and abundant
hypichnial traces and drag mark casts. It is overlain by approximately two m of
fine-grained sandstone (one to three cm bed thickness) with shale interbeds (Unit 2).
The sandstone has a lenticular to wavy ripple-bedding (Fig. 9B), with flaser bedding
expressed in the thicker beds. This unit contains abundant epichnial and hypichnial trace
fossils, with occasional preservation of sub-vertical to vertical burrows and internal
crossbedding. The ripple-bedded unit is overlain by a coarse-grained quartz sandstone
containing abundant brecciated clasts of sideritic claystone and calcareous fossil debris
(Unit 3). This unit grades upward into similar coarse-grained sandstone with low-angle
cross-stratification (Unit 4). These coarse units lack any unequivocal trace fossils.
The base of the Bangor Limestone is a micritic limestone with occasional hypichnial traces
(Unit 5), grading upward into calcareous shale (Unit 6).

Unit 1: Planolites-Phycodes paleoichnocoenosis
The lower, medium-bedded quartz sandstone unit (Unit 1) is characterized by abundant
hypichnial traces, attributed by Rindsberg (1994) to Planolites, Phycodes, Ptychoplasma,
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and Dactylophycus, and drag mark casts (Fig. 9C). Epichnial traces are uncommon and
poorly preserved. The relatively thick bedding allows large slabs to be removed and
examined, but the beds thin upward and grade into the ripple-bedded unit. The thinner
beds often have abundant pelecypod mollusk burrows (Lockeia cordata). Trilobite pygidia
and small brachiopods may co-occur with the burrows (Fig. 10A). Drag mark casts
are also common in these thinner beds (Fig. 10B).

Unit 2
The ripple-bedded sandstone and shale unit (Unit 2) is characterized by abundant trace
fossils, both epichnial and hypichnial, with some preservation of endichnial burrows.

Figure 8 Geologic column of the upper portion of Hartselle Sandstone exposure at Fielder Ridge,
Colbert County, Alabama. Datum is arbitrary and does not mark the base of the Hartselle Sandstone
(which is no longer exposed at this site). Full-size DOI: 10.7717/peerj.6975/fig-8
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Figure 9 Hartselle Sandstone tidal flat deposits, Fielder Ridge, Colbert County, Alabama. (A) Unit 1,
medium-bedded quartz sandstone. Head of pick approximately 35 cm tip to tip. (B) Unit 2, interbedded
fine-grained quartz sandstone and interbedded shale. Note the characteristic lenticular, starved ripple
bedding of this unit. (C) Slab from Unit 1, hypichnial view, showing abundant traces and long drag mark
(arrows). Hand for scale. Full-size DOI: 10.7717/peerj.6975/fig-9
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Rarely are traces reworked by younger traces. The beds in Unit 2 represent, for the most
part, starved ripples, with limited influx of coarser clastic material. The interbedded shales
in Unit 2 contain pyrite, and some portions of the sandstone contain oxidized pyrite

Figure 10 Hartselle Sandstone trace fossils. (A) Lockeia cordata, with trilobite body fossil (arrow),
epichnial, MMNS IP-10016. (B) Drag mark casts (arrows), hypichnial view, MMNS IP-10014. (C) Cross-
section of rippled sandstone, MMNS IP-10013. (D) Diplichnites gouldi, showing displaced tracks and
push-up mounds (arrows) as animal moved upslope on loose sand, epichnial view, MMNS IP-10025.
(E) Haplotichnus ornatus (arrow), epichnial view, MMNS IP-10021. (F) Nereites? isp. (arrows), epichnial
view, MMNS IP-10020. (G) Petalichnus? isp. (arrow), epichnial view, MMNS IP-10024. All specimens
whitened with ammonium chloride. Full-size DOI: 10.7717/peerj.6975/fig-10
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concretions. Fine carbonized plant remains are present in some ripple troughs. The thin,
lenticular to wavy beds (Fig. 10C) are enveloped in soft shale and can be readily extracted
from the outcrop, which has aided in the preservation of the traces. Three distinct
paleoichnocoenoses are delineated within this unit. There is no observed pattern to the
vertical sequence of individual zones.

