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Abstract: Cervical cancer affects millions of Americans, but the rate for cervical cancer in the Mexican
American is approximately twice that for non-Mexican Americans. The etiologies of cervical cancer
are still not fully understood. A number of somatic mutations, including several copy number
alterations (CNAs), have been identified in the pathogenesis of cervical carcinomas in non-Mexican
Americans. Thus, the purpose of this study was to investigate CNAs in association with cervical
cancer in the Mexican American population. We conducted a pilot study of genome-wide CNA
analysis using 2.5 million markers in four diagnostic groups: reference (n = 125), low grade dysplasia
(cervical intraepithelial neoplasia (CIN)-I, n = 4), high grade dysplasia (CIN-II and -III, n = 5) and
invasive carcinoma (squamous cell carcinoma (SCC), n = 5) followed by data analyses using Partek.
We observed a statistically-significant difference of CNA burden between case and reference groups
of different sizes (>100 kb, 10–100 kb and 1–10 kb) of CNAs that included deletions and amplifications,
e.g., a statistically-significant difference of >100 kb deletions was observed between the reference
(6.6%) and pre-cancer and cancer (91.3%) groups. Recurrent aberrations of 98 CNA regions were also
identified in cases only. However, none of the CNAs have an impact on cancer progression. A total of
32 CNA regions identified contained tumor suppressor genes and oncogenes. Moreover, the pathway
analysis revealed endometrial cancer and estrogen signaling pathways associated with this cancer
(p < 0.05) using Kyoto Encyclopedia of Genes and Genomes (KEGG). This is the first report of CNAs
identified for cervical cancer in the U.S. Latino population using high density markers. We are aware
of the small sample size in the study. Thus, additional studies with a larger sample are needed to
confirm the current findings.

Keywords: cervical cancer; copy number alterations; genome wide analysis; somatic;
Mexican American population; Illumina HumanOmni2.5-8 BeadChip

1. Introduction

Based on the U.S. Centers for Disease Control and Prevention (CDC) 2009 report, 12,357 women
were diagnosed with cervical cancer, and 3909 women died from cervical cancer in the United States.
This huge number of patients with cervical cancer has been a critical issue and is responsible for
10%–15% of cancer-related deaths in females globally [1]. Cervical cancer is the second most common
malignant tumor in women worldwide. Among these tumors, approximately 80% are squamous cell
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carcinomas (SCCs), and 5%–20% are adenocarcinomas (AdCAs) [2,3]. Cervical SCCs are developed
from a premalignant disease known as cervical intraepithelial neoplasia (CIN) Graded 1–3 with
increasing atypical features. The five-year overall survival for cervical cancer is only 66%.

In addition, increasing evidence suggests that infection with high-risk subtypes of human
papillomavirus (HPV) (e.g., HPV-16 and HPV-18) is the most common cause and is the primary initiator
of premalignant lesions [4]. However, only a small proportion of women infected with oncogenic
HPV subtypes develop cervical cancer, which suggests that HPV infection alone is insufficient to
cause cancer, and there is a possibility of other host factors linked to the development of invasive
cervical cancer [5], like genetic variation, including polymorphisms, insertions or deletions in the
host genome [6,7]. Increasing evidence demonstrates that there was a consistent relationship between
certain genetic variants (such as the tumor protein 53 (TP53) Arg72Pro polymorphism) and cervical
cancer, most likely modulated by the presence of high-risk HPV during progression from squamous
intraepithelial lesions (SIL) to cervical cancer.

Moreover, Mexican American women in Texas have among the highest rates of cervical cancer
incidence and mortality in the country [8] with twice the frequency as compared to their non-Mexican
American counterparts. The annual death rate from cervical cancer for Mexican Americans is 24.2 out
of 100,000 [9]. However, there is a lack of studies on somatic mutation identification for cervical cancer
in this population. Only four studies have reported on genetic basis of cervical cancer in Mexican
American women based on a PubMed search (19 November 2015). The number of the Mexican
American population was estimated at 50.5 million in the 2010 census, making Mexican American the
largest minority group in the U.S., as well as a rapidly growing segment of the U.S. population.

Recent advances in genome studies have led to the discovery of one important type of variation
that can be assessed with recent technology: copy number alterations (CNAs), usually for a cancer
study, somatic copy number changes and/or copy number variations (CNVs), usually for a non-cancer
study, or germline copy number changes, such as CNVs identified for neuropsychiatric disorders in
our recent study [10]. These CNAs or CNVs are by definition chromosomal regions with sizes of 1 kb
to several Mb, which vary across individuals with regard to the number of copies of a chromosomal
segment. CNVs refer to structural variations of the DNA that include insertions, deletions and
duplications. Studies have found that CNVs cover as much as 14% of the human genome [11], and
there is a much higher de novo rate as many as 10–1000-fold in CNVs as compared to single nucleotide
polymorphisms (SNPs) [11,12]. Furthermore, CNVs have been shown to account for more genomic
differences between individuals than SNPs [13,14]. Therefore, CNVs may contribute a sizeable amount
of disease phenotypic variation in each individual of a population [15].

Analyses integrating mutation information with data on rearrangements and CNAs have
revealed a higher-order organization of the seemingly random genetic events that lead to cancer [16].
Interestingly, genes in regions subject to copy number changes appear to be organized along functional
ontological terms related to cancer [16]. Studies have also implicated a number of somatic mutations,
including TP53, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA),
phosphatase and tensin homolog (PTEN), serine/threonine kinase 11 (STK11) and V-Ki-ras2 Kirsten
rat sarcoma viral oncogene homolog (KRAS) [17,18], and several CNAs in the pathogenesis of cervical
carcinomas [19,20] in non-Mexican Americans.

