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ABSTRACT
A mathematical model for estimating the risk of airborne transmission of a respiratory infection such as COVID-19 is presented. The model
employs basic concepts from fluid dynamics and incorporates the known scope of factors involved in the airborne transmission of such
diseases. Simplicity in the mathematical form of the model is by design so that it can serve not only as a common basis for scientific inquiry
across disciplinary boundaries but it can also be understandable by a broad audience outside science and academia. The caveats and limitations
of the model are discussed in detail. The model is used to assess the protection from transmission afforded by face coverings made from a
variety of fabrics. The reduction in the transmission risk associated with increased physical distance between the host and susceptible is also
quantified by coupling the model with available and new large eddy simulation data on scalar dispersion in canonical flows. Finally, the effect
of the level of physical activity (or exercise intensity) of the host and the susceptible in enhancing the transmission risk is also assessed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025476., s

I. INTRODUCTION
COVID-19 has spread across the world with a speed and inten-

sity that have laid bare the limits of our understanding of the trans-
mission pathways and the associated factors that are key to the
spread of such diseases. There is, however, an emerging consen-
sus that “airborne transmission,” where virion bearing respiratory
droplets and droplet nuclei (also called respiratory aerosols) expelled
by an infected person (the “host”) are inhaled by a “susceptible”
individual, constitutes an important mode for the spread of COVID-
19.1–5 Questions regarding the size of the droplets involved6–9 and
the range of such transmission10 can be bypassed by noting that
the key element that differentiates airborne transmission from the
droplet and contact routes of transmission11 is the essential role
of inhalation by the susceptible in the pathway for transmission.

Generally, it is the small (<10 μm) particles that are likely to be
entrained into the inhalation current of a person, while environ-
mental conditions as well as the proximity between the host and
the susceptible could allow larger particles/droplets to play a role in
airborne transmission.

Irrespective of the size of droplets or the range involved, the
airborne transmission of COVID-19 and other respiratory infections
involve the following sequence of events (see Fig. 1):

1. generation, expulsion, and aerosolization of virus-containing
droplets from the mouth and nose of an infected host,

2. dispersion and transport via ambient air currents of the respi-
ratory aerosols to a susceptible, and

3. inhalation of droplets/aerosols and deposition of virus in the
respiratory mucosa of the susceptible.
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FIG. 1. Schematic depicting the key
stages in the airborne transmission of a
respiratory infection such as COVID-19.

Each phase in this sequence has complex dependencies on
a variety of factors that may include the morphological proper-
ties and pathogenicity of the virus, the health status of the host
and/or the susceptible, environmental conditions, and the pres-
ence/effectiveness of face coverings being used by the host and/or
susceptible. Given this complexity of phenomenology and the many
factors involved, it is not surprising that even after more than eight
months of the world dealing with the COVID-19 pandemic, there
are fundamental questions that continue to confound scientists, pol-
icy makers, and the members of the public at large. These include
the following questions: What factors have enabled the SARS-CoV-2
to spread so much faster and more extensively than other similar
viruses in the recent past?12,13 Why is the rate of infection so differ-
ent in different regions/countries of the world?14 How much lower
is the likelihood of transmission in an outdoor environment com-
pared to an indoor environment?10,15 How do policies and societal
behavior such as compliance with mask wearing affect the rate of
transmission?16,17 Finally, how does the transmission risk reduce
with distance between the host and the susceptible?

Scientists spanning fields such as biomedicine, epidemiology,
virology, public health, fluid dynamics, aerosol physics, public pol-
icy, behavioral psychology, and others are tackling these as well as
other important questions. However, what is lacking is a simple
and intuitive conceptual framework (or model) that encapsulates
the complex, multifactorial scope of this problem in a manner that
not only serves as a common basis for scientific inquiry across dis-
ciplinary boundaries but also as a tool to more easily communicate
the factors associated with the spread of this disease to a wide range
of stakeholders including non-scientists such as policy-makers, pub-
lic media, and the public at large. Given the rapidly evolving nature
of the pandemic and the resurgence of infections in many commu-
nities,18 the importance of clear communication of infection risk
across scientific disciplines, as well as to policy/decision makers and
other segments of society, is more important than ever.

II. THE CONTAGION AIRBORNE TRANSMISSION (CAT)
INEQUALITY

In 1961, Dr. Frank Drake, an astronomer and astrophysicist
involved in the search for extraterrestrial intelligence, conceived a

conceptual framework to predict the number of technological civi-
lizations that may exist in our galaxy. The Drake equation,19,20 as it
has become known, involves a number of probabilistic factors, which
when multiplied together result in the number of civilizations within
our galaxy, at any given moment, that humanity could communicate
with. The power of this equation is not in the fact that it actually
allows us to predict this number with a known level of certainty,
but in the fact that it provides an easy to understand framework
for grasping the key factors involved in something that seems ines-
timable: the number of advanced life forms that exist elsewhere in
our galaxy.

Motivated by the Drake equation, and based on the idea that
airborne transmission occurs if a susceptible inhales a viral dose that
exceeds the minimum infectious dose,21,22 the model in Fig. 2 to
predict the possibility of airborne transmission of a respiratory con-
tagion such as SARS-CoV-2 from an infected host to a susceptible is
proposed.

In the expression in Fig. 2, which we refer to as the Contagion
Airborne Transmission (CAT) Inequality,

Ṙh represents the rate of expulsion of respiratory droplets from
the nose and mouth of the host (number of droplets per unit
time),

fvh represents the fractional viral emission load—the average
number of virions contained in each expelled droplet,

fmh represents the fraction of expelled droplets that make it past
the face covering of the host,

fah represents the fraction of expelled droplets that aerosolize
(i.e., become suspended in the air),

fat represents the fraction of aerosolized droplets that transport
to the vicinity of the susceptible,

fvv represents the fraction of aerosolized droplets transported
to the vicinity of the susceptible that contain viable
virions,

fis represents the fraction of aerosols in the vicinity of the
susceptible that would be inhaled by a susceptible not
wearing a face covering,

fms represents the fraction of inhaled aerosols that are filtered by
the face covering of the susceptible,

Ṙtot represents the total rate of viable virion inhalation by the
susceptible (number per unit time),
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FIG. 2. The contagion airborne trans-
mission (CAT) inequality that evaluates
the conditions for the airborne trans-
mission of a respiratory infection such
as COVID-19. The left-hand side of the
inequality represents the total inhaled
viral dose, and the right-hand side is the
minimum aerosol dose required to initi-
ate an infection in the susceptible. The
inequality is satisfied (and the transmis-
sion is successful) when the suscepti-
ble inhales a viral dose that exceeds
the minimum infectious dose. The vari-
ables in the model can be segregated in
different ways, as shown in the graphic.

