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can increasing years of schooling 
reduce type 2 diabetes (T2D)?: 
evidence from a Mendelian 
randomization of T2D and 10 of its 
risk factors
Charleen D. Adams1* & Brian B. Boutwell2,3

A focus in recent decades has involved examining the potential causal impact of educational 
attainment (schooling years) on a variety of disease and life-expectancy outcomes. Numerous studies 
have broadly revealed a link suggesting that as years of formal schooling increase so too does health 
and wellbeing; however, it is unclear whether the associations are causal. Here we use Mendelian 
randomization, an instrumental variables technique, with a two-sample design, to probe whether 
more years of schooling are causally linked to type 2 diabetes (T2D) and 10 of its attendant risk 
factors. The results revealed a protective effect of more schooling years against T2D (odds ratio = 0.39; 
95% confidence interval: 0.26, 0.58; P = 3.89 × 10–06), which in turn might be partly mediated by more 
years of schooling being protective against the following: having a father with T2D, being overweight, 
having higher blood pressure and higher levels of circulating triglycerides, and having lower levels 
of HDL cholesterol. More schooling years had no effect on risk for gestational diabetes or polycystic 
ovarian syndrome and was associated with a decreased likelihood of moderate physical activity. These 
findings imply that strategies to retain adults in higher education may help reduce the risk for a major 
source of metabolic morbidity and mortality.

Tacit to most epidemiological research is a desire to infer whether an environmental exposure impacts some 
disease or health outcome in a causal fashion. A particular area of focus in recent decades, in particular, has 
involved examining the impact of educational attainment (years of schooling) on a variety of disease and life 
expectancy  outcomes1. Numerous studies have broadly revealed a strong statistical association suggesting that 
as the years of formal schooling increase so too does health and  wellbeing2. Indeed, educational attainment has 
been associated (in a protective sense) with diverse mental and physical health outcomes, including depression, 
cancer incidence, heart disease, and  diabetes1.

Entangled in this line of inquiry—and much of social science research, in fact—is a concern about the degree 
of causal inference open to  scholars3. With regard to the associations between educational attainment and health 
outcomes, Montez and Friedman caution: “Studies such as those highlighted above often implicitly assume that 
educational attainment has a causal influence on adult health; however, this assumption has long been challenged. 
If the assumption is incorrect then investing in education policies and schooling systems may waste govern-
ment spending and not manifest in improved population health” (p. 1)1. To be sure, there is emergent evidence 
utilizing quasi-experimental and natural-experimental designs which suggest some causal effects may exist in 
some contexts for educational attainment on health  outcomes2. Yet, there remains an overall dearth of evidence 
utilizing designs admitting of stronger causal inference capabilities.
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More recently, scholars have begun utilizing data gleaned from large genomic consortia and publicly available 
genome wide association (GWA) studies to construct instrumental variables comprised of trait-relevant single-
nucleotide polymorphisms (SNPs). When certain assumptions (discussed below) are satisfied in the data, it is 
possible to investigate whether some type of modifiable risk or protective factor causally impacts some  outcome4. 
Known as Mendelian Randomization (MR), this variety of instrumental variable analysis has been increasingly 
applied to a range of medical and epidemiological  outcomes5. In the current study, we apply MR modeling strate-
gies to zoom in on whether educational attainment plays a causal role in the prevention of one of society’s most 
pressing public-health challenges: type 2 diabetes (T2D) and 10 of its risk factors.

Results
T2D. A strong protective effect against T2D is observed for more Education Years (odds ratio, OR, for T2D 
per SD increase in Education Years): IVW estimate 0.39; 95% confidence interval (CI) 0.26, 0.58; P = 3.89 × 10–06). 
The sensitivity estimators aligned in direction and magnitude of effects with the IVW’s estimate, and the MR-
Egger intercept test indicated no evidence for directional pleiotropy. (Since this is also the case for all the tests—
none showed evidence for directional pleiotropy with the MR-Egger intercept test, this statement will not be 
repeated for the remaining results. However, the I2 statistics, a measure of strength for the MR-Egger  estimate6–8, 
indicated potential regression dilution for all tests. I2 statistics < 90% imply that the MR-Egger intercept test is 
susceptible to being false  positive6–8. To account for this, simulation extraction (SIMEX) correction for dilution 
bias in the MR-Egger estimate and  intercept6,7 were performed and are available in Supplementary Tables 12–22. 
SIMEX correction did not change the inferences for the tests of Education Years on T2D or any of the 10 risk 
factors).

Sibling, mother, and father with diabetes. Small protective effects against having a sibling, mother, 
or father with diabetes are observed for more Education Years (ORs for a first-degree relative with diabetes per 
SD increase in Education Years): sibling IVW estimate 0.97; 95% CI 0.96, 0.98; P = 4.23 × 10–11); mother IVW 
estimate 0.97; 95% CI 0.96, 0.98; P = 6.66 × 10–7); father IVW estimate 0.98; 95% CI: 0.97, 0.99; P = 0.0008. The 
sensitivity estimators aligned in direction and magnitude of effects with the IVW’s estimate.

