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This paper considers identification and estimation of the Quantile Treatment Ef-
fect on the Treated (QTT) under a straightforward distributional extension of the
most commonly invoked Mean Difference in Differences Assumption used for
identifying the Average Treatment Effect on the Treated (ATT). Identification of
the QTT is more complicated than the ATT though because it depends on the un-
known dependence (or copula) between the change in untreated potential out-
comes and the initial level of untreated potential outcomes for the treated group.
To address this issue, we introduce a new Copula Stability Assumption that says
that the missing dependence is constant over time. Under this assumption and
when panel data is available, the missing dependence can be recovered, and the
QTT is identified. We use our method to estimate the effect of increasing the mini-
mum wage on quantiles of local labor markets’ unemployment rates and find sig-
nificant heterogeneity.
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1. Introduction

Although most research using program evaluation techniques focuses on estimating the
average effect of participating in a program or treatment, in some cases a researcher
may be interested in understanding the distributional impacts of treatment participa-
tion. For example, for two labor market policies with the same mean impact, policy-
makers are likely to prefer a policy that tends to increase income in the lower tail of
the income distribution to one that tends to increase income in the middle or upper
tail of the income distribution. In contrast to the standard linear model, the treatment
effects literature explicitly recognizes that the effect of treatment can be heterogeneous
across different individuals (Heckman and Robb (1985), Heckman, Smith, and Clements
(1997)). Recently, many methods have been developed that identify distributional treat-
ment effect parameters under common identifying assumptions such as selection on
observables (Firpo (2007)), access to an instrumental variable (Abadie, Angrist, and Im-
bens (2002), Chernozhukov and Hansen (2005), Carneiro and Lee (2009), Frolich and
Melly (2013)), or access to repeated observations over time (Athey and Imbens (2006),
Bonhomme and Sauder (2011), Chernozhukov, Fernandez-Val, Hahn, and Newey (2013),
Jun, Lee, and Shin (2016)). This paper focuses on identifying and estimating a particu-
lar distributional treatment effect parameter called the Quantile Treatment Effect on the
Treated (QTT) using a Difference in Differences Assumption for identification.

Empirical researchers commonly employ Difference in Differences Assumptions to
credibly identify the Average Treatment Effect on the Treated (ATT) (early examples in-
clude Card (1990), Card and Krueger (1994)). Despite the prevalence of DID methods in
applied work, there has been very little empirical work studying the distributional effects
of a treatment with identification that exploits having access to repeated observations
over time (Recent exceptions include Meyer, Viscusi, and Durbin (1995), Finkelstein and
McKnight (2008), Pomeranz (2015), Havnes and Mogstad (2015)).

The first contribution of the current paper is to provide identification and estima-
tion results for the QTT under a straightforward extension of the most common mean
Difference in Differences Assumption (Heckman and Robb (1985), Heckman, Ichimura,
Smith, and Todd (1998), Abadie (2005)). In particular, we strengthen the assumption of
mean independence between (i) the change in untreated potential outcomes over time
and (ii) whether or not an individual is treated to full independence. We call this as-
sumption the Distributional Difference in Differences Assumption.

For empirical researchers, methods developed under the Distributional Difference
in Differences Assumption are valuable precisely because the identifying assumptions
are straightforward extensions of the mean Difference in Differences assumptions that
are frequently employed in applied work. This means that almost all of the intuition for
applying a difference in differences method for the ATT will carry over to identifying the
QTT using our method.

Although applying a mean Difference in Differences Assumption leads straightfor-
wardly to identification of the ATT, using the Distributional Difference in Differences
Assumption to identify the QTT faces some additional challenges. The reason for the
difference is that mean difference in differences exploits the linearity of the expectation
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operator. In fact, with only two periods of data (which can be either repeated cross sec-
tions or panel) and under the same Distributional Difference in Differences Assumption
considered in the current paper, the QTT is known to be partially identified (Fan and Yu
(2012)) without further assumptions. In practice, these bounds tend to be quite wide.
Lack of point identification occurs because the dependence (or copula) between (i) the
change in untreated potential outcomes for the treated group and (ii) the initial level
of untreated potential outcomes for the treated group is unknown. For identifying the
ATT, knowledge of this dependence is not required and point identification results can
be obtained.

To move from partial identification back to point identification, we introduce a
new assumption which we call the Copula Stability Assumption. This assumption says
that the copula, which captures the unknown dependence mentioned above, does not
change over time. To give an example, consider the case where the outcome of interest
is earnings. The Copula Stability Assumption says that if we observe in the past that
the largest earnings increases tended to go to those with the highest earnings, then,
in the present (and in the absence of treatment), the largest earnings increases would
have gone to those with the highest earnings. Importantly, this does not place any re-
strictions on the marginal distributions of outcomes over time allowing, for example,
the outcomes to be nonstationary. There are two additional requirements for invoking
this assumption relative to the mean Difference in Differences Assumption: (i) access to
panel data (repeated cross sections is not enough) and (ii) access to at least three periods
of data (rather than at least two periods of data) where two of the periods must be pre-
treatment periods and the third period is post-treatment. We show that the additional
requirements that the Copula Stability Assumption places on the type of model that is
consistent with the Distributional Difference in Differences Assumption are small.

Based on our identification results, estimation of the QTT is straightforward and
computationally fast. Estimating the QTT relies only on estimating unconditional mo-
ments, empirical distribution functions, and empirical quantiles. We show that our esti-
mator of the QTT converges to a Gaussian process at the parametric rate

√
n and prove

that the empirical bootstrap can be used to approximate this limiting process. This result
allows us to conduct uniform inference over a range of quantiles and to test, for exam-
ple, whether the distribution of treated potential outcomes stochastically dominates the
distribution of untreated potential outcomes.

The second contribution of the paper is to extend the results to the case where the
identifying assumptions hold conditional on covariates. Here, we consider two cases.
First, we consider the combination of a Conditional Difference in Differences Assump-
tion and Unconditional Copula Stability Assumption. We show that that this setup is
consistent with a quantile regression-type model for untreated potential outcomes. In
this case, we provide very simple estimators for the QTT that are based on a first-step
estimation of the propensity score. Second, we consider the combination of a Condi-
tional Difference in Differences Assumption and Conditional Copula Stability Assump-
tion. This setup can allow for trends in untreated potential outcomes to depend on
covariates as is also the case for conditional mean Difference in Differences assump-
tions (Heckman et al. (1998), Abadie (2005)). Estimation is more challenging in this case
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though as it requires estimating conditional distribution and conditional quantile func-
tions directly.

We conclude the paper by analyzing the effect of increasing the minimum wage on
quantiles of the unemployment rates of local labor markets. Despite the average effect
of increasing the minimum wage on the unemployment rate being close to 0, using our
method, we find that the average effect masks substantial heterogeneity. The difference
between the 10th percentile of unemployment among counties that had higher mini-
mum wages and the 10th percentile of counterfactual unemployment had they not had
higher minimum wages is negative. However, the effect is quite different elsewhere in
the distribution. At the median and upper quantiles, the effect is positive. As long as
counties do not change their ranks (or at least do not change their ranks too much) in the
distribution of unemployment rates due to the increase in the minimum wage, these re-
sults indicate that counties with tight labor markets experienced decreases in the unem-
ployment rate following the minimum wage increase while counties with higher unem-
ployment rates experienced more unemployment due to the increase in the minimum
wage. We find similar results using alternative methods such as Quantile Difference in
Differences and Change in Changes (Athey and Imbens (2006)).

Because we focus on nonparametric identifying assumptions, the current paper is
related to the literature on nonseparable panel data models (Altonji and Matzkin (2005),
Evdokimov (2010), Bester and Hansen (2012), Graham and Powell (2012), Hoderlein and
White (2012), Chernozhukov et al. (2013)). The most similar of these is Chernozhukov
et al. (2013) which considers a nonseparable model and, similar to our paper, obtains
point identification for observations that are observed in both treated and untreated
states. Relative to Chernozhukov et al. (2013), we exploit having access to a control group
much more and our setup is compatible with more complicated distributional shifts in
outcomes over time such as the top of the income distribution increasing more than the
bottom of the income distribution.

Perhaps the most similar work to ours is Athey and Imbens (2006). Their Change
in Changes model identifies the QTT for models that are monotone in a scalar unob-
servable. They assume that the distribution of unobservables does not change over time
(though the distribution of unobservables can be different for the treated group and
untreated group) but allow for the return to unobservables to change over time. One
advantage of their approach relative to ours is that it only requires two periods of data.
However, our main assumptions are more closely related to DID assumptions that are
frequently invoked in empirical work.

2. Background

The setup and notation used in this paper is common in the statistics and economet-
rics literature. We consider a panel data case where the researcher has access to at least
three periods of data for all agents in the sample; we denote the three periods by t, t − 1,
and t − 2. We focus on the case of a binary treatment. We also focus, as is common in
the difference in differences literature, on the case where no one receives treatment be-
fore the final period which simplifies the exposition; a similar result for a subpopula-
tion of the treated group could be obtained with little modification in the more general
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case. Let D= 1 for individuals that are treated at time t (we suppress an individual sub-
script i throughout much of the paper to minimize notation)—these individuals form
the treated group—and let D = 0 for individuals that are never treated. The researcher
observes outcomes Yt , Yt−1, and Yt−2 for each individual in each time period. The re-
searcher also possibly observes some covariatesX .

Following the treatment effects literature, we assume that individuals have potential
outcomes in the treated or untreated state: Y1t and Y0t , respectively. The fundamental
problem is that exactly one (never both) of these outcomes is observed for a particu-
lar individual. Using the above notation, the observed outcome Yt can be expressed as
follows:

Yt =DY1t + (1 −D)Y0t �

Because no one is treated in previous periods, untreated potential outcomes are ob-
served for both the treated group and untreated group.1 That is,

Yt−1 = Y0t−1 and Yt−2 = Y0t−2�

For any particular individual, the unobserved potential outcome is called the coun-
terfactual. The individual’s treatment effect, Y1t − Y0t , is therefore never available be-
cause only one of the potential outcomes is observed for a particular individual. Instead,
the literature has focused on identifying and estimating various functionals of treatment
effects and the assumptions needed to identify them.

In cases where (i) the effect of a treatment is thought to be heterogeneous across
individuals and (ii) understanding this heterogeneity is of interest to the researcher, es-
timating distributional treatment effects such as quantile treatment effects is likely to be
important. Comparing the distribution of observed outcomes to a counterfactual distri-
bution of untreated potential outcomes is a very important ingredient for evaluating the
effect of a program or policy (Sen (1997), Carneiro, Hansen, and Heckman (2001)) and
provides more information than the average effect of the program alone. For example,
a policy maker may be in favor of implementing a job training program that increases
earnings for individuals in the lower tail of the distribution of earnings while decreasing
earnings of those in the the upper tail of the distribution of earnings even if the average
effect of the program is zero.