Ts represents the duration of exposure of the susceptible to the
aerosols from the host, and

NID represents the minimum number of inhaled virions required
to initiate an infection in the susceptible.

The CAT inequality is a mathematical model for the estimation
of infection risk that can be used based on various interpretations
of its constituent terms. For example, if Ṙtot and NID are known,
then the CAT inequality allows one to deduce the critical exposure
time TsC = NID/Ṙtot below which an infection is unlikely. Most often
in practice, however, not all of the factors in the inequality will be
known. Still, the CAT inequality can be used to compare relative
risks since one may consider the risk of a situation to be inversely
proportional to the corresponding critical exposure time (e.g., halv-
ing the critical exposure time doubles the risk). For example, the risk
ratio for two situations A and B will be Tsc−B/Tsc−A = Ṙtot−A/Ṙtot−B.
Thus, if, e.g., all factors are equal for A and B except for one, e.g., fmhA
≠ fmhB (say), then the risk ratio comparing A to B will be fmhA/fmhB.
In Sec. VIII, we will illustrate such relative risk estimations for three
specific cases.

The use of mathematical models to predict infection rates
is well established in epidemiology,21,23,24 and the CAT inequality
belongs among such models (see Sec. VIII for discussion on relation-
ship to existing modeling frameworks). As with any model, the CAT
inequality has a number of underlying assumptions (see Sec. IX),
but its potential advantage is that it presents the transmission risk
via a simple mathematical expression that, on one hand, captures a
wide scope of factors that may be involved in airborne transmission
and, on the other, is easy to convey to scientists from a wide range
of fields, non-scientists such as policy makers, public officials, and
public media, and even members of the general public.

As laid out in a previous publication,11 each stage in the
airborne transmission process is mediated by complex flow phe-
nomena, ranging from air–mucous interaction and liquid sheet
fragmentation inside the respiratory tract, to turbulence in the

expiratory jet/ambient flow and flow-induced droplet evaporation
and particle dispersion, to inhalation and deposition of aerosols in
the lungs. Furthermore, non-pharmaceutical approaches employed
to mitigate respiratory infections such as social distancing and
wearing of face masks are also rooted in the principles of fluid
dynamics. Thus, fluid dynamics is central to all important physical
aspects of the airborne transmission of respiratory infections such as
COVID-19, and it therefore stands to reason that this connection to
flow physics will appear in any successful model of airborne trans-
mission. In Secs. III–VI, we provide additional details about the key
variables involved in the CAT inequality with special emphasis on
the intervening fluid dynamical phenomena. This is followed by the
application of the model to assess the transmission risk associated
with face mask use, physical distancing, and exercise intensity in Sec.
VII. Finally, Secs. IX and X, we describe the caveats associated with
this model and summarize the study.

III. HOST RELATED VARIABLES
The CAT inequality (Fig. 2) naturally segregates into three sets

of variables: the first set depends primarily on the host, the second
depends on the environment, and the third depends on the suscepti-
ble. We now describe the factors that each of these variables depends
on as well as our state of knowledge regarding each variable.

Ṙh is the rate of expulsion of respiratory droplets from the nose
and mouth of the host and is one of the most extensively stud-
ied parameters within the arena of airborne transmission.6,7,9,25–28

Droplets are formed from the mucus and saliva that line the res-
piratory and oropharyngeal tracts, and these droplets are expelled
with the air that is exhaled out of the mouth and nose. Studies
have shown that individuals generate more droplets for the same
expiratory activity while ill with a respiratory infection than after
recovery,26,29 and this may be related to enhanced mucous produc-
tion during illness. While the conventional notion is that sneezing
has the highest rate of droplet generation followed by coughing,
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talking,7,30 and breathing6 (in that order), the very large scatter in
measured data6,25,31 makes it difficult to validate this notion. Atten-
tion during the ongoing pandemic has focused on droplet generation
during talking and breathing7,8,25 due to the recognition that viral
shedding from asymptomatic/presymptomatic individuals (who are
not coughing or sneezing) may be an important differentiator in the
high spreading rate of SARS-CoV-2 infections compared to earlier
coronavirus outbreaks.2,32

For activities such as breathing and talking, it could be appro-
priate to express Ṙh as the product of the volume expiration (i.e., ven-
tilation) rate of the host (V̇Eh) and the number density of droplets
(i.e., droplets per unit volume) in the exhaled gas (ndh). This is
because for a given individual, ndh might not vary significantly dur-
ing activities such as breathing, and Ṙh would therefore increase
linearly with the ventilation (i.e., exhalation) rate V̇Eh. The venti-
lation rate for an adult can range from about 100 ml s−1 at rest to
2000 ml s−1 during intense exercise.33 The measured values of ndh for
breathing34 are about 0.1 ml−1, and this suggests that Ṙh for breath-
ing could range from about 10 to 200 droplets per second depending
on the ventilation rate. The values of ndh during normal speech in
the same experiment were found to be about two to eight times
higher, and other studies have found that droplet emission increases
with the loudness of speech.7 Finally, recent attention has focused on
“super producers”: individuals who according to some studies gener-
ate droplets at rates that are 10 or more times higher than others.29,35

Thus, even for normal breathing, Ṙh could range from about 10 s−1

to 2000 s−1 depending on the exhalation rate and the emission phe-
notype of the individual, and speech could increase the upper range
by another order of magnitude. Thus, the phenotype and expiratory
activity of the host alone could increase the transmission risk by a
factor of 1000 or more.

fvh is the fractional viral load of a respiratory droplet, i.e., the
average number of virions per droplet, and there are currently no
data on this variable for SARS-CoV-2. Indirect measures based on
the volume concentration of viral load in oral fluid samples collected
from COVID-19 patients combined with simple volumetric esti-
mates have been used to suggest that 37% of 50 μm size droplets and
0.37% of 10 μm size droplets would contain virions.30 No confirma-
tion of these estimates from the direct measurement of respiratory
aerosols is available so far, and there is evidence that suggests that
these simple volume-fraction based estimates might significantly
underestimate the viral load of the small (<5 μm) droplets.27 Fur-
thermore, the fractional viral load also likely depends on the location
in the respiratory tract from where the droplet originates because
pathogens tend to colonize specific regions of the respiratory tract
and the mucous volume and thickness varies throughout the respi-
ratory tract.36 There is, however, no quantification of this effect. We
note that employing even a low-end estimate of say a 0.5% fractional
viral load (i.e., fvh = 0.005), combined with 200 000 droplets/cough,26

would result in the shedding of 1000 virions in each cough, and
this could be equivalent to the minimum infectious dose (see the
discussion in Sec. VI) for COVID-19.

