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Probability of radiation of twisted photons by classical currents
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The general formula for the probability of radiation of a twisted photon by a classical current is derived. The
general theory of generation of twisted photons by undulators is developed. It is proved that the probability to
record a twisted photon produced by a classical current is equal to the average number of twisted photons in a given
state. The general formula for the projection of the total angular momentum of twisted photons given the energy,
the longitudinal projection of momentum, and the helicity is obtained. The symmetry property of the average
number of twisted photons produced by a charged particle moving along a planar trajectory is found. The explicit
formulas for the average number of twisted photons generated by undulators in both the dipole and wiggler
regimes are obtained. It is established that, for the forward radiation of an ideal right-handed helical undulator,
the harmonic number n of the twisted photon coincides with its projection of the total angular momentum m.
As for the ideal left-handed helical undulator, we obtain that m = −n. It is found that the forward radiation of
twisted photons by a planar undulator obeys the selection rule that n + m is an even number. It turns out that the
average number of twisted photons produced by the undulator and detected off the undulator axis is a periodic
function of m in a certain spectral band of the quantum numbers m.
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I. INTRODUCTION

At present, there are rather well developed techniques to
produce and detect vortex electromagnetic radiation (for a
review see [1–4]). This type of radiation is loosely treated
as electromagnetic waves carrying an orbital angular momen-
tum.1 The rigorous quantum definition of such radiation is
a twisted photon [3,7–10] and refers to the states of a free
electromagnetic field with definite energy, longitudinal projec-
tion of momentum, projection of the total angular momentum,
and helicity [8,9,11–13]. Similar states of electrons were also
produced experimentally (for review see [14,15]). A number
of quantum electrodynamic processes involving the twisted
photons and electrons have already been described in the
literature (see, e.g., [8–10,16–22]). However, a general formula
for the probability of radiation of twisted photons by classical
currents is lacking. This formula is an analog of the well known
expression for the spectral angular distribution of radiation of
plane-wave photons [23,24] in classical electrodynamics. The
primary aim of this paper is to fill this gap and to provide
examples of how to use this formula.

The model of a classical source producing twisted photons
is a good approximation of reality when the quantum recoil
experienced by the source can be neglected. For ultrarel-
ativistic electrons moving in the external electromagnetic
field, the latter limitation is rather weak. For example, for
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1The first theoretical studies [5,6] of the angular momentum of

electromagnetic waves date back to the turn of the 20th century.

laser radiation with photon energies of order 1 eV and the
intensity I ≈ 1020 W/cm2, this restriction says, roughly, that
the energies of electrons evolving in the laser radiation field
must be less than 2.5 GeV. Such electrons may produce
photons with energies of order 250 MeV and this radiation is
still described by formulas of classical electrodynamics fairly
well. Furthermore, the classical currents radiating the twisted
photons have already been used in theoretical investigations
[25–30] and the efficiency of generation of twisted photons by
such sources has been confirmed experimentally [31,32]. Of
course, there are other more traditional ways to produce twisted
photons in the optical range using various optical devices
[1–4,33–36], but from a theoretical point of view all these
means can be reduced to the production of twisted photons
by classical currents in the formalism of electrodynamics of
continuous media (see, e.g., [37]). Not to overestimate this
approximation, mention should be made that the classical
currents generate photons in a coherent state (see Sec. III).
Therefore, this approximation cannot reproduce the nontrivial
quantum correlations of photons (see, e.g., [7,38–40]).

To date, undulators or undulator-type devices (the free-
electron lasers, for example) are the most investigated systems
that generate twisted photons and are based on free elec-
trons [25–32]. Therefore, we apply a general formula for the
probability of radiation of twisted photons to the analysis of
undulator radiation and develop a theory of radiation of twisted
photons by undulators. In the optical range, the dependence of
the probability of radiation of twisted photons on the projection
of the total angular momentum can already be observed with
the existing experimental techniques [41–44]. We consider
undulator radiation in both the dipole and nondipole (wiggler)
approximations and give its complete description in terms of
twisted photons. For a particular case of forward radiation of
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a helical undulator, the general theory reproduces the results
known in this case [25,30].

In particular, we establish that the nth harmonic of the
forward radiation of an ideal right-handed helical undulator
consists of twisted photons with the projection of the total
angular momentum m = n, irrespective of the photon helicity
and longitudinal momentum (an ideal left-handed helical
undulator produces twisted photons with m = −n). This result
is in agreement with the direct analysis of the Liénard-Wiechert
potentials [25,30], where it was found that such an undulator
radiates the photons in the Laguerre-Gaussian modes with the
orbital angular momentum. We derive the explicit expression
for the average number of twisted photons produced in a given
state. The forward radiation of the planar undulator can also be
used to generate the twisted photons. It was found in Ref. [25]
that this radiation is described by the Hermite-Gaussian modes
without the orbital angular momentum, but these modes can
be converted to the Laguerre-Gaussian modes with the aid
of cylindrical lenses [25,33,34]. We show that, without any
mode conversion or any special helical modulation of the
electron bunch [27,31], the average number of twisted photons
with fixed helicity is not symmetric under m → −m and the
projection of the total angular momentum per one photon with
fixed energy, longitudinal momentum, and helicity can be as
large as in the case of the helical undulator, at least for small
harmonic numbers. We also establish the property of forward
radiation of the planar undulator that n + m must be an even
number; otherwise the number of twisted photons produced is
zero.

As for the radiation at an angle to the undulator axis, the
spectacular result is that the average number of twisted photons
is a periodic function of m in a certain spectral band of quantum
numbers m. This is a robust result in the sense that this property
holds for different types of undulators in both the dipole and
wiggler regimes. We give explicit formulas for the period of
oscillations and the width of the spectral band. The signal of
such a type can be employed for high-density information
transfer (see Sec. V A). We also analyze the spectrum of
twisted photons and derive formulas for the average number of
radiated twisted photons. These formulas are obtained under
the assumption that the number of undulator sections N is
finite but large. So the analytical results become more and
more accurate when N is increased.

We start in Sec. II with the derivation of the mode functions
of the electromagnetic field describing the twisted photons.
Using these mode functions, we construct the quantum electro-
dynamics with the twisted photons. The subject matter of this
section is known in the literature (see, e.g., [8–13,20,45–48])
and we include it in this article for the readers’ convenience
in order to assign the notation and conventions. Section III
is devoted to the derivation of a general formula for the
probability to detect a twisted photon radiated by a classical
current. We show that this probability is in fact the average
number of photons produced by the current. We also provide
a pictorial representation of the general formula in terms of
the usual plane-wave amplitudes of radiation of photons by
a classical current. Section III concludes with a discussion
of some properties of the wave packets composed of the
twisted photons. In Sec. IV, we introduce quantities that
characterize the twist of electromagnetic radiation and derive

general formulas for them. In particular, we establish a general
symmetry property for the average number of twisted photons
radiated by a charged particle moving along a planar trajectory.
In Sec. V, the radiation of twisted photons by undulators
is studied. Section V A is devoted to the dipole case, while
Sec. V B is for the wiggler radiation. We obtain the average
number of twisted photons produced by undulators in these
cases and reveal some of its general properties. Useful formulas
for the special functions appearing in the course of our study
are collected in the Appendix.

We will use a system of units such that h̄ = c = 1 and e2 =
4πα, where α is the fine-structure constant.

II. FIELD OPERATORS

Let us consider a quantum electromagnetic field interacting
with a classical current in the Coulomb gauge. A thorough
description of the quantization procedure in this gauge can be
found, for example, in Ref. [49]. In the absence of a source, the
electromagnetic potential Ai(t,x), i = 1,3, obeys the equations

Äi − �Ai = 0, ∂iAi = 0. (1)

In order to construct the field operators and quantum field
theory, one needs to find the mode functions [a complete
set of solutions to (1)] and partition them into positive- and
negative-frequency modes (see, e.g., [50]).

To this aim it is useful to consider the eigenvalue problem
for a self-adjoint Maxwell Hamiltonian operator (the curl
operator)

hMψi(x) := εijk∂jψk(x) = sk0ψi(x), k0 > 0, s = ±1. (2)

As we will see, k0 characterizes the energy of a state and s is
its helicity. It is assumed also that the complex vector fields ψi

obey the boundary conditions such that k0 �= 0. In this case,
Eq. (2) implies

∂iψi = 0. (3)

The complete orthonormal set of eigenfunctions of the
Maxwell Hamiltonian constitutes the basis in the Hilbert space
of divergence-free complex vector fields ψi(x) with the scalar
product

〈φ,ψ〉 =
∫

dx φ∗
i (x)ψi(x). (4)

It follows from (2) and (3) that

�ψi = −k2
0ψi, (5)

i.e., the general solution of (1) can readily be found with the
aid of the eigenfunctions (2).

The Hamiltonian hM commutes with the operator of the
total angular momentum (see, e.g., [45])

Jlij := εlmnxmknδij − iεlij , kn := −i∂n. (6)

The index l in Jlij marks the components of the angular
momentum operator. The last term in Eq. (6) is the photon
spin operator. The helicity operator

Sij = −iknεnij /|k| = Jlij kl/|k| = (hM )ij /|k| (7)

commutes with the Maxwell Hamiltonian and with Jl . As a
result, we can construct the complete set of eigenfunctions of

033837-2



PROBABILITY OF RADIATION OF TWISTED PHOTONS … PHYSICAL REVIEW A 97, 033837 (2018)

hM with definite values of the projection of the total angular
momentum onto the z axis, the helicity, and the projection of
the momentum onto the z axis,

ĥMψα = sk0ψα, k̂3ψα = k3ψα

Ĵ3ψα = mψα, Ŝψα = sψα, (8)

where α ≡ (s,m,k3,k0), m ∈ Z.
In solving the system (8), it is convenient to introduce the

basis spanned over the eigenvectors of the projection of the
photon spin operator onto the z axis:

e± := e1 ± ie2,e3, (9)

where the ei are the standard basis vectors. It is clear that

(e±,e±) = 0, (e±,e∓) = 2, e∗
± = e∓ (10)

and any vector can be decomposed in this basis as

ψ = 1
2 (ψ−e+ + ψ+e−) + ψ3e3. (11)

The scalar product (4) becomes, in this basis,

〈φ,ψ〉 =
∫

dx
[

1

2
(φ∗

+ψ+ + φ∗
−ψ−) + φ∗

3ψ3

]
. (12)

Then the complete orthonormal set satisfying (8) takes the form
(11) with [8,9,11–13]

ψ3(m,k3,k⊥) = 1√
RLz

k
3/2
⊥

2k0
Jm(k⊥r)eimϕ+ik3z,

ψσ (s,m,k3,k⊥) = iσ k⊥
σsk0 + k3

ψ3(m + σ,k3,k⊥), (13)

where σ = ±1, Lz is the size of the system along the z axis, R
is the radius of the system counted from the z axis, and r :=√

x2 + y2. To characterize the complete set of eigenfunctions,

we use the quantum number k⊥ :=
√

k2
0 − k2

3 � 0 instead of
the energy k0. It is supposed that k⊥R 
 max(1,|m|) and
k3Lz 
 1. The completeness relation reads∑

α

ψαi(x)ψ∗
αj (y) = (

δij − ∂x
i ∂x

j �−1
)
δ(x − y)

= δij δ(x − y) + ∂x
i ∂x

j

1

4π |x − y|
=: δ⊥

ij (x − y),

∑
α

≡
∑
s=±1

∞∑
m=−∞

∫ ∞

−∞

Lzdk3

2π

∫ ∞

0

Rdk⊥
π

.

(14)

The following useful relations hold:

ψ∗
3 (m,k3,k⊥) = (−1)mψ3(−m,−k3,k⊥),

ψ∗
σ (s,m,k3,k⊥) = (−1)mψ−σ (s,−m,−k3,k⊥),

ψ∗
i (s,m,k3,k⊥) = (−1)mψi(s,−m,−k3,k⊥),

ψσ (s,m,k3,k⊥) = −ψ−σ (−s,m + 2σ,k3,k⊥). (15)

By construction, these mode functions are divergence-free.
The mode functions (11) and (13) describe the so-called

vector Bessel beams. These mode functions and their linear
combinations corresponding to the same energy k0 are the
stationary solutions of (2). Therefore, they do not spread with
time (see, e.g., [51–54]).

In quantum field theory, the mode functions of a boson field
should be normalized by (2k0)−1/2. Furthermore, we have to
write the mode functions in an arbitrary frame. Let us use
the system of coordinates x ≡ (x,y,z). We choose the unit
vector e3 that defines the projection direction of the angular
momentum of a photon measured by the detector and take the
other two orthonormal vectors e1,2 that are orthogonal to e3

and constitute a right-handed system with it. Then we should
substitute

z → (e3,x) = : x3, r → |x+| = √
x+x−,

ϕ → arg x+ = 1
2 arg(x+/x−), (16)

where x± = (e±,x) and henceforward x3 is understood as (16).
In this case, the mode functions take the form (11) and (13)
with

ψ3(m,k3,k⊥) = 1√
RLz

(
k⊥
2k0

)3/2

Jm(k⊥|x+|)eim arg x++ik3x3

= 1√
RLz

(
k⊥
2k0

)3/2
x

m/2
+

x
m/2
−

Jm(k⊥x
1/2
+ x

1/2
− )eik3x3

= 1√
RLz

(
k⊥
2k0

)3/2

jm(k⊥x+,k⊥x−)eik3x3 , (17)

where we have introduced the shorthand notation for the Bessel
functions (see the Appendix) and have assumed the principal
branches of the multivalued functions. The last representation
in Eq. (17) is more convenient for analytical calculations since,
in this representation, the mode functions are entire analytic
functions of the complex coordinates x and the components x±
and x3. The relations (15) are valid in an arbitrary frame. The
quantum number s defines the helicity of the detected photon,
m is the projection of the total angular momentum onto e3,
k3 characterizes the projection of the photon momentum onto
e3, and k⊥ is the absolute value of the momentum projection
orthogonal to e3.