Overweight status. A strong protective effect against being overweight is observed for more Education 
Years (OR for being overweight per SD increase in Education Years): IVW estimate 0.60; 95% CI 0.51, 0.72; 
P = 1.01 × 10–08). The sensitivity estimators mostly aligned in direction and magnitude of effects with the IVW’s 
estimate, with a slightly larger protective effect observed for the weighted mode estimator.

Physical activity. A strong protective effect against performing the most amount of moderate physical 
activity is observed for more Education Years (OR for the highest level of moderate physical activity compared 
to all other amounts of moderate physical activity per SD increase in Education Years): IVW estimate 0.77; 95% 
CI 0.71, 0.84; P = 1.08 × 10–08). The sensitivity estimators varied in the magnitude of their effects, which might 
indicate unwanted pleiotropy.

High blood pressure. A modest protective effect against having high blood pressure is observed for more 
Education Years (OR for high blood pressure per SD increase in Education Years): IVW estimate 0.94; 95% CI 
0.92, 0.96; P = 2.49 × 10–10). The sensitivity estimators aligned in direction and magnitude of effects with the 
IVW’s estimate.

Gestational diabetes and polycystic ovarian syndrome. There were null effects for the influence 
of Education Years on gestational diabetes and polycystic ovarian syndrome (OR for each per SD increase in 
Education Years): IVW estimate 1.00; 95% CI 1.00, 1.00; gestational diabetes, P = 0.1705; polycystic ovarian 
syndrome, P = 0.2844. The sensitivity estimators aligned in direction and magnitude of effects with the IVW’s 
estimate: all = 1.

HDL levels. An increase in HDL levels were observed for more Education Years (beta estimate per SD 
increase in Education Years): IVW estimate 0.14; 95% CI 0.06, 0.22; P = 0.0009). The sensitivity estimators varied 
in the magnitude of effects, indicating the potential for some unwanted pleiotropy.

Triglyceride levels. A decrease in triglyceride levels were observed for more Education Years (beta estimate 
per SD increase in Education Years): IVW estimate − 0.19; 95% CI − 0.27, − 0.11; P = 3.34 × 10–06). The sensitivity 
estimators aligned in direction and magnitude of effects with the IVW’s estimate (Table 1).

Table 2 contains the results of the mediation analysis of Education Years on T2D for seven of the risk factors. 

Sibling and mom with diabetes. No direct effect was observed for the influence of Education Years on 
T2D, when accounting for having either a sibling (OR 0.97; 95% CI 0.64, 1.46) or a mom with diabetes (OR 0.99; 
95% CI 0.59, 1.64). The proportion of the total effect of Education Years on T2D potentially mediated by having a 
sibling or a mom with T2D is 96 and 98%, respectively. The confidence intervals cross 100 for both, which means 
the proportion mediated is not significant.
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Dad with diabetes. A direct effect Education Years on T2D remained accounting for having a dad with 
T2D (OR 0.52; 95% CI 0.30, 0.91). Having a dad with T2D potentially mediated 31% of the total effect (95% CI 
19–43%).

Overweight. A direct effect Education Years on T2D remained accounting for overweight status (OR 0.58; 
95% CI 0.38, 0.88). Overweight status potentially mediated 42% of the total effect (95% CI 25–58%).

HDL cholesterol. A direct effect Education Years on T2D remained accounting for higher HDL cholesterol 
(OR 0.50; 95% CI 0.36, 0.71). Overweight status potentially mediated 27% of the total effect (95% CI 16–37%).

High blood pressure. A direct effect Education Years on T2D remained accounting for higher blood pres-
sure (OR 0.43; 95% CI 0.28, 0.65). Overweight status potentially mediated 10% of the total effect (95% CI 6–14%).

Triglycerides. A direct effect Education Years on T2D remained accounting for higher triglycerides (OR 
0.44; 95% CI 0.30, 0.66). Overweight status potentially mediated 13% of the total effect (95% CI 8–19%).

Discussion
We observed a protective effect of Education Years against T2D, which might be mediated in part by more years 
of schooling being protective against the following: having a first-degree relative with diabetes, being overweight, 
and having high blood pressure, higher levels of circulating triglycerides, and higher levels of HDL cholesterol. 
These findings comport with another causal study that examined education and diabetes with UK Biobank data. 
Davies et al. observed that leaving secondary school at an older age was causally protective against  diabetes10. 
Their study differed from the present one in that ours examined education inclusive of college—Davies et al. 