In this study, we carried out a genome-wide survey of potential somatic CNAs, including
amplifications and deletions, in apparently normal tissues (n = 2), low grade dysplasia (n = 4), high
grade dysplasia (n = 5), invasive carcinoma (n = 5) and blood samples (n = 125, serving as a reference
group) of female subjects from the HapMap data. We are aware of the limited number of cases
and the lack of a control group. Thus, in the future, a large study with a control sample and more
cases as a methodological alternative is needed. We genotyped 2.5 million markers and analyzed
somatic CNAs in a total of 14 tissues using the Illumina HumanOmni2.5-8 BeadChip Kit at tissue-level
resolution. We mapped genomic changes: (1) between peripheral blood samples of the reference
subjects and cervical tissues from the cases (cervical dysplasia and invasive carcinoma); because only
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two normal cervical tissue samples had insufficient statistical power, we excluded these two samples
from the further analysis; (2) we also analyzed genomic changes among four diagnostic groups (normal,
low, high grade and invasive carcinoma). We expect that this study: (i) will provide an estimate of
the prevalence of somatic CNAs by identifying specific patterns, genes and/or biological pathways
associated with different stages of cervical dysplasia in Mexican Americans; (ii) will investigate
the genomic context of these somatic CNAs; and (iii) will evaluate whether the burden of somatic
mutations predicts tumor progression.

2. Materials and Methods

2.1. Materials

A total of 14 tissues (low, high grade dysplasia and invasive carcinoma) from cases and 125 female
subjects, serving as a reference group, were used for this study. The demographic information is shown
in Table 1. The cases were categorized into three groups, including low grade dysplasia (CIN-I, n = 4),
high grade dysplasia (CIN-II and III, n = 5) and squamous cell carcinoma (SCC, n = 5) groups. For a
broader definition of the case group, we also divided the cases into two groups, pre-cancer (CIN-I,
-II and -III) and cancer (SCC). All of the case subjects in the current study were from the Mexican
American population recruited from the outpatient clinics at the University Medical Center (UMC)
and Texas Tech University Health Sciences Center (TTUHSC)-El Paso. All cases of cervical cancer
were diagnosed as SCC by histopathological examinations, whereas healthy women had no abnormal
cytological findings in the Pap smear tests of the uterine cervix.

Table 1. Clinical demographics with diagnosis, age for cases and reference subjects.

Subject ID Age (years) Diagnosis 1 Diagnosis 2 Diagnosis 3

14 42 CIN-I low grade dysplasia pre-cancer
16 24 CIN-I low grade dysplasia pre-cancer
17 53 CIN-I low grade dysplasia pre-cancer
15 31 CIN-I low grade dysplasia pre-cancer
12 27 CIN-II high grade dysplasia pre-cancer
8 39 CIN-III high grade dysplasia pre-cancer

11 21 CIN-III high grade dysplasia pre-cancer
6 30 CIN-III high grade dysplasia pre-cancer
5 38 CIN-III high grade dysplasia pre-cancer
3 55 SCC SCC SCC
4 44 SCC SCC SCC
2 51 SCC SCC SCC
7 31 SCC SCC SCC
1 42 SCC SCC SCC

n = 125 females NA reference reference reference

All subjects in the cases were human papillomavirus (HPV) positive and from the Mexican American population.
Reference subjects were from an admixed population. NA, not available. CIN, cervical intraepithelial neoplasia;
SCC, squamous cell carcinoma.

The Illumina HumanOmni2.5-8 BeadChip data from a total of 125 blood samples of female
subjects from the HapMap were used as a reference in the current study.

2.2. Methods

2.2.1. Tissue Specimens

Sixteen cervical tissue samples were obtained from the Department of Pathology, TTUHSC-El
Paso. We excluded two normal tissues due to an insufficient tissue sample size. All case subjects
were HPV positive, from the Mexican American population and had signed Institutional Review
Board-approved written informed consent forms prior to enrolling in the study. The procedures were
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approved by the Institutional Review Boards of TTUHSC (IRB #E13107), and the study was performed
in accordance with the Helsinki Declaration of 1975.

2.2.2. Microdissection

Paraffin-embedded tissues were first sectioned into 10-µm slices, which were hematoxylin-eosin
stained for the selection of the appropriate tissue area. The corresponding selected areas of each tissue
sample were then collected under microscopic observation with a 30-gauge needle (Becton-Dickinson,
Franklin Lakes, NJ, USA).

Genomic DNA of micro-dissected tissue was extracted by proteinase K digestion followed by
standard phenol-chloroform extraction. The QIAamp Formalin-Fixed, Paraffin-Embedded (FFPE)
Tissue Kit from Qiagen (Valencia, CA, USA), which is widely used for extracting DNA from FFPE
sections, was used. The experiment was performed according to the manufacturer’s handbook. The
total amount of DNA was spectrophotometrically determined by measuring the absorbance at 260 nm
(A260), and DNA purity was assessed by detecting the A260/A280 ratio using the Varioskan Flash
(Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s instructions.

2.2.3. High Density Genotyping

Genomic DNA from the case group was used to obtain genotypes by the Illumina
HumanOmni2.5-8 BeadChip (Illumina, San Diego, CA, USA). This DNA chip provided over 2.5 million
markers at a median spacing of 1.2 kb and full support of CNV or CNA applications, which was a
powerful genotyping tool and allowed us to make more meaningful discoveries. Genomic annotations
were based on National Center for Biotechnology Information (NCBI) Human Genome Build 37
(University of California, Santa Cruz Genome Browser Release 19), and genotyping experiments were
performed at the Genomics Core at the TTUHSC-El Paso.