Decomposing Ai(t,x) in the complete set ψα(x) with the
coefficients depending on t and taking into account (5), we
find the general solution to the wave equation (1). As a result,
the self-adjoint field operator is written as

Â(t,x) =
∑

α

ĉαψα(x)e−ik0α t +
∑

α

ĉ†αψ∗
α (x)eik0α t ,

k0 =
√

k2
⊥ + k2

3, (18)

where ĉ†α and ĉα are the creation and annihilation operators,
respectively,

[ĉα,ĉ
†
β] = δαβ, (19)

and the standard partition of the field operator onto positive-
and negative-frequency parts on a stationary background has
been used (see, e.g., [50]). It is clear that (18) is the solution
to the quantum version of Eq. (1). The canonical momentum
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operator is

Ê(t,x) = −i
∑

α

k0αĉαψα(x)e−ik0α t

+ i
∑

α

k0αĉ†αψ∗
α (x)eik0α t ,

[Âi(t,x),Êj (t,y)] = iδ⊥
ij (x − y). (20)

Expressing the creation and annihilation operators from (18)
and (20), it is easy to obtain the secondary quantized operators
corresponding to the one-particle operators (2), (6), and (7) in
terms of Â and Ê. For example,

Ĥ = 1

2

∫
dx

(
ÊÊ + Âh2

MÂ
)
,

Ŝ = 1

2
:
∫

dx
(
Êh−1

M Ê + ÂhMÂ
)
:. (21)

The helicity and total angular momentum operators commute
with the Hamiltonian Ĥ and their averages do not depend on
time for a free electromagnetic field. The classical limit or,
equivalently, the average over the coherent state of the total
angular momentum operator coincides with the corresponding
expression following from the Noether theorem. The explicit
expression for the classical limit of the helicity operator is
given, for example, in Refs. [13,48,55,56].

We note an interesting feature of the mode functions (13).
If one considers the evolution of a localized wave packet
composed of these mode functions, which is sufficiently
narrow in k3 and k0 spaces, then its group velocity along the
z axis equals n3 = k3/k0 < 1, i.e., it is less than the speed of
light [57,58]. This fact is well known for the electromagnetic
field modes in fibers (see, e.g., [53,59]). Indeed, let the wave
packet be∫

dk3dk⊥e−i(k0t−k3z)ϕi(k3,k⊥; x,y), k0 =
√

k2
⊥ + k2

3, (22)

where ϕi(k3,k⊥; x,y) is a linear combination of the mode
functions (13) that is a slowly varying function of k3. Its
characteristic scale of variation should satisfy the estimate
�k3 
 2π/Lz, where Lz is the distance from the source of
radiation to the detector. For large z and t , the WKB method
applied to the integral over k3 in Eq. (22) gives

z = n3t, (23)

with the applicability conditions

k0T 
 1, n⊥(k0T )1/2 
 n3, (24)

where T is the registration time of a photon and n⊥ = k⊥/k0.
For n⊥ � 1, these conditions reduce to

n⊥(k0Lz)
1/2 
 1. (25)

If the rest integral over k⊥ is saturated on the modes with n⊥
satisfying (24), then the group velocity of the wave packet
along the z axis is equal to n3 provided �k3 complies with
the estimate given above. Rather recently, this property of the
Bessel beams was confirmed experimentally [57,58].

III. PROBABILITY OF RADIATION
OF TWISTED PHOTONS

Let us consider now the theory of a quantum electromag-
netic field interacting with a classical current jμ(x). Then the
process of one-photon radiation is possible

0 → γ. (26)

This process gives the leading in the fine-structure constant
contribution to the probability of radiation of photons. We
assume that the system is in the vacuum state |0〉 at the initial
moment x0 = −T/2 and the escaping photon with quantum
numbers (s,m,k3,k⊥) is detected at the instant x0 = T/2. The
observation period T is supposed to be very large and we will
take the limit T → +∞ in the final answer. Then, keeping in
mind that

Û 0
0,t ĉαÛ 0

t,0 = e−ik0αt ĉα, (27)

the transition amplitude of the process (26) is written as

e−iT (Evac+k0α /2)〈0|ĉαŜT /2,−T/2|0〉,
ÛT /2,−T/2 = Û 0

T/2,0ŜT /2,−T/2Û
0
0,−T/2, (28)

where ÛT /2,−T/2 is the evolution operator, ŜT /2,−T/2 is the S

matrix, and Û 0
T/2,0 is the free-evolution operator that does not

take into account the interaction with the classical current.
In this expression, we also assume that Ĥ0|0〉 = Evac|0〉. In
the first Born approximation, the transition amplitude of the
process (26) becomes

−ie−iT (Evac+k0α/2)〈0|ĉα

∫ T/2

−T/2
dx Âi(x)j i(x)|0〉, (29)

where the integration over x0 is confined within the limits
[−T/2,T /2].

Substituting (18) into (29), we obtain the amplitude

S(α; 0) = −ie−iT (Evac+k0α/2)
∫ T/2

−T/2
dx eik0αx0

ψ∗
αi(x)j i(x).

(30)

For the theory of quantum electromagnetic fields to be self-
consistent, the 4-divergence of the current density must be
identically zero. The current density of a point charge meeting
this requirement has the form

jμ(x) = e

( ∫ τ2

τ1

dτ ẋμ(τ )δ4(x − x(τ ))

+ ẋμ(τ2)

ẋ0(τ2)
θ (x0 − x0(τ2))δ(x − x(τ2)

− [x0 − x0(τ2)]ẋ(τ2)/ẋ0(τ2))

+ ẋμ(τ1)

ẋ0(τ1)
θ (x0(τ1) − x0)δ(x − x(τ1)

− [x0 − x0(τ1)]ẋ(τ1)/ẋ0(τ1))
)

, (31)

wherex0(τ1) = −τ0/2,x0(τ2) = τ0/2, and τ0 is the time period
when the particle moves with acceleration. The expression (31)
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can be cast into the standard form

jμ(x) = e

∫ ∞

−∞
dτ ẋμ(τ )δ4(x − x(τ )), (32)

where it is assumed that for τ < τ1 the particle moves with
the constant velocity ẋμ(τ1), while for τ > τ2 it moves with
the constant velocity ẋμ(τ2). Having performed the Fourier
transform

jμ(x) =:
∫

d4k

(2π )4
eikνx

ν

jμ(k), (33)

the last two terms in Eq. (31) correspond to the boundary terms
in

jμ(k) = e

( ∫ τ2

τ1

dτ ẋμe−ikνx
ν (τ ) − iẋμ

kλẋλ
e−ikνx

ν

∣∣∣∣
τ2

τ1

)
. (34)

These boundary contributions are responsible for the radiation
created by a particle when it enters and exits from the external
field (see, e.g., [60–66]).

It is useful to factor out the common multiple from the mode
functions

ψαi(x) =:
1√
RLz

(
k⊥

2k0α

)3/2

eik3x3aαi(x). (35)

Then, substituting (31) into (30), squaring the absolute value
of the outcome, and having T tend to infinity, we deduce that
the probability of the process (26) is given by

dP (s,m,k3,k⊥)

= e2

∣∣∣∣
∫

dτ e−i[k0x
0(τ )−k3x3(τ )]

{
1

2
[ẋ+(τ )a−(s,m,k3,k⊥; x(τ ))

+ ẋ−(τ )a+(s,m,k3,k⊥; x(τ ))]

+ ẋ3(τ )a3(m,k⊥; x(τ ))
}∣∣∣∣

2(
k⊥
2k0

)3
dk3dk⊥

2π2
,

k0 :=
√

k2
3 + k2

⊥, (36)

where we recall that e2 = 4πα, with α ≈ 1/137 the fine-
structure constant. This formula is for the probability of
radiation of twisted photons by a classical current. This formula
has the same status as the well known expression for the
spectral angular distribution of radiation created by a charged
particle [23,24].

Some comments about this formula are in order. If the
charged particle is moving uniformly and rectilinearly in the
distant past and future, then the integrand of (36) behaves as

τ−1/2e−i(k0υ0−k3υ3±k⊥
√

υ+υ−)τ , |τ | → ∞, (37)

where υμ is the asymptote of ẋμ(τ ) for large τ . Hence, the
integral (36) converges. As long as

k0υ0 − k3υ3 ± k⊥
√

υ+υ− > 0, (38)

one can speed up convergence of the integral by deforming
the integration contour to the lower half plane of the complex
τ plane for such τ where the motion of the particle becomes
uniform and rectilinear. As for the complex conjugate integral
entering (36), the integration contour ought to be deformed to
the upper half plane. For such a deformation to be justified,
one needs to employ the last two representations of the

mode functions in the formula (17). In the ultraviolet limit
k0 → ∞, the probability (36) tends to zero, the asymptote
being controlled by either the singular points of xμ(τ ) or the
stationary points of

k0x
0(τ ) − k3x3(τ ) ± k⊥

√
x+(τ )x−(τ ) (39)

in the τ plane, Im τ � 0, which are closest to the real axis.
It is assumed in Eq. (36) that the Cartesian system of

coordinates is chosen. Its origin lies on the ray emanating from
the detector along e3 (the projection direction of the angular
momentum of a photon). For brevity, we call this ray the e3

axis. The specific choice of the reference point on the e3 axis
is inessential. Recall that the vectors e1, e2, and e3 constitute
a right-handed system, which, for example, can be taken to
be the basis vectors eϕ , eθ , and er of the spherical system of
coordinates. In a general case, e3 �= n, where n is a unit vector
directed from the radiation point to the detector. The expression
(36) is invariant under

x± → e±iϕx±, y± → e±iϕy±, jm → eimϕjm ∀ϕ ∈ R.

(40)

This property is a consequence of the symmetry of the
expression (36) under rotations around the e3 axis.

The formula (36) can be interpreted pictorially in terms of
the usual plane-wave amplitudes of radiation of photons with
fixed helicity produced by the current j i (see Figs. 1 and 5).
In order to obtain the amplitude entering (36), one needs to
rotate the trajectory of a charge around the e3 axis and to add
the plane-wave contributions with fixed s, k3, and k0 coming
from the rotating trajectory at the location of the detector with
the “weight”

eimϕdϕ/2π, (41)

where ϕ ∈ [0,2π ) is the rotation angle. Such a picture is valid
for distributed currents too. This interpretation allows one to
predict the properties of (36) without making any detailed
calculations (see Secs. IV and V). The mathematical proof
of this interpretation comes from the integral representation of
the Bessel functions [see also (A8)]

Jm(x) = i−m

∫ 2π

0

dϕ

2π
e−imϕ+ix cos ϕ, m ∈ Z, (42)

substituted into (36) instead of the Bessel functions, or from
the method of derivation of the mode functions (13) proposed
in Refs. [8,9,11].

In the approximation scheme we consider, where the
quantum electromagnetic field is supposed to interact with a
classical current, the model is linear and can be solved exactly.
In particular, one can find the exact amplitude of the process
(26). For such a model, the relation

〈β|ĉαÛT /2,−T/2|0〉 = σ (α; 0)〈β|ÛT /2,−T/2|0〉,
σ (α; 0) := S(α; 0)|Evac=0, (43)

holds for any state |β〉 of the Fock space. Therefore, the
exact expression for the probability of the process (26), when
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e2

e1

1

1'
−

(ii)

e3

1'

1

e1

e2(i)

e3

FIG. 1. Shown on the left is a pictorial representation of the transition amplitude (36) corresponding to the family (i) of trajectories (see
the main text) with the prescribed additional phase factor eimϕ . The initial blue trajectory is rotated around e3 by an angle of ϕ so that point 1 is
shifted to 1′ and the blue trajectory goes to the azure one. The vectors tangent to the trajectories at points 1 and 1′ are the velocity vectors. The
vectors lying in the plane normal to the rotation axis are the projections of the velocity vectors onto this plane. Shown on the right is a pictorial
representation of the transition amplitude (36) corresponding to the family (ii) of trajectories with the prescribed additional phase factor e−imϕ .
The initial blue trajectory is rotated around e3 by an angle of −ϕ, so the point 1 is shifted to 1′ and the blue trajectory goes to the azure one.
The vectors tangent to the trajectories at points 1 and 1′ are the velocity vectors. The vectors lying in the plane normal to the rotation axis are
the projections of the velocity vectors onto this plane.

T → ∞, is

w(α; 0) = |σ (α; 0)|2T →∞

×
∣∣∣∣ exp

(
− i

2

∫
dx dy jμ(x)GF (x − y)jμ(y)

)∣∣∣∣
2

,

(44)

where

GF (x) = −
∫

d4k

(2π )4

e−ikμxμ

k2 + i0
. (45)

The last factor in Eq. (44) describes the vacuum to vacuum
transition probability in the model at hand. The simplest means
of obtaining the formula (44) is to integrate the Gaussian
functional integral with respect to the fields Ai and to employ
the charge conservation law ∂μjμ = 0 in order to put the
answer in the explicitly Lorentz invariant form. Introducing
the Fourier transform of the current density (33) and using the
Sokhotski formula in Eq. (45), we deduce

w(α; 0) = |σ (α; 0)|2T →∞ exp

( ∫
d4k

16π3
δ(k2)jμ(k)j ∗

μ(k)

)
.