Diplichnites paleoichnocoenosis
The epichnial traces ofDiplichnites gouldi (Fig. 10D) are ubiquitous in this paleoichnocoenosis.
This trace was described by Rindsberg (1994) as Petalichnus isp., but the distinctive
double series of parallel rows of blunt tracks lacking any midline trace are definitive for
D. gouldi (Smith et al., 2003), although there is disagreement regarding the ichnotaxonomy
(Minter & Braddy, 2009). Other traces include a looping, self-crossing trail described
as Haplotichnus ornatus by Rindsberg & Kopaska-Merkel (2005) (Fig. 10E), trails
attributed to Uchirites by Rindsberg (1994), a variety of unidentified tracks (Figs. 10F and
10G), and tubular fecal castings (Fig. 11A). This paleoichnocoenosis is observed in the
thin (one to three cm), lenticular-bedded sandstone with shale interbeds. It corresponds,
in part, with the Hartsellea assemblage described by Rindsberg (1994) by assignment of the
actual Hartsellea-bearing beds into a separate paleoichnocoenosis.

Hartsellea paleoichnocoenosis
The Hartsellea paleoichnocoenosis as defined here is more restrictive than the Hartsellea
assemblage described by Rindsberg (1994) and is characterized by abundant, nearly
monospecific collections of burrows and trails of the ichnospeciesHartsellea sursumramosa.
The epichnial traces are lined (Fig. 11F). The burrows of Hartsellea sursumramosa are not
strictly vertical (Fig. 11G). Hypichnial traces cannot rule out connection to multiple
openings. The burrows do not penetrate more than one or two cm into the sandstone.
This paleoichnocoenosis is associated with thicker (two to five cm), wavy-bedded
sandstone.

Lockeia paleoichnocoenosis
The Lockeia paleoichnocoenosis corresponds to the Lockeia assemblage described by
Rindsberg (1994) and is characterized by abundant, nearly monospecific collections
of burrows of Lockeia siliquaria (Figs. 12A and 12B). Epichnia comprise ovate siphonal
openings. These traces are significantly smaller than the ichnospecies Lockeia cordata
found in the lower sandstone Unit 1 and penetrate one or two cm into the sandstone.
This paleoichnocoenosis is associated with thicker (two to five cm), horizontally-bedded
sandstone.

Unit 3
The coarse-grained quartz sandstone containing abundant brecciated clasts of sideritic
claystone and calcareous fossil debris (Unit 3) is characterized by trough and tabular
crossbed sets two to three cm thick, large clasts up to four cm in diameter, with disarticulated
crinoid and blastoid columnals, broken fenestrellid bryozoans and small, fragmented
brachiopods. No ichnofossils were observed.
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Unit 4
The uppermost Hartselle Sandstone beds (Unit 4) comprise coarse-grained quartz sandstone
with enough echinoderm debris to be termed calcareous. The thin (one to two cm)

Figure 11 Hartselle Sandstone trace fossils. (A) Fecal cast (white arrow), withDiplichnites gouldi (black
arrow), epichnial view, MMNS IP-10019. (B) Nereites missouriensis, showing possible biofilm, epichnial
view, MMNS IP-10022. (C) Diplichnites gouldi, showing possible wet to dry tracks (range marked by
arrows), epichnial view, MMNS IP-10019. (D) Diplichnites gouldi with crossing trace (aligned with
arrow), epichnial view, MMNS IP-10018. (E) Diplichnites gouldi, chaotic tracks (arrow) indicative of
“feeding frenzy” behavior, epichnial view, MMNS IP-10023. (F)Hartsellea sursumramosa, epichnial view,
MMNS IP-10012. (G) Hartsellea sursumramosa, lateral view showing burrows, epichnial surface is up,
MMNS IP-10015. All specimens whitened with ammonium chloride.

Full-size DOI: 10.7717/peerj.6975/fig-11
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beds are collected into bedsets up to one m thick that have a low-angle crossbedded
fabric in outcrop. Claystone clasts are a minor component in some beds. No ichnofossils
were observed.

DISCUSSION
The depositional environments of the Hartselle Sandstone at Fielder Ridge can be
interpreted by comparison with the characteristics of a modern macro-tidal flat observed
at the Lubec study area.

