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ABSTRACT 
The paper considers the problem of robust adaptive 
efficient estimating of a periodic signal modeled by a 
continuous time regression model with the dependent 
noises given by a non-Gaussian Ornstein-Uhlenbeck 
process with Levy subordinator in the case when 
continuous observation cannot be provided and only 
discrete time measurements are available. Adaptive 
model selection procedure, based on the improved 
weighted least square estimates, is proposed. Under 
some conditions on the noise distribution, sharp oracle 
inequality for the robust risk has been proved and the 
robust efficiency of the model selection procedure has 
been established. The numerical analysis results are 
given. 

 
Keywords: periodic signals, model selection, improved 
weighted least squares estimates, non-parametric 
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1. INTRODUCTION 
In problems of signal processing in the information-
communication complexes they successfully use the 
continuous time models specified by stochastic 
differential equations 
 

  ,   0 ,t tdy S t dt d t n                      (1) 

 
where S(t) is an unknown 1-periodic signal, n is the 
duration of observation and  0t t n


 

 is unobserved 

colour noise. The development of the identification 
procedures is most often based on the assumption that 
the noises in the equations are specified by the 
Brownian motion processes, i.e. we obtain the well-
known "signal+white noise" model which is very 
popular in statistical radio-physics (see, for example, 
Ibragimov and Khasminskii 1981; Kassam 1988; 
Chernoyarov et al. 2015 and etc.). If the noise 
disturbances acting on the dynamic system are non-
Gaussian and include, for example, some pulse 
component, then the efficiency of identification 

algorithms may decrease. Therefore, on the condition 
that the noise disturbances have more complicated 
nature, the properties of the decision procedures need an 
additional investigation. This paper considers the 
problem of estimating the signal S in the continuous 
time regression from the Equation (1) with the noises of 
pulse type, specified by a non-Gaussian Ornstein-
Uhlenbeck process which obeys the equations 
 

 1 2

,

 and  ,
t t t

t t t t t

d a dt du

u w z z x

 
 

 

     ñ ñ
                 (2) 

 
where a, 1ñ  and 2ñ  are some unknown constants, 

  0t t
w


 is a standard Brownian motion,  ds dx  is a 

jump measure with deterministic compensator 

      , ds dx ds dx      is a Levy measure, i.e. 

some positive measure on R*=R\{0} such that 

 2 1x   and  6x   . Here we use the notation 

   
*

.
m m

R
x y dy     Note that the Levy 

measure  *R  could be equal to  . We use the 

notation * for the stochastic integrals with respect to 
random measures (see Cont and Tankov 2004, Chs. 2 
and 3), i.e.  
 

   
*0

( , ).
t

t
R

x y ds dy                            (3) 

 
It should be noted that if a=0, then we obtain the Levy 
regression model considered in (Pchelintsev, 
Pchelintsev, and Pergamenshchikov 2018). In the case 
when   0    we obtain the well-known Gaussian 

Ornstein-Uhlenbeck regression model introduced in 
(Hopfner and Kutoyants 2009, 2010).  The model in the 
Equations (1) – (2) in which the jump process   0t t

z


 

defined by the compound Poisson process was studied 
in (Konev and Pergamenshchikov 2012, 2015). 
However, the compound Poisson processes can describe 
only the large noise impulses of small fixed frequency, 
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but the telecommunication and location systems may 
have the impulse noises with any frequency without any 
condition. We note also that in the papers (Konev and 
Pergamenshchikov 2012, 2015) the proposed statistical 
procedures are based on the classical weighted least 
square estimators. 
The problem is to estimate the unknown signal S in the 
model (1) on the basis of incomplete observations 

0( )
jt j npy   , tj=j/p and p>2 is an odd number depending 

on n. 
The goal of this paper is to develop a new improved 
adaptive robust efficient signal estimation methods for 
the non-Gaussian Ornstein-Uhlenbeck noise based on 
the general Levy processes with unknown distribution 
Q. We assume that this distribution belongs to the class 

*
nQ  defined as a family of all these distributions for 

which the parameters satisfy the inequalities 

* 0a a   , *1 ñ  and 2 2
1 2

* ñ ñ  with some fixed 

positive bounds. The quality of an estimate ˆ
nS  of the 

unknown signal S, i.e. some function of 0( )
jt j npy   , will 

be measured with the robust quadratic risk  
 

   
*

ˆ ˆ, sup ,
n

n Q n
Q

S S S S


R R

Q

,                (4) 

 
where  

 

   
1

2 2 2
,

0

ˆ ˆ, :   and  Q n Q S nS S S S S S t dt   ER .   (5) 

 
Here EQ,S is the expectation with respect to the 
distribution PQ,S of the process in the Equation (1) with 
a fixed distribution Q of the noise  0t t n


 

 and a given 

function S. 
 