(46)

The first factor in this formula is (36). The expression in the
exponent in the second factor is negative and with a reversed
sign equals the total number of photons created by the current
jμ(x) during the whole observation period (see, e.g., [23]). It
follows from (34) that, for k0 → 0 and ẋμ(τ1) �= ẋμ(τ2),

jμ(k)j ∗
μ(k) ∼ k−2

0 . (47)

Taking into account that δ(k2) removes one integration in
Eq. (46) and δ(k2) ∼ k−1

0 , we see that the integral in Eq. (46)
diverges logarithmically at the small photon energies. This is
the standard infrared divergence of quantum electrodynamics.
One can get rid of it by introducing the infrared energy cutoff
[49].

When ẋμ(τ1) = ẋμ(τ2), the infrared divergence does not
arise. However, in any case, the probability of the process
(26) is extremely small. From a physical point of view, it is
more appropriate to consider the average number of photons
in the state α created by the current jμ(x) during the whole
observation period

n(α; 0) =
∑

β

〈0|Û−∞,∞ĉ†α|β〉〈β|ĉαÛ∞,−∞|0〉

= 〈0|Û−∞,∞ĉ†αĉαÛ∞,−∞|0〉. (48)

Using (43), we obtain

n(α; 0) = |σ (α; 0)|2T →∞, (49)

i.e., the formula (36) describes the average number of photons
with the given quantum numbers. The probability of the
inclusive process

0 → γ + X, (50)

where X is the photons that are not recorded by the detector,
is given by

wincl(α; 0) = 〈0|Û−∞,∞(1 − :e−ĉ
†
α ĉα :)Û∞,−∞|0〉

= 1 − e−n(α;0) ≈ n(α; 0). (51)
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Recall that : exp(−ĉ†αĉα): is the projector to the state without
the photons characterized by the quantum number α. In the
last approximate equality in Eq. (51), it is assumed that the
population of the state α is small: n(α; 0) � 1. This inequality
is always satisfied provided the volume of the system where
the photons are created is sufficiently large.

Notice also that the relation (43) implies that the state

ÛT /2,−T/2|0〉 (52)

is an eigenvector of the annihilation operators of photons and
consequently is a coherent state (see, e.g., [11,67,68]). In this
state, the nontrivial quantum correlations (the entanglement)
are absent, viz., the logarithm of the generating functional of
the correlation functions [68,69] is linear in the sources. Of
course, this is a consequence of the approximation we made
when the current operator ĵ i had been replaced by the classical
quantity j i . The formula (36) can be improved by taking into
account the matrix structure of the current and the effects
of quantum recoil caused by the radiation of a photon (see,
e.g., [61,62,70–72]), the notion of a classical trajectory still
being applicable in this case. It is also easy to generalize this
formula to the case of a source possessing the higher multipole
moments (see, e.g., [24,73–75]). The formula (36) for the
average number of photons created in a given state is obviously
written for any other complete set of photon mode functions.

Concluding this section, we comment on how to take into
account in Eq. (36) the finite sizes of the detector recording
a photon. The states (13) are not localized in space, and any
detector with a finite spatial extension is not able to detect
the photon in this state. Let fα be the form factor of the wave
function of a photon recorded by the detector, viz., the detector
detects the photon in the state∑

α

fαĉ†α|0〉,
∑

α

f ∗
α fα = 1. (53)

As for the functions fα , they can be taken, for example, in
the form of wave packets with a Gaussian envelope studied
in Ref. [76] at length (for the general formalism of the wave
packets scattering see also [10,19,20,77]). Then the transition
amplitude (30) takes the form∑

α

f ∗
α S(α; 0). (54)

On squaring the module of this expression, the dependence on
T does not disappear provided fα corresponds to modes with
different energies. We can formally remove this dependence
by introducing

fα =: f̃αe−ik0αT /2 (55)

and interpreting (36) as the probability of the photon produc-
tion in the state ∑

α

f̃αĉ†α|0〉 (56)

at the instant of time t = 0, the photon propagating freely to
the detector after its creation. The instant t = 0 corresponds
to the moment in time when the reaction is passing, i.e., in
our case, to that instant of time when the acceleration of
a charged particle is different from zero. It is assumed that
the acceleration does not vanish when t ∈ [−τ0/2,τ0/2], and
τ0 � T . Obviously, these considerations are valid for the
average number of photons (48) as well.

IV. ANGULAR MOMENTUM

The properties of radiation related to its twist can be charac-
terized by the differential asymmetry and by the projection of
the total angular momentum per one photon with given energy,
momentum projection k3, and helicity

A(s,m,k3,k0) := dP (s,m,k3,k0) − dP (s,−m,k3,k0)

dP (s,m,k3,k0) + dP (s,−m,k3,k0)
, �(s,k3,k0) := dJ3(s,k3,k0)

dP (s,k3,k0)
, (57)

where

dJ3(s,k3,k0) :=
∞∑

m=−∞
mdP (s,m,k3,k0), dP (s,k3,k0) =

∞∑
m=−∞

dP (s,m,k3,k0). (58)

The integral characteristic

�(s,k0) := dJ3(s,k0)

dP (s,k0)
, dJ3(s,k0) =

∫ k0

0
dk3

dJ3(s,k3,k0)

dk3
, dP (s,k0) =

∫ k0

0
dk3

dP (s,k3,k0)

dk3
(59)

is also of interest. It specifies the total angular momentum of radiation projected to the e3 axis recorded by the detector per one
radiated photon with given energy and helicity. Notice that the projection onto the e3 axis of the total angular momentum of all
radiated photons with given k0 and s is obtained by integrating dJ3(s,k3,k0)/dk3 with respect to k3 over the symmetric interval
[−k0,k0] [cf. (59)].

One can expect by symmetry reasons that, in the case when the trajectory of a charged particle is planar and the detector lies
in the orbit plane and projects the angular momentum onto the axis also lying in the orbit plane, the distribution of the detected
photons over the angular momentum projection should be symmetric with respect to the sign change of the angular momentum.
More precisely, the following relation holds for this configuration:

dP (s,m,k3,k0) = dP (−s,−m,k3,k0). (60)

Indeed, for the configuration considered, by virtue of the symmetry of the expression (36) with respect to the rotations around
the e3 axis, one can always put the trajectory at the position that x+ = x− for all points of the trajectory. After that, one performs
the rotation by the angle π around the e3 axis. Then the equality x+ = x− does not change for all points of the trajectory, dP
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remains the same, and

ẋ± → −ẋ±, jm → j−m, jm−1 → j−m+1, jm+1 → j−m−1. (61)

Since

ik⊥
sk0 − k3

= − ik⊥
−sk0 + k3

, (62)

we deduce (60) from (36).
The relation (60) for the configuration at issue can also be proved with the help of the pictorial representation of (36) in terms

of the radiation of the plane-wave photons from a family of trajectories (see Sec. III and Fig. 1). Indeed, let us rotate the trajectory
around the e3 axis and put the trajectory on the plane with the basis vectors e1 and e3. Then we consider the contributions of the
families of the trajectories (i) and (ii) corresponding to m and −m, respectively. For an arbitrary trajectory from the family (i)
with the rotation angle ϕ around the aforementioned axis there exists the trajectory from the family (ii) with the rotation angle
−ϕ and the same phase factor eimϕ . The contributions of these trajectories to the transition amplitude differ only by the sign of
the y component of the current vector (see Fig. 1). The sign change of s corresponds to the sign change of the basis vector e2 [see
(9)] or, equivalently, to the sign change of the y component of the current vector. Consequently, we deduce the property (60).

It follows from the symmetry relation (60) that, in the case considered, the average helicity and the average projection of the
total angular momentum of the electromagnetic field onto e3 are zero. Indeed,

dJ3(k3,k0) =
∑
s,m

mdP (s,m,k3,k0) = −
∑
s,m

mdP (s,m,k3,k0) = 0,

dS(k3,k0) =
∑
s,m

sdP (s,m,k3,k0) = −
∑
s,m

sdP (s,m,k3,k0) = 0. (63)

This property is in agreement with the estimates following from the classical formulas [29,73,78] for the radiation of the angular
and spin momenta by a point charge moving along a planar trajectory.

Now we obtain the general formulas for the quantities (58). The sums over m in Eq. (58) can be found explicitly with the help
of the addition theorem (A6). These formulas are useful not only for the analytical calculations but for the numerical simulations
as well. In the case when the distribution over m in Eq.(36) is wide, the immediate summation over m in Eq. (36) can be highly
time consuming. We introduce the notation

�± := x± − y±, �0,3 := x0,3 − y0,3, (64)

where x± := x±(τ ), x0,3 := x0,3(τ ), y± := x±(σ ), and y0,3 := x0,3(σ ). Then

dP (s,k3,k0) = e2
∫

dτ dσ e−i(k0�0−k3�3)

[(
ẋ3ẏ3 + ẋ+ẏ−

4

k2
⊥

(sk0 − k3)2
+ ẋ−ẏ+

4

k2
⊥

(sk0 + k3)2

)
j0

+
(

ẋ+ẏ3

sk0 − k3
− ẋ3ẏ+

sk0 + k3

)
ik⊥
2

j−1 +
(

ẋ−ẏ3

sk0 + k3
− ẋ3ẏ−

sk0 − k3

)
ik⊥
2

j1 + ẋ+ẏ+
4

j−2 + ẋ−ẏ−
4

j2

](
k⊥
2k0

)3
dk3dk⊥

2π2
,

(65)

where jm ≡ jm(k⊥�+,k⊥�−). It is clear that the expression obtained does not depend on the choice of the origin of the system
of coordinates. We can single out explicitly the dependence on the photon polarization in Eq. (65),

dP (s,k3,k0) = 1

2
dP (k3,k0) + se2

∫
dτ dσ e−i(k0�0−k3�3)

(
(ẋ+ẏ− − ẋ−ẏ+)

k3

k⊥
j0

+ i(ẋ+ẏ3 − ẋ3ẏ+)j−1 + i(ẋ−ẏ3 − ẋ3ẏ−)j1

)(
k⊥
2k0

)2
dk3dk⊥

8π2
, (66)

where

dP (k3,k0) =
∑
s=±1

dP (s,k3,k0)

= e2
∫

dτ dσ e−i(k0�0−k3�3)

[(
2ẋ3ẏ3 + (ẋ+ẏ− + ẋ−ẏ+)

k2
0 + k2

3

2k2
⊥

)
j0

+ (ẋ+ẏ3 + ẋ3ẏ+)
ik3

k⊥
j−1 − (ẋ−ẏ3 + ẋ3ẏ−)

ik3

k⊥
j1 + ẋ+ẏ+

2
j−2 + ẋ−ẏ−

2
j2

](
k⊥
2k0

)3
dk3dk⊥

2π2
. (67)

033837-8



PROBABILITY OF RADIATION OF TWISTED PHOTONS … PHYSICAL REVIEW A 97, 033837 (2018)

Using the addition theorem (A6) and the recurrence relations (A3), we derive a similar expression for the angular momentum
projection

dJ3(s,k3,k0) = e2
∫

dτ dσ e−i(k0�0−k3�3)

{[
ẋ3ẏ3 + k2

⊥
4

(
ẋ+ẏ−

(sk0 − k3)2
+ ẋ−ẏ+

(sk0 + k3)2

)]
k⊥
2

(c+j−1 + c−j1)

+
(

ẋ+ẏ3

sk0 − k3
− ẋ3ẏ+

sk0 + k3

)
ik2

⊥
4

(c−j0 + c+j−2) +
(

ẋ−ẏ3

sk0 + k3
− ẋ3ẏ−

sk0 − k3

)
ik2

⊥
4

(c+j0 + c−j2)

+ ẋ+ẏ+
8

k⊥(c+j−3 + c−j−1) + ẋ−ẏ−
8

k⊥(c+j1 + c−j3) +
(

ẋ+ẏ3

sk0 − k3
+ ẋ3ẏ+

sk0 + k3

)
ik⊥
4

j−1

−
(

ẋ−ẏ3

sk0 + k3
+ ẋ3ẏ−

sk0 − k3

)
ik⊥
4

j1 +
(

ẋ+ẏ−
(sk0 − k3)2

− ẋ−ẏ+
(sk0 + k3)2

)
k2
⊥
4

j0

}(
k⊥
2k0

)3
dk3dk⊥

2π2
, (68)

where c± := (x± + y±)/2. As one can expect, this expression is not invariant under the translations perpendicular to the e3 axis.
Isolating the dependence on s, we have

dJ3(s,k3,k0) = 1

2
dJ3(k3,k0) + se2

∫
dτ dσ e−i(k0�0−k3�3)

(
k3(ẋ+ẏ− − ẋ−ẏ+)(c+j−1 + c−j1)

+ ik⊥(ẋ+ẏ3 − ẋ3ẏ+)(c−j0 + c+j−2) + ik⊥(ẋ−ẏ3 − ẋ3ẏ−)(c+j0 + c−j2)

+ i(ẋ+ẏ3 + ẋ3ẏ+)j−1 − i(ẋ−ẏ3 + ẋ3ẏ−)j1 + 2k3

k⊥
(ẋ+ẏ− + ẋ−ẏ+)j0

)(
k⊥
2k0

)2
dk3dk⊥
16π2

, (69)

where

dJ3(k3,k0) = e2
∫

dτ dσ e−i(k0�0−k3�3)

[(
2ẋ3ẏ3 + (ẋ+ẏ− + ẋ−ẏ+)

k2
0 + k2

3

2k2
⊥

)
k⊥
2

(c+j−1 + c−j1)

+ (ẋ+ẏ3 + ẋ3ẏ+)
ik3

2
(c−j0 + c+j−2) − (ẋ−ẏ3 + ẋ3ẏ−)

ik3

2
(c+j0 + c−j2)

+ ẋ+ẏ+
4

k⊥(c+j−3 + c−j−1) + ẋ−ẏ−
4

k⊥(c+j1 + c−j3) + (ẋ+ẏ3 − ẋ3ẏ+)
ik3

2k⊥
j−1

+ (ẋ−ẏ3 − ẋ3ẏ−)
ik3

2k⊥
j1 + (ẋ+ẏ− − ẋ−ẏ+)

k2
0 + k2

3

2k2
⊥

j0

](
k⊥
2k0

)3
dk3dk⊥

2π2
. (70)

In the expressions above, one has to deform the integration
contours in the τ and σ planes for |τ | → ∞ and |σ | → ∞ in
the same way as it was pointed out in discussing the formula
(36).