Wind and wave influence
In general, wave dominance results in coarser sediment, including reworking of lithified
material, while tide dominance is associated with silt and clay deposition. The distinction
of degree between wave vs. tidal dominance of a depositional environment is difficult
to determine at a small scale, but at a large scale, tidal dominance is characterized by a
series of offshore banks and ridges (Anthony & Orford, 2002), a depositional pattern
represented regionally by that of the Hartselle Sandstone (Fig. 1B). Wave vs. tide dominance
can also be evaluated in the vertical sequence of strata (Fig. 8). The bidirectionally-oriented
and flaser crossbeds in the lower Unit 1, and the rhythmically bedded lenticular and
wavy ripples of Unit 2, support the interpretation of tidal current rather than wave
influence. The coarse, brecciated Unit 3 of the outcrop, equivalent to the multiple crossbed
set facies of Thomas & Mack (1982), has the characteristics of wave dominance and is
interpreted as an upper shoreface environment exposed to wind and wave action.
The overlying Unit 4, containing an increased amount of disarticulated fossils and
laminated beds collected into bedsets with low-angle crossbedded fabric, is interpreted as a
sublittoral facies resulting from the progradation and reworking of shoreface deposits
associated with a rise in sea level. It is equivalent to the horizontally laminated sandstone
facies of Thomas & Mack (1982).

Brackish-water influence
The high diversity and good preservation of ichnofossils in the Hartselle Sandstone at
Fielder Ridge are evidence for the lack of brackish-water influence. In modern estuarine

Figure 12 Hartselle Sandstone trace fossils. Lockeia siliquaria, MMNS IP-10017. (A) Epichnial view,
with ovate openings of siphonal tubes (arrows). (B) Hypichnial view. Specimens whitened with
ammonium chloride. Full-size DOI: 10.7717/peerj.6975/fig-12
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settings, biologic traces from the fluvial-tidal transition zone have little preservation
potential (Shchepetkina et al., 2016). In fact, zones of fresh and salt water mixing are
characterized by a general impoverishment of ichnodiversity (Gingras, MacEachern &
Dashtgard, 2012). Sedimentologically, zones of fluvial-tidal mixing are muddy and
clay-rich because of flocculation of transported clays in the presence of saltwater. Although
Unit 2 of the Hartselle includes bed sets of sand-starved ripples, the unit is overall
predominantly quartz sandstone with only thin beds of clay shale. The starved ripples
indicate no significant sandy sediment influx from a nearby fluvial or estuarine source.
The lower Unit 1 comprises quartz sandstone and lacks significant clay or shale.

All four of the delineated units of the Hartselle Sandstone preserve some degree of
crossbedding, but lack the gross fabric described as inclined heterolithic stratification or
IHS (Thomas et al., 1987) that characterizes estuarine tidal deposits (Gingras, MacEachern &
Dashtgard, 2012). The Hartselle beds are atypical for a soft-substrate Skolithos
ichnofacies, lacking the extensive vertical burrowing that is considered diagnostic for
brackish-water conditions (Buatois et al., 2005; Hauck et al., 2009).

Distribution of distinct microenvironments
The Lubec study covered an area of approximately 60 ha. This is a small section of coastal
zone, yet it can be subdivided into nine distinct microenvironments, each represented
by characteristic fauna and flora or sedimentologic facies. The diversity of traces is
greatest proximal to the shoreface, where sediment stability is maximized, emphasizing
the importance of physical energy as an additional factor in a macro-tidal regime.
The delineation of four distinct ichnocoenoses in Units 1 and 2 plus the lithologically
defined Units 3 and 4 within the Hartselle at Fielder Ridge are comparable to the diversity
of environments found in the modern study area (Table 1).

In the lowest beds, the predominance of hypichnial, horizontal traces, their overall
abundance and diversity, and inclusion of body fossils of marine organisms are

Table 1 Comparison of modern ichnocoenoses and sedimentologic facies at Lubec, Maine with
paleoichnocoenoses and lithologic units in the Hartselle Sandstone at Fielder Ridge, Alabama.