fah is the fraction of expelled droplets that aerosolize, i.e., get
suspended in the air. It is generally found that droplets smaller than
about 10 μm can remain suspended in the air, whereas droplets
larger than 50 μm fall to the ground rapidly.34,37–39 Thus, the size
distribution of the expelled droplets is a key determinant of fah. A
number of studies have examined the distribution of droplet size

expelled during various expiratory activities,6,7,9,25–28 and these stud-
ies show that the droplet size can vary from 0.01 μm to 1000 μm.
The consensus is that breathing generates the smallest particles,
while talking, coughing, and sneezing generate increasingly larger
droplets (in that order).40 There is however a large scatter in these
data, and this might be due to subject-specific differences41 as well
as the changes in the mucosal fluid induced by the pathogen.40

Finally, the fluid in the expelled droplets also evaporates rapidly,
resulting in a reduction in the size, and this rate of evaporation
may depend on prevailing conditions of temperature and humidity
near the host, as well as the velocity of the droplets. These depen-
dencies can, however, be determined, for the most part, from first
principles.38,42

IV. ENVIRONMENT DEPENDENT VARIABLES
fat represents the fraction of aerosolized respiratory aerosol

droplets/droplet nuclei from the infected host that are transported
to the immediate vicinity of the susceptible, and this is one variable
where environmental factors play a dominant role. These include
air currents, turbulence, temperature, and humidity. Ambient air
currents in particular determine the “time-of-flight” as well as the
dilution in the concentration of the bioaerosol that arrives near the
susceptible.

Even though we know the dependencies of the variable fat ,
it is still a difficult variable to estimate since environmental fac-
tors can be so highly variable.43 The estimation of this parame-
ter becomes particularly difficult in indoor spaces such as build-
ings where rooms share a high-volume air conditioning (HVAC)
system. In high-density indoor spaces such as classrooms, aircraft
cabins, gyms, buses, trains, and so on, anthropogenic effects gen-
erated due to human movement and body heat generated thermal
plumes46,47 could also have a significant effect on this variable. For
example, even for a host and susceptible in the same room, this vari-
able could change significantly given the relative location of the two
individuals, the operational status of the air conditioning, and the
location of the individuals relative to the air conditioning diffusers
and vents.15,44,45 The effects of indoor ventilation fluid dynamics on
COVID-19 transmission have been recently reviewed.48

The estimation of fat in outdoor environments presents a differ-
ent challenge. While these outdoor environments do not have con-
fining boundaries and localized inflow/outflow regions that domi-
nate the flow patterns, effects due to atmospheric turbulence,49,50

local wind and weather conditions, convection effects due to ther-
mal gradients, and other environmental factors have to be taken
into account. Furthermore, even in outdoor settings, the presence
of high human density (such as at sporting events, social gatherings,
and so on) could introduce significant anthropogenic effects on the
dispersion and transport of respiratory aerosols.

As the aerosol plume from the host travels downstream, it
spreads due to diffusion, entrainment, and turbulence-induced mix-
ing. This results in a direction-dependent drop in concentration
(aerosol particles per unit volume) with distance from the host. To
further understand how this enters the estimation of the variable
fat , we introduce the variable V s, which is the volume of air sur-
rounding the face of the susceptible that would be inhaled by the
susceptible (see Fig. 3). If the aerosol concentration near the host is
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FIG. 3. Schematic depicting the inhala-
tion volume of the susceptible that can
be combined with the local concentration
of the respiratory aerosol to estimate fat .

Co and the mean concentration in the volume Vs at a distance of Dhs
is C̄s, then fat due to this dilution in concentration can be expressed
as C̄s/Co. The volume V s can be estimated given the inspiratory sta-
tus of the susceptible (see the discussion of fis), but in the current
model, a choice for V s that eliminates dependence of this variable
on the susceptible is the maximum possible volume of air that can
be inhaled by an adult per second, which is about 2 liters.33 Thus,
fat can be estimated under these assumptions if C̄s/Co is known or
can be estimated. We point out that the “exposure index” of Liu et
al.51 is defined in a similar way and, in their study, is estimated using
computational modeling. It is also noted that Co could be expressed
in terms of the ratio of the particle expulsion rate to the exhalation
rate of the host as Co = Ṙh/V̇h.

A number of studies have measured the spreading rate of the
exhalation jets formed from various expiratory activities,52–54 and
this spreading rate can vary significantly with downstream distance
for breathing, talking, and coughing. External flow currents and
thermal convection33 effects will however deform the shape of the
expiratory plume and may enhance non-uniformity in the con-
centration of the respiratory aerosols within the jet. Quantifying
the effect of all these factors is the key challenge in estimating fat .
In Sec. VIII, we will employ canonical computational models of
scalar dispersion to provide estimates of the protection factor (PF)
associated with physical distancing in several scenarios.

fvv represents the fraction of respiratory aerosol particles from
the infected host that arrive in the immediate vicinity of the sus-
ceptible with viable virions. Ambient air currents determine the
“time-of-flight” of the aerosol particles, and this combines with tem-
perature, humidity, and UV exposure to determine the viability of
the virions carried in the aerosols. A study has shown that the SARS-
CoV-2 virion can stay viable in an aerosol form for three or more
hours,13 but high temperature55 and sunlight/UV exposure56,57 are
both detrimental to virion viability. Humidity, on the other hand,
has a more complex effect on the viability of airborne viruses. For
instance, three regimes of Influenza A virus viability in droplets,
defined by relative humidity (RH), have been postulated: high via-
bility at physiological (∼100% RH) and dry (<50% RH) conditions
and lower viability when intermediate humidity (50%–100% RH)
exists in combination with high concentrations of naturally occur-
ring biochemical solutes in the droplet.58 This complex dependency

on humidity is likely the one factor that has made it difficult to cor-
relate the transmission risk with regional and seasonal variations in
environmental conditions.59 In general, fvv can be modeled as e−T /τ ,
where T is the time-of-flight and τ is the half-life of virions in an
aerosolized form, which depends on the virus as well as the temper-
ature, humidity, and UV exposure. A number of recent studies have
measured τ for SARS-CoV-2 in a variety of settings.13,56