Due to our limited number of control samples of cervical tissues, we used publicly available
HapMap data with genotypes, including CNV data of the same DNA chip, the Illumina
HumanOmni2.5-8 BeadChip Kit, in the 125 female subjects as a reference group. The HapMap
data with genotypes were downloaded from [21].

In addition, there is no genotype data available for the Mexican American population using the
HapMap data, so we selected these 125 female subjects from the Admix populations (Utah residents
with Northern and Western European ancestry, CEU; Yoruba, YRI; Han Chinese, CHB, and Japanese,
JPT) since the various combinations of reference panels with the multi-ethnic populations had
better accuracy than those containing only single ethnic samples [22] for genetic study and genetic
imputation analysis.

The raw genotyping signal data were processed by the Illumina GenomeStudio software
Genotyping Module Version 3.2.33 (Illumina) and converted to allele-specific intensity values.
The genotype call rate threshold was set at ě95% for all samples, and a total of 139 including case
(n = 14) and reference (n = 125) subjects passed the quality control. A Partek customized report of the
normalized genotype data, composed of those 139 samples, including low grade (CIN-I = 4), high
grade (CIN-II and CIN-III = 5), SCC (n = 5) and 125 females from the reference group (Table 1), was
transferred to Partek® Genomic Suite® software, Version 6.6, Copyright 2014, Partek Inc. (Saint Louis,
MO, USA), for downstream analysis.

2.2.4. CNA Detection

Unpaired copy number analysis was performed in the Partek Genomics Suite comparing allele
intensities to a reference baseline of 125 female HapMap admixed samples using a similar analysis
strategy as a previous publication [23]. The genomic segmentation algorithm was applied to find break
points and to detect amplifications (gains) and deletions (losses). The following stringent parameters
were used to identify CNAs and CNA regions as a previous study [24]: (1) each segment must contain
a minimum of 10 consecutive filtered probe sets; (2) a p value threshold of 0.001 when compared to
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the neighboring adjacent regions; and (3) a signal-to-noise threshold of 0.5 and diploid copy number
1.7 to 2.3.

2.2.5. Pathway Analysis

We further examined whether these CNAs in the various genes have an impact on gene
functions. Gene ontology (GO) analysis was also performed using the Partek® Genomic Suite®

software, Version 6.6, Copyright® 2014, Partek Inc., to investigate whether there was enrichment for
cancer-associated CNAs (p < 0.05) in genes from any ontology categories.

Disease association of individual CNA frequencies with patients, as a group, compared to a
reference group, was assessed using 2ˆ 2 or 2ˆ 3 contingency tables, two-tailed χ2 tests or Fisher exact
tests. Statistical analyses were performed using the SPSS statistical software package (Version 10, IBM,
Chicago, IL, USA). Differences with two-tailed probability values of p ď 0.05 were taken as statistically
significant. p-values for tests of CNA association were conservatively corrected for multiple testing
using the Bonferroni method.

3. Results

3.1. Overall CNA Patterns

We processed genotype and intensity data for all 2.5 million probes of the Illumina
HumanOmni2.5-8 BeadChip Kit for the 14 cases and 125 reference subjects. A number of CNAs
(deletions or losses) was present in many chromosomal regions (Figure 1). A total of 2220 CNAs
>1000 bp was identified, including 725 (32.7%) amplifications (gains) and 1495 (67.3%) deletions (losses)
mainly on the 22 autosomal chromosomes.

Med. Sci. 2016, 4, 12    5 of 18 

 

2.2.5. Pathway Analysis 

We  further  examined whether  these  CNAs  in  the  various  genes  have  an  impact  on  gene 

functions.  Gene  ontology  (GO)  analysis was  also  performed  using  the  Partek®  Genomic  Suite® 

software, Version 6.6, Copyright® 2014, Partek Inc., to investigate whether there was enrichment for 

cancer‐associated CNAs (p < 0.05) in genes from any ontology categories. 

Disease association of  individual CNA  frequencies with patients, as a group, compared  to a 

reference group, was assessed using 2 × 2 or 2 × 3 contingency tables, two‐tailed χ2 tests or Fisher 

exact  tests.  Statistical  analyses  were  performed  using  the  SPSS  statistical  software  package   

(Version 10, IBM, Chicago, IL, USA). Differences with two‐tailed probability values of p ≤ 0.05 were 

taken as statistically significant. p‐values for tests of CNA association were conservatively corrected 

for multiple testing using the Bonferroni method. 

3. Results 

3.1. Overall CNA Patterns 

We  processed  genotype  and  intensity  data  for  all  2.5  million  probes  of  the  Illumina 

HumanOmni2.5‐8 BeadChip Kit  for  the  14  cases  and  125  reference  subjects. A number of CNAs 

(deletions or  losses) was present  in many chromosomal  regions  (Figure 1). A  total of 2220 CNAs   

>1000 bp was  identified,  including  725  (32.7%)  amplifications  (gains)  and  1495  (67.3%) deletions 

(losses) mainly on the 22 autosomal chromosomes.   

The chromosomal locations of the copy number amplifications and deletions of the 22 autosomes 

and X chromosomes were shown by karyograms (Figure 1). Most of the amplifications are found in 

the  cases  at  the  short  arms of  chromosomes 1,  5, 8,  16, 19 and  20,  as well as  the  centromeres of 

chromosomes 14, 15 and 21. Most of the deletions in the cases were mainly observed at the short arms 

of chromosomes 1, 4, 5, 7, 11, 12, 16, 17 and 19, as well as the centromeres of chromosome 19. 

 

 

 
Figure  1.  Karyogram  view  of  detected  amplified  and  deleted  regions  across  autosomes. 