Hartselle Sandstone Lubec embayment

Fielder Ridge unit Paleoichnocoenosis or facies Modern ichnocoenosis or facies

(No equivalent) Mytilus ichnocoenosis

4 Littoral to sublittoral coarse sandstone and
gravel, with marine fossils

Gravel facies

3 Coarse sandstone with abundant claystone
clasts and broken fossil debris

Upper shoreface facies

2 Diplichnites paleoichnocoenosis Chiridotea ichnocoenosis
Littorina ichnocoenosis

Hartsellea paleoichnocoenosis Corophium ichnocoenosis

Interbedded shales Mud facies

Lockeia paleoichnocoenosis Mya ichnocoenosis

1 Planolites-Phycodes paleoichnocoenosis Sandwave facies
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representative of the Cruziana ichnofacies (Buatois & Mángano, 2011) and a sublittoral
depositional environment. It is equivalent to the interbedded crossbedded and rippled
sandstone facies of the Hartselle described by Thomas & Mack (1982). The upper part of
this unit, at least, was likely situated within wave base, and the Lockeia-bearing beds
probably represent the distal portion of tidal flats, analogous to the Mya ichnocoenosis of
the modern Lubec flats. The lower portion, with low-angle crossbeds and preserved
drag marks, indicate an environment similar to the sandwave facies at Lubec, which
extends into the sublittoral zone.

The ripple-bedded Unit 2 preserves the best evidence for a meso- or macro-tidal marine
environment. The ripple-bedded sandstone and shale unit (Unit 2) is equivalent to the
rippled sandstone-mudstone facies of the Hartselle described by Thomas & Mack (1982)
and the starved ripples indicate a relatively muddy nearshore environment with limited
influx of coarser clastic material. The interbedded shales in Unit 2 contain pyrite, and
some portions of the sandstone contain oxidized pyrite concretions, which is consistent
with a shallow anoxic reduced zone similar to that present in the Lubec tidal flat. The shale
beds are analogous to the modern mud facies at Lubec. The diversity of epichnial traces
on the rippled sandstones conforms to similar traces found in the modern Chiridotea,
Corophium, and Mya ichnocoenoses. The Diplichnites paleoichnocoenosis shares many
characteristics with the modern Chiridotea ichnocoenosis. Modern trails of Chiridotea
coeca closely resemble those of Haplotichnus ornatus, described by Rindsberg & Kopaska-
Merkel (2005), and show some similarity with Uchirites implexus. The ichnogenus
Haplotichnus was considered a junior synonym of Treptichnus by Getty & Bush (2017),
who noted that Haplotichnus ornatus does not fit within Treptichnus nor the related
ichnogenus Gordia. Regardless of nomenclature, the traces fall into the architectural design
defined by Buatois et al. (2017) as simple horizontal trails, are analogous to similar
traces characterizing the modern Chiridotea ichnocoenosis, and imply a proximal
(near the shore) location on a tidal flat. Some traces, such as that of Nereites missouriensis
(Fig. 11B), suggest the presence of an extensive biofilm as well (compare with Fig. 6B).
The Hartsellea paleoichnocoenosis resembles the modern Corophium ichnocoenosis, with
its dense collection of surface trails created by the amphipods leaving their burrows and
seeking either food or mates. Rindsberg (1994) attributed the traces to a polychaete,
analogous to Neanthes virens (= Alitta virens), also known from Bay of Fundy tidal flats.
We interpret the traces as attributable to an amphipod-like arthropod analogous to
Corophium. The epichnial traces are lined (Fig. 11F), but this could be a result of horizontal
movement through biofilm. The burrows of Hartsellea sursumramosa are not U-shaped
like those of Corophium, but are also not strictly vertical (Fig. 11G) and hypichnial
traces cannot rule out connection to multiple openings. Whether or not the actual trace
maker is an amphipod, this ichnocoenosis is thought to be analogous with the modern
Corophium ichnocoenosis. The Lockeia paleoichnocoenosis is characterized by its
presumptive molluscan trace maker. These traces are significantly smaller than the
ichnospecies Lockeia cordata found in the lower sandstone Unit 1, and attributable to a
smaller pelecypod mollusk burrowing only one or two cm into the sediment. Rindsberg
(1994) suggested that the small size and dense accumulations represented a mortality
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event of a nursery population, but similarly dense accumulations of mature Macoma balthica
and Mya arenaria occur today on the Lubec tidal flats. This ichnocoenosis is considered
analogous with themodernMya ichnocoenosis, and indicates a more distal location on the flat.