Test (No. 
SNPs) R2 F

IVW MR-Egger MR-Egger intercept Weighted median Weighted mode

OR 95% CI P OR (I2) 95% CI P OR 95% CI P OR 95% CI P OR 95% CI P

T2D (17) 0.003 13 0.39 0.26, 0.58 < 0.001* 0.38 
(35%) 0.05, 3.09 0.381 1.00 0.96, 1.04 0.979 0.41 0.24, 0.69 < 0.001* 0.37 0.17, 0.80 0.022

Sibling 
with T2D 
(64)

0.008 38 0.97 0.96, 0.98 < 0.001* 0.95 
(32%) 0.90, 1.00 0.044 1.00 0.99, 1.00 0.424 0.97 0.95, 0.98 < 0.001* 0.94 0.90, 0.98 0.005

Mother 
with T2D 
(62)

0.009 36 0.97 0.96, 0.98 < 0.001* 0.98 
(27%) 0.93, 1.04 0.563 1.00 1.00, 1.00 0.734 0.98 0.97, 1.00 0.016 0.99 0.96, 1.02 0.567

Father 
with T2D 
(60)

0.008 37 0.98 0.97, 0.99 < 0.001* 1.00 
(11%) 0.94, 1.06 0.984 1.00 1.00, 1.00 0.547 0.98 0.96, 0.99 0.006 0.98 0.94, 1.01 0.192

Over-
weight 
(54)

0.007 20 0.60 0.51, 0.72 < 0.001* 0.61 (6%) 0.22, 1.74 0.364 1.00 0.98, 1.02 0.972 0.58 0.46, 0.73 < 0.001* 0.47 0.25, 0.91 0.029

Phys-ical 
activity 
(49)

0.006 37 0.77 0.71, 0.84 < 0.001* 0.87 
(21%) 0.54, 1.40 0.568 1.00 0.99, 1.01 0.623 0.79 0.70, 0.91 < 0.001* 0.97 0.69, 1.36 0.852

High 
blood 
pressure 
(45)

0.006 36 0.94 0.92, 0.96 < 0.001* 0.94 (0%) 0.83, 1.07 0.369 1.00 1.00, 1.00 0.928 0.93 0.91, 0.96 < 0.001* 0.91 0.85, 0.97 0.005

Gest. 
diabetes 
(69)

0.009 38 1.00 1.00, 1.00 0.171 1.00 
(35%) 1.00, 1.00 0.748 1.00 1.00, 1.00 0.547 1.00 1.00, 1.00 0.257 1.00 1.00, 1.00 0.332

POS (68) 0.009 38 1.00 1.00, 1.00 0.284 1.00 
(36%) 1.00, 1.01 0.606 1.00 1.00, 1.00 0.460 1.00 1.00, 1.00 0.469 1.00 1.00, 1.00 0.831

Test (No. 
SNPs) R2 F

IVW MR-Egger MR-Egger intercept Weighted median Weighted mode

β 95% CI P β 95% CI P β 95% CI P β 95% CI P β 95% CI P

HDL 
levels 
(52)

0.007 12 0.14 0.06, 0.22 < 0.001* 0.35 (7%) − 0.14, 
0.84 0.171 − 0.004 − 0.012, 

0.005 0.403 0.09 − 0.04, 
0.21 0.163 0.004 − 0.27, 

0.28 0.977

Trigly-
ceride-
levels 
(52)

0.007 23 − 0.19 − 0.27, 
− 0.11 < 0.001* − 0.19 

(6%)
− 0.67, 
0.29 0.440 − 4.06E−06 − 0.008, 

0.008 0.999 − 0.19 − 0.30, 
− 0.08 0.001 − 0.23 − 0.48, 

0.03 0.087

Table 1.  Causal estimates for Education Years on T2D and 10 risk factors for T2D. T2D = type 2 diabetes; 
HDL = high-density lipoprotein cholesterol; Gest. diabetes = gestational diabetes; POS = polycystic ovarian 
syndrome; P = P-value; F = F-statistic; OR = odds ratio; CI = confidence interval. IVW = inverse-variance 
weighted test; IVW is the primary MR method. The MR-Egger, weighted median estimator, and weighted 
mode estimators are sensitivity tests for horizontal pleiotropy. If the magnitude and direction of their effects 
comport with those of the IVW estimate, this provides a screen against pleiotropy. The MR-Egger intercept 
is shaded grey because it is interpreted differently than the IVW estimate and the sensitivity estimators; the 
MR-Egger intercept provides a formal test for directional  pleiotropy9. If the MR-Egger intercept is not different 
than 1 on the exponentiated scale or 0 when non-exponentiated (P > 0.05), this indicates a lack of evidence for 
bias due to pleiotropy in the IVW estimate. *Indicates P < 0.005 (the Bonferroni threshold).
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focused on education up to college. Here, we document that the protective effect of education extends beyond 
schooling in adolescence. Years of schooling after high school decrease the chance of  T2D10.