2. IMPROVED ESTIMATES 
One of the most customarily used methods in the 
identification theory is the least squares one (LSE). 
However we can improve (as compared with LSE) the 
estimation precision using of Stein approach (Stein 
1981). This approach to the estimation in the regression 
models has been developed in (Fourdrinier and 
Pergamenshchikov 2010, Konev and Pergamenshchikov 
2010). At that the gaussianity or spherical symmetricity 
of distribution of the process under observation plays a 
key role. In this paper we show that the Stein approach 
can be used to improve the quality of signal processing 
observed in the transmission channel with the 
dependent pulse type noises defined by non-Gaussian 
Ornstein-Uhlenbeck processes with unknown 
correlation properties. For this we need to use the 
modifications of the James – Stein estimators proposed 
in (Pchelintsev 2013, Konev, Pergamenshchikov, and  
Pchelintsev 2014) for parametric estimation problems. 

For estimating the unknown signal S in the Equation (1) 

we consider it’s Fourier expansion. Let  
1j j




 be a 

trigonometric basis in  2 0,1L . We extend these 

functions by the periodic way on R, i.e. 

   1j jt t    for any t R . We will use such basis 

that the restrictions of the functions 1{ }j j p    on the 

sampling lattice Tp={t1,…,tp}, tj=j/p, form an 

orthonormal basis in the Hilbert space pTR  with the 
inner product  
 

1

1
( , ) ( ) ( ) for , p

p
T

p j j
j

x y x t y t x y R
p 

  ,                   (6) 

 
i.e. { }( , ) 1i j p i j    for any odd 3p  , 1A  is the 

indicator of the set A. We write the discrete Fourier 
expansion of the unknown signal S on the lattice Tp in 
the form 
 

     , ,
1

 and  , .
p

j p j j p j p
j

S t t S   


                      (7) 

 
The first step in estimation procedure consists in 
estimating the Fourier coefficients ,j p  from discrete 

data by the formulae 
 

 
1, , , { }

10

1ˆ   with  ( )1
k k

n np

j p j p t j p j k t t t
k

t dy t
n

   
  



   . (8) 

 
Further, for the first d p  Fourier coefficients in 

Equations (7) we use the improved estimation method 
proposed for parametric models in (Pchelintsev 2013, 
Konev, Pergamenshchikov, and  Pchelintsev 2014). To 

this end we set  ,
1

ˆ
p j p

j d
 

 
 . In the sequel, we will 

use the norm 
2 2

1

d

jd
j

x x


   for any vector  
1j j d

x x
 

  

from Rd. We define the shrinkage estimators as 
 

  , ,
ˆ1j p j pg j    ,                             (9) 

 

where    11 ,n
j d

p d

c
g j

  


 cn is some known 

parameter such that /nc d n  as n   (Pchelintsev 

and Pergamenshchikov 2019). Now we introduce a 
class of shrinkage weighted least squares estimates for S 
as 
 

  , ,
1

( ) ( )
p

j p j p
j

S t j t    



  ,                   (10) 
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where the weights nR   belong to some finite set   

from  0,1
p

 defined in (Konev and Pergamenshchikov 

2015, Pchelintsev and Pergamenshchikov 2018). 
To compare the non-asymptotic accuracy of the 
proposed shrinkage estimate in Equations (10) and LSE 
ˆ ( )S t  from (Konev and Pergamenshchikov 2015, 

Equation (3.10)) we denote the difference of their 

quadratic risks as      ˆ: , ,Q Q QS S S S S 
  R R . 

Now for this deviation, we obtain the following result. 

Theorem 1. For any log / np d n c  and r>0 

 

 sup sup 0
n

Q
Q S r

S
 

 
Q

.                        (11) 

 
The inequality in Equation (11) means that non-
asymptotically, i.e. for any 0n n  the estimate in the 

Equation (10) outperforms in mean square accuracy the 
LSE. 