For some random variableW , the τ-quantile, wτ , ofW is defined as

wτ = F−1
W (τ) := inf

{
w : FW (w)≥ τ}�

where FW denotes the distribution of W . An example is the 0�5-quantile—the median.2

Researchers interested in program evaluation may be interested in other quantiles as
well. For example, researchers studying a job training program may be interested in the

1To clearly distinguish between treated and untreated potential outcomes, we use a potential outcomes
notation where Y1t , Y0t−1, Y0t−2 are observed outcomes for the treated group (but Y0t is not an observed
outcome for the treated group) and Y0t , Y0t−1, and Y0t−2 are observed outcomes for the untreated group.

2In this paper, we study quantile treatment effects. A related topic is quantile regression. See Koenker
(2005).
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effect of the program on low income individuals. In this case, they may study the 0�05 or
0�1-quantile. Similarly, researchers studying the effect of a policy on high earners may
look at the 0�95-quantile.

Let FY1t |D=1 and FY0t |D=1 denote the distributions ofY1t andY0t conditional on being
in the treated group, respectively. Then the Quantile Treatment Effect on the Treated
(QTT)3 is defined as

QTT(τ)= F−1
Y1t |D=1(τ)− F−1

Y0t |D=1(τ)�

The QTT is the parameter studied in this paper. Identification under Difference in Differ-
ences assumptions exploits the fact that, for the treated group, both a treated potential
outcome and an untreated potential outcome are observed (though at different points
in time). A treated potential outcome is never observed for the untreated group. For this
reason, difference in differences techniques are typically used to identify treatment ef-
fect parameters that are conditional on being part of the treated group; for example,
difference in differences methods for the average effect of participating in a treatment
also identify the average treatment effect on the treated, not the average treatment effect
for the population at large.

3. Identification

Let �Y0t = Y0t −Y0t−1 denote the time difference in untreated potential outcomes. The
most common nonparametric assumption used to identify the ATT in difference in dif-
ferences models is the following.

Assumption 3.1 (Mean difference in differences).

E[�Y0t |D= 1] = E[�Y0t |D= 0]�

This is the “parallel trends” assumptions that is common in applied research. It states
that, on average, the unobserved change in untreated potential outcomes for the treated
group is equal to the observed change in untreated outcomes for the untreated group.
To study the QTT, Assumption 3.1 needs to be strengthened because the QTT depends
on the entire distribution of untreated outcomes for the treated group rather than only
the mean of this distribution.

The next assumption strengthens Assumption 3.1 and this is the assumption main-
tained throughout the paper.

Distributional Difference in Differences Assumption.

�Y0t ⊥⊥D�

The Distributional Difference in Differences Assumption says that the distribution
of the change in untreated potential outcomes does not depend on whether or not the

3Quantile treatment effects were first studied by Doksum (1974) and Lehmann (1974).
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individual belongs to the treated or the untreated group. Intuitively, it generalizes the
idea of “parallel trends” holding on average to the entire distribution. In applied work,
the validity of using a difference in differences approach to estimate the ATT hinges on
whether the unobserved trend for the treated group can be replaced with the observed
trend for the untreated group. This is exactly the same sort of thought experiment that
needs to be satisfied for the Distributional Difference in Differences Assumption to hold.
Being able to invoke a standard assumption to identify the QTT stands in contrast to the
existing literature on identifying the QTT in similar models which generally require less
familiar assumptions on the relationship between observed and unobserved outcomes.

Using statistical results on the distribution of the sum of two random variables with
known marginal distributions but unknown copula, Fan and Yu (2012) showed that
this assumption is not strong enough to point identify the counterfactual distribution
FY0t |D=1, but it does partially identify it. In practice, these bounds tend to be very wide—
too wide to be useful in most applications.

3.1 Main results: Identifying QTT in difference in differences models

The main theoretical contribution of this paper is to impose a Distributional Differ-
ence in Differences Assumption plus additional data requirements and an additional
assumption that may be plausible in many applications to identify the QTT. The ad-
ditional data requirement is that the researcher has access to at least three periods of
panel data with two periods preceding the period where individuals may first be treated.
This data requirement is stronger than is typical in most difference in differences setups
which usually only require two periods of repeated cross-sections (or panel) data. The
additional assumption is that the dependence—that is, the copula4—between (i) the
change in untreated potential outcomes for the treated group and (ii) the initial level of
untreated potential outcomes for the treated group is stable over time. This assumption
says that if, in the past, the largest increases in outcomes tend to go to those initially at
the top of the distribution, then in the present, the largest increases in outcomes will
tend to go to those who start out at the top of the distribution. It does not restrict what
the distribution of the change in outcomes over time is nor does it restrict the distribu-
tion of outcomes in the previous period; instead, it restricts the dependence between
these two random variables. We discuss this assumption in more detail and show how it
can be used to point identify the QTT below.

Intuitively, the reason why a restriction on the dependence between (�Y0t |D = 1)
and (Y0t−1|D = 1) is useful is the following. If the joint distribution (�Y0t �Y0t−1|D = 1)
were known, then FY0t |D=1 (the distribution of interest) could be derived from it. The
marginal distributions F�Y0t |D=1 (through the Distributional Difference in Differences
Assumption) and FY0t−1|D=1 (from the data) are both identified. However, because ob-
servations are observed separately for untreated and treated individuals, even though

4The copula of two random variables is the joint distribution of the ranks of the two random variables.
It contains all the information about the dependence between the two random variables, but it does not
contain any information about the marginal distributions of the random variables.
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each of these marginal distributions are identified, the joint distribution is not identi-
fied. Since, from Sklar’s theorem (Sklar (1959)), joint distributions can be expressed as
the copula function (capturing the dependence) of the two marginal distributions, the
only piece of information that is missing is the copula.5 We use the idea that the depen-
dence is the same between period t and period (t− 1). With this additional information,
F�Y0t �Yt−1|D=1 is identified and, therefore, the counterfactual distribution of untreated
potential outcomes for the treated group, FY0t |D=1, is identified.

The time invariance of the dependence between (�Y0t |D= 1) and (Y0t−1|D= 1) can
be expressed in the following way. Let F�Y0t �Y0t−1|D=1 be the joint distribution of �Y0t and
Y0t−1 for the treated group. By Sklar’s theorem,

F�Y0t �Y0t−1|D=1
(
δ� y ′) = C�Y0t �Y0t−1|D=1

(
F�Y0t |D=1(δ)�FY0t−1|D=1

(
y ′))� (1)

where C�Y0t �Y0t−1|D=1(·� ·) is a copula function.6 Next, we state the second main assump-
tion which replaces the unknown copula with the copula for the same outcomes but in
the previous period which is identified because no one is treated in the periods before t.

Copula Stability Assumption.

C�Y0t �Y0t−1|D=1(·� ·)= C�Y0t−1�Y0t−2|D=1(·� ·)�

The Copula Stability Assumption says that the dependence between (�Y0t |D =
1) and (Y0t−1|D = 1) is the same as the dependence between (�Y0t−1|D = 1) and
(Y0t−2|D = 1). It is important to note that this assumption does not require any par-
ticular dependence structure, such as independence or perfect positive dependence;
rather, it requires that whatever the dependence structure is in the past, one can recover
it and reuse it in the current period. It also does not require choosing any parametric
copula. However, it may be helpful to consider a simple, more parametric example. If
the copula of (�Y0t−1|D= 1) and (Y0t−2|D= 1) is Gaussian with parameter ρ, the Cop-
ula Stability Assumption says that the copula continues to be Gaussian with parameter
ρ in period t but the marginal distributions are allowed to change in unrestricted ways.
Likewise, if the copula is Archimedean, the Copula Stability Assumption requires the
generator function to be constant over time but the marginal distributions can change
in unrestricted ways.

One of the key insights of this paper is that, in some particular situations such as the
panel data case considered in the paper, we are able to observe the historical depen-
dence between the marginal distributions. There are many applications in economics
where the missing piece of information for identification is the dependence between
two random variables. In those cases, previous research has resorted to (i) assuming
some dependence structure such as independence or perfect positive dependence or

5For a continuous distribution, the copula representation is unique. Joe (1997), Nelsen (2007), Joe (2015)
are useful references for more details on copulas.

6The bounds in Fan and Yu (2012) arise by replacing the unknown copula function C�Y0t �Y0t−1|D=1(·� ·)
with those that make the upper bound the largest and lower bound the smallest.
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(ii) varying the copula function over some or all possible dependence structures to re-
cover bounds on the joint distribution of interest. To our knowledge, we are the first to
use historical observed outcomes to obtain a historical dependence structure and then
assume that the dependence structure is stable over time.

Before presenting the identification result, we need some additional assumptions.
First, let �Yt = Yt − Yt−1. Let �Yt|D=0 denote the support of the change in outcomes
for the untreated group in period t. Let �Yt−1|D=1, Yt−1|D=1, and Yt−2|D=1 denote the
support of the change in outcomes for the treated group in period (t − 1), the support
of outcomes for the treated group in period (t − 1), and the support of outcomes for the
treated group in period (t − 2), respectively. And let X denote the support ofX .

Assumption 3.2. Each of the random variables �Yt for the untreated group and �Yt−1,
Yt−1, and Yt−2 for the treated group are continuously distributed on their support with
densities that are uniformly bounded from above and bounded away from 0.

Assumption 3.3. The observed data {Yit�Yit−1�Yit−2�Xi�Di}ni=1 are independent and
identically distributed draws from the joint distribution FYt�Yt−1�Yt−2�X�D; and Yit =
DiY1it + (1 −Di)Y0it , Yit−1 = Y0it−1, and Yit−2 = Y0it−2.

Assumption 3.2 says that outcomes are continuously distributed. Copulas are
unique on the range of their marginal distributions; thus, continuously distributed out-
comes guarantee that the copula is unique. However, for the Copula Stability Assump-
tion, one could weaken this assumption to Range(F�Y0t |D=1) ⊆ Range(F�Yt−1|D=1) and
Range(FYt−1|D=1) ⊆ Range(FYt−2|D=1) and still obtain point identification. On the other
hand, although neither our Distributional Difference in Differences Assumption nor the
standard mean DID assumption explicitly require continuously distributed outcomes,
it should be noted that standard limited dependent variable models with unobserved
heterogeneity would not generally satisfy either of these DID assumptions. Assumption
3.3 says that we are in the case with panel data, and that no one is treated in the first
two periods. Assumption 3.3 could potentially be relaxed in several ways. More periods
of data could be available—our method requires at least three periods of data, but more
periods could be incorporated (e.g., it seems possible to extend the approach of Call-
away and Sant’Anna (2019) for the ATT to our case for the QTT). Also, our setup could
allow for some individuals to be treated in earlier periods than the last one and our re-
sults would continue to go through for the group of individuals that are first treated in
the last period; considering the case where no one is treated before the last period is
standard in DID setups. Assumption 3.3 also says that other covariatesX are either time
invariant or, in the case with time varying covariates, that we condition on pretreatment
values of the covariates.7

7The issue of time-varying covariates is somewhat complicated for any DID-type approach. The main
complication is that time-varying covariates themselves could be affected by participating in the treatment.
In this case, one should define treated and untreated “potential” covariates (see related discussions in Bon-
homme and Sauder (2011), Lechner (2011)). This extension is beyond the scope of the current paper, and
we instead take an essentially standard approach of conditioning on pretreatment covariates (this is similar
to the approaches taken in Heckman et al. (1998), Abadie (2005), Bonhomme and Sauder (2011)).
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Theorem 1. Under the Distributional Difference in Differences Assumption, the Copula
Stability Assumption, and Assumptions 3.2 and 3.3,

FY0t |D=1(y)

= E
[
1
{
F−1
�Yt |D=0

(
F�Yt−1|D=1(�Yt−1)

) ≤ y − F−1
Yt−1|D=1

(
FYt−2|D=1(Yt−2)

)}|D= 1
]

and

QTT(τ)= F−1
Yt |D=1(τ)− F−1

Y0t |D=1(τ)

which is identified.