Our findings are also broadly in line with other recent MR studies examining education and some of these 
risk factors and the mediating effect of these on coronary heart disease (CHD). Moreover, Böckerman et al. found 
that education is a protective factor against  obesity11. Carter et al. observed that blood pressure mediates the 
effect between education and coronary heart  CHD12. And Tillman et al. found Education Years to be associated 
with favorable lipid profiles, where the impacts of Education Years on HDL cholesterol (beta estimate 0.15; 95% 
CI 0.07, 0.23) and triglycerides (beta estimate − 0.14; 95% CI − 0.22, − 0.06)13 tightly comport with the causal 
estimates we observed (HDL cholesterol beta estimate 0.14; 95% CI 0.06, 0.22; triglycerides beta estimate − 0.19; 
95% CI − 0.27, − 0.11).

In the present study, more years of schooling had no effect on risk for gestational diabetes or polycystic 
ovarian syndrome and was associated with a decreased likelihood of moderate physical activity. Regarding the 
later, another recent MR study found little evidence that more education increased vigorous physical  activity14. 
Thus, it seems unlikely that the protective effect of Education Years against T2D occurs through an influence 
on physical activity.

The protective effect against having a first-degree relative with diabetes is intriguing. The question becomes 
how best to interpret this finding. On one hand, several recent studies have documented that there is a bidirec-
tional causal relationship between fluid intelligence and years of  schooling15,16. While having higher fluid intel-
ligence may causally impact more years of schooling, the magnitude of the effect for more years of schooling 
increasing fluid intelligence is comparatively larger: that is, the impact of Education Years on intelligence is more 
than two-fold greater than the impact of intelligence on Education  Years15,16. Like educational attainment, which 
is sometimes treated as a proxy for cognitive ability, being brighter is protective against an array of negative health 
 outcomes17. This means that it is possible that intelligence is confounding the present findings, especially those 
pertaining to a protective effect of more years of schooling against having a first-degree relative with diabetes. 
However, due to the durable influence of educational attainment on intelligence, it is also conceivable that those 
with more education might also positively influence their family members in ways that reduce risk for T2D.

In the formal mediation analysis, univariable MR demonstrated a strongly protective total effect of Education 
Years against T2D, and the individual multivariable MR analyses adjusting for genetic associations with having 
a father with diabetes, being overweight, having higher blood pressure, and higher HDL levels demonstrated 
protective but dampened direct effects of more Education Years. This suggests that interventions to increase 
Education Years would have larger net protective effect against T2D risk if they also had the consequences of 
reducing these established risk factors. No direct effect of Education Years was observed for having a sibling or 
a mother with T2D.

The influence of Education Years on reducing the chance of having first-degree relatives with T2D is small 
(the ORs are close to 1), so it is important to avoid over-interpretation of the effects. Nonetheless, assuming the 
findings replicate, there is an intriguing possibility which exists and should be further studied: “dynastic” effects 
might be somewhat responsible for these signals (see  also14). For instance, there is a phenomenon that Kong 

Table 2.  Mediation analysis of Education Years on T2D, exploring seven T2D risk factors as mediators.

Mediator Effect Odds ratio (OR) Lower 95% CI Upper 95% CI P value
Proportion mediated 
(%) 95% CI

Sibling with diabetes 96 (58–134)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.97 0.64 1.46 8.67E−01

Mom with diabetes 98 (59–137)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.98 0.59 1.64 9.45E−01

Dad with diabetes 31 (19–43)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.52 0.30 0.91 2.11E−02

Being overweight 42 (25–58)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.58 0.38 0.88 9.69E−03

HDL cholesterol 27 (16–37)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.50 0.36 0.71 1.17E−04

High blood pressure 10 (6–14)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.43 0.28 0.65 7.21E−05

Triglycerides levels 13 (8–19)

Total 0.39 0.26 0.58 3.89E−06

Direct 0.44 0.30 0.66 5.82E−05
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et al. refer to as “genetic nurture”— the impact that non-transmitted parental alleles have on a child through 
impacts on parents and other  relatives18. Kong et al. estimated the impacts of non-transmitted parental alleles 
on educational attainment of offspring and found that a polygenic score of the non-transmitted parental alleles 
was about 30% that of the polygenic score for transmitted alleles on educational  attainment18. Moreover, they 
observed that the influence of non-transmitted alleles on various health-related traits of children was greater 
for mothers than fathers, supporting the intuitive notion that mothers have a greater nurturing impact than 
fathers. While they examined the uni-directional impact from parent to offspring, they speculate that a bidi-
rectional relationship could exist and that siblings reciprocally influence each other. Though the magnitude of 
genetic nurturing from parent to offspring is likely to be much larger, is not impossible for the genome of a child 
to influence a first-degree relative through an influence on the  environment18. Intuitively, this makes sense: as 
the child (and parent) ages, the parent naturally begins to increasingly depend on their offspring for healthcare 
assistance. “[T]he effects are likely to be bidirectional. For a parent–offspring pair, the magnitude of the effect 
in the direction of parent-to-offspring is likely to dominate the effect in the opposite direction. However, with 
siblings and twins, the effects would be reciprocal”  (Kong18, p. 428).