Amplifications are shown at right side of the chromosomes, and deletions are shown at the left side 

of the chromosomes. The length of the horizontal bar corresponds to the number of samples observed 

at  the  respective  cytobands. Most of  the amplifications were  found  in  cases at  the  short arms of   

chromosomes 1, 5, 8, 16, 19 and 20, as well as the centromeres of chromosomes 14, 15 and 21. Most of 

the deletions in the cases were mainly observed at the short arms of chromosomes 1, 4, 5, 7, 11, 12, 

16, 17 and 19, as well as the centromere of chromosome 19. We observed a statistically‐significant 

difference of CNA burden between case and reference groups (Table 2) for different sizes of CNAs 

Figure 1. Karyogram view of detected amplified and deleted regions across autosomes. Amplifications
are shown at right side of the chromosomes, and deletions are shown at the left side of the chromosomes.
The length of the horizontal bar corresponds to the number of samples observed at the respective
cytobands. Most of the amplifications were found in cases at the short arms of chromosomes 1, 5,
8, 16, 19 and 20, as well as the centromeres of chromosomes 14, 15 and 21. Most of the deletions in
the cases were mainly observed at the short arms of chromosomes 1, 4, 5, 7, 11, 12, 16, 17 and 19, as
well as the centromere of chromosome 19. We observed a statistically-significant difference of CNA
burden between case and reference groups (Table 2) for different sizes of CNAs (>100 kb, 10–100 kb
and 1–10 kb). For example, statistically-significant differences of >100 kb, 10–100 kb and 1–10 kb
deletions were observed between reference (6.7%, 2.5%, 0.8%), pre-cancer (92.5%, 81.5%, 87.7%) and
cancer (89.0%, 76.7%, 86.6%) groups, respectively (Table 2).
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Table 2. Copy number alteration (CNA) burden (deletion and amplification) among different diagnostic groups.

2 A

Size of CNAs Reference (n = 122) Low (n = 4) High (n = 5) SCC (n = 5)

All Amplification
(%)

Deletion
(%) All Amplification

(%)
Deletion

(%) All Amplification
(%)

Deletion
(%) All Amplification

(%)
Deletion

(%)
>100 kb 212 198 (93.3) 14 (6.7) 156 15 (9.6) 141 (90.4) 244 15 (6.1) 229 (93.9) 218 24 (11) 194 (89)

10–100 kb 157 153 (97.5) 4 (2.5) 119 24 (20.2) 95 (79.8) 183 32 (17.5) 151 (82.5) 163 38 (23.3) 125 (76.7)
1 kb–10 kb 128 127 (99.2) 1 (0.8) 125 11 (8.8) 114 (91.2) 193 28 (14.5) 165 (85.5) 179 24 (13.4) 155 (86.6)

2 B

Size of CNAs Reference Pre-Cancer (n = 9) Cancer (n = 5)

All Amplification
(%)

Deletion
(%) All Amplification

(%)
Deletion

(%) All Amplification (%) Deletion (%)

>100 kb 212 198 (93.3) 14 (6.7) 400 30 (7.5) 370 (92.5) 218 24 (11) 194 (89.0)
10–100 kb 157 153 (97.5) 4 (2.5) 302 56 (18.5) 246 (81.5) 163 38 (23.3) 125 (76.7)
1 kb–10 kb 128 127 (99.2) 1 (0.8) 318 39 (12.3) 279 (87.7) 179 24 (13.4) 155 (86.6)
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The chromosomal locations of the copy number amplifications and deletions of the 22 autosomes
and X chromosomes were shown by karyograms (Figure 1). Most of the amplifications are found
in the cases at the short arms of chromosomes 1, 5, 8, 16, 19 and 20, as well as the centromeres of
chromosomes 14, 15 and 21. Most of the deletions in the cases were mainly observed at the short arms
of chromosomes 1, 4, 5, 7, 11, 12, 16, 17 and 19, as well as the centromeres of chromosome 19.

3.2. Principal Component Analysis (PCA)

To characterize aberration profiles in different diagnostic groups (low grade dysplasia, high grade
dysplasia, SCC and reference), we performed a PCA (Figure 2). There was a great variability in the
three diagnostic groups (reference, pre-cancer and cancer) and four diagnostic groups (reference, low
grade, high grade and SCC). These results indicate that there is a distinct difference in the patterns of
the CNAs between case and reference groups based on the genomic profiles of these subjects.
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Figure 2. Plot of principal component analysis (PCA) and hierarchical clustering of copy number
variation (CNV) or CNA datasets. (A) PCA scatter plot of three diagnostic groups (pre-cancer, cancer
and reference). Each point represents a specific sample. Points are colored by group status, with blue
representing pre-cancer (CIN-I, -II and -III), red representing invasive cancer and green representing
references. (B) PCA scatter plot of four diagnostic groups. Each point represents a specific sample.
Points are colored by group status, with blue representing low grade (CIN-I), red representing high
grade (CIN- II and -III), purple representing invasive cancer and green representing references.
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Overall, there was a clear separation between the reference and the case group when examined
by PCA clustering.

3.3. Genome-Wide CNA and Cancer Progression

Increasing evidence demonstrates that more numerical genomic alterations are associated with
progression from precursor lesions to invasive cancer [25]. Thus, we conducted CNA genomic analysis
in different diagnostic groups to understand the complexities of the genomic architecture of these highly
heterogeneous groups of cervical cancer and to assess whether CNA burden impacts the prognosis
of cervical cancer in this Mexican American population. We analyzed CNAs among two (pre-cancer
and cancer; Table 2B) and three diagnostic groups (low grade, high grade and SCC; Table 2A) in
cases only. There was no statistically-significant difference of CNA burden among diagnostic groups
in cases in any size of CNA, although there are slightly higher frequencies of amplifications in the
100 kb, 10–100 kb and 1–10 kb categories in the cancer group (11.0%, 23.3% and 13.4%, respectively) as
compared to the pre-cancer group (7.5%, 18.5% and 12.3%, respectively) (Table 2) using 205 two-tailed
χ2 tests with the SPSS statistical software package.