Theorem 1 is the main identification result of the paper. It says that the counterfac-
tual distribution of untreated potential outcomes for the treated group is identified.8 To
provide some intuition, we provide a short outline of the proof (the full proof is con-
tained in Appendix A). First, notice that P(Y0t ≤ y|D= 1)= E[1{�Y0t +Y0t−1 ≤ y}|D= 1].
This expression is an integral over the joint distribution of (�Y0t �Y0t−1|D= 1) and will be
identified when the joint distribution is identified. Under the Distributional Difference
in Differences Assumption, this joint distribution is not identified (though the marginals
are), but the Copula Stability Assumption replaces the unknown copula in Equation (1)
with the observed copula for the treated group in the previous period which leads to the
identification result. Replacing the unknown copula with a copula from the past is what
increases the required number of periods from two to three.9 The particular form of the
result in Theorem 1 arises from using the dependence structure in period t − 1 (notice
that the expectation is over �Yt−1 and Yt−2). The terms of the form F−1(F(·)) “adjust”
forward outcomes from the previous period and account for the marginal distributions
changing over time. Finally, the Distributional Difference in Differences Assumption al-
lows us to replace F−1

�Y0t |D=1(·) with F−1
�Y0t |D=0(·) which is just the quantiles of the distri-

bution of the change in (observed) untreated outcomes for the untreated group.
The following example shows what additional conditions need to be satisfied for our

model to be valid in a standard DID setup.

Example 1. Consider the following baseline model for Mean DID:

Y0it = θt +ηi + vit�
where θt is a time fixed effect that is common for the treated and untreated groups, ηi
is individual heterogeneity that may be distributed differently across the treated group

8Although we focus on the QTT, Theorem 1 says that the counterfactual distribution of untreated po-
tential outcomes for the treated group is identified. This also implies that any functional of this distribu-
tion is identified. Examples include the variance of untreated potential outcomes, the Gini coefficient, and
Lorenz curves; these might be of interest for social welfare calculations. See, for example, Barrett and Don-
ald (2009), Firpo and Pinto (2016). We thank the editor for pointing this out.

9Adding and subtracting Y0t−1 is also the first step for showing that the Mean Difference in Differences
Assumption identifies E[Y0t |D= 1]; the problem is much easier in the mean case though due to the linearity
of expectations and no indicator function which implies that only the marginal distributions need to be
identified.
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and untreated group, and vit are time varying unobservables. For mean DID to iden-
tify the ATT, it must be the case that E[�vt |D = 1] = E[�vt |D = 0]. Sufficient condi-
tions for the assumptions in our model to hold are (i) �vt ⊥⊥D and (ii) C�vt�η+vt−1|D=1 =
C�vt−1�η+vt−2|D=1.

Condition (i) just strengthens Mean DID to Distributional Difference in Differences.
Condition (ii) implies that the Copula Stability Assumption will hold. An interesting suf-
ficient condition for Condition (ii) is (vt� vt−1|η�D = 1) and (vt−1� vt−2|η�D = 1) follow
the same distribution (this implies Condition (ii) because it implies that the joint distri-
butions Fvt�vt−1�η|D=1 and Fvt−1�vt−2�η|D=1 are equal). Condition (ii) will also hold automat-
ically if the time varying unobservables are iid. Condition (ii) allows for the distribution
of the time varying unobservables to change over time, it allows for serial correlation in
the time varying unobservables, and it allows for the time varying unobservables to be
correlated with the individual heterogeneity. Each of these are realistic possibilities in
applied work.

We prove the validity of the claims in Example 1 in Appendix A. Some comments on
Example 1 are in order. For identifying the ATT, the setup in Example 1 is straightfor-
ward. However, obtaining quantile treatment effects is much more challenging because
the model is nonlinear in this case. Also, notice that Example 1 only imposes modeling
assumptions on how untreated potential outcomes are generated. In particular, it does
not put any restrictions on how treated potential outcomes are generated (this is true of
mean DID as well), and this means that individuals are allowed to select into treatment
on the basis of anticipated treated potential outcomes in an unrestricted way; this is in
addition to allowing for the distribution of time invariant unobserved heterogeneity in
the model for untreated potential outcomes to differ in unrestricted ways between the
treated and untreated groups.

It is also worthwhile to compare our approach to alternative approaches to iden-
tifying quantile effects in this sort of model. First, one could try to estimate the indi-
vidual fixed effects, which is the approach generally taken in the fixed effects quan-
tile regression literature.10 Relative to our approach, this would require a large num-
ber of time periods and the resulting estimates would have a different interpretation.11

Another idea would be to impose additional independence conditions among the un-
observables (e.g., independence between η and the time varying unobservables and

10The work on panel quantile regression includes Koenker (2004), Abrevaya and Dahl (2008), Lamarche
(2010), Canay (2011), Rosen (2012), Galvao, Lamarche, and Lima (2013), Chen (2015), Li and Oka (2015),
Arellano and Bonhomme (2016), among others. Another difference is that, because we do not impose a
parametric model, our method allows for the effect of treatment to vary across individuals with different co-
variates in an unspecified way. On the other hand, our method only applies to the case where the researcher
is interested only in the effect of a binary treatment; quantile regression methods can deliver estimates for
multiple, possibly continuous variables.

11We focus on an unconditional QTT whereas the quantile treatment effects identified in panel QR mod-
els are conditional—both on covariates and on unobserved heterogeneity. This means that the results from
our method should be interpreted in the same way as the difference between treated and untreated quan-
tiles if individuals were randomly assigned to treatment. See Frolich and Melly (2013) for a good discussion
of the difference between conditional and unconditional quantile treatment effects.
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that the time varying unobservables are independent over time) and use results that
come primarily from the measurement error literature (e.g., Li and Vuong (1998), Ev-
dokimov (2010), Bonhomme and Sauder (2011), Arellano and Bonhomme (2016), Frey-
berger (2018)). Our approach does not require any of these additional conditions. Fi-
nally, under the additional condition that (vt� vt−1|η�D = 1) follows the same distribu-
tion as (vt−1� vt−2|η�D = 1), the approach of Chernozhukov et al. (2013) as well as the
Change in Changes model (Athey and Imbens (2006)) would hold.12 But this extra con-
dition is substantially stronger; it implies that the distribution of the outcomes can only
shift location over time. Condition (ii) is substantially weaker than this and can allow the
distribution of untreated potential outcomes to shift in arbitrary ways over time.

4. Allowing for covariates

Having DID assumptions hold conditional on covariates can make them more likely to
hold in many applications (Heckman et al. (1998), Abadie (2005), Lechner (2011)). In
this section, we consider the case where the Distributional Difference in Differences As-
sumption holds after conditioning on covariates. We also consider the cases where (i)
the Copula Stability Assumption continues to hold unconditionally or (ii) the Copula
Stability Assumption also holds after conditioning on covariates. In the first case, we
show that the combination of a Conditional Distributional Difference in Differences As-
sumption plus Unconditional Copula Stability Assumption is consistent with models for
untreated potential outcomes that allow for heterogeneous effects of observed covari-
ates; these sorts of models are similar to well-known panel quantile regression models.
In the second case, we show that the combination of the Conditional Distributional Dif-
ference in Differences Assumption and the Conditional Copula Stability Assumption is
consistent with models that allow for the path of untreated potential outcomes to de-
pend on the covariates. This is also an important case. For example, in the context of
job training, individuals who participate in job training often have very different back-
ground characteristics than the overall population; if the path of earnings depends on
things like education or age (and these are distributed differently between the treated
group and untreated group), then the Unconditional Distributional Difference in Dif-
ferences and Unconditional Copula Stability Assumptions are unlikely to hold though
the combination of the Conditional Distributional Difference in Differences Assump-
tion and the Conditional Copula Stability Assumption may continue to hold. We make
the following assumption throughout this section.

Conditional Distributional Difference in Differences Assumption.

�Y0t ⊥⊥D|X�
12The Change in Changes model also requires an additional support condition in this type of model

that is not required using our approach. In particular, our approach is likely to perform better when the
distribution of η is quite different across the treated and untreated groups and especially in the tails of
the distribution. We demonstrate this difference in the Online Supplementary Appendix (Callaway and Li
(2019)) using Monte Carlo simulations.
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This assumption says that, after conditioning on covariates X , the distribution of
the change in untreated potential outcomes for the treated group is equal to the distri-
bution of the change in untreated potential outcomes for the untreated group. This as-
sumption strengthens conditional mean DID assumptions (as in Heckman et al. (1998),
Abadie (2005)) from mean independence to full independence. This is analogous to the
extension from unconditional mean DID to the Unconditional Distributional Difference
in Differences Assumption made in the previous section. The next example shows that
having the Conditional Distributional Difference in Differences Assumption may be im-
portant even in cases where an unconditional mean DID assumption holds and would
identify the ATT.

Example 2. Consider the following model for untreated potential outcomes:

Y0it = q(Uit�Xi)+ηi
with (Ut�Ut−1|X�η�D) and (Ut−1�Ut−2|X�η�D)∼ FU1�U2 where FU1�U2 is a bivariate dis-
tribution with uniform marginals, η is time invariant unobserved heterogeneity that
may be correlated with observables and distributed differently for the treated and un-
treated groups, and q(τ�x) is strictly increasing in τ for all x ∈ X .

In this model, (i) the Unconditional Mean Difference in Differences Assumption
holds, (ii) the Unconditional Distributional Difference in Differences Assumption does
not hold, (iii) the Conditional Distributional Difference in Differences Assumption
holds, and (iv) the Unconditional Copula Stability Assumption holds.

In Appendix A, we show that the claims in Example 2 hold. The model in Example
2 includes untreated potential outcomes being generated by panel quantile regression
models (e.g., Koenker (2005), Canay (2011)) as a special case while also allowing for serial
correlation among U . This model allows the effect of covariates to be different at differ-
ent parts of the conditional distribution. For example, if Y is earnings, it is well known
that the effect of education is different at different parts of the conditional distribution
(Angrist, Chernozhukov, and Fernández-Val (2006)). Also, as was the case for Example
1, the model in Example 2 is only for untreated potential outcomes, and this implies
that it allows for selection into treatment on the basis of anticipated treated potential
outcomes in addition to allowing for the distribution of the time invariant unobserved
heterogeneity and covariates to vary between the treated and untreated groups.

Example 2 is a leading case for using distributional methods to understand hetero-
geneity in the effect of a treatment, and one conclusion to be reached from this example
is that even when an unconditional mean DID assumption holds, one may still need to
condition on covariates to justify the Distributional Difference in Differences Assump-
tion. On the other hand, in this model, the Unconditional Copula Stability Assumption
continues to hold.