Similarly, it is possible that some portion of the present findings are due to unaccounted for population struc-
ture. Though this is unlikely to be a major source of confounding, since the GWA studies used as data sources here 
addressed population stratification in their original designs, unaccounted for population stratification could cause 
a violation to the exclusion-restriction MR assumption and possibly induce associations between the Education 
Years instruments are  confounders19. Future studies of Education Years and T2D and mediators of this relation-
ship could be done in traditional family-based designs, which may be able to rectify some of this  concern20.

A close companion of the concern for population stratification is a related problem that arises due to bias 
based on coincident geographic variation in genotype and health  traits21. Haworth et al. demonstrated this form 
of latent structure with genetic data in the UK Biobank, similar to what was used  here21. Triangulating (compar-
ing) our results with those of other MR studies of similar traits provides a picture of consistency, however; while 
not eliminating the possibility, the triangulation of findings mitigates some of this concern.

Another limitation for the analyses of Education Years on a first-degree relative with diabetes is that it is 
possible that some cases of type 1 diabetes were included, since the UK Biobank questions that captured the 
measure for illnesses of relatives asked about “diabetes”—not specifically about T2D. However, the influence for 
this is expected to be minimal, since more than 90% of adults with diabetes have  T2D22.

The primary limitation of the present study is one that all MR studies are liable to: unwanted horizontal plei-
otropy. However, the most logical pleiotropic confounder—intelligence—is one that is influenced by Education 
Years. Moreover, most of the sensitivity screens for possible violations to the MR assumptions revealed little 
evidence for distortions due to pleiotropy. The exceptions are for HDL levels and physical activity, for which there 
was enough variability across the sensitivity estimators to view their results with more caution.

Our analytic set for T2D included some cases that were not of European  decent37. While the Morris GWA 
study we used adjusted for population structure with genomic control, there is a remote possible that this may 
have impacted our findings.

A final potential limitation worth mentioning relates to the generalizability of the findings. Many of the T2D 
risk factors were assessed using UK Biobank participants, who do not represent the general UK population. On 
average UK Biobank participants are more health conscious and less likely to be socioeconomically deprived than 
the general population. That acknowledged, Fry et al. have reflected on the relevance of the differences: While 
estimates of disease incidence and prevalence obtained from UK Biobank data are unsuitable for generalizing, 
estimates of exposure-disease associations can be generalized to other  populations23. Nonetheless, at a minimum, 
it is safest to restrict the generalizability of these findings to those of European ancestry and who are similar in 
socioeconomic advantage to those who volunteered for participation in the UK Biobank.

A strength of our study worth mentioning is that it leveraged the power of 11 large GWA studies to examine 
these complexly woven traits. Another strength is specific to the two-sample MR design. Genetic instruments that 
explain a small proportion of the variance in Education Years, perhaps leading to a weak instrument (indicated 
by small F-statistics), should bias the results towards the null and not towards a false-positive. This is important 
when considering, for instance, the findings for Education Years on HDL, where the F-statistic was  1224,25.

The public-health relevance of the bidirectional causal relationship between intelligence and Education Years 
cannot be overstated. If the present findings primarily reflect the benefits of higher cognitive ability—which they 
could—then whether Education Years influences cognitive ability informs interventional strategies. Because 
Education Years increases cognitive ability, public-health efforts to retain people in higher education may be 
warranted as part of a developing arsenal to help limit and even prevent the staggeringly deleterious effects of 
T2D. The message is the same, importantly, even if intelligence is not the driving force in the current study. In 
fact, the findings from another recent two-sample MR study, which investigated the impact of education and 
cognitive ability in a multivariable model in relation to CHD, provide evidence that intelligence is unlikely to 
be the important driver, at least in relation to CHD. Gill et al. found that more schooling years, independent of 
cognitive ability, are protective: OR 0.76; 95% CI 0.65–0.8926.

Whatever it is about the landscape of higher education, more years of schooling appears to help reduce the 
risk for major sources of metabolic morbidity and mortality. Our findings further contribute to the accumulating 
knowledge about this and could be used to stimulate policy discussions about increasing educational attainment 
in the general population. Increasing the number of years that people spend in the educational system may 
decrease their risk of developing T2D, and T2D that is attributable to lower levels of education may be reduced 
by intervening on some of the established T2D risk factors.
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Methods
Conceptual approach. MR is an analytic, instrumental variables technique that capitalizes on Mendel’s 
Laws of Inheritance and genotype assignment at conception for causal  inference27–29.

MR uses genetic variants strongly associated with traits of interest as opposed to the observed traits them-
selves in models. By relying on the random assortment of alleles (Mendel’s Laws) and the temporal assignment 
of genotype at conception, MR avoids most sources of confounding and reverse causation that distort causal 
estimates in observational studies. In two-sample MR, summary statistics are pulled from two genome-wide 
association (GWA) studies. These summary statistics are the data sources for two-sample  MR4,9,30–33 (Fig. 1).