V. SUSCEPTIBLE RELATED VARIABLES
fis is the fraction of bioaerosols from the host in the vicinity of

the susceptible that would be inhaled and deposited in the respira-
tory tract of a susceptible not wearing a face covering. This variable
primarily depends on the inspiratory status of the susceptible. At
rest, an adult human inhales about 100 ml of air per second,60 but
this value can go up to 20-fold during intense exercise.33 Within the
context of the current model, fis could be estimated as the ratio of
the susceptible’s inspiratory rate to the maximum possible inspira-
tory rate for a human (we denote this maximum ventilation rate as
V̇max), which can be assumed to be 2000 ml/s.33 We note that the vol-
ume here is the same as V s in Sec. IV. With this prescription, fis for
the average healthy adult male could vary from 0.05 during rest to 1.0
during intense exercise. Beyond the exercise state of the individual,
the tidal volume (volume inhaled per breath) and ventilation rate
also depend on age,61 gender, body weight,62,63 and the respiratory
health of the person, and these factors can be easily accounted for in
fis. For instance, the measured values of ventilation rates for women
are about 20% lower than for men,62 and this would translate to a
20% reduction in fis for women. Similarly, short adults can have rest-
ing inspiratory rates that are about 20% lower than tall adults,62 and
this would result in a proportionate reduction in fis. Inspiration rates
for preteens can be threefold lower than adults,61 and this would also
reduce fis proportionately. Thus, differential inspiration rates could
play a role in the age and body-weight associated COVID-19 preva-
lence disparities noted in recent studies.64,65 The effect of physical
activity-associated changes in ventilation rates on the transmission
risk is examined in Sec. VIII.

NID is the infectious dose for airborne transmission. In the
arena of infectious diseases, the infectious dose is often expressed
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as HID50,22 which is the minimum infectious dose required to ini-
tiate infection in 50% of inoculated humans. This number is usu-
ally obtained via controlled studies where human volunteers are
exposed to different viral loads. However, such studies are not avail-
able for potentially lethal viruses such as SARS-CoV-2. Studies on
the infectious dose for Influenza A indicate a HID50 of O(1000)
virus particles.22,66 Studies of MERS-CoV in mice found a similar
infectious dose,67 so the HID50 for humans accounting for the larger
body weight could be two or more orders of magnitude higher. It
is important to note that for Influenza A, the infectivity via aerosols
has been found to be O(105) higher than via a nasopharyngeal (i.e.,
nasal swab) route,68 highlighting the exceptional effectiveness of the
airborne route for transmission of respiratory infections. The infec-
tivity of airborne viruses also depends on the carrier droplet size.
Small (∼2 μm) droplets deposit deeper in the lungs and have been
shown to be two or more orders of magnitude more infective than
larger (>10 μm) droplets.69 Finally, the infectious dose might also
depend on the age and health status (including the level of immu-
nity to infection) of the susceptible. The determination of NID for
SARS-CoV-2 remains one of the most important tasks for scientists
working in this arena.

The remaining variable Ts is the duration of exposure of the
susceptible to the aerosols from the host. Based on the CAT inequal-
ity, if all other conditions remain stationary, the total number of
viable virions transmitted is directly proportional to the exposure
duration. The transmission is successful when this viral dose equals
or exceeds the infectious dose (i.e., when Ts ≥ TsC).

VI. FACE COVERINGS
Face coverings appear in the two factors fmh and fms as frac-

tions of aerosols/droplets that pass through the face coverings of the
host and susceptible, respectively, and there are much data avail-
able to estimate these variables. These face covering-related variables
depend on two factors—the material of the face covering and the
fit of the face covering on the face of the individual. A perfectly fit
N95 face mask, for instance, stops 95% or more of the particles that
go through it, and fm would therefore be equal to 0.05 for such a
mask. Thus, the wearing of a well-fit N95 mask by either the host or
the susceptible could reduce the transmission risk by a factor of 20.
Furthermore, if both individuals are wearing such masks, the trans-
mission risk, according to the CTA inequality, could reduce by a
factor of 400.

Surgical masks have been measured to block 30%–60% of res-
piratory aerosols,70,71 and in another study, a surgical mask reduced
aerosol shedding of Influenza A virions from infected hosts by a fac-
tor of 3.4.28 This suggests that even surgical masks worn by both
the host and the susceptible could reduce the transmission risk by
factors ranging from about 2 to 10. Another recent study of viral
shedding with and without surgical face masks from patients with
Influenza, coronavirus (SARS), and rhinovirus provides clear evi-
dence of the ability of such face coverings to reduce the transmis-
sibility of the virus.72 Finally, we point out that even home-made
cloth masks provide some protection against airborne infections,71

and in Sec. VIII, we will examine this in more detail for a range of
fabrics.

The fitment of the mask is important for overall protection
since a loose-fitting mask with perimeter leaks allows unfiltered
aerosols to bypass the mask.73 Leaks are a particular problem for
outward protection (i.e., reducing emission of respiratory aerosols
by the infected host) since the process of expiration pushes the mask
outwards and enhances perimeter leaks.11,74,75

Finally, in addition to filtering aerosol particles, face coverings
also reduce the velocity of exhalation jet.74,76 This could increase the
expansion angle of respiratory jet and reduce the initial penetra-
tion distance of the respiratory droplets,77 thereby altering fat . For
instance, a recent study found that the fabric in some face coverings
might facilitate the breakup of large droplets into smaller ones78 and,
in doing so, increase fat , thereby increasing the transmission risk.

VII. MODEL PREDICTIONS
The model is now applied to address three distinct questions:

what protection is afforded by different face coverings, how does
the risk decrease with increased physical distance between the host
and susceptible, and finally, to what degree does the level of physical
activity, as manifested in the ventilation rates of the host and/or the
susceptible, affect the transmission risk.