By invoking the Conditional Distributional Difference in Differences Assumption
rather than the Unconditional Distributional Difference in Differences Assumption, it
is important to note that, for the purpose of identification, the only part of Theorem
1 that needs to be adjusted is the identification of F�Y0t |D=1. Under the Unconditional
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Distributional Difference in Differences Assumption, this distribution could be replaced
directly by F�Yt |D=0; however, now we utilize a propensity score reweighting technique
to replace this distribution with another object (discussed more below). Importantly, all
other objects in Theorem 1 can be handled in exactly the same way as they were previ-
ously which is due to the Unconditional Copula Stability Assumption being invoked.

With covariates, we also require an additional standard assumption for identifica-
tion.

Assumption 4.1. p := P(D= 1) > 0 and, for all x ∈X , p(x) := P(D= 1|X = x) < 1.

The first part of this assumption says that there is some positive probability that
individuals are treated. The second part says that for an individual with any possible
value of covariates x, there is some positive probability that he will not be treated. This
is a standard overlap assumption used in the treatment effects literature.

Proposition 1. Under the Conditional Distributional Difference in Differences Assump-
tion, the Copula Stability Assumption, and Assumptions 3.2, 3.3 and 4.1,

FY0t |D=1(y)

= E
[
1
{
F
p�−1
�Y0t |D=1

(
F�Yt−1|D=1(�Yt−1)

) ≤ y − F−1
Yt−1|D=1

(
FYt−2|D=1(Yt−2)

)}|D= 1
]
�

where

F
p
�Y0t |D=1(δ)= E

[
1 −D
p

p(X)

1 −p(X)1{�Yt ≤ δ}
]

(2)

and

QTT(τ)= F−1
Y1t |D=1(τ)− F−1

Y0t |D=1(τ)

which is identified.

This result is very similar to the main identification result in Theorem 1. The only dif-
ference is that F�Y0t |D=1 is no longer identified by the distribution of untreated potential
outcomes for the untreated group; instead, it is replaced by the reweighted distribution
in Equation (2). Equation (2) can be understood in the following way. It is a weighted av-
erage of the distribution of the change in outcomes experienced by the untreated group.
The p(X)

1−p(X) term weights up untreated observations that have covariates that make them
more likely to be treated. Equation (2) is almost exactly identical to the reweighting esti-
mators given in Hirano, Imbens, and Ridder (2003), Abadie (2005), Firpo (2007); the only
difference is the term 1{�Yt ≤ δ} in our case is given by Yt , �Yt , and 1{Yt ≤ y} in each of
the other cases, respectively.

Finally, in this section, we consider identification under the Conditional Distribu-
tional Difference in Differences Assumption and under a Conditional Copula Stability
Assumption. In particular, we make the following assumption.
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Conditional Copula Stability Assumption. For all x ∈ X ,

C�Y0t �Y0t−1|X�D=1(·� ·|x)= C�Y0t−1�Y0t−2|X�D=1(·� ·|x)�

This assumption says that the copula between the change in untreated potential
outcomes and the initial level of untreated potential outcomes for the treated group
does not change over time after conditioning on some covariates X . Before stating an
identification result based on the Conditional Copula Stability Assumption, we first pro-
vide a motivating example.

Example 3. Consider the following model for untreated potential outcomes:

Y0it = gt(Xi)+ηi + vit�

where gt(Xi) allows for covariates to affect the path of untreated potential outcomes
in ways that can vary over time, ηi is individual heterogeneity that can be distributed
differently between individuals in the treated and untreated groups, and vit are time
varying unobservables. Sufficient conditions for the Conditional Distributional Differ-
ence in Differences Assumption and Conditional Copula Stability Assumption to hold
are that (i) �vt ⊥⊥D|X and (ii) C�vt�η+vt−1|X�D=1 = C�vt−1�η+vt−2|X�D=1. In addition, under
the same conditions, conditional mean DID holds (this is implied by Conditional Distri-
butional Difference in Differences); however, none of unconditional mean DID, the Un-
conditional Distributional Difference in Differences Assumption, or the Unconditional
Copula Stability Assumption hold.

We show that the claims in Example 3 hold in Appendix A. Example 3 is quite similar
to Example 1 except now the path of outcomes can depend on covariates. The condi-
tions for the Conditional Distributional Difference in Differences Assumption and Con-
ditional Copula Stability Assumption to hold are also similar except they now hold con-
ditionally on covariates. The following proposition shows that the QTT is also identified
under this combination of assumptions.

Proposition 2. Assume that, for all x ∈ X , �Yt for the untreated group, �Yt−1, Yt−1,
and Yt−2 for the treated group are continuously distributed conditional on x. Under the
Conditional Distributional Difference in Differences Assumption, the Conditional Copula
Stability Assumption, and Assumptions 3.2, 3.3 and 4.1

P(Y0t ≤ y|X = x�D= 1)= E
[
1
{
F−1
�Y0t |X�D=0

(
F�Y0t−1|X�D=1(�Y0t−1|x)

)
≤ y − F−1

Y0t−1|X�D=1

(
FY0t−2|X�D=1(Y0t−2|x)

)}|X = x�D= 1
]

and

QTT(τ;x)= F−1
Y1t |X�D=1(τ|x)− F−1

Y0t |X�D=1(τ|x)
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which is identified, and

P(Y0t ≤ y|D= 1)=
∫
X

P(Y0t ≤ y|X = x�D= 1)dFX|D=1(x)

and

QTT(τ)= F−1
Y1t |D=1(τ)− F−1

Y0t |D=1(τ)

which is identified.

The result in Proposition 2 is quite similar to the result in Theorem 1 except that now
the conditional distribution of untreated potential outcomes is identified first and each
term in the first part of the result is now conditional on X . In order to obtain uncondi-
tional QTTs, one needs to integrate out the covariates from the conditional distribution
and then invert.

5. Estimation

In this section, we discuss the estimation procedure as well as outline an inference pro-
cedure to conduct uniformly valid inference over a range of quantiles using the em-
pirical bootstrap. We provide formal theoretical results for the limiting process of our
estimator in Appendix B as well as a formal justification for the use of the empirical
bootstrap in Appendix B.

We estimate the QTT by

Q̂TT(τ)= F̂−1
Y1t |D=1(τ)− F̂−1

Y0t |D=1(τ)�

The first term is estimated directly from the data by inverting the estimated empiri-
cal distribution of observed outcomes for the treated group.

F̂−1
Y1t |D=1(τ)= inf

{
y : F̂Yt |D=1(y)≥ τ}�

We estimate counterfactual quantiles by

F̂−1
Y0t |D=1(τ)= inf

{
y : F̂Y0t |D=1(y)≥ τ}�

where

F̂Y0t |D=1(y)= 1
nD

∑
i∈D

1
{

F̂−1
�Yt |D=0

(
F̂�Yt−1|D=1(�Yit−1)

) ≤ y − F̂−1
Yt−1|D=1

(
F̂Yt−2|D=1(Yit−2)

)}

which follows from the identification result in Theorem 1 and where distribution func-
tions are estimated by empirical distribution functions and quantile functions are esti-
mated by inverting empirical distribution functions; here, nD is the number of observa-
tions in the treated group and D is the set of treated individuals.

To conduct inference, we propose using the empirical bootstrap to construct uni-
form confidence bands that cover QTT(τ) with fixed probability for all values τ ∈ T =
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[ε�1 − ε] ⊂ (0�1) for some small, positive ε. We derive formal results on the limiting pro-
cess and the validity of the bootstrap for our estimator of the QTT in Appendix B.

Let Q̂TT
∗
(τ) denote an estimate of the QTT using the same steps as above but with

a bootstrapped sample (i.e., a sample with n observations drawn from the original sam-
ple with equal probabilities and with replacement). Theorem 3, in the Online Supple-
mentary Appendix, shows that the empirical bootstrap can be used to approximate the
limiting process of our estimator.13 To obtain uniform confidence bands, let B be the
number of bootstrap iterations and for b= 1� � � � �B calculate

Ib = sup
τ∈T

Σ̂(τ)−1/2∣∣√n(Q̂TTb(τ)− Q̂TT(τ))∣∣�
where Q̂TT

b
(τ) is estimated using a bootstrapped sample and where Σ̂(τ)1/2 =

(q0�75(τ)− q0�25(τ))/(z0�75 − z0�25), which is the bootstrapped interquartile range divided
by the interquartile range of a standard normal random variable; this is a uniformly con-
sistent estimator ofΣ(τ)1/2 withΣ(τ) being the asymptotic variance function of the QTT.
Then a (1 − α) confidence band is given by

ĈQTT (τ)= Q̂TT(τ)± cB1−αΣ̂(τ)
1/2/

√
n

for τ ∈ T and where cB1−α is the (1 − α) quantile of {Ib}Bb=1.
The final issue is estimating the QTT when the identifying assumptions depend on

conditioning on covariates as in Section 4. In the case considered in Proposition 1, where
the Conditional Distributional Difference in Differences Assumption and Unconditional
Copula Stability Assumption were invoked, the only additional term that we need to
estimate is Fp�−1

�Y0t |D=1(δ). Building on the identification result in Proposition 1, we can
construct an estimator of the distribution function

F̂p�Y0t |D=1(δ)= 1
n

n∑
i=1

(1 −Di)
p

p̂(Xi)(
1 − p̂(Xi)

)1{�Yt�i ≤ δ}
/

1
n

n∑
i=1

(1 −Di)
p

p̂(Xi)(
1 − p̂(Xi)

) �
where p̂(x) denotes an estimator of the propensity score and where the last term in the
denominator normalizes the weights to sum to one in finite samples; it ensures that
F̂p�Y0t |D=1 is a distribution function, and this term is asymptotically negligible. One can
invert this distribution to obtain its quantiles. We provide formal results on the limiting
process for the QTT and the validity of the empirical bootstrap in the Online Supplemen-
tary Appendix where we allow for both parametric and nonparametric estimators of the
propensity score and provide high level conditions for the estimator of the propensity
score that can be satisfied by other estimators (e.g., semiparametric estimators) under
some regularity conditions.

13In the case where a researcher is interested in an “extreme” quantile such as the 0.01 quantile or per-
haps the 0.05 quantile, then alternative inference procedures may need to be used (see, e.g., Chernozhukov,
Fernandez-Val, and Kaji (2018)).
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In the case considered in Proposition 2, estimation is potentially substantially more
challenging. Nonparametric estimation would require estimating five conditional distri-
bution or conditional quantile functions which is likely to be infeasible in many applica-
tions (particularly in the case with a relatively large number of covariates and moderate
number of observations). In subsequent work (Callaway, Li, and Oka (2018)), we con-
sidered a conditional copula assumption in a related model in the case where all the
covariates are discrete. Those inference results are likely to continue to go through with
minor adaptations to the current model in the particular case with only discrete covari-
ates. Another idea is to estimate the conditional distributions and conditional quantiles
using parametric quantile regressions. Melly and Santangelo (2015) use quantile regres-
sion to estimate a conditional version of the Change in Changes model (Athey and Im-
bens (2006)); Wuthrich (2018) uses a similar approach to estimate quantile treatment
effects with endogeneity. It seems likely that one could adapt their inference results to
our case in a straightforward way as well.