3.4. Recurrent Aberrations Identified in Cases Only

We are interested in recurrent CNAs since the chromosome regions with recurrent CNAs more
likely to harbor disease-critical genes are those that show alterations that are recurrent among
individuals with cancer or other diseases [26,27]. In this context, we can define a recurrent CNA
region as a set of contiguous genes (a region) that shows a high enough probability (or evidence) of
being altered (e.g., deletion or insertion) in two or more samples, as previously described [28]. The
recurrent aberrations in a total of 98 CNA regions containing 849 genes/loci were identified only in
the case group (pre-cancer and cancer subjects) with at least two cases who carried these CNAs. None
of these CNAs were observed in the reference group (Table 3). Among these 98 recurrent CNA regions,
there were 545 deletions (84%) and 104 amplifications (16%) observed in cases only using statistical
analyses described in the Methods section.

Table 3 shows the top 20 chromosome regions with a high number of recurrent somatic CNAs
(>100 kb) in the cases with at least nine subjects carrying these deletions in each CNA region; none of
these CNAs were observed in the reference group. Some of the CNAs contain tumor suppressor genes
(e.g., axis inhibition protein 1 (AXIN1) and tuberous sclerosis complex 2 (TSC2)).

Eight exceptionally large CNA regions with deletions of between 1591 kb and 517 kb were
detected in cases on short arms of chromosomes 1, 16 and 19.

In addition to recurrent deletions identified in the cases (Table 3), two recurrent CNA regions
with a 220-kb amplification on 21q11.2 and a 113.5-kb deletion on 7p22.2 were observed in only CIN-III
and SCC.

Next, we checked the Cervical Cancer Database (CCDB) [29] and found three genes, haemoglobin
alpha 2 (HBA2), mesothelin (MSLN) and STK11, overlapped between 849 genes/loci observed from
our current study and 538 genes listed in the CCDB.
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Table 3. Top 20 CNA chromosome regions with recurrent somatic CNAs (deletions >100 kb) in the cases; not observed in the reference group.

Cytoband Start Stop # of Sub. with Del*. Deletions in Subjects No. of Markers Length (bp) Cancer-Related Genes

19p13.3 766,463 2,357,625 10 I (2), II (1), III (3), SCC (4) 1497 1,591,163 STK11
19p13.3 2,860,429 3,984,025 10 I (2), II (1), III (3), SCC (4) 1154 1,123,597 MATK, DAPK3
16p13.3 895,986 1,883,511 10 I (2), II (1), III (3), SCC (4) 1022 987,526 AXIN1
19p13.3 3,984,025 4,738,536 9 I (2), II (1), III (3), SCC (3) 672 754,512

1p36.33-1p36.32 1,825,510 2,545,368 9 I (2), II (0), III (3), SCC (4) 732 719,859 HES5
1p36.32 2,545,368 3,230,848 9 I (2), II (0), III (3), SCC (4) 678 685,481 PRDM16
16p13.3 377,287 895,986 10 I (2), II (1), III (3), SCC (4) 525 518,700 AXIN1, MSLN
1p36.33 1,282,654 1,799,975 9 I (2), II (0), III (3), SCC (4) 242 517,322
16p13.3 2,816,699 3,271,935 8 I (2), II (0), III (3), SCC (3) 469 455,237 BSG, FGF22, AXIN1
7p22.3 93,965 534,503 8 I (2), II (0), III (3), SCC (3) 265 440,539

19p13.3 366,342 762,497 10 I (2), II (1), III (3), SCC (4) 604 396,156 HBA2
16p13.3 2,408,963 2,706,379 8 I (2), II (0), III (3), SCC (3) 142 297,417
16p13.3 84,130 377,287 10 I (2), II (1), III (3), SCC (4) 284 293,158 AXIN1
16p13.3 2,132,651 2,397,391 10 I (2), II (1), III (3), SCC (4) 141 264,741 TSC2
1p36.33 1,021,380 1,282,654 9 I (2), II (0), III (3), SCC (4) 233 261,275
16p13.3 1,888,316 2,115,231 10 I (2), II (1), III (3), SCC (4) 210 226,916
1p36.33 810,836 1,021,380 9 I (2), II (0), III (3), SCC (4) 221 210,545
19p13.3 2,532,493 2,735,499 10 I (2), II (1), III (3), SCC (4) 228 203,007
19p13.3 2,367,858 2,532,493 10 I (2), II (1), III (3), SCC (4) 191 164,636
19p13.3 254,506 365,334 10 I (2), II (1), III (3), SCC (4) 108 110,829

# of Sub. with Del *: number of subjects with deletion. Serine/threonine kinase 11 (STK11); maturase K (MATK); Death-associated protein kinase 3 (DAPK3); axis inhibition protein 1
(AXIN1); hairy/enhancer of split, drosophila, homolog of, 5 (HES5); PR domain containing 16 (PRDM16); mesothelin (MSLN); basignin (BSG); fibroblast growth factor 22 (FGF22);
haemoglobin A2 (HBA2); tuberous sclerosis complex 2 (TSC2).
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3.5. CNA Regions Contained Known Tumor Suppressor Genes and Oncogenes in Cancer Tissues but Not in the
Reference Group

We were also interested in identifying CNA regions that were observed only in cases and over
100 kb containing known cancer-related genes as compared to the references (Tables 3–5). Thus, we
examined whether newly-identified CNAs contained tumor suppressor genes and/or oncogenes.
We observed a total of 26 CNA regions containing known tumor suppressor gene regions. These
CNAs were deletions and only seen in the case group. Furthermore, none of these regions were
observed in the reference group (Table 4). We also observed a total of six CNA regions with deletions
(no amplification) containing known oncogenes in the case group, and none of these regions were
observed in the reference group (Table 5).