MR assumptions. MR has the following assumptions: (1) genetic instruments are strongly associated with 
the exposure; (2) genetic instruments are independent of confounders of the exposure and the outcome; and (3) 
genetic instruments are associated with the outcome only through the  exposure32,34. For example, the following 
must be true in order for the present analysis to be valid: (1) genetic variants robustly associated with Education 
Years must be chosen as instruments to test the causal relationship between Education Years and T2D; (2) the 
genetic variants chosen to instrument Education Years must not be associated with confounders of the relation-
ship between Education Years and T2D; and (3) the genetic variants chosen to instrument Education Years must 
only impact T2D through their impact on Education Years. When violated, assumption (3) describes horizontal 
pleiotropy, which can invalidate causal inference from vertical pleiotropy. Statistically based sensitivity estima-
tors have been developed to evaluate potential violations to assumption (3) (for more on this, see the subsection, 
Sensitivity analyses).

Design. This study explores the impact of Education Years on T2D and 10 risk factors for T2D. For the later, 
a list of established risk factors for T2D was obtained from the website for the American Diabetes Association 
(ADA) (https ://www.diabe tes.org/diabe tes-risk)35:

• Being 45 or older
• Being Black, Hispanic/Latino, American Indian, Asian American, or Pacific Islander
• Having a parent with diabetes
• Having a sibling with diabetes
• Being overweight
• Being physically inactive
• Having high blood pressure
• Having low high-density lipoprotein (HDL) cholesterol
• Having high triglycerides
• Having had diabetes during pregnancy (gestational diabetes)
• Having been diagnosed with Polycystic Ovary Syndrome

Of these risk factors, all but “being 45 and older” and “being Black, Hispanic/Latino, American Indian, Asian 
American, or Pacific Islander” were suitable for investigation with two-sample MR.

Exposure data source: Education Years. The instrument for Education Years was obtained from a GWA 
study of Education Years performed by Okbay et al. which included 293,723 participants of European ancestry 
and adjusted for 10 principal components, age, sex, and study-specific  controls36. Education Years, inclusive of 
college, was measured for those who were at least 30 years of age. International Standard Classification of Edu-
cation (ISCED) categories were used to impute a years-of-education equivalent (SNP coefficients per standard 
deviation, SD, units of years of schooling; an SD-unit of schooling = 3.6 years).

Outcome data source: T2D. The outcome data for T2D was extracted from Morris et al. which performed 
a GWA study of T2D in 149,821 participants overwhelmingly of European decent, of which 34,840 had T2D. 
Their GWA adjusted for study-specific covariates and population  structure37.

Outcome data source: sibling with diabetes. The outcome data for having a sibling with diabetes 
was extracted from a GWA study performed by the Medical Research Council-Integrative Epidemiology Unit 
(MRC-IEU) staff, using PHESANT-derived38 UK Biobank  data39,40 (UK Biobank data field 20,111). Briefly, the 
UK Biobank is an open-access cohort that enrolled about 500,000 participants, largely of European  descent41. 
Genetic, health, and demographic data were collected on many of the participants and were made publicly 
available for researchers. The MRC-IEU staff ran numerous GWA studies with UK Biobank variables, adjust-
ing for sex and genotyping chip, and used k-means cluster analysis for European ancestry (first four principal 
components, as provided by the UK Biobank)42. They made their results available through MR-Base, a public 
repository of summary statistics from GWA studies for use in MR analyses. The GWA study of having a sibling 
with diabetes contained 362,826 participants, of which 31,073 were classified as having a sibling with diabetes.

Outcome data source: mother with diabetes. The outcome data for having a mother with diabetes 
was extracted from a GWA study performed by the MRC-IEU staff, which used PHESANT-derived UK Biobank 
data (UK Biobank data field 20110) and adjusted for sex and genotyping chip. They used k-means cluster analy-
sis for European ancestry (first four principal components). The GWA study contained 423,892 participants, of 
which 40,091 were classified as having a mother with diabetes.

https://www.diabetes.org/diabetes-risk
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Outcome data source: father with diabetes. The outcome data for having a father with diabetes comes 
from a GWA study performed by the MRC-IEU staff, which used PHESANT-derived UK Biobank data (UK 
Biobank data field 20107), adjusting for sex and genotyping chip, used k-means cluster analysis for European 
ancestry (first four principal components). The GWA study contained 400,687 participants, of which 38,850 
were classified as having a father with diabetes.

Outcome data source: overweight status. The outcome data for overweight status come from Berndt 
et al. which performed a GWA study of clinically defined overweight status in 158,855 participants of European 
ancestry, of which 93,015 were classified as  overweight43. Overweight case status was defined as BMI ≥ 25 kg/m2.

Outcome data source: physical activity. The outcome data for physical activity come from a GWA 
study by the MRC-IEU staff, which used PHESANT-derived UK Biobank data for moderate physical activity, 
defined as the number of days of moderate physical activity per week performed for more than 10 min at a time. 
The GWA study included 440,266 participants and was adjusted for sex and genotyping chip, with k-means 
cluster analysis for European ancestry (first four principal components).