6. Application

In this section, we use our method to study the effect of increasing the minimum wage
on county-level unemployment rates. There is a wide body of research that studies the
effect of the minimum wage on employment exploiting policy changes across states
(e.g., Neumark and Wascher (1992), Dube, Lester, and Reich (2010), among many oth-
ers). Like most of the literature, we use variation in state-level changes in the minimum
wage. Also, we suppose that there may be time invariant differences in the unemploy-
ment rate across counties that cannot be accounted for by observable differences in
county characteristics. This implies that a DID approach should be used and is in line
with much of the literature on minimum wage increases.

The aim of this section is different from most research on the effect of increasing the
minimum wage. The literature almost exclusively looks at the average effect, or the coef-
ficient in a linear regression model, of increasing the minimum wage on employment for
teenagers, restaurant workers, or some other subgroup. Instead, by looking at the QTT,
we examine how the effect of increasing the minimum wage varies by the strength of a
county’s local labor market. In other words, we ask the question: What is the distribution
of unemployment rates across counties following a minimum wage increase relative to
what it would have been if the minimum wage had not been increased? This goal is also
different from trying to understand the effect of minimum wage increases at different
parts of the individual income distribution as in Dube (2017).

Unlike most of the literature on minimum wages, instead of using a long panel of
counties, states, and many changes in minimum wage policy across states; we focus on
a particular period where the federal minimum wage was flat while there was variation
in state minimum wages. The U.S. federal minimum wage increased from $4�25 to $5�15
between 1996 and 1997. It did not increase again until the Fair Minimum Wage Act was
proposed on January 5, 2007 and enacted on May 25, 2007. The Act increased the federal
minimum wage to $5�85 on July 24, 2007, and increased the minimum wage in two more
increments, settling at $7�25 in July of 2009.
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In 2006, there were 33 states for whom the federal minimum wage was the bind-
ing minimum wage in the state. Of these, we drop two states—New Hampshire and
Pennsylvania—because they are located in the Northern census region; census region
is an important control in the minimum wage literature (Dube, Lester, and Reich (2010))
and almost all states in the Northern census region had minimum wages higher than
the federal minimum wage by 2006. Of the remaining states, 11 increased their mini-
mum wage by the first quarter of 2007—these states form our treated group.14 The other
20 did not increase their minimum wage until the federal minimum wage increased in
July of 2007.15

County level unemployment rates are the outcome variable. We obtain these from
the Local Area Unemployment Statistics Database from the Bureau of Labor Statistics.
Unemployment rates are available monthly and we use unemployment rates in Febru-
ary as the outcome variable. We choose February instead of January because it does not
overlap with the holidays and choose it over later months because it is further away from
the federal minimum wage change in July. We also merge in county characteristics from
the 2000 County Data Book. In our application, these include 2000 county population
and 1997 county median income. We collected data for each year from 2000–2007. Our
method requires three periods of data, but the earlier periods allow us to pretest our
model in earlier periods.

Table 1 provides summary statistics. From 2005–2007, the level of unemployment
rates is higher for treated counties than for untreated counties. The gap narrows from
2005 to 2006, the period before any counties have increased minimum wages, and then
expands again from 2006 to 2007; this may provide some suggestive evidence that the
minimum wage is increasing unemployment rates on average. Counties that are treated
are also different from untreated counties in terms of their observable characteristics.
Treated counties are more likely to be in the West and North Central regions while un-
treated counties are more likely to be in the South. Median incomes are very similar
(though statistically different) across treated and untreated counties. And treated coun-
ties tend to be more populated; log population of 10�34 for treated counties is almost
31,000 while log population of 9�91 for untreated counties is just over 20,000.

The main results from using our method are presented in Figure 1. The upper panel
provides estimates without conditioning on covariates. The lower panel provides es-
timates that condition on county characteristics; the specification for the propensity
score interacts region with quadratic terms in log median income and log population

14The amount that these states increased their minimum wage does vary across states, but we lump
them all into the same category and ignore heterogeneity with respect to the amount that they increased
the minimum wage. Among these states, the new average minimum wage was $6�41 (roughly a 25% increase
in the minimum wage). The largest increase was in Michigan which increased its state minimum wage to
$6�95, and the smallest increase was in West Virginia which increased its minimum wage to $5�85.

15The states that increased their minimum wage were: Arizona, Arkansas, Colorado, Maryland, Michi-
gan, Missouri, Montana, Nevada, North Carolina, Ohio, and West Virginia. The states that did not increase
their minimum wage were: Alabama, Georgia, Idaho, Indiana, Iowa, Kansas, Kentucky, Louisiana, Missis-
sippi, Nebraska, New Mexico, North Dakota, Oklahoma, South Carolina, South Dakota, Tennessee, Texas,
Utah, Virginia, and Wyoming.
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Table 1. Summary statistics.

Treated counties Untreated counties Diff P-val on diff

Unemployment rate 2007 6�10 5�07 1�028 0�00
Unemployment rate 2006 6�25 5�34 0�904 0�00
Unemployment rate 2005 7�09 6�10 0�984 0�00
South 0�37 0�64 −0�274 0�00
North Central 0�42 0�28 0�135 0�00
West 0�21 0�07 0�140 0�00
Log median income 10�35 10�32 0�033 0�00
Log population 10�34 9�91 0�437 0�00

Note: Summary statistics for counties by whether or not their minimum wage increased in Q1 of 2007 (treated) or not (un-
treated). Unemployment rates are calculated using February unemployment and labor force estimates from the Local Area
Unemployment Database. Median income is the county’s median income from 1997 and comes from the 2000 County Data
Book. Population is the county’s population in 2000 and comes from the 2000 County Data Book. Sources: Local Area Unem-
ployment Statistics Database from the BLS and 2000 County Data Book.

as well as their interaction. The results are very similar whether or not covariates are
included.16

On average, we find that increasing the minimum wage has a small positive effect on
the unemployment rate. Both with and without covariates, we estimate that increasing
the minimum wage increases the unemployment rate by 0�12 percentage points. With-
out covariates, the effect is statistically significant. With covariates, the effect is not sta-
tistically significant. However, there is much heterogeneity. At the low end of the unem-
ployment rate distribution, the effect of increasing the minimum wage on the unem-
ployment rate appears to be negative. For example, at the 10th percentile, the unem-
ployment rate is estimated to be 0�44 (p-value: 0�000) percentage points lower follow-
ing the minimum wage increase than it would have been without the minimum wage
increase (with covariates the estimate is 0�45 (p-value: 0�008)). However, in the middle
and upper parts of the unemployment rate distribution, increasing the minimum wage
appears to increase unemployment. The difference between the medians of unemploy-
ment rates in the presence or absence of the minimum wage increase is 0�31 (p-value:
0�000) percentage points (with covariates the estimate is 0�32 (p-value: 0�029)). The esti-
mated difference between the 90th percentiles is 0�36 (p-value: 0�029) percentage points
(with covariates the estimate is 0�27 (p-value: 0�216)).

For comparison, Figure 2 plots bounds on the QTT when no assumption is made
about the copula between the change in untreated potential outcomes and the initial
level of untreated potential outcomes for the treated group as in Fan and Yu (2012).
These bounds are very wide—they cover 0 at all values of τ—and they do not include
additional sampling uncertainty. For example, the difference between the median un-
employment rate for treated counties and their counterfactual unemployment rate is
bounded between −1�01 and 1�41.

16In the Online Supplementary Appendix, we provide additional empirical results building on the re-
sult from Proposition 2 where we estimate each conditional distribution and conditional quantile function
using quantile regression.
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Figure 1. QTT estimates of the effect of increasing the minimum wage on county-level unem-
ployment rates. Notes: The top panel provides estimates of the QTT using the no-covariates ver-
sion of the method proposed in the current paper. The lower panel provides QTT estimates when
the Distributional Difference in Differences Assumption holds only after conditioning on covari-
ates using the results from Proposition 1. 95% pointwise confidence intervals are computed us-
ing the bootstrap with 1000 iterations. Sources: Local Area Unemployment Statistics Database
from the BLS and 2000 County Data Book.

Neither our Distributional Difference in Differences Assumption nor the Copula Sta-
bility Assumption are directly testable, but like existing difference in differences meth-
ods, our assumptions can be pre-tested when additional pretreatment periods are avail-
able. The simplest way to implement a pretest is to estimate the model in the period
(or periods) before treatment and test that the QTT is 0 for all values of τ. Also, be-
cause our Copula Stability Assumption is new, we provide an additional test for only the
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Figure 2. Bounds for QTT with unknown copula. Notes: The figure shows bounds on QTTs
when the copula between the change in untreated potential outcomes and the initial level of
untreated potential outcomes for the treated group is treated as being completely unknown. The
results are obtained using the authors’ implementation of the method in Fan and Yu (2012). The
figure displays point estimates of the bounds and does not include standard errors or any uncer-
tainty due to sampling. Sources: Local Area Unemployment Statistics Database from the BLS.

Copula Stability Assumption. The idea of this test is to compute Kendall’s Tau (a standard
dependence measure that depends only on the copula (see Nelsen (2007))) in each pre-
treatment year and test whether or not it changes over time. We perform both of these
tests on the minimum wage data next.

Figure 3 plots Kendall’s Tau for the change in unemployment rates and the initial
level of unemployment rates for treated counties from 2001 to 2006. Kendall’s Tau varies
very little over this period and is always somewhat less than 0 indicating slight negative
dependence between the change and initial level of unemployment. A Wald test fails
to reject the equality of Kendall’s Tau in all periods (p-value: 0�524). This provides sug-
gestive empirical evidence in favor of the Copula Stability Assumption in this applica-
tion. Second, we compute QTTs in each pretreatment period from 2002 to 2006. In these
periods, the QTTs should be equal to 0 everywhere. These are available in the Online
Supplementary Appendix, and our method tends to perform very well in the earlier pe-
riods. Finally, as an additional robustness check, we compute QTTs using the Change in
Changes method with and without covariates and with the Quantile Difference in Differ-
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Figure 3. Kendall’s Tau estimates for treated counties by year. Notes: The figure contains es-
timates of Kendall’s Tau for states that increased their minimum wages in the first quarter of
2007. 95% pointwise confidence intervals are computed using the empirical bootstrap with 1000
iterations. Sources: Local Area Unemployment Statistics Database from the BLS.

ences method (these are available in Online Supplementary Appendix, Figure 2). These
other methods show very similar patterns as our main results.

Taken together, these results suggest that there is a great deal of heterogeneity of the
effect of increasing the minimum wage across local labor markets. If we impose the ad-
ditional assumption that counties maintain their rank in the distribution of unemploy-
ment when the minimum wage increases, the results indicate that counties with tight
labor markets experience decreases in unemployment while counties with high unem-
ployment see fairly large increases in unemployment. Even in the absence of such an
assumption, our results indicate that increasing the minimum wage can have negative
consequences for some local labor markets although the average effect may be fairly
small.