A. Protection afforded by face coverings
We start with the effect of face masks and employ data from

the work of Zangmeister et al.71 on the filtration efficiency (FE)
of common fabrics used in respiratory face masks. These authors
examined more than 30 different fabrics and quantified the filtration
efficiency for droplet sizes ranging from particle mobility diameters
(PMD) between 50 nm and 825 nm. Given that aerosol transmis-
sion may involve droplet sizes ranging up to 5 μm, we have esti-
mated the lower and upper bounds of the average filtration efficiency
(FE) for particle sizes ranging from 50 nm to 5 μm (see the pro-
cedure in Appendix A). The fraction of aerosols/droplets that pass
through the face coverings is then given by fm = 1 − FE/100. Given
these values and the assumption that the filtration efficiency is the
same for inward as well as outward protection (i.e., fmh = fms = fm),
we can now estimate the unilateral protection factor (PF) if either
the host or the susceptible wears this mask, as PF = f −1

m . The cor-
responding bilateral protection factor, i.e., when both individuals
wear masks, is then given by PF = f −2

m . These PFs normalized by
the corresponding situation where neither individual is wearing
a mask are plotted in Fig. 4 for selected cases from the work of
Zangmeister et al.71

Given the large uncertainties in estimates of the protection fac-
tor derived here, only general conclusions regarding the face masks
are drawn here. First, a number of simple fabrics (Cotton 4, Cotton
14, and Synthetic Blend 2) provide protection factors that are simi-
lar or better than the Surgical Mask sample. Second, even the lower
bound of unilateral protection for many of these samples exceeds
2.0, which represents a significant reduction in the transmission risk.
Third, for bilateral protection, Cotton 4 and Synthetic Blend 2 have
minimum protection factors that exceed 5. Finally, the true pro-
tection factors for these fabrics are likely significantly higher than
the lower bounds established here. Indeed, if we average the upper
and lower bounds of FE for the four most effective fabrics/samples
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FIG. 4. Estimation of protection from aerosol transmission afforded by the donning of face coverings based on the published filtration efficiency data of Zangmeister et al.71

for 34 different fabrics/samples. The protection factor (PF) is a quantity that is normalized by the risk of transmission associated with the situation when neither the host nor
the susceptible wears a mask.

(Cotton 4, Cotton 14, Synthetic Blend 2, and Surgical Mask), we
obtain an aggregate filtration efficiency of 63%, which would cor-
respond to a unilateral (bilateral) protection factor of 2.7(7.3). Thus,
simple face masks made from any of these fabrics/materials could
significantly lower overall transmission rates. This effectiveness of
face masks is being corroborated by recent epidemiological16 and
animal79 studies of COVID-19 transmission. We point out that the
above analysis ignores perimeter leaks, which can significantly dete-
riorate the effectiveness of face masks.11 The analysis also does not
account for unsteady and velocity dependent effects of expiratory
events on the filtration efficiency.74

B. Protection due to physical distancing
The model is used next to examine the protection from trans-

mission afforded by the physical distance between the host and the
susceptible in an outdoor environment. As mentioned earlier, the
distance between the host and the susceptible is a dominant fac-
tor in the variable fat associated with the transport of virion-bearing
aerosols. However, the estimates for the rate at which the transmis-
sion risk diminishes with distance between the host and the suscep-
tible are not readily available. Here, we employ simple models of the
aerosol dispersion to estimate the protection factor associated with
physical distancing.

We start by assuming that the mean concentration in the
inhaled volume of the susceptible is equal to C(Dhs), where C is the
concentration at a height of 1.5 m above ground at any given dis-
tance from the host (see Fig. 5). Dispersion-induced dilution at a
distance of Dhs would then result in fat ∼ C(Dhs)/Co, and a corre-
sponding protection factor due to physical distancing of f −1

at . Several
scenarios for outdoor transmission are considered based on various
combinations of expiration velocity (V j), ambient wind speed (U∞),
and buoyancy induced effects. We note that these models are consis-
tent with the approach inherent to the CAT inequality that assumes
a sequential segregation of the various effects involved in airborne

transmission. In particular, important near-field effects such as
droplet breakup and evaporation are assumed to be accounted for
in the variable fah and are therefore not included in the droplet dis-
persion models discussed in the current section. The cases are as
follows:

1. V j and U∞ are both of very low magnitude; this could corre-
spond to a sedentary individual breathing at a low exhalation
rate in still wind conditions. This situation can be modeled
as normal diffusion dominated dispersion, and the analytical
solution for steady-state diffusion from a point source80 in
an unbounded domain indicates that C(x) ∼ x−1, where x is
the distance from the point source. The molecular diffusion
will not be relevant since it will take a long time to estab-
lish itself (on the order of t ∼ x2/γ, where γ is the molecular
mass diffusion coefficient, typically many hours in air). How-
ever, even relatively weak background turbulence with eddies
smaller than x will generate turbulent diffusion coefficients81

γT ≫ γ and also establish a C(x) ∼ x−1 spatial decay.
2. V j significantly exceeds U∞; this could correspond, for

instance, to a person talking or singing (where expiratory flow
speeds range up to 5 m/s54) in still wind conditions. This sit-
uation could be approximated as a turbulent jet in quiescent
flows, and studies82 of such flows in canonical configurations
indicate that the peak concentration decays beyond the near
field as C(x) ∼ x−1 in the direction of the jet. This situation
has been analyzed recently for speech-driven aerosol transport
including time dependence.83

3. U∞ significantly exceeds V j; this could correspond, for
instance, to a person breathing normally with an expiratory
velocity of ∼1 m/s84 on a windy day with wind velocities
upwards of 10 miles/h. Neglecting buoyancy effects, this sit-
uation can be modeled as a horizontal plume from a point
source in a crossflow, and studies85,86 suggest that C(x) ∼ x−3/2

beyond the near-field region.
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FIG. 5. Schematic showing various sce-
narios for which the effect of physical
distancing on the transmission risk is
assessed. The aerosol plume from the
host consists of a near field, which can
be highly variable, and a far field, where
the plume exhibits more self-similar or
universal characteristics within various
classes of flow. The analysis in this sec-
tion focuses on the far-field domain.

4. The previous situation of a horizontal plume does not account
for buoyancy effects, and the data employed do not account for
the time-dependent pulsatile nature of breathing. These effects
can be included in the current model if data from appropriate
computations or experiments are available. Here, we employ
data generated from a wall-modeled large-eddy simulation87

of a plume from a point source located 1.5 m above the ground
in a turbulent atmospheric boundary layer, with a mean wind
velocity corresponding to 2 m/s.83 The model is designed to
mimic normal breathing with the scalar (representing the res-
piratory aerosol) being released as puffs at regular intervals
of 3 s. The exhaled breath is assumed to be at a temperature

of 37 ○C, and two ambient temperature conditions are con-
sidered: 0 ○C and 42 ○C. In the model, buoyancy effects are
included using the Boussinesq approximation. The incoming
wind flow itself is assumed to be unstratified and neutrally
buoyant. The reader is referred to Appendix B for details about
the methodology of the simulations.