The average number of photons (65) with given helicity s,
energy k0, and momentum projection k3 can be integrated over
k3, the result being expressed in terms of elementary functions.
In the expressions (69) and (70), this cannot be done. The
arising integrals seem not to be expressible in terms of the
known special functions.

V. UNDULATOR

As an example of application of the general formulas
derived in the previous sections, we investigate the radiation
of twisted photons by undulators in the dipole and nondipole
(wiggler) approximations. A thorough exposition of the gen-
eral theory of undulator radiation can be found, for example,
in Refs. [62,79]. In our study of the undulator radiation, we
will mainly rely on [62].

We obtain in this section the average number of twisted
photons produced by undulators, describe its asymmetry, and
find the projection of the total angular momentum per one
photon and the width of the distribution over the quantum

number m. We also establish certain general properties of the
distribution of twisted photons produced by undulators: the
selection rules for the forward radiation, when the detector
axis coincides with the undulator axis, and the periodicity
in m for the radiation at an angle. All these features of the
undulator radiation can be observed in an experiment using the
techniques developed in Refs. [41–44]. In fact, we represent
the quantum radiation field generated by an undulator as a
superposition of twisted photons. This allows us to reveal
some properties of this radiation that are not evident when the
radiation field is represented in terms of plane-wave photons.

A. Dipole approximation

Let a charged particle move along the z axis with the
velocity β‖ ≈ 1 for t < −T N/2 and t > T N/2, while for
t ∈ [−T N/2,T N/2] its trajectory has the form

xi(t) = ri(t) + υit, υi = (0,0,β‖t), (71)

where t is the time of the laboratory frame, ri(t) is a periodic
function of t with the period T =: 2πω−1, and N 
 1 is the
number of sections of the undulator. The trajectories of the
particle are joined continuously at the instants t = ±T N/2. In
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the dipole approximation, we suppose that

β2
‖ = 1 − 1 + K2

γ 2
, r2

x,y ≈ K2

ω2γ 2
, |rz| ≈ K2

2πωγ 2
, (72)

where K � 1 is the undulator strength parameter and γ =
(1 − β2)−1/2. The trajectory of such a type can be realized, for
example, in the helical magnetic field (see, for details, [62],
Chap. 5). Then the coordinates of the charged particle take the
form

rz = az sin(2ωt), rx = ax cos(ωt), ry = −ay sin(ωt)

(73)

and

ax,y = λ2
0Hy,x

4π2γ
, az = λ3

0

(
H 2

y − H 2
x

)
64π3γ 2

, (74)

where λ0 := 2πβ‖ω−1, the magnetic-field strength Hi is mea-
sured in units of the critical field

H0 = m2

|e|h̄ ≈ 4.41 × 1013 G, (75)

and the lengths are measured in units of the Compton wave-
length of the electron, lC := h̄/m = 3.86 × 10−11 cm. The
undulator strength parameter for the trajectory (73) is written
as

K = λ0

√
H 2

x + H 2
y

2
√

2π
. (76)

One can verify that the relations (72) are fulfilled for the
trajectory (73).

Further, we have to evaluate the integrals entering (36),
keeping in mind that K � 1 and γ 
 1. Let us choose the
basis

e3 = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),

e1 = (cos θ cos ϕ, cos θ sin ϕ,−sin θ ),

e2 = (−sin ϕ, cos ϕ,0),

(77)

i.e., we assume that the detector measures the total angular
momentum projection onto the axis emanated from the source
of radiation to the detector. In the case at issue, most of the
radiation is concentrated in the cone with the opening angle
1/γ . Therefore, we may suppose that

θγ � 1, n⊥γ � 1, n3 =
√

1 − n2
⊥ ≈ 1 − n2

⊥
2

, (78)

where n⊥ := k⊥/k0 and n3 := k3/k0. It is also known from the
theory of undulator radiation, and we will ascertain this fact
below, that

k0 ≈ 2nωγ 2, (79)

where n is the harmonic number. The main contribution to the
radiation comes from the lowest harmonics n provided that
K � 1. Then the following estimates are valid:

k⊥|r±| ≈ 2nK, k3|r3| ≈ nK2

π
, |ṙ±| ≈ K

γ
,

|ṙ3| ≈ K2

2πγ 2
,

υ± ≈ −θ

(
1 − 1 + K2

2γ 2

)
∼ γ −1,

υ3 ≈ 1 − 1 + K2 + θ2γ 2

2γ 2
≈ 1. (80)

Recall that, for example, r3 = (e3,r). The estimates (80) imply
that both the exponent in Eq. (36) and the functions jm can be
developed as a Taylor series in ri keeping only the terms of the
leading order in K .

Let us introduce the notation

I3 :=
∫

dt ẋ3e
−ik0[t(1−n3υ3)−n3r3]jm(k⊥(υ+t + r+),

k⊥(υ−t + r−)),

I± := in⊥
s ∓ n3

∫
dt ẋ±e−ik0[t(1−n3υ3)−n3r3]jm∓1(k⊥(υ+t + r+),

k⊥(υ−t + r−)). (81)

The average number of twisted photons produced by the
current is written as

dP (s,m,k3,k⊥) = e2

∣∣∣∣I3 + 1

2
(I+ + I−)

∣∣∣∣
2

n3
⊥

dk3dk⊥
16π2

. (82)

In the leading order in K , we obtain

I3 =
∫

dt e−ik0t(1−n3υ3)

(
υ3jm + k⊥υ3

2
(r+jm−1 − r−jm+1)

)
,

I± = in⊥
s ∓ n3

∫
dt e−ik0t(1−n3υ3)

×
(

υ±jm∓1 + ṙ±jm∓1 ∓ k⊥υ±
2

(r∓jm − r±jm∓2)

)
,

(83)

where jm ≡ jm(k⊥υ+t,k⊥υ−t) and, in expanding in the Taylor
series, we have employed the recurrence relations (A3). Sub-
stituting the representation (A8) of the Bessel function into the
integrals (83) and taking into account the condition (38), we
see that the contribution of the first term in large parentheses
in these integrals vanishes. As a result, the integrals (83) are
reduced to the integrals over t ∈ [−T N/2,T N/2].

It is useful to represent ri as the Fourier series

r3 =
∞∑

n=−∞
r3(n)eiωnt , r± =

∞∑
n=−∞

r±(n)eiωnt (84)

and substitute them into (83). We let

ω± := ω

1 − n3υ3 ∓ n⊥|υ+| ≈ 2ωγ 2

1 + K2 + (n⊥ ∓ θ )2γ 2
(85)

and

Gm
N (a,b) :=

∫ N

−N

dt

4
e−iπt(b−a)/2Jm[π (b + a)t/2]. (86)
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Some properties of the functions Gm
N (a,b) are collected in the

Appendix. Then

i−m

∫ π

−π

dψ

2π
e−imψδN (k0(1 − n3υ3 − n⊥|υ+| cos ψ) − ωn)

=
∫ T N/2

−T N/2

dt

2π
e−i[k0(1−υ3n3)−ωn]t Jm(k⊥|υ+|t)

= 2

ω
Gm

N (an,bn), (87)

where

δN (x) :=
∫ T N/2

−T N/2

dt

2π
e−ixt = sin(T Nx/2)

πx
(88)

and

an = n − k0ω
−1
+ , bn = k0ω

−1
− − n. (89)

With the aid of the above functions, we can write

I3 = 2π

ω
k⊥υ3(−1)m+1

∞∑
n=−∞

[
Gm−1

N r+(n) − Gm+1
N r−(n)

]
,

I± = 2π

ω

in⊥
s ∓ n3

(−1)m+1
∞∑

n=−∞

(
ṙ±(n)Gm∓1

N

± k⊥υ±
2

[
r∓(n)Gm

N − r±(n)Gm∓2
N

])
, (90)

where Gm
N ≡ Gm

N (an,bn).
For large N the function Gm

N is well approximated by
the expression (A11). Hence, an � 0, bn � 0, and the photon
energy should belong to the intervals

k0 ∈ n[ω−,ω+], n ∈ N. (91)

Therefore, the terms with n � 1 only survive in the sums
over n in Eq. (90). The intensity of radiation at the harmonic
n is proportional to the modulus squared of the Fourier
series coefficient (84) with the number n. This implies that,
in the dipole approximation, the radiation is concentrated at
the lowest harmonics. The intervals (91) overlap, starting with
the number

n0 = ω−
ω+ − ω−

≈ 1 + K2 + (n⊥ − θ )2γ 2

4n⊥θγ 2
. (92)

In order to proceed, we distinguish the three cases: (i)
the weakly degenerate case when k0 is close to nω±, (ii)
the strongly degenerate case when ω− tends to ω+, and (iii) the
regular case when the photon energy k0 is taken sufficiently far
from the boundaries of the intervals (91) and δN (x) in Eq. (87)
can be replaced by the δ function.

Let us begin with case (i). The absolute values of the
integrals (90) and consequently the average number of photons
(36) increase rapidly near the boundaries of the intervals (91).
In the vicinity of these peaks, an � 1/N and bn � 5/N , i.e.,

nω+ > k0 � ω+(n − 1/N), k0 � ω−(n + 5/N), (93)

we have from (90) and (A13),

dP = e2Nnω−1

ω−1
− − ω−1

+

∣∣∣∣isn3

√
ω

ω+
r2(n)

+
√

ω+
ω

(
ω

2
(ω−1

+ + ω−1
− ) − n2

⊥

)
r1(n)

∣∣∣∣
2
n⊥
n2

3

dk3dk⊥
2π2

.

(94)

The dependence on m is absent, but |m| must satisfy the
estimate (A14). Outside this spectral band of m, the average
number of photons dP tends exponentially to zero (see Figs. 2
and 3). Analogously, for bn � 1/N and an � 5/N , i.e., for

nω− < k0 � ω−(n + 1/N ), k0 � ω+(n − 5/N ), (95)

the average number of photons becomes

dP = e2Nnω−1

ω−1
− − ω−1

+

∣∣∣∣isn3

√
ω

ω−
r2(n)

+
√

ω−
ω

(
ω

2
(ω−1

+ + ω−1
− ) − n2

⊥

)
r1(n)

∣∣∣∣
2
n⊥
n2

3

dk3dk⊥
2π2

,

(96)

where |m| should satisfy the estimate (A14).
The largest value of dP is achieved in case (ii) when the

two peaks merge into one (see Figs. 2 and 3). This happens
when an � 1/N and bn � 1/N , which is equivalent to

ω+(n − 1/N ) � k0 � ω−(n + 1/N ). (97)

These inequalities imply

ω+ − ω− <
ω+ + ω−

nN
,

2n⊥θγ 2

1 + K2 + (n2
⊥ + θ2)γ 2

<
1

nN
.

(98)

In this case, the functions Gm
N can be replaced by (A15) in

Eq. (90). Moreover, it follows from (85) and (98) that

|υ±| = ω

2n⊥
(ω−1

− − ω−1
+ ) <

ω

n⊥ω̄N
, (99)

where ω̄ := (ω+ + ω−)/2. Therefore, the contributions stand-
ing at υ± in Eq. (90) can be neglected in this case. As a result,

dP = e2N2

16

∞∑
n=1

n2

[
δm1

(
n2

⊥ω̄ − ω

n3ω
− s

)2

|r+(n)|2

+ δm,−1

(
n2

⊥ω̄ − ω

n3ω
+ s

)2

|r−(n)|2
]
n⊥dk3dk⊥.