7. Conclusion

This paper has considered identification and estimation of the QTT under a distribu-
tional extension of the most common Mean Difference in Differences Assumption used
to identify the ATT. Even under this Distributional Difference in Differences Assump-
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tion, the QTT is still only partially identified because it depends on the unknown de-
pendence between the change in untreated potential outcomes and the initial level of
untreated potential outcomes for the treated group. We introduced the Copula Stabil-
ity Assumption which says that the missing dependence is constant over time. Under
this assumption and when panel data is available, the QTT is point identified. We show
that the Copula Stability Assumption is likely to hold in exactly the type of models that
are typically estimated using difference in differences techniques under mild additional
conditions. This idea of a time invariant copula may also be valuable in other areas of
microeconometric research especially when a researcher has access to panel data.

We also extended our results to the case where the identifying assumptions hold af-
ter conditioning on covariates. This is important in many applications and can allow
for the path of outcomes in the absence of treatment to depend on the values of covari-
ates. In an application on the effect of minimum wage increases on local unemployment
rates, we found that increasing the minimum wage tended to widen the distribution of
local unemployment rates. Using pretreatment periods, we also found suggestive em-
pirical evidence in favor of the Copula Stability Assumption.

Appendix A: Proofs

A.1 Identification

A.1.1 Identification without covariates In this section, we prove Theorem 1. Namely,
we show that the counterfactual distribution of untreated potential outcomes,
FY0t |D=1(y), is identified. First, we state two well-known results without proof used below
that come directly from Sklar’s theorem.

Lemma A.1. For two continuously distributed random variablesX andY , their joint den-
sity in terms of the copula pdf is given by

fX�Y (x� y)= cX�Y
(
FX(x)�FY (y)

)
fX(x)fY (y)�

Lemma A.2. For two continuously distributed random variables X and Y , their copula
pdf in terms of their joint density is given by

cX�Y (u�v)= fX�Y
(
F−1
X (u)�F−1

Y (v)
) 1

fX
(
F−1
X (u)

) 1

fY
(
F−1
Y (v)

) �
Proof of Theorem 1. To minimize notation, let ft(·� ·) = f�Y0t �Y0t−1|D=1(·� ·) be the
joint pdf of the change in untreated potential outcomes and the initial untreated po-
tential outcome for the treated group, and let ft−1(·� ·) = f�Y0t−1�Y0t−2|D=1(·� ·) be the
joint pdf in the previous period. Similarly, let ct(·� ·)= c�Y0t �Y0t−1|D=1(·� ·) and ct−1(·� ·)=
c�Y0t−1�Y0t−2|D=1(·� ·) be the copula pdfs for the change in untreated potential outcomes
and initial level of untreated outcomes for the treated group at period t and t − 1, re-
spectively. And, finally, let �Y = �Y0t|D=1 (the support of the change in untreated poten-
tial outcomes for the treated group) and Y = Yt−1|D=1 (the support of outcomes for the
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treated group in period t − 1). Then

P(Y0t ≤ y|D= 1)

= P(�Y0t +Y0t−1 ≤ y|D= 1)

= E
[
1{�Y0t ≤ y −Y0t−1}|D= 1

]
=

∫
Y

∫
�Y

1
{
δ≤ y − y ′}ft(δ� y ′)dδdy ′

=
∫
Y

∫
�Y

1
{
δ≤ y − y ′}ct(F�Y0t |D=1(δ)�FY0t−1|D=1

(
y ′))

× f�Y0t |D=1(δ)fY0t−1|D=1
(
y ′)dδdy ′ (3)

=
∫
Y

∫
�Y

1
{
δ≤ y − y ′}ct−1

(
F�Y0t |D=1(δ)�FY0t−1|D=1

(
y ′))

× f�Y0t |D=1(δ)fY0t−1|D=1
(
y ′)dδdy ′ (4)

=
∫
Y

∫
�Y

1
{
δ≤ y − y ′}ft−1

(
F−1
�Y0t−1|D=1

(
F�Y0t |D=1(δ)

)
�F−1

Y0t−2|D=1

(
FY0t−1|D=1

(
y ′)))

× f�Y0t |D=1(δ)

f�Y0t−1|D=1
(
F−1
�Y0t−1|D=1

(
F�Y0t |D=1(δ)

))
× fY0t−1|D=1

(
y ′)

fY0t−2|D=1
(
F−1
Y0t−2|D=1

(
FY0t−1|D=1

(
y ′))) dδdy ′� (5)

Equation (3) rewrites the joint distribution in terms of the copula pdf using Lemma A.1;
Equation (4) uses the Copula Stability Assumption; Equation (5) rewrites the copula pdf
as the joint distribution (now in period t − 1) using Lemma A.2.

Now, make a change of variables: u= F−1
�Y0t−1|D=1(F�Y0t |D=1(δ)) and v = F−1

Y0t−2|D=1 ×
(FY0t−1|D=1(y

′)). This implies the following:

1. δ= F−1
�Y0t |D=1(F�Y0t−1|D=1(u))

2. y ′ = F−1
Y0t−1|D=1(FY0t−2|D=1(v))

3. dδ= f�Y0t−1 |D=1(u)

f�Y0t |D=1(F
−1
�Y0t |D=1(F�Y0t−1|D=1(u)))

du

4. dy ′ = fY0t−2 |D=1(v)

fY0t−1|D=1(F
−1
Y0t−1|D=1(FY0t−2|D=1(v)))

dv.

Plugging in (1)–(4) in Equation (5) and noticing that the substitutions for dδ and dy ′
cancel out the fractional terms in the third and fourth lines of Equation (5) implies

Equation (5)

=
∫
Yt−2|D=1

∫
�Yt−1|D=1

1
{
F−1
�Y0t |D=1

(
F�Y0t−1|D=1(u)

) ≤ y − F−1
Y0t−1|D=1

(
FY0t−2|D=1(v)

)}
× ft−1(u�v)dudv (6)
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= E
[
1
{
F−1
�Y0t |D=1

(
F�Y0t−1|D=1(�Y0t−1)

) ≤ y − F−1
Y0t−1|D=1

(
FY0t−2|D=1(Y0t−2)

)}|D= 1
]

(7)

= E
[
1
{
F−1
�Y0t |D=0

(
F�Y0t−1|D=1(�Y0t−1)

) ≤ y − F−1
Y0t−1|D=1

(
FY0t−2|D=1(Y0t−2)

)}|D= 1
]
�

(8)

where Equation (6) follows from the discussion above, Equation (7) follows by the defi-
nition of expectation, and Equation (8) follows from the Distributional Difference in Dif-
ferences Assumption. Equation (8) implies the result because each of the distributions
of potential outcomes are directly identified by their observed counterparts.

A.1.2 Identification with covariates In this section, we prove Propositions 1 and 2.

Proof of Proposition 1. All of the results from the proof of Theorem 1 will still go
through with the exception of the last step which uses the Unconditional Distribu-
tional Difference in Differences Assumption. Therefore, all that needs to be shown is
that F�Y0t |D=1 = Fp�Y0t |D=1 under the conditions in Proposition 1. Notice

P(�Y0t ≤ δ|D= 1)= P(�Y0t ≤ δ�D= 1)
p

= E
[

P(�Y0t ≤ δ�D= 1|X)
p

]

= E
[
p(X)

p
P(�Y0t ≤ δ|X�D= 1)

]

= E
[
p(X)

p
P(�Y0t ≤ δ|X�D= 0)

]
(9)

= E
[
p(X)

p
E
[
(1 −D)1{�Yt ≤ δ)}|X�D= 0

]]
(10)

= E
[

p(X)

p
(
1 −p(X))E

[
(1 −D)1{�Yt ≤ δ)}|X

]]

= E
[

1 −D
1 −p(X)

p(X)

p
1{�Yt ≤ δ}

]
� (11)

where Equation (9) holds by the Conditional Distributional Difference in Differences
Assumption. Equation (10) holds by replacing P(·) with E(1{·}) and then multiplying by
(1 −D) which holds because the expectation conditions on D= 0. Additionally, condi-
tioning on D = 0 allows us to replace the potential outcome �Y0t with the actual out-
come �Yt because �Yt is the observed change in potential untreated outcomes for the
untreated group. Finally, Equation (11) simply applies the law of iterated expectations to
conclude the proof.

Proof of Proposition 2. The proof of Proposition 2 holds using exactly the same ar-
guments as the proof of Theorem 1 with all steps holding conditional onX .
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A.2 Proofs of claims in Examples 1, 2, 3

A.2.1 Proof of the results in Example 1 For the first part, notice that �Y0it = θt − θt−1 +
�vit . This has the same distribution for the treated group and untreated group under
Condition (i).

For the second part, first note that

F�Y0t |D=1(δ)= P(�Y0t ≤ δ|D= 1)

= P(
�vt ≤ δ− (θt − θt−1)|D= 1

)
= P(

�vt−1 ≤ F−1
�vt−1|D=1

(
F�vt

(
δ− (θt − θt−1)

))|D= 1
)

= P(
�Y0t−1 ≤ F−1

�v−1|D=1

(
F�vt

(
δ− (θt − θt−1)

)) + (θt−1 − θt−2)|D= 1
)

= F�Y0t−1|D=1
(
F−1
�vt−1|D=1

(
F�vt

(
δ− (θt − θt−1)

)) + (θt−1 − θt−2)
)
�

where the third equality holds by Condition (ii). Similarly,

FY0t−1|D=1(y)= P(Y0t−1 ≤ y|D= 1)

= P(η+ vt−1 ≤ y − θt−1|D= 1)

= P(
η+ vt−2 ≤ F−1

η+vt−2|D=1

(
Fη+vt−1(y − θt−1)

)|D= 1
)

= P(
Y0t−2 ≤ F−1

η+vt−2|D=1

(
Fη+vt−1(y − θt−1)

) + θt−2|D= 1
)

= FY0t−2|D=1
(
F−1
η+vt−2|D=1

(
Fη+vt−1(y − θt−1)

) + θt−2
)
�

where the third equality holds by Condition (ii). Finally, consider

C�Y0t �Y0t−1|D=1(u�v)

= P(
F�Y0t |D=1(�Y0t )≤ u�FY0t−1|D=1(Y0t−1)≤ v|D= 1

)
= P(

F�Y0t−1|D=1
(
F−1
�vt−1|D=1

(
F�vt

(
�Y0t − (θt − θt−1)

)) + (θt−1 − θt−2)
) ≤ u�

FY0t−2|D=1
(
F−1
η+vt−2|D=1

(
Fη+vt−1(Y0t−1 − θt−1)

) + θt−2
) ≤ v|D= 1

)
= P(

F�Y0t−1|D=1
(
F−1
�vt−1|D=1

(
F�vt (�vt)

) + (θt−1 − θt−2)
) ≤ u�

FY0t−2|D=1
(
F−1
η+vt−2|D=1

(
Fη+vt−1(η+ vt−1)

) + θt−2
) ≤ v|D= 1

)
= P(

F�Y0t−1|D=1
(
�vt−1 + (θt−1 − θt−2)

) ≤ u�FY0t−2|D=1(η+ vt−2 + θt−2)≤ v|D= 1
)

= P(
F�Y0t−1|D=1(�Y0t−1)≤ u�FY0t−2|D=1(Y0t−2)≤ v|D= 1

)
= C�Y0t−1�Y0t−2|D=1(u� v)�

which proves the result. The second equality holds by the first two results of this sec-
tion, and the third equality substitutes for �Y0t and Y0t−1. The fourth equality holds by
Condition (ii).
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A.2.2 Proof of the results in Example 2 We prove each claim in turn.