Figure 6(a) shows a plot of the instantaneous scalar concen-
tration for the second case, and Figs. 6(b) and 6(c) show the time-
averaged plume concentrations for both cases. As expected, the
plume rises for the first case (the “light” plume) but descends toward
the ground for the second case (“heavy” plume) due to buoyancy

FIG. 6. Results from the wall-modeled large eddy simulation (LES) of a breath generated aerosol plume (at x = 0) in a turbulent boundary layer. (a) Isosurfaces of instantaneous
concentration of scalar C/Co = 0.01, colored by the local streamwise velocity showing the breath aerosol puffs being transported in the turbulent flow, (b) contours of the
mean concentration for a plume that is warmer than the ambient flow, and (c) contours of the mean concentration for a plume that is colder than the ambient flow. (d) Mean
concentration with the streamwise distance (in meters) at a height of 1.5 m from the ground along with best fit power laws beyond the near-field region.
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FIG. 7. Estimate of the protection fac-
tor as a function of physical distance
(in arbitrary units) between the host and
susceptible for the five scenarios exam-
ined here. The protection factor is nor-
malized for each case by the condition
where both the host and susceptible are
at a unit distance. The protection factor
is inversely proportional to the decay of
the concentration with distance between
the host and the susceptible Dhs.

effects for the very hot surrounding air case into which the cooler
and denser air is exhaled. Figure 6(d) shows the maximum concen-
tration of the respiratory plumes as a function of distance for the
two cases, and we find that beyond a distance of about 3 m, the
plume concentration decays consistently as C(x) ∼ (x−1.2) and C(x)
∼ x−0.9 for the light and heavy plumes, respectively. Thus, the pres-
ence of the ground as well as buoyancy has a noticeable effect on the
concentration decay rate.

Figure 7 shows the protection factors due to physical distanc-
ing for all the cases discussed above, and we note that since the
y-intercepts of all the curves have been individually normalized to
unity at a unit distance, a direct numerical comparison between the
two conditions is not appropriate. The plot does however indicate
that in the absence of a crossflow, the protection factor increases
linearly with distance, whereas when the crossflow velocity is sig-
nificantly larger than the exhaled jet velocity, the protection factor
increases at a faster rate of D1.5

hs . Furthermore, the buoyancy has
a noticeable effect on the decay of aerosol concentration, and the
downward movement of a heavy plume combined with the con-
finement due to the ground could potentially diminish the pro-
tection afforded by physical distancing. Given that wind condi-
tions can be highly variable, a conservative estimate from the above
analysis is that physical distancing affords approximately a linear

increase in protection from transmission. The analysis also demon-
strates the use of data from computational fluid dynamics models to
parameterize the model for specific scenarios.

C. Level of physical activity and transmission risk
The final application of the model is to examine the potential

effect of physical/exercise intensity on the risk of transmission. This
would be relevant to settings, such as gyms, sports/exercise facilities,
and even gatherings/events, schools, and workplace situations where
levels of physical activity might exceed levels that are considered
sedentary. The exercise intensity enters the CAT inequality through
the ventilation rates of the host and the susceptible. As pointed out
earlier, in expiratory activities such as breathing and talking, the par-
ticle expulsion rate may be estimated as Ṙh = ndhV̇Eh, where ndh is the
number of droplets emitted per volume of exhaled gas (and may be
assumed to be constant for a given host) and V̇Eh is the ventilation
rate of the host. The variable fis is equal to the rate of the suscepti-
ble’s ventilation rate divided by the maximum possible ventilation
rate, i.e., fis = V̇Es/V̇max. Employing established definitions88 that
relate exercise intensity to oxygen consumption rates, and further
assuming proportionality between oxygen consumption rates and
corresponding ventilation rates, and that the maximum ventilation

FIG. 8. Estimate of the transmission risk
increase due to physical activity/exercise
induced increased ventilation rates for
hosts and susceptibles. The assumed
ventilation rate for each of the five levels
is included in the legend. The increase
in the transmission risk is normalized by
the condition where both the host and
susceptible are sedentary (sleeping or
sitting).
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rate V̇max for adults is 2 l/s,89 we can estimate the increased trans-
mission risk with exercise intensity over the sedentary condition as
(Ṙhfis)/(Ṙh,minfis,min) = V̇Eh × V̇Es/V̇2

min, where ( )min corresponds to
an adult in a sedentary condition. In the current estimation proce-
dure, V̇min is set at 100 ml/s, which is 5% of the maximum ventilation
rate, and the ventilation rates for the intermediate levels are based on
the measured values for adults.88

Figure 8 shows this increased transmission risk for the five exer-
cise intensity levels, and it can be seen that even for a susceptible in a
sedentary state, the transmission risk goes up by a factor of eight
if the host is at a moderate intensity of exercise. In settings such
as shopping malls, outdoor markets, warehouses, or high-schools,
where activity levels of hosts and susceptibles could be in the light
to moderate range, the increase in the transmission risk just due to
increased ventilation rates would, according to the current model,
be up to 64 times higher. In a facility such as a gym or, for instance,
a basketball practice, where exercise intensity levels could be in the
“vigorous” range, the transmission risk could be nearly 200 times
higher due to increased exhalation and inhalation rates of the indi-
viduals involved. A survey of the existing literature indicates that this
increase in risk with a physical activity level associated with various
common scenarios is under-appreciated.

VIII. COMPARISON WITH OTHER INFECTION RISK
MODELS

Existing models for estimating the infection risk via airborne
transmission can be classified into the Wells–Riley type and dose–
response models.90 Within this context, the current model should
be considered a dose–response model since it explicitly makes use of
the infectious dose (NID) to predict the infection risk. The current
model, as proposed, can further be characterized as a determinis-
tic (as opposed to stochastic) dose–response model since it assumes
that a dose larger than the threshold dose of NID results in an
infection.90

The Wells–Riley type models are based on the notion of an
infectious “quantum” that is defined as the quantity of expelled
aerosols required to cause an infection in a susceptible.21,24 Within
the context of the CAT inequality, the quantum emission rate can
be expressed as (Ṙhfvh/NID), and the CAT inequality could easily
be reformulated to express risk in terms of this quantity. However,
the quantum emission rate combines a host-dependent variable (the
rate of viral shedding) with a susceptible dependent variable (the
infectious dose) and makes it difficult to delineate the effects of the
distinct states (health, inspiratory state, mask use, and so on) of the
two individuals involved. Furthermore, the vast majority of such
models assume a “well-mixed” state for the aerosols in the environ-
ments, and this does not allow for “local” effects90 that have direct
bearing on practices such as social distancing.