(100)

This formula describes, in particular, the forward radiation
of twisted photons when θγ � 1/N and n⊥γ � 1. As we
see, the whole radiation consists mainly of the photons with
the quantum numbers m = ±1. If the trajectory of a charged
particle is a right-handed helix, then |r−(n)|, n = 1,∞, are
small or equal to zero. In this case, all the radiation at the peak
(97) consists of the twisted photons with m = 1 (see Fig. 4). As
for the left-handed helical trajectory, the radiation at the peak
(97) consists of the photons with m = −1. These properties
are independent of the helicity s, which can take both of the
values ±1.
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FIG. 2. Radiation of twisted photons by the planar undulator in the dipole regime at the first harmonic. The trajectory of the electron is
taken in the form (73) with az = ay = 0 and ax = Kλ0/

√
2πγ , where K = 0.03 is the undulator strength parameter, λ0 = 1 cm is the length

of the undulator section, and γ = 103 is the Lorentz factor of the electron. The number of undulator sections N = 40. The energy of photons is
measured in units of the rest energy of the electron, 0.511 MeV. (a) Distribution over m, the asymmetry, and the angular momentum projection
per one photon. In accordance with (105), the period of oscillations Tm = 4. (b) Density of the average number of twisted photons against k0

for different observation angles. The position of the peak in the forward radiation and the boundaries of the spectral band in the inset are well
described by (91). The dashed vertical line in the inset depicts the photon energy used in (a). (c) Density of the average number of twisted
photons against m and the angular momentum projection per one photon at the left, ξn = π , and right, ξn = 0, peaks appearing in the distribution
over the photon energy for θ = 1/5γ [see the inset in (b)]. The average number of photons obeys the symmetry relation (60).

Now we turn to the regular case (iii) when an � 5/N and
bn � 5/N , i.e.,

ω−(n + 5/N) � k0 � ω+(n − 5/N ), (101)

and m satisfies (A12),

|m| � mmax, mmax := 10N

7
k0(ω−1

− − ω−1
+ ) ≈ 20N

7

k0

ω
n⊥θ.

(102)

In this domain, the functions Gm
N in Eq. (90) can be replaced by

the expressions (A11) with good accuracy. In a general case, the

explicit expression for the average number of photons resulting
from such a substitution is rather cumbersome. That is why we
do not present it here. However, the dependence of dP on m

can readily be found. We let

ξn := arccos
bn − an

bn + an

= arccos
ω−1

+ + ω−1
− − 2nk−1

0

ω−1
− − ω−1

+
. (103)

Then the integrals (90) are linear combinations of cos(mξn) and
sin(mξn) with the coefficients independent of m. Adding these
expressions and squaring the modulus of the result, we see that,
for those modes where the intervals (91) do not overlap or one
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FIG. 3. Radiation of twisted photons by the helical undulator in the dipole regime at the first harmonic. The trajectory of the electron is taken
in the form (73) and (74), where Hx = 10−12 and Hy = 1.2 × 10−12 in units of the critical field (75), λ0 = 1 cm is the length of the undulator
section, and γ = 103 is the Lorentz factor of the electron. These data correspond to K = 4.6 × 10−3. The number of undulator sections N = 40.
The energy of photons is measured in units of the rest energy of the electron, 0.511 MeV. (a) Distribution over m, the asymmetry, and the
angular momentum projection per one photon. In accordance with (105), the period of oscillations Tm = 5. (b) Density of the average number
of twisted photons against k0 for the different observation angles. The position of the peak in the forward radiation and the boundaries of the
spectral band in the inset are well described by (91). The dashed vertical line in the inset depicts the photon energy used in (a). (c) Density of
the average number of twisted photons against m and the angular momentum projection per one photon at the left, ξn = π , and right, ξn = 0,
peaks appearing in the distribution over the photon energy for θ = 1/5γ [see the inset in (b)].

can neglect this overlapping, the dependence of the average
number of photons (36) on m for every mode n can be cast in
the form

A2
n cos2(mξn + δn), (104)

where An and δn do not depend on m. Consequently, in the
domain of parameters (101) and (102), the average num-
ber of photons dP is a periodic function of m with the
period

Tm =
{
π/ξn, ξn ∈ (0,π/2)
π/(π − ξn), ξn ∈ [π/2,π ). (105)

For |m| > mmax, the approximation (A11) does not hold
and the average number of photons (36) tends exponentially
to zero (see the representative dependence of dP against m

in Figs. 2 and 3). The difference of the peak heights in the
plots is an artifact of a finite N (N = 40). It disappears with
increasing N .

As an example, we consider the cases of the planar and
helical undulators in detail. We let r1(n) = 0 and n = 1,∞.
This is valid when, for example,

r(t) ∼ e2. (106)
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FIG. 4. Distribution over m and the angular momentum projection per one photon of the forward radiation of twisted photons produced by
the undulators. The energy of photons is measured in units of the rest energy of the electron, 0.511 MeV. The forward radiation of the planar
undulator is subject to the symmetry relation (60) and the selection rule that m + n is an even number. The forward radiation of the right-handed
helical undulator obeys the rule m = n. The undulator forward radiation in the dipole regime at the first harmonic is shown for (a)–(c) the planar
undulator and (d) the helical undulator. The trajectories of the electron are the same as in Figs. 2 and 3. The small contribution at m = −1 for
the helical undulator is a consequence of deviation of the trajectory from an ideal right-handed helix. The density of the average number of
twisted photons is well described by (100). The wiggler forward radiation at the fifth harmonic is shown for (a′)−(c′) the planar wiggler and
(d′) the helical wiggler. The trajectories of the electron are the same as in Figs. 6 and 7.

Thus we have a planar trajectory of the charged particle. In the
domain (101) and (102), we obtain

I3 = 2

ω

im√
anbn

k⊥υ3 sin ξn sin(mξn)r2(n),

I± = − 1

ω

im√
anbn

{ωn cos[(m ∓ 1)ξn]

∓ k⊥υ± sin ξn sin[(m ∓ 1)ξn]}n⊥r2(n)

s ∓ n3
. (107)

Then we substitute these expressions into (82). The result is

dP = e2 k2
0 cos2(mξn + δn)

(ω+ − ω−)2

[
4
anbn

n2
3

ω2
+ω2

−
k2

0ω
2

×
(

ω

2
(ω−1

+ + ω−1
− ) − n2

⊥

)2

+
(

1 − n
ω+ + ω−

k0

)2]

× |r2(n)|2n⊥
anbn

dk3dk⊥
4π2

, (108)

where

tan δn = 2s

n3ω

ω+ω−
√

anbn

k0 − n(ω+ + ω−)

(
ω

2
(ω−1

+ + ω−1
− ) − n2

⊥

)
.

(109)

When s, n⊥, and θ are fixed, the absolute value of the phase
|δn| reaches its maximal value at

k0 = n
ω2

+ + ω2
−

ω+ + ω−
∈ n[ω−,ω+]. (110)

Notice that, in the domain of applicability of the approxima-
tions made, the average number of photons (108) obeys the
relation (60) despite the fact that the detector and the axis used
to define the projection of the angular momentum do not lie in
the orbit plane of a particle. In particular, on summing over the
helicities, the average number of photons is symmetric with
respect to m → −m (see Fig. 2).

As for the helical undulator, we suppose that r−(n) = 0,
n = 1,∞. Then, if the conditions (101) and (102) are satisfied,
we obtain

I3 = 1

ω

im−1

√
anbn

k⊥υ3 cos[(m − 1)ξn]r+(n),

I+ = − 1

ω

im−1

√
anbn

(
ωn cos[(m − 1)ξn]

− k⊥υ+
2

cos[(m − 2)ξn]

)
n⊥r+(n)

s − n3
,

I− = − 1

ω

im−1

√
anbn

k⊥υ−
2

cos(mξn)
n⊥r+(n)

s + n3
. (111)

The average number of radiated photons is written as

dP = e2

[(
sn + n⊥k0

2
(ω−1

+ + ω−1
− )

)
cos[(m − 1)ξn]

+ s
√

anbn sin[(m − 1)ξn]

]2 |r+(n)|2
anbn

n⊥
dk3dk⊥
16π2

(112)
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FIG. 5. Pictorial representation of the radiation amplitude of
twisted photons produced by a charged particle moving along a helical
trajectory (see the detailed description at the end of Sec. V A). The
red sinusoid depicts the undulator radiation at the first harmonic.
The vectors attached to points 1, 2, and A are the velocity vectors.
The phase of the electromagnetic wave is �(1,2) = d1,2(k0β

−1
‖ − k3),

where d1,2 is the distance between points 1 and 2. The resonance
occurs when �(1,2) = 2πn, where n is the harmonic number. The
azure trajectory is obtained from the blue one by the rotation by
an angle of ϕ so that point 1 is shifted to point 1′. This trajectory
contributes to the amplitude with the additional phase factor eimϕ .
Therefore, the radiation from point A adds up constructively to the
radiation from points 1 and 2 when �(1,2)(1 − dA,1/d1,2) + mϕ =
2πn. Inasmuch as dA,1/d1,2 = ϕ/(2π ), we infer that (m − n)ϕ = 0,
i.e., m = n. As for the ideal left-handed helical trajectory, one can
easily deduce that m = −n.

in the domain of parameters (101) and (102). Since n⊥ ∼ γ −1

and k0 � nω+, the second term in large parentheses can be
neglected in comparison to the first one. Then

dP = e2{n cos[(m − 1)ξn]

+
√

anbn sin[(m − 1)ξn]}2 |r+(n)|2
anbn

n⊥
dk3dk⊥
16π2

.

(113)

The dependence of the average number of radiated twisted
photons on s disappears. A typical dependence of dP on k0,
n⊥, and m is presented in Fig. 3 in this case.

As mentioned in many paper and books (see, e.g., [1–
4,40,41,80]), the quantum number m can be considered as
a new degree of freedom of photons that can be employed
to transmit information. The signals of the form presented in
Figs. 2 and 3 can be used for information transfer by means
analogous to the frequency modulation in radio engineering.
In our case, however, the frequency of radiation is fixed, but the
period of the dependence of radiation on m is changed. This
allows one to transmit the number with the base approximately
equal to mmax/2 per one signal, which is considerably more
efficient than the binary code used in digital communication.
Of course, there are many technical issues in realizing this
way of information transfer that are related to detection of the

twisted photons. We will not discuss these problems here (for
possible techniques of detection of the twisted photons see,
e.g., [41–44]). In particular, it is necessary to discriminate the
photons with k⊥ belonging to the narrow interval of momenta.
Roughly, this can be achieved by employing the resolution of
the signal by the arrival time, i.e., by the different values of n3

[57,58]. A more accurate and efficient method to single out the
photons with the narrow interval of k⊥ can be based on the use
of the phase masks or fibers with circular cross section (see,
e.g., [53]).

We see that, in the dipole approximation, it is hard to achieve
the large angular momentum projection per one photon in the
radiation from undulators. In the optimal case, it is of the order
±1 when the (almost) forward radiation of the undulator is
used (see Fig. 4). This fact can be explained with the help of the
pictorial interpretation of the transition amplitude (30) in terms
of the plane-wave photon radiation amplitude (see Sec. III). Let
us consider the forward radiation from the helical undulator
for a charged particle with the trajectory in the form of a right-
handed helix. The maximum of the radiation arises in the case
when points 1 and 2 of the trajectory radiate in phase, i.e.,
the resonance occurs (see Fig. 5). In the dipole approximation,
the main contribution to the radiation comes from the first
harmonic. Considering the family of trajectories resulting from
the rotation of the initial trajectory of a charged particle around
the e3 axis, we see that the radiation from these trajectories
at the first harmonic adds up constructively provided m = 1
and destructively for all other quantum numbers m. Therefore,
in the dipole approximation, the right-handed helical undulator
radiates mainly the twisted photons with m = 1.

If one abandons the dipole approximation, i.e., one con-
siders the case when the charged particle is relativistic in the
reference frame moving with velocity β‖ along the z axis, then
the radiation of the undulator (the wiggler) is no longer con-
centrated at the first harmonic. As is known [62], the wiggler
radiation spectrum extends to the harmonic number next ≈ K3

and the intensity of radiation drops exponentially above this
number. Therefore, as follows from the considerations above
and Fig. 5, the wiggler radiates the twisted photons with the
total angular momentum projection m up to next. Moreover,
as for the forward radiation, the quantum number m coincides
with the harmonic number n, i.e., the forward radiation of an
ideal right-handed helical wiggler at the nth harmonic consists
of the twisted photons with the projection of the total angular
momentum m = n (cf. [25,30,32]). In the next section, we will
show this explicitly.

B. Wigglers

1. Helical wiggler

Now we suppose that K � 1. Let us start with the forward
radiation of a helical wiggler assuming that the electron moves
exactly along a circle in the (x,y) plane. Then, using the
notation in Eq. (71), we have

r± = r0e
±iωt , r3 = 0, υ± = 0, (114)

where r0 > 0 and

K = γωr0. (115)
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Neglecting the radiation created at the entrance and exit points
of the undulator, we can write the integrals (81) as

I3 :=
∫ T N/2

−T N/2
dt υ3e

−ik0t(1−n3υ3−ωm)Jm(k⊥r0),

I± := ∓ n⊥
s ∓ n3

∫ T N/2

−T N/2
dt ωr0e

−ik0t(1−n3υ3−ωm)Jm∓1(k⊥r0).

(116)

Substituting these expressions into (82), we arrive at

dP = e2

4
δ2
N (k0(1−n3υ3) − ωm)

[
n3−υ3

n⊥
Jm

(
mn⊥K

γ (1 − n3υ3)

)

+ sωr0J
′
m

(
mn⊥K

γ (1 − n3υ3)

)]2

n⊥dk3dk⊥. (117)

As a function of k0, the average number of photons with given
n⊥ and m possesses a sharp maximum at

k0 = mω

1 − n3υ3
≈ 2mωγ 2

1 + K2 + n2
⊥γ 2

, (118)

i.e., in this case, the principal quantum number (the harmonic
number) coincides with the quantum number m (see Fig. 4).