Unconditional mean difference in differences holds

E[Y0t |D= d] =
∫ (
q(u�x)+η)

dFUt�X�η|D=d(u�x�η)

=
∫ (
q(u�x)+η)

dFUt dFX�η|D=d(u�x�η)

=
∫ (
q(u�x)+η)

dFUt−1 dFX�η|D=d(u�x�η)

=
∫ (
q(u�x)+η)

dFUt−1�X�η|D=d(u�x�η)

= E[Y0t−1|D= d]�

where the second and fourth equalities hold because (Ut�Ut−1) ⊥⊥ (X�η�D) and the
third equality holds because the marginal distribution of time varying unobservables
does not change over time. This result implies that both for the treated group and un-
treated group the average change in untreated potential outcomes is 0 which implies the
claim.

Conditional Distributional Difference in Differences holds

P(�Y0t ≤ δ|X = x�D= 1)=
∫

1
{
q(u�x)− q(ũ�x)≤ δ}dFUt�Ut−1|X�D=1(u� ũ|x)

=
∫

1
{
q(u�x)− q(ũ�x)≤ δ}dFUt�Ut−1|X�D=0(u� ũ|x)

= P(�Y0t ≤ δ|X = x�D= 0)�

where the second equality holds because (Ut�Ut−1)⊥⊥ (X�D).

Unconditional Distributional Difference in Differences does not hold

P(�Y0t ≤ δ|D= 1)= E
[
P(�Y0t ≤ δ|X�D= 1)|D= 1

]
= E

[
P(�Y0t ≤ δ|X�D= 0)|D= 1

]
�

where the second equality holds by the result for the Conditional Distributional Dif-
ference in Differences Assumption holding. The last quantity is, in general, not equal
to P(�Y0t ≤ δ|D = 0) because the distribution of X can be different across the two
groups.17

17To give a concrete counterexample, suppose that X is scalar, and that for s = t� t − 1� t − 2, Y0s =
Xβ(Us) + η, the Us are mutually independent, and β(Us) = Us . This implies that �Y0t = X(Ut − Ut−1)

so that the unconditional distribution of �Y0t depends on X , and hence, the Unconditional Difference in
Differences Assumption does not hold.
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Unconditional Copula Stability holds

P(�Y0t ≤ δ�Y0t−1 ≤ y|D= 1)

= P
(
q(Ut�X)− q(Ut−1�X)≤ δ�q(Ut−1�X)+η≤ y|D= 1

)
= P

(
q(Ut−1�X)− q(Ut−2�X)≤ δ�q(Ut−2�X)+η≤ y|D= 1

)
= P(�Y0t−1 ≤ δ�Y0t−2 ≤ y|D= 1)�

where the second holds because (Ut�Ut−1�X�η|D= 1) follows the same distribution as
(Ut−1�Ut−2�X�η|D= 1). This implies that the Copula Stability Assumption holds.

A.2.3 Proof of the results in Example 3 We prove each claim in turn.

Unconditional mean difference in differences does not hold Notice that

E[�Y0t |D= d] =E[(
gt(X)− gt−1(X)

)|D= d] +E[
E[�vt |X�D= d]|D= d]

=E[(
gt(X)− gt−1(X)

)|D= d]�
where the first equality holds by plugging in the model in the example and the second
equality holds under the additional mild condition that E[�vt |X�D = d] = 0 (though
this step is not required for the claim here to hold). This makes it clear that the (uncondi-
tional) path of untreated potential outcomes for each group depends on the distribution
ofX which may not be the same across groups.

Note that this also implies that the Unconditional Distributional Difference in Dif-
ferences Assumption does not, in general, hold either.

Conditional Distributional Difference in Differences holds

P(�Y0t ≤ δ|X = x�D= 1)= P(
�vt ≤ δ− (

gt(x)− gt−1(x)
)|X = x�D= 1

)
= P(

�vt ≤ δ− (
gt(x)− gt−1(x)

)|X = x�D= 0
)

= P(�Y0t ≤ δ|X = x�D= 0)�

where the second equality holds by Condition (i) in the example.
Note that this also implies that conditional mean DID holds in this example.

Conditional Copula Stability Assumption holds This follows using identical arguments
as for the Unconditional Copula Stability Assumption in Example 1 after conditioning
each expression onX .

Unconditional Copula Stability Assumption does not hold Here, we provide a simple
counterexample. Suppose, for individuals in the treated group,X ∼N(0�1), vs ∼N(0�1)
for s = t� t − 1� t − 2, η ∼ N(0�1), and all random variables are mutually independent.
Also, suppose that gt(X) =X , gt−1(X) = −X , and gt−2(X) = 0. This setup implies that
each outcome is normally distributed, the change in outcomes is normally distributed in
all time periods, and the copula between the change in outcomes and the initial level of
outcomes only depends on the correlation between the two. Here, it is straightforward to
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show that −1/
√

2 = Corr(�Y0t �Y0t−1|D = 1) �= Corr(�Y0t−1�Y0t−2|D = 1) = −1/
√

6. In-
tuitively, in the first period, an individual’s rank does not depend on X ; in the second
period, individuals with a large value ofX tend to move toward the bottom of the distri-
bution; and in the third period individuals with a large value of X tend to move toward
the top of the distribution. This results in the copula changing over time. The intuition
of this counterexample also extends to the general case—when the trend in untreated
potential outcomes depends onX in an unrestricted way, the (unconditional) copula of
the change in untreated potential outcomes and the initial level is likely to change over
time.

Appendix B: Asymptotic normality and inference

This appendix considers the asymptotic properties of our estimator of the QTT. We show
that our estimator of the QTT converges uniformly to a Gaussian process. Our results
essentially follow because empirical distribution functions converge uniformly to Gaus-
sian processes and because we show the Hadamard differentiability of the map from
distribution functions to the QTT. We also provide formal justification for using the em-
pirical bootstrap to conduct inference as discussed in the main text. We provide similar
results for the case where the Distributional Difference in Differences Assumption holds
after conditioning on covariates in the Online Supplementary Appendix.

Before proving the main results, we state an additional assumption.

Assumption B.1. For (s�d) ∈ {t� t − 1� t − 2} × {0�1}, Yt|D=d ⊆ Y ⊂ R and Y is compact.

We denote empirical processes by

Ĝ�Ys |D=d(δ)= √
n
(
F̂�Ys |D=d(δ)− F�Ys |D=d(δ)

)
and

ĜYs |D=d(y)= √
n
(
F̂Ys |D=d(y)− FYs |D=d(y)

)
for s ∈ {t� t − 1� t − 2} and d ∈ {0�1}. Next, let Ỹit = F−1

�Yt |D=0(F�Yt−1|D=1(�Yit−1)) +
F−1
Yt−1|D=1(FYt−2|D=1(Yit−2)) with support Y0t|D=1; these are pseudo-observations if each

distribution and quantile function were known. Let F̃Y0t |D=1(y) = 1
nD

∑
i∈D 1{Ỹit ≤ y}.

Then define

G̃Y0t |D=1(y)= √
n
(
F̃Y0t |D=1(y)− FY0t |D=1(y)

)
�

As a first step, we establish a functional central limit theorem for the empirical pro-
cesses of each of the terms used in our identification result. Let l∞(S) denote the space
of all uniformly bounded functions on the set S that are equipped with the supremum
norm ‖ · ‖∞ and let C(S) denote the space of all continuous functions on the set S.

Proposition 3. Under the Distributional Difference in Differences Assumption, Copula
Stability Assumption, and Assumptions 3.2, 3.3 and B.1,

(Ĝ�Yt |D=0� Ĝ�Yt−1|D=1� G̃Y0t |D=1� ĜYt |D=1� ĜYt−1|D=1� ĜYt−2|D=1)

� (W1�W2�V0�V1�W3�W4)
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in the space S = l∞(�Yt|D=0) × l∞(�Yt−1|D=1) × l∞(Y0t|D=1) × l∞(Yt|D=1) ×
l∞(Yt−1|D=1)× l∞(Yt−2|D=1) where (W1�W2�V0�V1�W3�W4) is a tight Gaussian process
with mean 0 and block diagonal covariance function V (y� y ′) = diag(V1(y� y

′)�V2(y� y
′))

where

V1
(
y� y ′) = (

F�Yt |D=0
(
y1 ∧ y ′

1
) − F�Yt |D=0(y1)F�Yt |D=0

(
y ′

1
))
/(1 −p)

and

V2
(
y� y ′) = E

[
ψ(y)ψ

(
y ′)′]

for y = (y1� y2� y3� y4� y5� y6) ∈ S and y ′ = (y ′
1� y

′
2� y

′
3� y

′
4� y

′
5� y

′
6) ∈ S and where

ψ(y)= 1/
√
p

⎛
⎜⎜⎜⎜⎜⎝

1{�Yt−1 ≤ y2} − F�Yt−1|D=1(y2)

1{Ỹt ≤ y3} − FY0t |D=1(y3)

1{Yt ≤ y4} − FYt |D=1(y4)

1{Yt−1 ≤ y5} − FYt−1|D=1(y5)

1{Yt−2 ≤ y6} − FYt−2|D=1(y6)

⎞
⎟⎟⎟⎟⎟⎠ �

Proof of Proposition 3. The result follows immediately from the functional central
limit theorem for empirical distribution functions (see, e.g., van der Vaart and Wellner
(1996)).

Next, we work to establish the joint limiting distribution of observed treated out-
comes and counterfactual untreated potential outcomes for the treated group. The key
step in showing this result is to establish the Hadamard differentiability of the counter-
factual distribution of untreated potential outcomes for the treated group. Before stating
the main result, we provide several helpful lemmas.

Let F0 = (F10�F20�F30�F40) where Fj0, for j = 1� � � � �4, are distribution functions; we
assume that each Fj0 has compact support Uj ⊂ R. We also suppose that each Fj0 has
a density function fj0 that is uniformly bounded away from 0 and ∞ on its supports.
Let (U2�U4) be two random variables on U2 × U4 with joint distribution FU2�U4 . We as-
sume that U2 ∼ F20 and that U4 ∼ F40 and that the conditional distribution FU2|U4 has a
continuous density function fU2|U4 that is uniformly bounded from 0 and ∞.

For F = (F1�F2�F3�F4) ∈ C(U1)×C(U2)×C(U3)×C(U4), let

φn(F)= 1
nD

∑
i∈D

1
{

F−1
1

(
F2(Ui2)

) ≤ y − F−1
3

(
F4(Ui4)

)}
and

φ0(F)= E
[
1
{

F−1
1 (F2(U2)≤ y − F−1

3

(
F4(U4)

)}|D= 1
]

both taking values in l∞(Y) and let F̂ = (F̂1� F̂2� F̂3� F̂4) denote a vector of consistent
estimators of F0.