The dose–response models of varying degree of complexity
have been developed.90 Many of these models allow for spatial and
temporal inhomogeneities in the aerosol concentrations and are well
suited for detailed modeling of infection risk in a variety of sce-
narios. Some of the recent models that have been developed can
incorporate data on ambient flow conditions from computational
models or experimental measurements.91 However, such models
are expressed in mathematically complex forms, which diminish

comprehensibility outside disciplinary expertise, and make it par-
ticularly difficult to communicate the underlying ideas to non-
scientists. As shown in Secs. VII A–VII C, the simple mathematical
form of the current model and its phenomenology-based compart-
mentalization into host, environment, and susceptible dependent
variables not only allow for easier comprehension by a wide range
of audiences but also provide quick estimates of factors including,
but not limited to, the type of mask worn, physical distancing, and
inspiratory status of the host and susceptible.

Finally, we point out the left-hand side of the CAT inequality
represents the total aerosol viral dose inhaled by the susceptible, and
if we denote this variable by NDs = ṘtotTs, then (NDs

NID
− 1) represents

the normalized viral “overdose” delivered to the susceptible. Thus, in
addition to evaluating the risk of transmission, the CAT inequality
can also be used to assess the degree of exposure of the susceptible to
aerosolized viruses, which is known to be correlated with the severity
of the infection.92

IX. CAVEATS
The notion that “a model is a lie that helps us to see the

truth”103 certainly applies to the current model as well. The CAT
inequality is an attempt to express the highly complex, multifac-
torial process of airborne transmission of a respiratory infection
such as COVID-19 in a simple way, and the following caveats and
limitations of this model are worth pointing out:

1. The choice of the variables in the CAT inequality is not unique,
and other combinations of the variables are possible. In par-
ticular, the variables shown in the CAT inequality could be
decomposed further; for instance, Ṙh can be expressed as the
rate of droplet generation in the respiratory tract and the frac-
tion of generated droplets that are expelled from the mouth.
Such a variable separation might be appropriate, for instance,
to isolate the effect of therapies that attempt to diminish the
droplet generation rate via alteration of the mucous proper-
ties.35

2. The inequality assumes that the rate of arrival of virion-bearing
aerosols in the vicinity of the susceptible is constant in time.
The recent analysis83 of speech driven aerosol transport takes
into account the start time and travel duration in scenario (2)
treated in Sec. VIII. The CAT inequality could be modified to
include a time-dependent emission and arrival rate,21 but this
would increase the complexity of the mathematical expression.
Assuming the steady state condition results in predictions that
are more conservative in most cases. Finally, it is also assumed
here that the rate of virion arrival (i.e., proportional to the
advective or diffusive flux of C) in the vicinity of the suscep-
tible is sufficiently high so that the local concentration is not
markedly affected by the inhalation process itself. If the flux is
not high enough, the inhalation may deplete the concentration
near the susceptible over time. The analysis for flux-limited
situations again introduces additional complexities.

3. The CAT inequality could be missing important but as yet
unknown effects. For instance, the use of NID in the model
assumes that it is the accumulated dose of virus that deter-
mines transmission. While this assumption is quite standard
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in the arena of infectious diseases,21–23 it is plausible that the
rate at which this infectious dose is delivered to the respiratory
tract of the susceptible is also important in initiating an infec-
tion. For instance, 1000 virions inhaled over a short duration
(say minutes) might overwhelm the immune system, whereas
the same viral dose delivered over a much longer duration (say
hours) might allow the immune system to mount an effective
response and avoid infection.

4. The variables in the CAT inequality are more accurately repre-
sented as variables with probability density functions (PDFs)
given the stochastic nature of the processes involved.93 For
instance, respiratory droplets of different sizes are expelled at
different rates9,28,31,36 during an expiratory event, and the rate
of droplet emission Ṙh could therefore be expressed as a droplet
size-dependent PDF. Similarly, the viral loading of respiratory
droplets (fvh) as well as the infectious dose NID are expected to
be functions of droplet size and could therefore be represented
by droplet size dependent PDFs. The environment determin-
ing fat is most often highly turbulent and is expected to cause
significant fluctuations in travel time, turbulent diffusion rates
and individual eddying events can influence the local concen-
trations. Hence, the factor fat itself has a mean value as well as a
distribution around that mean value that depends on detailed
flow conditions.

5. If the variables in the CAT inequality are interpreted as ran-
dom variables with PDFs (as in the previous point), it implicitly
assumes the variables and factors are statistically independent.
However, variables in the CAT inequality are not necessarily
mutually independent given the fact that many of them have
common dependencies. The joint dependency of many vari-
ables on particle size has already been described above. Other
examples include the face covering on the host, which modifies
fmh. A resulting alteration of the expiratory jet due to the mask
could also affect the aerosolization variable fah of the expelled
droplets as well as entrainment into the ambient air current,
which could affect fat .

6. The model assumes a single host, but the CAT inequality can
easily account for multiple hosts by summing the left-hand side
for multiple infected hosts.

7. The validation of the proposed model is not attempted here.
The validation requires accurate estimates of inputs as well
as outputs to the models, and these are difficult to obtain,
especially for potentially lethal infections such as COVID-19.
Indeed, most models of airborne infection to date, including
classic24 as well as more recent models,21,94–96 remain unvali-
dated. Despite this lacuna of validation, the value of all such
models, including the current one, is that they enable an exam-
ination of how transmission risk scales with key variables and
an assessment of the effects of mitigation strategies on overall
transmission rates.

X. SUMMARY
The CAT inequality is a mathematical model for estimating the

risk of airborne transmission of infectious diseases such as COVID-
19, which is expressed in a simple and intuitive way so as to convey
the factors involved in transmission to a wide range of stakeholders
ranging from scientists from various disciplines to policy makers,

public media, and even the general public. As shown through spe-
cific examples, the model provides a framework for interpreting and
quantifying the relative changes in risk from behaviors such as, but
not limited to, wearing masks, physical distancing, and the inten-
sity of physical activity/exercise on infection risk, in terms that are
easy to convey to a range of audiences. The approximately inverse
relationship of the transmission risk and spatial distance from phys-
ical distancing is one example of the important insights that can be
generated by the model.