Outcome data source: high blood pressure. A GWA study of high blood pressure (a binary measure) 
was performed by the MRC-IEU staff using PHESANT-derived  variables38 constructed from the UK Biobank 
 data39,40 (data field 6150: “Vascular/heart problems diagnosed by doctor: high blood pressure”), which adjusted 
for sex and genotyping chip and used k-means cluster analysis for European ancestry (first four principal com-
ponents). There were 461,880 participants, of which 124,227 had high blood pressure as determined by a physi-
cian.

Outcome data source: gestational diabetes. The GWA study of gestational diabetes (a binary meas-
ure) was performed by MRC-IEU staff using PHESANT-derived  variables38 constructed from UK Biobank 
 data39,40 (data field 4041), adjusting for sex and genotyping chip and with k-means cluster analysis for European 
ancestry (first four principal components). Participants were asked if they only had diabetes during pregnancy. 
There were 462,933 participants, 240 of which self-reported having had gestational diabetes.

Outcome data source: polycystic ovarian syndrome. The outcome data for polycystic ovarian syn-
drome (a binary measure) was performed by MRC-IEU staff using PHESANT-derived  variables38 constructed 
from the UK Biobank  data39,40 (data field 20002), adjusting for sex and genotyping chip, with k-means cluster 
analysis for European ancestry (first four principal components). There were 462,933 participants, of which 571 
self-reported having polycystic ovarian syndrome.

Outcome data source: HDL levels. The outcome data for circulating HDL levels (a continuous measure) 
come from Willer et al. which performed an age- and sex-adjusted GWA study of circulating HDL levels in up 
to 187,167 individuals, largely of European  ancestry44.

Outcome data source: triglyceride levels. The outcome data for triglyceride levels (a continuous meas-
ure) come from Willer et al. which performed an age- and sex-adjusted GWA study of circulating triglyceride 
levels in up to 177,861 individuals, largely of European ancestry. They adjusted for population  structure44.

To ease interpretability, all MR results for the effects of Education Years on T2D and T2D risk factors were 
exponentiated from log odds to odds ratios, except for outcomes of continuous variables (i.e., HDL and triglyc-
eride levels), which are presented as beta estimates (Table 1).

The summary statistics used for the MR analyses are available in Supplementary Tables 1–11.

Figure 1.  Two-sample MR testing the causal effect of Education Years on T2D. Estimates of the SNP-
Education Years associations (β^ZX) are calculated in sample 1 (from a genome-wide association, GWA, 
study of Education Years). The association between these same SNPs and T2D is then estimated in sample 2 
(β^ZY) (from a T2D GWA study). These estimates are combined into Wald ratios (β^XY = β^ZY/β^ZX). The 
β^XY estimates are meta-analyzed using the inverse-variance weighted analysis (β^IVW) method and various 
sensitivity analyses. The IVW method produces an overall causal estimate of Education Years on T2D.
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Instrument construction. As introduced in Fig.  1, independent (those not in linkage disequilibrium, 
LD;  R2 < 0.001) SNPs associated at genome-wide significance (P < 5 × 10–8) with Education Years were extracted 
from the Okbay et al.36. GWA study. The summary statistics for the Education Years-associated SNPs were then 
extracted from each of the outcome GWA studies. SNP-Education Years and SNP-outcome associations were 
harmonized and combined with the IVW method using first-order weights (Fig. 1).

Sensitivity analyses. A weakness of the IVW estimator is that its estimate can be biased if the meta-ana-
lyzed SNPs are directionally  pleiotropic45. This can cause a violation to MR assumption (iii) and invalidate the 
findings. To address this, MR-Egger regression, weighted median, and weighted mode MR methods can be run 
as complements to the IVW. The directions and magnitudes of their effect estimates can be compared to those 
of the IVW. Doing so is a type triangulation: comparing approaches that have different assumptions to weigh 
 evidence46. The reason for this is that the various MR sensitivity estimators make different assumptions about 
possible underlying pleiotropy. Due to their different assumptions, it is unlikely that the IVW and sensitivity 
estimators would be homogeneous in the directions and magnitudes of their effect estimates if there were sub-
stantial violations to MR assumption (iii). Therefore, triangulating their directions and magnitudes of effects 
provides a screen against pleiotropy. (Nuanced descriptions of how the various MR estimators deal with pleiot-
ropy are described  elsewhere45,47,48). MR-Egger regression, weighted median, and weighted mode MR sensitivity 
methods were run for all analyses.

A formal test for directional pleiotropy was also done with the MR-Egger intecept. If the MR-Egger intercept 
is not different than 1 on the exponentiated scale or 0 when non-exponentiated (P > 0.05), this indicates a lack 
of evidence for bias due to pleiotropy in the IVW estimate.

A SIMEX correction procedure that adjusts the MR-Egger estimate for potential regression dilution to the 
 null6 was performed for all tests. When the I2 statistic is < 90%, correction procedures are recommended. SIMEX 
correction was applied for all tests.