Table 4. Newly-identified CNAs (deletions) contain known oncogenes in cases only.

Query Position Gene Name Gene ID Length (bp) Deletions in Different Diagnostic Groups

chr4:1694786–1937978 WHSC1 7468 243,193 ref (0), I (1), II (0), III (3), SCC (1)
chr4:1937978–2141625 WHSC1 7468 203,648 ref (0), I (1), II (0), III (3), SCC (1)
chr19:6194240–6239714 MLLT1 4298 45,475 ref (0), I (2), II (0), III (2), SCC (1)
chr19:6239714–6598484 MLLT1 4298 358,771 ref (0), I (2), II (0), III (2), SCC (1)
chr19:6679537–6796128 VAV1 7409 116,592 ref (0), I (2), II (0), III (1), SCC (1)
chr19:6796128–6883617 VAV1 7409 87,490 ref (0), I (2), II (0), III (1), SCC (1)

Wolf-Hirschhorn syndrome candidate 1 (WHSC1); myeloid/lymphoid leukemia; translocated to 1 (MLLT1);
vav guanine nucleotide exchange factor 1 (VAV1).

Table 5. Newly-identified CNAs (deletions) contain known tumor suppressor genes in cases only.

Query Position Gene Name Gene
ID

Length
(bp)

Deletions in Different
Diagnostic Groups

chr1:3252272–3613519 TP73 7161 361,248 ref (0), I (1), II (0), III (3), SCC (3)
chr1:3613519–3615102 TP73 7161 1584 ref (0), I (1), II (0), III (3), SCC (3)
chr1:3615102–3615341 TP73 7161 240 ref (0), I (1), II (0), III (3), SCC (3)
chr1:3615341–3621322 TP73 7161 5982 ref (0), I (1), II (0), III (3), SCC (3)
chr1:3621322–4125280 TP73 7161 503,959 ref (0), I (1), II (0), III (2), SCC (2)
chr5:204517–422812 AHRR 57491 218,296 ref (0), I (1), II (0), III (3), SCC (2)
chr5:422812–582058 AHRR 57491 159,247 ref (0), I (1), II (0), III (3), SCC (2)
chr7:1216332–1963055 MAD1L1 8379 746,724 ref (0), I (2), II (0), III (3), SCC (3)
chr7:1963055–1964889 MAD1L1 8379 1835 ref (0), I (2), II (0), III (3), SCC (3)
chr7:1964889–2219927 MAD1L1 8379 255,039 ref (0), I (2), II (0), III (3), SCC (3)
chr7:2219927–2770642 MAD1L1 8379 550,716 ref (0), I (2), II (0), III (3), SCC (3)
chr16:1888316–2115231 TSC2 7249 226,916 ref (0), I (2), II (1), III (3), SCC (4)
chr16:2115231–2116240 TSC2 7249 1010 ref (0), I (2), II (1), III (3), SCC (4)
chr16:2116240–2127184 TSC2 7249 10,945 ref (0), I (2), II (1), III (3), SCC (4)
chr16:2127184–2132651 TSC2 7249 5468 ref (0), I (2), II (1), III (3), SCC (4)
chr16:2132651–2397391 TSC2 7249 264,741 ref (0), I (2), II (1), III (3), SCC (4)
chr16:377287–895986 AXIN1 8312 518,700 ref (0), I (2), II (1), III (3), SCC (4)
chr16:84130–377287 AXIN1 8312 293,158 ref (0), I (2), II (1), III (3), SCC (4)
chr17:1586256–1692127 SMYD4 114826 105,872 ref (0), I (1), II (0), III (3), SCC (1)
chr17:1692127–1737406 SMYD4 114826 45,280 ref (0), I (1), II (0), III (3), SCC (1)
chr19:5310257–5598484 SAFB2 9667 288,228 ref (0), I (2), II (0), III (3), SCC (3)
chr19:5598484–5623377 SAFB2 9667 24,894 ref (0), I (2), II (0), III (3), SCC (3)
chr19:5598484–5623377 SAFB 6294 24,894 ref (0), I (2), II (0), III (3), SCC (3)
chr19:5623377–5625242 SAFB 6294 1,866 ref (0), I (2), II (0), III (3), SCC (3)
chr19:5625242–5625729 SAFB 6294 488 ref (0), I (2), II (0), III (3), SCC (3)
chr19:5625729–5846816 SAFB 6294 221,088 ref (0), I (2), II (0), III (3), SCC (3)

Reference (0), I (1), II (0), III (3), SCC (3) means a 361-kb deletion on chromosome 1 occurred in one subject with
CIN-I, 3 subjects with CIN-III and 3 subjects with SCC.
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3.6. Pathway Analysis

Recent studies have incorporated protein networks into the results of genome-wide CNA data
using networks or GO analysis to discover disease-associated and/or enriched pathways [30–33].
Therefore, we conducted GO analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis.

The results of the functional enrichment of KEGG pathway analysis in the identified CNAs
>100 kb that occurred in two or more cases are shown in Table 6. Fourteen pathways were discovered,
including the insulin signaling pathway and the endometrial cancer and estrogen signaling pathway,
with enrichment p values lower than 0.05. A GO analysis was performed by selecting CNAs in the
genes to see if any GO categories were overrepresented among CNAs identified in cases [34]. Many
biological processes were undisturbed at the molecular level, while others were frequently affected
across multiple cases, as shown in Table 7, which lists the most commonly-affected function with
p-values lower than 0.05 and more than four genes in each function category.