Diversity of epichnia
A total of 23 separate ichnotaxa, most with at least some epichnial expression, were
reported by Rindsberg (1994) from the Fielder Ridge locality. Collections from the exposure
at Fielder Ridge have added additional undescribed ichnotaxa, with an estimated total
of 25 or more distinct epichnia (as well as additional hypichnia). This number is
comparable to the general variety of traces found at the Lubec study area and represents
a similar degree of ichnodiversity.

Degree of reworking
The ichnofossils preserved in Units 1 and 2 show almost no evidence of reworking by
bioturbation, a trait common tomost Hartselle trace fossils regardless of locality (Rindsberg,
1994). The presence of pyrite and limonite (oxidized pyrite) is evidence for shallow
anoxic conditions in the original sediment. In the modern study area environment, only
deep-burrowing mollusks (Mya) and annelids (Arenicola) with well-irrigated, relatively
permanent vertical burrows open to the sediment surface inhabit this anoxic layer, thereby
limiting the depth and character of any bioturbation. This is a pattern similar to that
described by Baucon & Felletti (2013), where burrowing is restricted by the adaptation of
organisms to the dysoxic environment. The extensive preservation of crossbedding in
nearly all of the strata of Units 1 and 2 argues further against any significant bioturbation
of the sediment. The presence of abundant epichnia in Unit 2 coupled with their poor
preservation in Unit 1 supports reworking of the sediment surface by tidal currents in the
more distal and marginally subtidal portion of the flat.

Predation
One of the most distinctive and prevalent of the traces found in the ripple-bedded Unit 2
of the Hartselle is D. gouldi. This trace has been attributed to a myriapod (Smith et al.,
2003), but there are several other interpretations in the literature (Getty et al., 2017).
However, there are reasons to support the interpretation of the D. gouldi ichnofossils
from the Hartselle Sandstone as myriapod traces. Myriapods are not strictly terrestrial
and there are many living genera of littoral myriapods (Barber, 2009), in particular,
littoral chilopods or centipedes. There are more than 40 modern species of geophilomorph
centipedes known to tolerate immersion in salt water and that inhabit littoral environments
(Barber, 2011, 2019).

The traces ofD. gouldi comprise a double row of parallel tracks lacking any evidence of a
medial impression. In better-preserved specimens (Fig. 13), the tracks can be resolved into
sets of pits aligned in staggered, oblique, en-echelon rows. Minter, Mángano & Caron
(2012) ascribe similar en-echelon trackways of Cambrian trilobites to Diplichnites, but the
Hartselle trackways are identical to those described by Manton (1952) for centipedes.
The stride, measured as the length of a single track row (Minter, Braddy & Davis, 2007),
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varies from as short as five to six steps with row overlap of two to three steps, indicating a
slow gait (Fig. 13A), to groups of 9–10 individual steps with overlap of five to six steps,
indicating a faster gait (Fig. 13B). The pattern, where clearly preserved, indicates the
direction of travel of the animal (Manton, 1952). Long trackways of D. gouldi (Fig. 13A)
also demonstrate undulatory movement, characteristic of centipedes when moving
quickly (Aoi, Egi & Tsuchiya, 2013) but not of trilobites or other marine arthropods.
The trackways have a maximum width of 15–18 mm, which is within the range seen in
modern centipedes. The track rows often appear to overlap in double sets, which suggests
11–19 pairs of legs and an overall length of less than 10 cm.

The detailed preservation of the tracks of D. gouldi themselves provide evidence of a
partially saturated sediment surface exposed to the air. The response of arthropod tracks
to water saturation of the substrate was described by McNamara (2014) for Paleozoic
arthropod trackways. There are several Hartselle examples in which tracks of D. gouldi, on
a single bedding plane, appear to move from saturated to unsaturated sand (Fig. 11C),
a common feature on the modern flats where water saturation is highest in the troughs of
ripples and tracks become indistinct. There are also cases where tracks move upslope and

Figure 13 Diplichnites gouldi trackways, Hartselle Sandstone. Individual track series are marked with
light gray dashed lines. (A) A curving track, showing the undulating midline and two crossing trails,
MMNS IP-10062. (B) Same track as Fig. 10D, moving up a ripple face. Black triangles indicate push-up
mounds opposite animal movement. En-echelon track rows indicate direction of travel (gray arrow),
MMNS IP-10025. (C) Same track as Fig. 11D. Curving track with crossing trail and variation in gait.
En-echelon track rows indicate direction of travel (gray arrow), MMNS IP-10018.