In addition, potential outlier SNPs were removed using RadialMR  regression49 for the MR tests of Educa-
tion Years on T2D risk factors. (The differing number of SNPs for the Education Years instruments is due to 
this and that the various outcome GWA studies not having a uniform set SNPs in their association studies). 
All instrumental variables included in this analysis have Cochrane’s Q-statistic P values indicating no evidence 
for heterogeneity between  SNPs50. Heterogeneity in the effect estimates for SNPs can indicate pleiotropy. Thus, 
ensuring a lack of heterogeneity between SNPs is an additional method to boost the chance that MR assumption 
(iii) is not violated. Heterogeneity statistics, forest and scatter plots, and the results of the SIMEX correction are 
provided in Supplementary Tables 12–22.

The IVW and sensitivity estimations were performed in R version 3.5.2 with the “TwoSampleMR”  package30,51. 
Overall, 11 tests were performed. The Bonferroni correction was used to penalize for multiple testing: P = 0.05/11 
(0.005).

Power. The study was powered for the test of Education Years on T2D, using mRnd MR power calculator 
(available at https ://cnsge nomic s.com/shiny /mRnd/)52. There was ≥ 80% power to detect odds ratios in the range 
of 0.3–0.7 (Fig. 2). In addition to the overall power to detect an association, MR studies also rely on F-statistics. 
F-statistics provide an indication of instrument  strength53. F-statistics < 10 are conventionally considered to be 
 weak24. F-statistics for each test are available in Table 1.

Formal mediation. Based on the results of the univariate models of Education Years on T2D and the 10 risk 
factors, a formal appraisal of mediation was performed for seven of the 10 risk factors: first-degree relative with 
diabetes, being overweight, and having high blood pressure, higher HDL cholesterol, and more triglycerides. 
Although not the focus of this investigation, univariate models of the effects of these established risk factors 
on T2D were run to identify potential outliers to remove in the multivariate analyses (only SNPs not observed 

Figure 2.  Power calculations for a range of plausible effects estimates for the MR test of Education Years on 
T2D.

https://cnsgenomics.com/shiny/mRnd/
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to be outliers in the univariable analyses were kept for the multivariable analyses), using the same data sources 
and methods as above. Supplementary Tables 23–29 contain the summary statistics used for these analyses, and 
Supplementary Tables 30–36 contain the results for the sensitivity analyses, heterogeneity statistics, forest and 
scatter plots, the results of the SIMEX corrections, and the results of the multivariate analyses.

With traditional regression-based mediation analyses, three parameters are usually estimated (i) the total 
effect (the effect of the exposure on the outcome) (ii) the direct effect (the effect of the exposure on the outcome 
that is not through the mediator) and (iii) the indirect effect (the effect of the exposure on the outcome that 
occurs through the mediator)54.

With MR, mediation analysis can be done by generating the total effect with univariate MR and the direct 
effect with multivariate MR. The indirect effect is calculated by subtracting the direct effect from the total effect. 
The proportion of the total effect that is mediated is calculated by dividing the indirect effect by the total  effect54.

Typically, with individual-level MR data, bootstrapping can be done to estimate confidence intervals for the 
indirect effect and the proportion  mediated54. However, since the analysis at hand was performed using summary 
data, estimates of variability for the proportion mediated were calculated with the delta method. The calcula-
tions for the indirect effects and the proportion mediated were performed on the log odds scale (Supplementary 
Table 37), and the results were then exponentiated to odds ratios. The multivariable MR analyses were performed 
using the “mv_multitiple” function for generating IVW estimates within the “TwoSampleMR” package, after 
clumping for LD and  harmonizing19.

Final notes about the Methods used here. A previous MR  study55 also looked at Education Years on T2D 
with the Okbay GWA source for Education Years and the Morris GWA source for  T2D55. To clarify, our analysis 
differed from theirs, as we used the “Metabochip” set from Morris, which included more samples. Moreover, the 
Hagenaars analysis was bidirectional, which has assumptions not relevant to the analysis at hand. Davies et al.14 
also examined Education Years on T2D, though they used samples in the UK Biobank (not the Morris GWA 
study) for their T2D data  source14.

No human subjects or tissues were used for the analyses presented in this study, nor were any experiments 
conducted. Informed consent for the GWA sources accessed here was previously reported and obtained by the 
cohorts that generated the primary  data36,37,39,40,43,44, as is standard. No institutional approvals were needed to 
perform the analyses reported here, since the data sources are public and secondary in nature (i.e., they are 
summary-level statistics; no individual-level data was acquired or generated). This study was conducted in 
accordance with best practices for MR and follows the “Strengthening the Reporting of Observational Studies 
in Epidemiology” (STROBE) reporting guidelines, where pertinent for MR.

Data availability
All data sources are publicly available and are accessible within MR-Base: https ://www.mrbas e.org/30.
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