As a first step, we establish the Hadamard differentiability of φ0(F). We do this in
several steps. First, we use the following result due to Callaway, Li, and Oka (2018).18

18We use the notation “◦” to indicate the composition of functions, for example, f ◦g◦h(x)= f (g(h(x))).
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Lemma B.1. Let D= C(U3)×C(U4) and define the map Ψ :DΨ ⊂ D �→ l∞(U4) as

Ψ(F) := F−1
3 ◦ F4�

where DΨ := E × E where E is the set of all distribution functions with strictly positive,
bounded densities. Then, the mapΨ is Hadamard differentiable at (F30�F40) tangentially
to D with derivative at (F30�F40) in ψ := (ψ1�ψ2) ∈D�

Ψ ′
(F30�F40)

(ψ)= ψ2 −ψ1 ◦ F−1
30 ◦ F40

f30 ◦ F−1
30 ◦ F40

�

Lemma B.2. Let A= C(U1)×C(U4). Define the map Λ :AΛ ⊂ A �→ l∞(YU4), given by

Λ(�)(y)= �1(y − �2)

for �= (�1��2) ∈ A. Then the map Λ is Hadamard differentiable at (F10�F
−1
30 ◦ F40) tan-

gentially to A with derivative in α := (α1�α2) ∈A given by

Λ′
(F10�F

−1
30 ◦F40)

(α)(y)= α1
(
y − F−1

30 ◦ F40
) − f10

(
y − F−1

30 ◦ F40 ◦ α2
)
�

Proof. Let Λ1 :AΛ �→ AΛ2 ⊂ C(U1)×C(YU4) be given by Λ1(Ξ)= (Ξ1� · −Ξ2). Lemma
3.9.25 of van der Vaart and Wellner (1996) implies that the map Λ1 is Hadamard differ-
entiable at Ξ tangentially to C(U1) × C(YU4) with derivative in ξ = (ξ1� ξ2) ∈ C(U1) ×
C(YU4) given by

Λ′
1�Ξ(ξ)= (ξ1�−ξ2)�

Let Λ2 : AΛ2 �→ l∞(YU4) be given by Λ2(Υ)= Υ1 ◦Υ2. Lemma 3.9.27 of van der Vaart and
Wellner (1996) implies that Λ2 is Hadamard differentiable at Υ tangentially to A with
derivative at Υ in υ= (υ1�υ2) ∈ A given by

Λ′
2�Υ (υ)= υ1 ◦Υ2 +Υ ′

1�Υ2
◦ υ2�

By the chain rule for Hadamard differentiable maps,

Λ′
(F10�y−F−1

30 ◦F40)
(α)=Λ′

2�(F10�y−F−1
30 ◦F40)

◦Λ′
1�(F10�y−F−1

30 ◦F40)
(α)

=Λ′
2�(F10�y−F−1

30 ◦F40)
◦ (α1�−α2)

= α1
(
y − F−1

30 ◦ F40
) − f10

(
y − F−1

30 ◦ F40 ◦ α2
)

which is the result.

Lemma B.3. Let B = C(U2)×C(YU4). Define the map � : B� ⊂ B �→ l∞(YU4) given by

�(Ω)=Ω−1
1 ◦Ω2�
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Then the map � is Hadamard differentiable at (F20�F10(· − F−1
30 ◦ F40)) tangentially to B

with derivative at (F20�F10(· − F−1
30 ◦ F40)) in ω := (ω1�ω2) ∈ B given by

�′
(F20�F10(·−F−1

30 ◦F40))
(ω)= ω2 −ω1 ◦ F−1

20 ◦ F10 ◦ (· − F−1
30 ◦ F40

)
f20 ◦ F−1

20 ◦ F10 ◦ (· − F−1
30 ◦ F40

) �

Proof. The proof follows by the same argument as in Lemma B.1.

Lemma B.4. Let D= C(U1)×C(U2)×C(U3)×C(U4) and consider the mapφ : Dφ ⊂ D �→
l∞(Y) given by

φ(F)(y)= P
(
F−1

1

(
F2(U2)

) + F−1
3

(
F4(U4)

) ≤ y)
for F = (F1�F2�F3�F4) ∈ Dφ where Dφ = E4 where E is the set of all distribution functions
with strictly positive and bounded densities. Then the map φ is Hadamard differentiable
at F0 tangentially to D with derivative in γ = (γ1�γ2�γ3�γ4) ∈D given by

φ′
F0
(γ)=

∫ {
γ1

(
y − F−1

30 ◦ F40
) − f10

(
y − F−1

30 ◦ F40 ◦ γ4 − γ3 ◦ F−1
30 ◦ F40

f30 ◦ F−1
30 ◦ F40

)

− γ2 ◦ F−1
20 ◦ F10

(
y − F−1

30 ◦ F40
)}

× fU2|U4

(
F−1

20 ◦ F10
(
y − F−1

30 ◦ F40(u4)
)|u4

)
f20 ◦ F−1

20 ◦ F10
(
y − F−1

30 ◦ F40
) dFU4(u4)�

Proof. First, notice that

φ(F)(y)= P
(
U2 ≤ F−1

2 ◦ F1
(
y − F−1

3 ◦ F4(U4)
))

= P
(
U2 ≤�(

F2�Λ
(
F1�Ψ(F3�F4)(U4)(y)

)))
�

Define the map π : Dπ �→ l∞(Y)where Dπ is the set of all functions F−1
2 (F1(·−F−1

3 (F4)))

for (F1�F
−1
2 �F−1

3 �F4) ∈ E×E− ×E− ×E as

π(χ)(y)=
∫
FU2|U4

(
χ(u4)(y)|u4

)
dFU4(u4)�

Then, for F ∈D and y ∈ Y , φ= π ◦� ◦Λ ◦Ψ .
Using the same arguments as in Callaway, Li, and Oka (2018, Lemma A2), π is

Hadamard differentiable tangentially to D with derivative at F−1
20 ◦ F10(y − F−1

30 ◦ F40) in
ζ ∈D given by

π ′
F−1

20 ◦F10(y−F−1
30 ◦F40)

(ζ)(y)

=
∫
ζ(u4)fU2|U4

(
F−1

20 ◦ F10
(
y − F−1

30 ◦ F40(u4)
)|u4

)
dFU4(u4)� (12)
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By the chain rule for Hadamard differentiable functions (cf. van der Vaart and Wellner
(1996, Lemma 3.9.3)),

φ′
F0
(γ)= π ′

F−1
20 ◦F10(·−F−1

30 ◦F40)
◦�′

(F20�F10(·−F−1
30 ◦F40))

(γ2�Λ
′
(F10�F

−1
30 ◦F40)

(
γ1�Ψ

′
(F30�F40)

(γ3�γ4)
)
�

Plugging in the results from Lemmas B.1 to B.3 and Equation (12) implies the result.

The following proposition is a main theoretical result of the paper and establishes
the joint limiting distribution of the distribution of (observed) treated potential out-
comes for the treated group and counterfactual untreated potential outcomes for the
treated group.

Proposition 4. Let Ĝ0(y) = √
n(F̂Y0t |D=1(y) − FY0t |D=1(y)) and let Ĝ1(y) = √

n ×
(F̂Yt |D=1(y)−FYt |D=1(y)). Under the Distributional Difference in Differences Assumption,
Copula Stability Assumption, and Assumptions 3.2, 3.3 and B.1,

(Ĝ0� Ĝ1)� (G0�G1)�

where G0 and G1 are tight Gaussian processes with mean 0 with almost surely uniformly
continuous paths on the space Y0t|D=1 ×Yt|D=1 given by

G1 =V1

and

G0 =V0 +
∫ {

W1 ◦K2(y� v)− f�Yt |D=0

(
y − F−1

Yt−1|D=1 ◦ FYt−2|D=1 ◦ W4 −W3 ◦K1(v)

fYt−1|D=1 ◦K1(v)

)

−W2 ◦K3(y� v)

}
× f�Yt−1|Yt−2�D=1

(
K3(y� v)|v

)
f�Yt−1|D=1

(
K3(y� v)

) dFYt−2|D=1(v)�

where

K1(v) := F−1
Yt−1|D=1 ◦ FYt−2|D=1(v)�

K2(y� v) := y −K1(v)�

K3(y� v) := F−1
�Yt−1|D=1 ◦ F�Yt |D=0

(
K2(y� v)

)
�

Here, V0 is the variance that would obtain for estimating the counterfactual distri-
bution of untreated potential outcomes for the treated group if each distribution and
quantile function were known. The second term comes from having to estimate each of
these distribution and quantile functions in a first step.

Proof of Proposition 4. First, notice that, uniformly in y,

√
n
(
F̂Y0t |D=1(y)− FY0t |D=1(y)

) = √
n
(
φn(F̂)−φ0(F0)

)
= √

n
((
φn(F̂)−φ0(F̂)

) − (
φn(F0)−φ0(F0)

))
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+ √
n
(
φn(F0)−φ0(F0)

) − √
n
(
φ0(F̂)−φ0(F0)

)
= √

n
(
φn(F0)−φ0(F0)

) −φ′
F0

√
n(F̂ − F0)+ op(1)�

where the last equality holds by a stochastic equicontinuity argument similar to those in
van der Vaart and Wellner (2007) or Ferreira, Firpo, and Galvao (2019) and by Lemma B.4.
Then the result holds by Proposition 3 and an application of the functional central limit
theorem.

With Proposition 4 in hand, our main result for the QTT follows straightforwardly
by the Hadamard Differentiability of quantiles. We next state as a theorem the limiting
process for our estimator of the QTT.

Theorem 2. Suppose FY0t |D=1 admits a positive continuous density fY0t |D=1 on an in-
terval [a�b] containing an ε-enlargement of the set {F−1

Y0t |D=1(τ) : τ ∈ T }. Under the Dis-
tributional Difference in Differences Assumption, the Copula Stability Assumption, and
Assumptions 3.2, 3.3 and B.1,

√
n
(
Q̂TT(τ)−QTT(τ)) � Ḡ1(τ)− Ḡ0(τ)�

where (Ḡ0(τ)� Ḡ1(τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡ0(τ)= G0
(
F−1
Y0t |D=1(τ)

)
fY0t |D=1

(
F−1
Y0t |D=1(τ)

) and Ḡ1(τ)= G1
(
F−1
Yt |D=1(τ)

)
fYt |D=1

(
F−1
Yt |D=1(τ)

) �
Proof of Theorem 2. Under the conditions stated in Theorem 2, the result follows
from the Hadamard differentiability of the quantile map (van der Vaart and Wellner
(1996, Lemma 3.9.23(ii))) and by Proposition 4.

Finally, for this section, we state a result on the validity of the empirical bootstrap for
our procedure.

Theorem 3. Under the Distributional Difference in Differences Assumption, Copula Sta-
bility Assumption, and Assumptions 3.2, 3.3 and B.1,

√
n
(
Q̂TT

∗
(τ)− Q̂TT(τ)) �∗ Ḡ0(τ)− Ḡ1(τ)�

where (Ḡ0� Ḡ1) are as in Theorem 2 and �∗ indicates weak convergence in probability
under the bootstrap law (Gine and Zinn (1990)).

Proof. The result holds because our estimate of the QTT is Donsker and by Theorem
3.6.1 in van der Vaart and Wellner (1996).
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