Table 6. Functional enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis in the identified CNAs (>100 kb and occurring in two or more patients with SCC).

Pathway Name Enrichment
Score

Enrichment p
Value

% Genes in
Pathway # Gene in List KEGG

Pathway ID

Insulin signaling pathway 4.749 0.009 7.03 9 16
Endometrial cancer 4.698 0.009 10.64 5 11
Parkinson’s disease 4.054 0.017 7.22 7 215
Glioma 3.713 0.024 8.33 5 182
Huntington’s disease 3.640 0.026 5.84 9 52
NF-κB signaling 3.572 0.028 7.14 6 163
Ribosome 3.522 0.030 7.06 6 275
Alcoholism 3.495 0.030 5.70 9 191
Neurotrophin signaling pathway 3.399 0.033 6.31 7 50
Estrogen signaling pathway 3.326 0.036 6.75 6 154
RNA polymerase 3.195 0.041 10.71 3 238
Dopaminergic synapse 3.042 0.048 5.83 7 20
PI3K-Akt signaling pathway 3.038 0.048 4.52 14 262
Ubiquitin-mediated proteolysis 3.005 0.049 5.79 7 175

# ě6 genes in each function were listed here.

Table 7. Gene ontology (GO) categories of CNAs (>100 kb and occurring in two or more than two
patients with SCC).

Type Function Enrichment
Score

Enrichment
p Value

% Genes
in Group

# Genes
in List GO ID

Molecular function signal transducer activity 5.344 0.005 0.477 7 4871
molecular transducer activity 4.780 0.008 0.430 7 60089
enzyme binding 3.089 0.046 0.376 5 19899
protein kinase binding 5.858 0.003 0.998 4 19901
kinase binding 5.405 0.004 0.879 4 19900

Cellular component membrane-bounded vesicle 4.420 0.012 0.338 9 31988
vesicle 4.193 0.015 0.326 9 31982
plasma membrane 3.061 0.047 0.271 9 5886
plasma membrane part 3.388 0.034 0.328 7 44459
plasma membrane protein complex 5.500 0.004 0.903 4 98797
membrane protein complex 3.203 0.041 0.457 4 98796

Biological process signal transduction 4.648 0.010 0.291 12 7165
cell surface receptor signaling pathway 4.546 0.011 0.344 9 7166
regulation of signal transduction 3.443 0.032 0.332 7 9966
positive regulation of gene expression 3.992 0.018 0.413 6 10628
macromolecular complex subunit organization 3.303 0.037 0.354 6 43933
G-protein coupled receptor signaling pathway 4.089 0.017 0.489 5 7186
negative regulation of response to stimulus 3.821 0.022 0.457 5 48585
defense response 3.783 0.023 0.452 5 6952
positive regulation of protein metabolic process 3.569 0.028 0.428 5 51247

# ě6 genes in each function were listed here.
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4. Discussion

It has been demonstrated that somatic structural alterations (e.g., amplifications or deletions) of
human chromosomes represent a common class of mutations, which may cause gene disruption
(e.g., deletion or rearrangement), gene activation (e.g., CNAs, gain or amplification) or the
formation of novel oncogenic gene products (gene fusions). Many of these events actively drive
carcinogenesis [35,36]. In our initial cervical cancer cohort, some CNA patterns identified were
previously found to be correlated with cervical cancer.

We screened whole genomes with 2.5 million markers of an array to discover any recurrent copy
number alterations in cases (pre-cancer and SCC). We identified a total of 98 CNA regions >100 kb in
the case group, including low grade dysplasia, high grade dysplasia and SCC. These CNAs occurred
in two or more cases, including two large deletions (1591 kb and 1123 kb) (Table 3). Of the top 20
CNA regions >100 kb deletions in cases only, six CNAs occurred on 16p13 that have been reported
in cervical cancer [37], and mutation analysis of the AXIN1 gene located at 16p13 was reported to be
involved in the Wnt pathway in cervical carcinomas [38]. The CNA containing the SET and MYND
domain-containing protein 4 (SMYD4) gene on 17p13.3 was also reported previously in this cancer [37].
The SMYD4 gene is demonstrated to be a potential tumor suppressor and plays a critical role in breast
carcinogenesis, at least partly through inhibiting the expression of platelet-derived growth factor
receptor-alpha (PDGFRA), and this gene could be a novel target for improving the treatment of breast
cancer [39].

A number of previous studies demonstrate that numerical chromosomal aberrations were found
to progress to invasive cancer from precursor lesions [25,37]; however, we did not observe this
feature in our current study sample. This might be due to the small sample size or any other
unknown or not yet identified factors, such as ethnicity, since most previous study populations
are non-Hispanic populations.

Among two amplifications identified in CIN-III and SCC, one recurrent CNA region with a 220-kb
amplification on 21q11.2 was observed in CIN-III and co-occurred with previous findings, where the
amplification had been identified in breast cancer subjects with tamoxifen resistance [40].