The formula (117) resembles the Schott formula for the
spectral angular distribution of synchrotron radiation (see, e.g.,
[23,24,62]). It is not surprising since the radiation at the wiggler
axis can be considered as synchrotron radiation in the reference
frame moving with velocity β‖ normally to the plane of motion
of a charged particle (see, e.g., [28,62,79]). The estimates for
the angular momentum of radiated electromagnetic waves in
this case can be found, for example, in Ref. [29]. It is evident
that similar radiation is produced by the ultrarelativistic elec-
trons moving helically along the magnetic flux lines provided
that e3 is in line with the direction of the magnetic-field strength
vector. Such electrons can be the electrons in the magnetic
field of the earth, the sun, or neutron stars. However, at a large
distance from the radiation point, it seems impossible to record
the twisted photons created in this way by the detector with a
short base. In accordance with (22) and (55), the corresponding
wave packets spread in the direction normal to the photon
propagation direction with the velocity n⊥ ∼ γ −1.

Large |m| can be reached when the quantity

x := 1 − n2
⊥K2

γ 2(1 − n3υ3)2

≈ 1 − 4n2
⊥γ 2K2

(1 + K2 + n2
⊥γ 2)2

= [1 + (K + n⊥γ )2][1 + (K − n⊥γ )2]

(1 + K2 + n2
⊥γ 2)2

� 1

20
. (119)

The optimal case for the fulfillment of this inequality is n⊥γ =
K . Then, for large K ,

x ≈ K−2 (120)

and (119) is satisfied for

K � 5. (121)

If the inequality (119) holds, we can employ the approximate
formulas (see, e.g., [62,81])

Jm(m
√

1 − x) ≈
(

2

m

)1/3

Ai

[(
m

2

)2/3

x

]
,

J ′
m(m

√
1 − x) ≈ −

(
2

m

)2/3

Ai′
[(

m

2

)2/3

x

]
, m � 5.

(122)

When the argument of the Airy function or its derivative is
greater than 1/2, the magnitudes of these functions decline
exponentially to zero. Therefore, at the optimum n⊥γ = K ,
the radiation of modes with

m � K3

√
2

(123)

is exponentially suppressed. If, at fixed m, the quantity n⊥γ

deviates from its optimal value such that x � 1/2, then the
average number of photons tends exponentially to zero. Hence,
the main contribution to dP comes from n⊥γ close to K . It is
an expected result since the main part of the radiation produced
by the helical wiggler propagates at the angle γ θ ≈ K [62].

Let us find the number of photons produced in the mode s,
m, and k0 with k⊥ determined by (118). For given k0 and m,
the projection k⊥ is uniquely defined by Eq. (118). However,
the reverse is not true: For given k⊥ and m, Eq. (118) gives the
two values of the photon energy

k0
± = mωγ 2

1 + K2

(
1 ±

√
1 − (1 + K2)k2

⊥
m2ω2γ 2

)
. (124)

For example, for the optimal value n⊥γ = K ,

k0
+ = 2mωγ 2

1 + 2K2
, k⊥ = K

2mωγ

1 + 2K2
. (125)

However, in accordance with (118), there is another value of
the photon energy corresponding to given k⊥ and m,

k0
− = K2

1 + 2K2

2mωγ 2

1 + 2K2
⇒ n⊥γ = K + K−1. (126)

The distance between these peaks is

k0
+ − k0

− = 2mωγ 2

1 + K2

√
1 − (1 + K2)k2

⊥
m2ω2γ 2

= 2mωγ 2

(1 + K2)(1 + 2K2)
≈ mωγ 2

K4
, (127)

where, in the second equality, we have taken k⊥ from (125). In
that case,

(k0
+ − k0

−)/k0
+ ≈ K−2. (128)

Further, we suppose that these two peaks are sufficiently
resolved and will find the number of photons falling into one
peak with k⊥ and k0

+.
In order to estimate the number of photons, we multiply the

magnitude of the average number of photons at the peak by
the linewidth. The measure in Eq. (117) is transformed in the
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usual manner

dk3dk⊥ = k0dk0dk⊥√
k2

0 − k2
⊥

= dk0dk⊥
n3

. (129)

The function sin2(πNx/2)/(πx)2 appearing in Eq. (117) is
equal to N2/4 in its maximum. The effective width of its main
peak is

4 Si(2π )

πN
=:

c0

N
≈ 1.8

N
, (130)

where Si(x) is the sine integral. We have defined here the
effective width from the requirement that the total area under
the main peak equals the maximum value of the function
multiplied by the effective width. Taking the differential of
the expression standing in the argument of δN (x), we obtain

�k0 = c0

N

n3ω

n3 − υ3
, �k⊥ = c0

N

n3ω

n⊥υ3
. (131)

Further, we assume that

n3 − υ3 = 1 + K2 − n2
⊥γ 2

2γ 2
> 0. (132)

In particular, this inequality is fulfilled for n⊥γ = K . It follows
from (131) that

�k0

k0
≈ c0

N

n3

m

1 + K2 + n2
⊥γ 2

1 + K2 − n2
⊥γ 2

. (133)

The number of wiggler sections N and the harmonic number
m should be such that this ratio is less than (128). Substituting
(122), (129), and (131) into (117), we find the average number
of photons with the quantum numbers s and m produced in the
peak (118):

�P = e2 c2
0

16

n3(n3 − υ3)

n2
⊥υ3

{(
2

m

)1/3

Ai

[(
m

2

)2/3

x

]

− sKn⊥
γ (n3 − υ3)

(
2

m

)2/3

Ai′
[(

m

2

)2/3

x

]}2

. (134)

Notice that the number of photons does not depend on N .
Let us derive a simpler expression for the average number

of twisted photons for n⊥γ = K . In this case, the second term
in curly brackets in Eq. (134) dominates. Therefore, taking into
account (120) and (121), we have approximately

�P ≈ e2 c2
0

8
K2

(
2

m

)4/3

Ai′
[(

m

2

)2/3

K−2

]

≈ e2 c2
0

8

(4/3)2/3

�2(1/3)

K2

m4/3
≈ 2 × 10−3 K2

m4/3
, (135)

where it is assumed that m � K3/
√

2. The number of photons
in the peak (118) drops with increasing harmonic number and,
correspondingly, with increasing quantum number m. This
agrees with the known property of the wiggler radiation that
the maximum of the radiation spectrum is at the first harmonic
[62]. The efficiency of radiation of twisted photons grows
quadratically with increasing undulator strength parameter
(115) and virtually independently of the photon helicity.

So far we have investigated the forward radiation of an ideal
helical wiggler, where the electron moves along the trajectory

(71) and (73) with az = 0 and ax = −ay = r0. Now we turn
to the radiation at an angle to the undulator axis. For the same
trajectory and the basis (77), we have

ẋ3 = 1, ẋ± = −θ ± i
K

γ
e±i(ωt−ϕ), (136)

in the leading order in K/γ . As is well known [62], most
of the wiggler radiation is concentrated in the cone with the
opening angle K/γ , K/γ � 1, and so we suppose that θ �
K/γ and n⊥ � K/γ . On substituting the representation (A8)
of the Bessel functions into the integrals (81) and saving only
the leading terms in K/γ , the expression in the exponent

−imψ − ik0

(
t
1 + K2 + (n2

⊥ + θ2 − 2n⊥θ cos ψ)γ 2

2γ 2

− K

ωγ
θ cos(ωt − ϕ) + K

ωγ
n⊥ cos(ωt − ϕ + ψ)

)
(137)

arises, where ψ ∈ [−π,π ] is in the integration variable. Intro-
ducing the notation

χ (ψ) := k0K

ωγ

√
n2

⊥ − 2n⊥θ cos ψ + θ2,

sin δ(ψ) := θ − n⊥ cos ψ√
n2

⊥ − 2n⊥θ cos ψ + θ2
,

cos δ(ψ) := n⊥ sin ψ√
n2

⊥ − 2n⊥θ cos ψ + θ2
,

(138)

we can expand the T periodic functions in the integrand of I3

in the Fourier series

eiχ sin(ωt−ϕ+δ) =
∞∑

n=−∞
ein(ωt−ϕ+δ)Jn(χ ). (139)

Then the integrals over t in Eq. (81) are readily evaluated. The
result can be cast into the form

I3 = im
∞∑

n=1

∫ π

−π

dψ e−imψδN

×
(

ω

2
(an + bn)(cos ψ − cos ξn)

)
ein(δ−ϕ)Jn,

I± = ±im
n⊥

s ∓ n3

∞∑
n=1

∫ π

−π

dψ e−i(m∓1)ψδN (· · · )ein(δ−ϕ)

×
(
− θJn ± i

K

γ
e∓iδJn∓1

)
, (140)

where ξn, an, and bn are defined in Eqs. (89) and (103), Jn ≡
Jn(χ ), and the argument of δN (x) in the formula on the second
line is the same as the argument of this function on the first
line. The terms with n � 0 have been neglected since they are
suppressed at large N .

As in the dipole approximation (see Sec. V A), there are
three cases: the regular case, the weakly degenerate case, and
the strongly degenerate case (the forward radiation). The last
case has already been investigated. So we are left with the first
two cases. In deriving the analytic expression for the average
number of twisted photons, we will assume in the remaining
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cases that N is so large that we can remove all the functions
standing at δN (x) out of the integral sign and take them at those
ψ where the argument of δN (x) vanishes.

In the regular case, we have

ψ = ±ξn. (141)

The function δN (x) can be replaced by the δ function provided
that ∣∣∣∣ (n⊥ − θ cos ξn)n⊥n

n2
⊥ + θ2 − 2n⊥θ cos ξn

− m

∣∣∣∣ � π
√

anbnN. (142)

Taking into account the contributions of the points (141), we
arrive at

I3 = 2
∞∑

n=1

θ (an)θ (bn)

ω
√

anbn

im+ne−inϕ

× cos

(
mξn − nδn + πn

2

)
Jn(χn),

I± = ± 2n⊥
s ∓ n3

∞∑
n=1

θ (an)θ (bn)

ω
√

anbn

im+ne−inϕ

×
[
− θ cos

(
(m ∓ 1)ξn − nδn + πn

2

)
Jn(χn)

± K

γ
sin

(
(m ∓ 1)ξn − (n ∓ 1)δn + πn

2

)
Jn∓1(χn)

]
,

(143)

where δn := δ(ξn) andχn := χ (ξn). The photon energy belongs
to the intervals (91), which overlap starting with the harmonic
number (92). Now it is not difficult to obtain the average
number of photons (82). However, the resulting expression is
rather huge and we do not write it here. Notice that, for those
harmonics where the energy intervals (91) do not overlap or one
can neglect this overlapping, the average number of photons
is independent of ϕ and has the form (104). It is a periodic
function of m with the period (105). If the harmonics overlap,
then both properties are violated. In particular, the average
number of photons becomes a nontrivial function of ϕ.

In the weakly degenerate case, ξn = {0,π}, which corre-
sponds to k0 ≈ nω+ and k0 ≈ nω−, respectively. In the case
when ξn ≈ 0,

ψ ≈ 0, an ≈ 0, bn ≈ n(ω+ω−1
− − 1), (144)

and

δN (· · · ) ≈ sin[πNn(ω+ω−1
− − 1)ψ2/4]

ωπn(ω+ω−1
− − 1)ψ2/4

. (145)

Then

∫ π

−π

dψ δN (· · · ) ≈ ω−1

√
8N

n(ω+ω−1
− − 1)

, (146)

in the leading order in 1/N . As for the other integrand functions
in Eq. (140), we remove them from the integral sign and set

ψ = 0 in their arguments. This is justified when∣∣∣∣�ψ

(
n⊥n

n⊥ − θ
− m

)∣∣∣∣ � 1,

�ψ ≈
(

πnN

4
(ω+ω−1

− − 1)

)−1/2

. (147)

Thus, we arrive at

I3 = ω−1

√
8N

n(ω+ω−1
− − 1)

im+ne−inϕJn

(
n
ω+K

ωγ
(θ − n⊥)

)
,

I± = ± n⊥
s ∓ n3

ω−1

√
8N

n(ω+ω−1
− − 1)

im+ne−inϕ

×
(
− θJn(· · · ) + K

γ
Jn∓1(· · · )

)
. (148)

The arguments of all the Bessel functions are the same. After
a little algebra, the average number of twisted photons (82) is
reduced to

dP = e2

ω2γ 2

Nn⊥K2

n(ω+ω−1
− − 1)

(
1 + K2 − γ 2(θ − n⊥)2

2γK(θ − n⊥)
Jn(· · · )

+ sJ ′
n(· · · )

)2
dk3dk⊥

2π2
(149)

and does not depend on m in the range of applicability of the
approximations made.