In closing, we point out that while the transmission model pre-
sented here is inspired by the Drake equation, we understand much
more about the factors involved in this transmission model than we
do about the factors in the Drake equation. Indeed, as discussed in
the paper, estimates for many of the variables in the CAT inequal-
ity can be obtained from existing data or from basic principles of
fluid dynamics, physiology, and virology. Even for the variables for
which we currently do not have good estimates, we understand
the underlying dependencies as well as the procedures/methods
required to estimate these variables, and it is expected that ongoing
studies will close these gaps in our understanding and provide better
quantification of all the variables involved in this model.
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APPENDIX A: ESTIMATION OF UPPER AND LOWER
BOUNDS FOR AVERAGE FILTRATION EFFICIENCY OF
FACE MASK FABRICS

The procedure for estimating the lower and upper bounds of
the filtration efficiency (FE) for various fabrics in Fig. 4 is described
here. Zangmeister et al.71 measured the FE for various fabrics as
a function of particle mobility diameters (PMDs) that range from
50 nm to 825 nm. However, it is well established that aerosol trans-
mission occurs with aerosol particles with diameters up to at least 5
μm. In order to apply the data from the work of Zangmeister et al.71

in a way that is relevant for airborne transmission, the FE vs PMD
data have to be extended up to 5 μm. However, the FE dependence
on PMD is affected by the filter diameter, the solidity (1-porosity),
the density of the particles, and the face velocity, and simple extrapo-
lations of the FE vs PMD curves are not possible. Given this, and the
fact that FE for any given material approaches 100% at high enough
PMD, we derive a lower and upper bound of the average FE over
the 50 nm–5000 nm range as follows (see Fig. 9): the lower bound is
obtained by assuming that the FE for PMDs greater than 825 nm is
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FIG. 9. Depiction of methodology for estimating the lower and upper bound of the
average FE over the 50 nm–5000 nm range from the data of Zangmeister et al.71

This particular example is for the 1× Cotton 13, 2× Synthetic Blend 4 sample. The
lower bound is obtained by assuming that the FE for PMDs greater than 825 nm is
equal to the FE measured at 825 nm. The upper bound is obtained by employing a
regression fit to the right side of the measured curve (beyond the PMD for minimum
FE) and extending it to the FE = 100% line. Beyond this, the FE for the upper bound
is assumed to equal 100%.

equal to the measured FE at 825 nm. The upper bound is obtained
by employing a regression fit to the right side of the measured curve
(beyond the PMD for minimum FE) and extending it to FE = 100%.
Beyond this, the FE for the upper bound is assumed to be equal to
100%. A quadratic regression fit results in an R2 value exceeding 0.90
for all cases. For each bound, the average FE (denoted by FE) over the
PMD range 50 nm–5000 nm can now be estimated using numerical
integration. Figure 9 illustrates the areas used in the calculation of
these bounds for one case, and Table I shows the FE computed in this
way for the various fabrics considered in the current study. Finally,
Table I provides a brief description of the various fabrics/samples
from the work of Zangmeister et al.71 that are included in the cur-
rent study, along with the estimated lower and upper bounds of the
average filtering efficiencies.

APPENDIX B: WALL-MODELED LARGE EDDY
SIMULATION OF BREATH AEROSOLS IN TURBULENT
FLOWS

The transport of periodically released breath puffs in a tur-
bulent atmospheric boundary layer is simulated by wall-modeled
large eddy simulation (LES). The computational domain is 60 m,
10 m, and 20 m in the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively, with 672 × 117 × 384 grid
points. The point source corresponding to the host is placed 1.5 m
above from the ground, 10 m downstream of the inflow (defined
as x = 0), and at the middle span. The Reynolds number based
on the bulk velocity (2 m/s), the emission height (1.5 m), and
the viscosity of air is 2.0 × 105. The grid has a uniform spac- TA
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ing of 5 cm for y ≤ 3 m and −5 m ≤ x ≤ 10 m, as well as in
the z direction. It is stretched in the (x–y) plane for y > 3 m,
x < −5 m, and x > 10 m with a maximum stretching ratio of 4%.

The number of infectious respiratory aerosols and the temper-
ature fluctuation around the ambient temperature are modeled as
two transported scalar fields. The droplet evolution is represented
using the Eulerian approach where instead of solving the Lagrangian
evolution of individual drops, their concentration is treated as a
passive scalar. This approach can be far less expensive numerically
and is justified at the low volume fractions34 and negligible termi-
nal velocities associated with the small aerosolized droplets whose
time-evolving concentration field the simulations aim to represent.
See Refs. 97–99 for prior developments and applications of the fast
Eulerian two-fluid approach. The release of the virus-laden puffs is
implemented as a localized volume source term in the scalar trans-
port equation. The buoyancy due to temperature variations is mod-
eled in the momentum equation by the Boussinesq approximation as
a function of the temperature. Subgrid-scale contributions for both
the momentum are modeled by the Lagrangian-averaged dynamic
eddy-viscosity model.100,101 For the scalars, constant subgrid-scale
Schmidt and Prandtl numbers Sc = Pr = 0.4 are used. Both the
velocity and scalars are periodic in the spanwise direction. In the
streamwise direction, the flow is periodic, while the scalars have a
uniform Dirichlet boundary condition at the inflow and a convective
condition at the outflow. A sponge layer is applied near the outflow
to force the scalars to be zero and let the flow recover to a canonical
turbulent boundary layer. For both the velocity and scalar, an equi-
librium rough wall model with zo = 0.5 mm is applied at the bottom
wall and zero vertical gradient condition at the top boundary. The
value of the scalar at the wall is the same as it is in the incoming
air at the inflow. The equations of motion and scalar transport are
solved using second-order accurate (in time and space) derivatives
on a staggered mesh. The code is parallelized using MPI and has
been widely validated in similar types of turbulent flows.87,102 Statis-
tics are collected over 30 min of physical flow time after the statistical
steady state is reached. Increasing the number of grid points by 26%
in each direction (i.e., doubling the total number of grid points) has
a negligible effect on the flow statistics and the results presented in
the main text.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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