The recurrent CNA regions we identified contain a number of tumor suppressor genes, oncogenes
and cancer-related genes. A CNA that contains the interferon-induced transmembrane protein 1
(IFITM1) gene at 11p15.5 was identified in eight cases. This gene has been reported to be involved
in cervical carcinogenesis [41]. A total of nine cases with the CNA containing the fucosyltransferase
3 (FUT3) gene at 19p13.3 were observed in the current study, and this gene is associated with
breast cancer [42]. A CNA region that includes the naked cuticle 2 (NKD2) gene at 5p15.35 was
detected in six cases. This gene was found to suppress breast cancer proliferation by inhibiting Wnt
signaling [43]. The ovarian cancer-associated gene 2 protein (OVCA2) at 17p13.3 was repeatedly
reported to be associated with ovarian cancer, and we observed five cases carrying the CNA at this
gene region. A cluster of three tumor suppressor genes, cadherin 1 (CDH1), death-associated protein
kinase (DAPK) and hypermethylated in cancer 1 (HIC1), displayed a significantly increased frequency
of promoter methylation with progressively more severe cervical neoplasia. In addition, the Hes family
BHLH Transcription Factor 5 (HES5) gene was reported to be associated with cervical carcinoma
cells using immunocytochemistry, Western blot and methyl thiazolyl tetrazolium assays [44], and
the CNAs on 1p36.33-1p36.32 containing the HES5 gene were also identified in the current study.
Our newly-identified CNA containing this gene on 7p22.2 was also observed in the recurrent pre-cancer
and cancer subjects (Table 3).

Moreover, we also examined deletion burden observed to be similar to those for other cancers and
found more deletions identified than amplification in most of the cancer studies, which supports our
findings. A recent study using the TCGA data identified nine regions of deletion that were unique to
estrogen receptor positive (ER+) post menopause tumors in patients with breast cancer [45], including
deletion in 7p22.3, where our newly-identified deletion in cases only was located, and it contains a
known tumor suppressor gene.
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To analyze the possible effect of genomic alterations, to further capture cancer-causing gene
information and to see whether any GO categories are overrepresented among CNA regions, we
searched the KEGG pathway database and GO categories and identified a number of pathways and
functions where CNAs occur in the SCC group, but not in the reference group (Tables 6 and 7).
Furthermore, our results were partly in agreement with previous reports about cervical cancer.
For example, using the functional enrichment of KEGG pathway analysis, we discovered the insulin
signaling pathway in the case group, and it was evidenced that HPV 16 E6 oncoprotein interferes with
the insulin signaling pathway by binding to tuberin [46]. As is already known, high-risk HPV infection
is a causal agent for cervical cancer. In addition, two pathways of interest are endometrial cancer and
the estrogen signaling pathway observed in the current study. The NF-κB signaling pathway was
also identified in our cancer group (SCC), but not in the reference group, which supports a previous
study where bisphenol A (BPA) stimulated the cervical cancer migration via IKK-β/NF-κB signals [47].
The estrogen signaling pathway was also shown in our KEGG analysis. A previous study was
performed to evaluate the potential of miRNAs as novel markers for the post-therapeutic monitoring
of cervical SCC patients. A regulatory network of differentially-expressed serum miRNAs was
identified, and a number of target genes was predicted in the estrogen-mediated signal pathways [48].
Ours and others’ findings support that cervical cancer is a hormone-associated gynecological disease.
For example, HPV infection has been associated with the deregulation of the PI3K-Akt-mTOR pathway
in invasive cervical carcinomas [49]. The PI3K-Akt signaling pathway was also found in our current
study, and 14 genes in this pathway were found in two or more SCC cases (Table 6).

Moreover, signal transducer activity with an enrichment score of 4.2 and a p value of 0.01
containing 11 genes was also identified in a previous report on cervical cancer [50] using GO analysis.
Signal transduction was identified in our current study in cervical cancer (SCC), but not in the reference
group; a recent study also supports that a signal transduction cascade and mitogen-activated protein
kinase kinase kinase 3 (MEKK3) serve as key integration points and are important factors in regulating
cellular responses to environmental stress. This signal transduction and MEKK3 not only link diverse
extracellular stimuli to subsequent signaling molecules, but they also amplify the initiating signals
to ultimately activate effector molecules and induce cell proliferation, differentiation and survival of
cervical cancer [51].

These pathways and functions were identified as overlapping biological themes, and these data
may provide useful information on the molecular mechanisms for cervical cancer, its prognosis and
treatment responses.

There are a number of novelties in this study: (1) this is the first report of CNAs in the relatively
ethnically homogeneous group of Mexican Americans using high density mapping (2.5 million in
number); previous studies using less density markers may result in an underestimation of the genetic
changes that take place in cervical cancer; (2) newly-identified CNAs in cases together with results in
the in silico analysis using KEGG and GO function provide insight into how multiple CNAs might
contribute to cervical cancer development. We also are aware of some limitations in our study. (1) Our
small sample size (14 cases and 125 references) is a major limitation for this type of study. Due to
a small number of samples, the nature of genome-wide alteration of copy number may not be fully
explained in pre-cancer and SCC. Future confirmation studies using an independent sample will
provide an opportunity to more accurately dissect the genetic complexity of somatic CNAs for cervical
cancer. (2) There might be a bias of the CNA identified in cervical cancer for the Mexican Americans,
since we used the 1000 Genome admixed populations, not Mexican Americans; thus, we currently
are recruiting more subjects with cervical cancer from the same population and plan to validate the
findings in more samples. (3) Other biomarkers, such as RNA-Seq or DNA methylation profile and
sequencing data using next generation sequencing technologies (such as target gene sequencing in
these CNA regions), will provide an opportunity for in-depth molecular profiling of the fundamental
biological processes of cervical cancer.
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We expect that with future validation and confirmation, newly-discovered CNAs can be used in
cancer classification, diagnosis, prognosis and treatment responses.

5. Conclusions

Using high density SNP array analysis, we have shown extensive genome-wide CNA changes
in pre-cancer and cancer groups as compared to the genome CNA profile in the reference group.
Our results demonstrated that the recurrent alterations of CNAs occurred in cases of pre-cancer
and SCC. Some of the somatic genomic gains and losses in cervical pre-cancer and cancer were in
concordance with the results from previous studies. To our knowledge, no previous studies have
applied genome-wide copy number analysis using such high density markers for cervical cancers
in the Mexican American population; however, validation and confirmation in a larger sample size
are needed.
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