In the case when ξn ≈ π ,

ψ ≈ π, an ≈ n(1 − ω−ω−1
+ ), bn ≈ 0, (150)

and

δN (· · · ) ≈ sin[πNn(1 − ω−ω−1
+ )(ψ − π )2/4]

ωπn(1 − ω−ω−1
+ )(ψ − π )2/4

. (151)

Proceeding in the same way as in the case just considered, we
have

dP = e2

ω2γ 2

Nn⊥K2

n(1 − ω−ω−1
+ )

(
1 + K2 − γ 2(θ + n⊥)2

2γK(θ + n⊥)
Jn(χn)

+ sJ ′
n(χn)

)2
dk3dk⊥

2π2
, (152)

where

χn := n
ω−K

ωγ
(θ + n⊥). (153)

The expression (152) is also independent of the quantum
number m. The applicability condition reads∣∣∣∣�ψ

(
n⊥n

n⊥ + θ
− m

)∣∣∣∣ � 1,

�ψ ≈
(

πnN

4
(1 − ω−ω−1

+ )

)−1/2

. (154)

Let us stress once again that the formulas above are obtained
under the assumption that the number of undulator sections
N is large. The accuracy of the analytical formulas and of
the corresponding implications is increased with increasing N .
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Plots of the density of the average number of twisted photons
are presented in Fig. 6.

2. Planar wiggler

Now we consider the planar wiggler. We assume that the
electron trajectory is of the form (71) with

rx = 0, ry =
√

2β‖K
γω

sin(ωt), rz = −β‖K2

4ωγ 2
sin(2ωt),

(155)

where K 
 1, but K/γ � 1 (for details see [62]). For further
analysis of the radiation of twisted photons, it is convenient to
use the basis

e3 = (cos δ sin α, sin δ, cos δ cos α),

e1 = (−sin δ sin α, cos δ, −sin δ cos α),

e2 = (−cos α,0, sin α)

(156)

and introduce the notation

a := αγ/K, d := δγ /K, nk := n⊥γ /K. (157)

As long as the main part of the wiggler radiation is concentrated
in the cone with the opening angle θγ � K , the magnitudes of
(157) are of the order of unity or less, while α, β, and n⊥ are
much less than unity. Notice that the detector lies in the orbit
plane when α = 0.

In the leading order in K/γ , we have

ẋ3 = 1, ẋ± = K

γ
[±ia + d +

√
2 cos(ωt)]. (158)

Let us start with evaluation of the integral I3 in Eq. (81). The
integrals I± are found analogously. Substituting the integral
representation (A8) into I3 and defining τ := ωt , the expres-
sion in the exponent in I3 can be cast in the form

−imϕ − i
k0K

2

2ωγ 2
{τ [K−2 + 1 + (d + nk sin ϕ)2

+ (a − nk cos ϕ)2)] + sin τ [cos τ − 2
√

2(d + nk sin ϕ)]},
(159)

in the leading order in K/γ . Then we represent the 2π periodic
functions in the integrand of I3 as a Fourier series

exp

(
− i

k0K
2

2ωγ 2
sin τ [cos τ − 2

√
2(d + nk sin ϕ)]

)

=
∞∑

n=−∞
cn(ϕ)einτ , (160)

where

cn(ϕ) =
∫ π

−π

dτ

2π
exp

(
− inτ − i

k0K
2

2ωγ 2
sin τ [cos τ

− 2
√

2(d + nk sin ϕ)]

)

= Jn

(
k0K

2

ωγ 2

√
2(d + nk sin ϕ),− k0K

2

4ωγ 2

)
, (161)

with Jn(x,y) a generalized Bessel function of two arguments
(see, e.g., [62,82–85]). Notice that cn(ϕ) ∈ R. Substituting

(158) and (160) into I3 and neglecting the radiation produced
at the entrance and exit points of the wiggler, we obtain

I3 =
∞∑

n=−∞

∫ π

−π

dϕe−imϕδN

(
k0K

2

2γ 2
[K−2 + 1+(d+nk sin ϕ)2

+ (a − nk cos ϕ)2] − ωn

)
cn(ϕ). (162)

For large N , the contributions of the terms with n � 0 are
suppressed. Therefore, we retain only the terms with n ∈ N in
what follows. As for I±, similar calculations lead to

I± = i
s ± n3

nk

∞∑
n=1

∫ π

−π

dϕ e−i(m∓1)ϕδN (· · · )

×
(

(±ia − d)cn + 1√
2

(cn−1 + cn+1)

)
, (163)

where the argument of δN (x) is the same as in Eq. (162). To
the same accuracy that we are carrying out the calculations, we
can set n3 = 1 in Eq. (163). This means that we can neglect I−
for s = 1 and I+ for s = −1.

Let us introduce the notation [cf. (85)]

ω± := 2ωγ 2

1 + K2 + K2(
√

a2 + d2 ∓ nk)2
(164)

and

sin ϕ0 := −d√
a2 + d2

, cos ϕ0 := a√
a2 + d2

. (165)

Then the energy of radiated photons satisfies (91). The energy
intervals overlap, starting with the harmonic number

n0 = K−2 + 1 + (
√

a2 + d2 − nk)2

4nk

√
a2 + d2

. (166)

The argument of δN (x) can be written as

2ωnnk

√
a2 + d2[cos ξn − cos(ϕ − ϕ0)]

K−2 + 1 + a2 + d2 + n2
k − 2nk

√
a2 + d2 cos ξn

, (167)

where ξn is defined in Eq. (103) and an and bn appearing
in the definition of ξn are presented in Eq. (89). We see
from (167) that, as in the case of the dipole approximation,
there are three cases: regular, weakly degenerate, and strongly
degenerate. In the first two cases, δN (x) removes the integral
over ϕ for not very large |m| and in the last case (the forward
radiation) δN (x) weakly depends on ϕ or is independent
of it.

Before proceeding to the analysis of these three cases,
we derive the approximate expression for cn(ϕ) analogous to
the approximate relations (122). In order to evaluate approx-
imately cn(ϕ) for n � 5 and k0 ∈ n[ω−,ω+], we can employ
the steepest-descent method. The expression in the exponent
in Eq. (161) possesses four stationary points in the strip
Re τ ∈ [−π,π ] that are placed symmetrically with respect
to the real and imaginary axes. The contributions of these
stationary points are not strongly exponentially suppressed
only if these points approach closely the real axis. In this
case, the stationary points become degenerate, viz., f̈ (τ ) ≈ 0
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FIG. 6. Radiation of twisted photons by the helical wiggler at the fifth harmonic. The trajectory of the electron is taken in the form (114)
with the undulator strength parameter K = 4 and ω = 2πβ‖/λ0, where λ0 = 1 cm is the length of the undulator section and γ = 103 is the
Lorentz factor of the electron. The number of undulator sections N = 40. The energy of photons is measured in units of the rest energy of the
electron, 0.511 MeV. (a) Distribution over m, the asymmetry, and the angular momentum projection per one photon. In accordance with (105),
the period of oscillations Tm = 4. (b) Density of the average number of twisted photons against k0 for different observation angles. The position
of the peak in the forward radiation and the boundaries of the spectral band in the inset are well described by (91). The dashed vertical line in
the inset depicts the photon energy used in (a). (c) Density of the average number of twisted photons against m and the angular momentum
projection per one photon at the left, ξn = π , and right, ξn = 0, peaks appearing in the distribution over the photon energy for θ = 1/(5γ ) [see
the inset in (b)].

in these points, where f (τ ) is the expression in the exponent.
Inasmuch as the integral is saturated in a small neighbourhood
of the stationary points, we can develop the expression in the
exponent as a Taylor series in (τ − τ0) in the vicinity of the
point f̈ (τ0) = 0 and keep only the terms of the order (τ − τ0)3,
inclusive. The condition f̈ = 0 leads to

cos τ0 = d + nk sin ϕ√
2

.

sin τ0 = ±
√

1 − (d + nk sin ϕ)2

2
(168)

and the exponential quantity in Eq. (161) becomes

−i

[
nτ0 − 3k0K

2

4ωγ 2
sin 2τ0 +

(
n − k0K

2

2ωγ 2
(1 + 2 cos2 τ0)

)

× (τ − τ0) + k0K
2

ωγ 2
sin2 τ0

(τ − τ0)3

3

]
, (169)

in the neighborhood of two points (168) each. Having deformed
the contour according to the steepest descent, the integral
with respect to τ is performed in infinite limits. Hence, the
variable τ can be shifted safely by τ0. As a result, taking into
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account that

Ai(x) =
∫

dt

2π
e−i(xt+t3/3), (170)

we obtain

cn(ϕ) ≈ 2

(
k0K

2

ωγ 2
sin2 τ0

)−1/3

× cos

(
nτ0 − 3k0K

2

4ωγ 2
sin 2τ0

)
Ai[Bn(ϕ)],

Bn(ϕ) : =
n − k0K

2

2ωγ 2 (1 + 2 cos2 τ0)(
k0K2

ωγ 2 sin2 τ0
)1/3 , (171)

where it is supposed that τ0 defined in Eq. (168) is real and
sin τ0 � 0.

Let us begin with the regular case. The replacement of δN (x)
by the δ function in the integrals (162) and (163) is justified
when the peak width of δN (x),

�ϕ ≈ 1 + a2 + d2 + n2
k − 2nk

√
a2 + d2 cos ξn

2πnNnk

√
a2 + d2| sin ξn|

, (172)

is much smaller than the characteristic scale of variation of the
rest integrand functions in Eqs. (162) and (163) at the points

ϕ±
n := ϕ0 ± ξn. (173)

This requirement entails the restrictions

|m|�ϕ � 1,
k0K

2

2ωγ 2
(a − nk cos ϕ)2 nk| cos ϕ|√

2| sin τ0|
�ϕ � 1,

(174)

where ϕ = ϕ±
n . The second condition is the requirement of

a small variation of cn(ϕ) on the scale �ϕ in the vicinity of
the points ϕ±

n . Expressing k0 in terms of ξn, we can write this
condition as

(a − nk cos ϕ±
n )2

2πnN
√

a2 + d2

nk| cos ϕ±
n |√

2| sin τ0|
� | sin ξn|. (175)

As we see, the conditions (174) and (175) are violated in the
neighborhood of the points sin ξn = 0, which corresponds to
the weakly degenerate case. Both conditions (174) and (175)
are also violated at small

√
a2 + d2, which corresponds to the

strongly degenerate case.
If the conditions (174) and (175) are fulfilled, then

I3 =
∞∑

n=1

θ (an)θ (bn)

ω
√

anbn

[e−imϕ+
n cn(ϕ+

n ) + e−imϕ−
n cn(ϕ−

n )],

I± = i
s ± n3

nk

∞∑
n=1

θ (an)θ (bn)

ω
√

anbn

×
[
e−i(m∓1)ϕ+

n

(
(±ia − d)cn + 1√

2
(cn−1 + cn+1)

)
ϕ=ϕ+

n

+ e−i(m∓1)ϕ−
n

(
(±ia − d)cn + 1√

2
(cn−1 + cn+1)

)
ϕ=ϕ−

n

]
.

(176)

Notice that

±ia − d = ±i
√

a2 + d2e∓iϕ0 . (177)

To obtain the average number of photons, one ought to
substitute (176) into (82). The explicit expression for dP is
rather bulky and we do not present it here but discuss some of
its general properties. In the case when the intervals (91) do
not overlap, the dependence of the average number of twisted
photons on m has the form (104) until the first condition in
Eq. (174) holds. If

|m|�ϕ 
 1, |m| 
 k0K
2

2ωγ 2
(a − nk cos ϕ)2 nk| cos ϕ|√

2| sin τ0|
,

(178)

then dP (m) tends exponentially to zero. For a = 0, the average
number of photons possesses the symmetry property (60) (see
Fig. 7).

In the weakly degenerate case ξn ≈ {0,π}, we assume that
the main peak of δN (x) is so sharp that it allows one to take
the integrand functions out of the integral and take them at the
points ϕ = ϕ±

n . The width of the peak of δN (x) is of the order

�ϕ ≈
(

1 + (
√

a2 + d2 ± nk)2

πnNnk

√
a2 + d2

)1/2

, (179)

where the sign ± corresponds to ξn = {π,0}, respectively.
The integral over ϕ is removed in the above-mentioned sense
under the assumption that the estimates (174) are satisfied with
ϕ = ϕ±

n and �ϕ taken from (179). The rest integral is of the
form∫ π

−π

dϕ δN (· · · ) ≈
∫ π

−π

dϕ
sin[πnN (ω+ω−1

− − 1)(ϕ − ϕ0)2/4]

ωπn(ω+ω−1
− − 1)(ϕ − ϕ0)2/4

≈ ω−1

√
8N

n(ω+ω−1
− − 1)

(180)

for ξn = 0. Analogously, for ξn = π ,∫ π

−π

dϕ δN (· · · ) ≈ ω−1

√
8N

n(1 − ω−ω−1
+ )

. (181)

Thus, for ξn ≈ 0, i.e., k0 → nω+,

I3 = ω−1

√
8N

n(ω+ω−1
− − 1)

e−imϕ0cn(ϕ0),

I± = ω−1

√
8N

n(ω+ω−1
− − 1)

s ± n3

nk

e−imϕ0

×
(
∓

√
a2 + d2cn(ϕ0)+i

e±iϕ0

√
2

[cn−1(ϕ0)+cn+1(ϕ0)]

)
.

(182)

The average number of photons (82) becomes

dP = e2K

nγ

Nnkω
−2

ω+ω−1
− − 1

{(cn−1 + cn+1)2 cos2 ϕ0 + [
√

2(nk

−
√

a2 + d2)cn − (cn−1 + cn+1) sin ϕ0]2}dk3dk⊥
4π2

.