Full-size DOI: 10.7717/peerj.6975/fig-13
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appear to slip in loose sand (Figs. 10D and 13B), leaving push-up mounds opposite the
direction of movement, like those described for Diplichnites isp. by McNamara (2014).
Tracks attributed to Uchirites by Rindsberg (1994), morphologically similar to the tracks of
Chiridotea coeca and other isopod tracks (Uchman & Pervesler, 2006), often terminate
when crossed by D. gouldi (Fig. 11D). In these cases, the stride lengths of D. gouldi vary,
indicating that the animal turned toward and slowed before the encounter (Figs. 13A
and 13C). Perhaps most intriguing are the congregating tracks of multiple D. gouldi that
lead to chaotic “feeding frenzy” traces (Fig. 11E) suggestive of opportunistic scavenging
and intraspecific competition for food, a behavior not unlike that shown by the
modern gull Larus argentatus smithsonianus (Fig. 7F).

The prevalence ofD. gouldi tracks and their interpretation as feeding/scavenging traces of
a littoral chilopod are evidence for connection with an extensive terrestrial environment
adjacent to the tidal flat. The D. gouldi tracks also provide evidence for both the nearshore
location of the associated ichnocoenosis and a time period of exposure sufficient for
this type of feeding behavior. A lengthy exposure was particularly important for the chilopod
trace makers, which could rely only on terrestrial locomotion to avoid the incoming
tide, unlike modern avian apex predators. These considerations make the evidence for
surface predation and scavenging an important factor for recognition of a meso- to
macro-tidal littoral environment.

CONCLUSIONS
Many of the ethological classes (Seilacher, 1964), pascichnia (grazing traces), repichnia
(locomotory traces), many of the domichnia (dwelling traces), and likely some digestichnia
(digestive traces) (Vallon, 2012), found in the Hartselle can be attributed to crustacean
and myriapod arthropods rather than trilobites or worms. These traces were made on
exposed intertidal sediment and the data reported in this study support an interpretation
of meso- to macro-tidal deposition.

This study defines criteria to recognize tidal flat deposits in a meso- to macro-tidal
regime where waves and freshwater influx are minimal or non-existent. These criteria
include (1) limited influence of wind and waves on the depositional environment; (2) lack
of significant freshwater influence and therefore any persistent brackish environments;
(3) a distinct spatial distribution of microenvironments defined by substrate and exposure
period; (4) high diversity of epichnial traces directly associated with microenvironments
across the tidal flat; (5) generally low degree of reworking of traces by bioturbation
but high degree of reworking by tidal currents; and (6) preservation of traces of predation
and scavenging behavior on an exposed surface.

The Hartselle Sandstone study section is comparably characterized by (1) marine body
fossils in the lower described unit, indicative of a sublittoral environment distal from
the shoreline; (2) wavy and flaser bedding and crossbedding in the higher described units
demonstrative of tidal influence; (3) the vertical distribution of microenvironments
representing a regressive, distal to proximal setting; (4) low degree of reworking of traces or
bedding by subsequent bioturbation; (5) high diversity of epichnial traces; and (6) traces
interpreted as recording predation and scavenging on an exposed surface. These features,
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together with the regional depositional pattern of the Hartselle Sandstone as tide-influenced
bars and shoals, support a meso- to macro-tidal interpretation of the depositional
environment.

It seems difficult to imagine how such a variety of epichnial traces could be preserved
so well in an environment with the periodic inundation and exposure of a tidal flat.
Experiments have shown that the shear strength of modern Bay of Fundy tidal flat
sediments is increased by more than an order of magnitude when exposed mid-day in the
summer when evaporation is high (Amos, Van Wagoner & Daborn, 1988) and erodibility
of the sediment surface decreases inversely (Amos et al., 1992). Studies have also
shown that damp sand is stable across a range of water saturations (Scheel et al., 2008).
The presence of biofilms is a characteristic of the modern Lubec tidal flat and the
formation of a sun-dried biofilm could serve to bind the sediment (Grant, Mills &
Hopper, 1986) and such preservation may be evidence for biofilms. In a fetch-limited,
non-estuarine setting, such a mechanism could be sufficient to preserve detailed
epichnial traces (Seilacher, 2008).
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