(183)
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FIG. 7. Radiation of twisted photons by the planar wiggler at the fifth harmonic. The trajectory of the electron is taken in the form (155)
with the undulator strength parameter K = 4 and ω = 2πβ‖/λ0, where λ0 = 1 cm is the length of the undulator section and γ = 103 is the
Lorentz factor of the electron. The number of undulator sections N = 40. The energy of photons is measured in units of the rest energy of the
electron, 0.511 MeV. (a) Distribution over m, the asymmetry, and the angular momentum projection per one photon. In accordance with (105),
the period of oscillations Tm = 4. (b) Density of the average number of twisted photons against k0 for different observation angles. The position
of the peak in the forward radiation and the boundaries of the spectral band in the inset are well described by (91). The dashed vertical line in
the inset depicts the photon energy used in (a). (c) Density of the average number of twisted photons against m and the angular momentum
projection per one photon at the left, ξn = π , and right, ξn = 0, peaks appearing in the distribution over the photon energy for θ = 1/5γ [see
the inset in (b)]. The presence of sufficiently high lateral peaks on the upper plots is a consequence of a comparatively large width (179) of the
main peak of δN (x). These lateral peaks disappear with increasing N . As long as the observation angle α = 0, the distributions over m have the
symmetry property (60).

For ξn ≈ π , i.e., k0 → nω−, we deduce in the same way

dP = e2K

nγ

Nnkω
−2

1 − ω−ω−1
+

{(cn−1 + cn+1)2 cos2 ϕ0 + [
√

2(nk

−
√

a2 + d2)cn + (cn−1 + cn+1) sin ϕ0]2}dk3dk⊥
4π2

,

(184)

where one should set ϕ = ϕ0 + π in all the arguments
of ck(ϕ). The expressions for the average number of

photons obtained above are independent of s and m in
the domain (174).

In the strongly degenerate case,

2πnNnk

√
a2 + d2

1 + (√
a2 + d2 − n2

k

)2 � 1. (185)

Then we can neglect the dependence of δN (x) in Eqs. (162)
and (163) on ϕ. We consider only the particular case of (185)
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when

2πnN
√

a2 + d2 � 1, (186)

i.e., when one can set a = d = 0 in the integrals I3 and I± (the
forward radiation). Let us introduce the notation

fnm(x,y) := im
∫ π

−π

dϕ e−imϕJn(2x sin ϕ,y). (187)

Integrating term by term the expansion [62,82–85]

Jn(2x sin ϕ,y) =
∞∑

k=−∞
Jk(y)Jn−2k(2x sin ϕ), (188)

we derive

fnm(x,y) = π [1 + (−1)n+m]

×
∞∑

k=−∞
Jk(y)J(n−m)/2−k(x)J(n+m)/2−k(x).

(189)

The terms of this series tend rapidly to zero when the absolute
value of the index of the Bessel function becomes greater than
its argument. The integral over ϕ is written as

I3 = i−m

∞∑
n=1

δN

(
k0K

2

2γ 2

(
K−2 + 1 + n2

k

) − ωn

)

× fnm

(
k0K

2

√
2ωγ 2

nk,− k0K
2

4ωγ 2

)
. (190)

This expression is symmetric with respect to m → −m and
does not vanish only when m + n is an even number. As for
the integrals I±, let us define

f ±
nm := fn−1,m∓1 + fn+1,m∓1√

2
. (191)

Then

f ±
nm(x,y) = π [1 + (−1)n+m]

×
∞∑

k=−∞

Jk(y) + Jk−1(y)√
2

J(n∓m)/2+1−k(x)

× J(n±m)/2−k(x). (192)

Using the above notation, we can write

I± = ∓ s ± n3

nk

i−m

∞∑
n=1

δN

(
k0K

2

2γ 2

(
K−2 + 1 + n2

k

) − ωn

)

× f ±
nm

(
k0K

2

√
2ωγ 2

nk,− k0K
2

4ωγ 2

)
. (193)

This expression differs from zero only for even m + n.
Summing (190) and (193) and neglecting the overlapping of
the functions δN (x) with different arguments, we obtain the
average number of photons

dP = e2
∞∑

n=1

δ2
N

(
k0K

2

2γ 2

(
K−2 + 1 + n2

k

) − ωn

)

×
(

fnm − n3

2nk

(f +
nm + f −

nm)

− s

2nk

(f +
nm − f −

nm)

)2

n3
⊥

dk3dk⊥
16π2

. (194)

The expression for the average number of photons complies
with the symmetry property (60) and is different from zero
only for even m + n (see Fig. 4). The energy of photons k0 in
the arguments of fnm and f ±

nm can be replaced by

k0 = 2nωγ 2

1 + K2 + K2n2
k

. (195)

In this case, the dependence of dP on the photon energy is
determined only by the factor δ2

N (x).
The expression (194) is not always useful for calculations

for sufficiently large m and n as in this case one needs to
take a large number of terms in the series (189) and (192).
In order to obtain the approximate expression for the average
number of photons for large m and n, one can make use of the
approximate expression (171) and find the integrals I3 and I±
by the steepest-descent method. We let

S1nm(ϕ) := −i

[
mϕ − n

(
τ0 − π

2

)
+ 3k0K

2

4ωγ 2
sin 2τ0

]
+ ln Ai[Bn(ϕ)],

S2nm(ϕ) := −i

[
mϕ + n

(
τ0 − π

2

)
− 3k0K

2

4ωγ 2
sin 2τ0

]
+ ln Ai[Bn(ϕ)] (196)

be the rapidly varying expressions in the exponents in
Eq. (171). The stationary points of these expressions are
invariant under the reflection in the imaginary axis

ϕ → −ϕ∗. (197)

Moreover, the stationary points of S2 are obtained from the
stationary points of S1 by the replacement

ϕ → ϕ + π. (198)

In evaluating the integral over ϕ, we are interested in the
stationary points ϕnm

ext closest to the real axis and such that

Im ϕnm
ext sgn m � 0. (199)

When |m| � n, the expressions (196) possess the extremum
points at

τ̇0 = − nk cos ϕ√
2 sin τ0

= 0, (200)

i.e., at ϕnm
ext = ±π/2 in the strip Re ϕ ∈ [−π,π ]. In increasing

|m|, these extremum points shift and move away from the
real axis. It is these stationary points that give the leading
contribution to the integral.

Let, for definiteness, ϕnm
ext be the stationary point of S1nm ob-

tained by shifting from the stationary point π/2. We introduce
the notation

hnm :=
(

k0K
2

ωγ 2
sin2 τ0

)−1/3

exp

(
− imϕ + inτ0

− i
3k0K

2

4ωγ 2
sin 2τ0

)
Ai[Bn(ϕ)]

√
2π

−S̈1nm

, (201)
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where the principal branch of the square root is taken, the
overdot denotes the derivative with respect to ϕ, and we set ϕ =
ϕnm

ext . Then the contribution coming from the two stationary
points and the two exponents with the powers S1,2 reads

fnm ≈ im[1 + (−1)m+n][hnm + (−1)mh∗
nm]. (202)

By virtue of the relation (191), we obtain

f ±
nm ≈ im∓1 1 + (−1)m+n

√
2

[hn−1,m∓1 + hn+1,m∓1

+ (−1)m+1(h∗
n−1,m∓1 + h∗

n+1,m∓1)]. (203)

As expected, the expressions (202) and (203) are real valued
and different from zero only for even m + n. The approximate
expression for fnm(x,y) can also be derived by applying the
WKB method immediately to the double integral (161) and
(187). The evaluation of the stationary points reduces in this
case to the solution of a cubic equation. When the variables x,
y, m, and n are of the same order, the general solution of this
equation is rather awkward and leads to a huge expression for
fnm. Therefore, we do not present it here.

VI. CONCLUSION

Let us sum up the results obtained in this paper.
First, we derived the general formula for the average

number of twisted photons produced by a classical source and
established some of its general properties. In particular, we
proved that the average number of twisted photons recorded
by the detector obeys the symmetry property (60) when a
charged particle moves along a planar trajectory, while the
detector of twisted photons is placed in the orbit plane and
projects the angular momentum onto the axis lying in this
plane. We also have provided the pictorial representation of
the general formula for the average number of twisted photons
in terms of the radiation amplitude of plane-wave photons
(see Figs. 1 and 5). We have obtained the integral represen-
tations for the projection of the total angular momentum of
twisted photons with given energy, longitudinal projection of
momentum, and helicity in terms of the trajectory of a charged
particle.

Second, we developed a general theory of radiation of
twisted photons by undulators. We derived the explicit formu-
las for the average number of twisted photons produced by the
undulator and recorded by the detector located, in general, off
the undulator axis and projecting the angular momentum onto
the axis directed from the radiation point to the detector. These
formulas were obtained for both the dipole and wiggler regimes
of the undulator. We have established some general properties
of the undulator radiation of twisted photons. It turns out that
the forward radiation of an ideal right-handed helical undulator
consists of the twisted photons with the projection of the total
angular momentum m = n, where n is the harmonic number.
The radiation of an ideal left-handed helical undulator consists
of the twisted photons with m = −n. We have shown that the
forward radiation of the planar undulator obeys the selection
rule that n + m is an even number. As for the undulator
radiation at an angle, we have found that, in particular, the
average number of twisted photons is a periodic function of
m in a certain range of quantum numbers m. We checked the

obtained analytical results by the numerical simulations and
ascertained that they match each other. The accuracy of the
analytical formulas increases with an increasing number of
undulator sections N .

Thus, we may conclude that the general formula we have
derived provides a reliable and effective tool for further studies
of generation of twisted photons by classical currents. As
regards the possible generalizations not mentioned, it would
be interesting to investigate the production of twisted gravitons
by binary systems along the same lines.
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APPENDIX: SOME SPECIAL FUNCTIONS

It is useful to express the mode functions of the electromag-
netic field in terms of the functions

jν(p,q) := pν/2

qν/2
Jν(p1/2q1/2), (A1)

where those branches of the multivalued functions are taken
that are real valued and analytic for positive p and q (some
properties of these functions can also be found in Ref. [86]).
Then, for real ν,

j ∗
ν (p,q) := jν(p∗,q∗). (A2)

These functions possess the properties (see, e.g., [87])

2
∂

∂p
jν(p,q) = jν−1(p,q),

2
∂

∂q
jν(p,q) = −jν+1(p,q),

2νjν(p,q) = pjν−1(p,q) + qjν+1(p,q), (A3)

jν(eiπp,eiπq) = eiπνjν(p,q),

jν(p,q) =
∫

H

dt

2πi
t−ν−1e(pt−q/t)/2, Re p > 0,

where H is the Hankel contour running from −∞ a little bit
lower than the real axis, encircling the origin, and then going
to −∞ a little bit higher than the real axis.

If ν = m ∈ Z, then jm(p,q) is an entire analytic function
of complex variables p and q and the additional relations hold

jm(p,q) = (−1)mj−m(q,p), jm(0,0) = δm0. (A4)
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In particular,

jm(x+,x−) = (−1)mj−m(x−,x+) = (−1)mj ∗
−m(x+,x−),

(A5)

where it is supposed in the last equality that x1,2 ∈ R. We let
�± := x± − y±. Then the addition theorem takes place [87]

∞∑
m=−∞

jν+m(x+,x−)jm(y−,y+)

=
∞∑

m=−∞
jν+m(x+,x−)j ∗

m(y+,y−) = jν(�+,�−). (A6)

The integral representation (A3) is written as

jm(p,q) =
∫

|t |=1

dt

2πi
t−m−1e(pt−q/t)/2 (A7)

for any complex p and q. In particular,

jm(k⊥x+,k⊥x−) =
∫ π

−π

dϕ

2π
e−imϕ+ik⊥(x1 sin ϕ+x2 cos ϕ)

= im
∫ π

−π

dϕ

2π
e−imϕ+ik⊥(x2 sin ϕ−x1 cos ϕ).

(A8)

In describing the radiation of twisted photons by undulators
in the dipole approximation, the function Gm

N (a,b) arises [see
(86)]. We present some of its properties here. The function
Gm

N (a,b) is an entire analytic function of a and b. It is obvious
from (86) that

Gm
N (a,b) = (−1)mGm

N (b,a) = (−1)mG−m
N (a,b). (A9)

Furthermore, the following recurrence relation holds:

Gm−1
N (a,b) − Gm+1

N (a,b)

= 2i−m−1 sin

(
πN

2
(b − a) − πm

2

)
Jm

[
πN

2 (b + a)
]

π (b + a)

+ 2i
b − a

b + a
Gm

N (a,b). (A10)

For N → ∞ and real a and b [88],

Gm
N (a,b) → i−mθ (a)θ (b)

2π
√

ab
cos

(
m arccos

b − a

b + a

)

= i−mθ (a)θ (b)

2π
√

ab
Tm

(
b − a

b + a

)
, (A11)

where Tm(x) are the Chebyshev polynomials of the first kind.
The function Gm

N (a,b) is well approximated by the expression
on the right-hand side, with a relative error not exceeding 0.1,
when

a � 5

N
, b � 5

N
, |m| � 10

7
N (a + b). (A12)

For |m| beyond this bound, Gm
n (a,b) tends exponentially to

zero. If a � 5/N and b satisfies the estimate (A12), then

Gm
N (a,b) ≈ Gm

N (0,b) ≈ i−m

π

√
N

2b
(A13)

for

|m| � (10πbN )1/3. (A14)

If |m| is greater than the above estimate, then Gm
N (0,b) tends

exponentially to zero. For a � 5/N and b � 5/N , we have

Gm
N (a,b) ≈ Gm

N (0,0) = N

2
δm0. (A15)
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