 
3. MODEL SELECTION METHOD AND 

ORACLE INEQUALITY 
The model selection procedure for estimating an 
unknown signal S in the Equation (1) will be 
constructed on the basis of a family of improved 

estimates  S 




. The performance of any estimate S

   

will be measured by the empirical squared error 
 

  2
Errp S S   .                     (12) 

 
In order to obtain a good estimate, we have to write a 
rule to choose a weight vector    in the Equation 

(10). It is obvious, that the best way is to minimize the 
empirical squared error with respect to  . Making use 

the estimate definition in the Equation (10) and the 
Fourier transformation of S implies 
 

      
2 22

, , ,
1 1

Err 2
p p

p j p j p j p
j j

j j S      

 

    , 

(13) 

where  , 1j p j



 are the Fourier coefficients for the 

signal S with respect to the orthonormal system of the 
functions , 1{ }j p j p   . Since these coefficients are 

unknown, the weight coefficients  
1j j




 cannot be 

found by minimizing  Errp  . To circumvent this 

difficulty one needs to replace the terms , ,j p j p   by 

their estimators of the form 
 

, , ,

ˆˆ n
j p j p j p n


    ,                         (14) 

 

where ˆn  is the estimate for the noise variance  
2
,Q Q j n  E  which we choose in the following form 

 

 2
, ,

1 0

1ˆ ˆˆ    and   
nn

n j n j n j t
j n

t t t dy
n

 
   

    .              (15) 

 
For this change in the empirical squared error, one has 
to pay some penalty. Thus, one comes to the cost 
function of the form 
 

        22
, ,

1 1

ˆ2
p p

p j p j p
j j

J j j P      

 

     ,  (16) 

 

where   is some positive constant,  P̂   is the penalty 

term defined as 
 

 
2ˆ

ˆ n pP
n

 
 

 
.                                   (17) 

 
Substituting the weight coefficients, minimizing the 
cost function 
 

 agrmin pJ 
                      (18) 

 
in the Equation (10) leads to the improved model 
selection procedure 
 
 S S

 
  .                                      (19) 

 
It will be noted that    exists because   is a finite set. 

If the minimizing sequence in the Equation (18)    is 

not unique, one can take any minimizer.  
In the case, when the value of Q  is known, one can 

take ˆn Q   and   2 1
Q p

P n    . 

Theorem 2. For any 2n   and 0 1/ 2  , the robust 
risks defined in the Equation (4) of estimate in the 
Equation (19) for continuously differentiable function S 
satisfies the oracle inequality 
 

   * 1 5
, min ,

1
nB

S S S S
n


 


  




 


R R ,                  (20) 

 
where the term nB  is independent of S and such that 

0nB n     as n   for any 0  . 

 The inequality (20) allows us to establish that the 
procedure in the Equation (19) is optimal in the oracle 
inequalities sense. This property enables to provide 
asymptotic efficiency in the adaptive setting, i.e. when 
information about the signal regularity is unknown. 
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4. MONTE CARLO SIMULATIONS 
In this section we report the results of a Monte Carlo 
experiment to assess the performance of the proposed 
model selection procedure in the Equation (19). In the 
Equation (1) we choose 1-periodic signal S which is 
defined as 2( ) sin(2 ) (1 )cos(2 )S t t t t t t    , for 

0 1t  . We simulate the Equation (1) with the 
Ornstein-Uhlenbeck noise process defined as 
 

0.5 0.5t t t td dt dw dz     ,                     (21) 

where 
1

tN

t jj
z Y


   tN  is a Poisson process with the 

intensity λ=1 and (Yj)j≥1 is i.i.d. Gaussian (0,1). We use 
the model selection procedure defined in the Equation 
(19) with the weights proposed in (Konev and 

Pergamenshchikov 2015): * 100 lnk n  , 1 / ln n   

and 2[1 / ]m  . We used the cost function with 
2(3 ln )n   . We define the empirical risk as 

 2

1

1 ˆ( , ) ( ) ( )
p

n j j
j

R S S S t S t
p 

 Ε   and  2ˆ ( ) ( )nS S  E   

 2

1

1
( ) ( )

N
l
n

l

S S
N 

      with the frequency of 

observations p=100001 and numbers of replications 
N=1000.  
 Table 1 gives the values for the sample risks of the 
improved estimate Equation (19) and the model 
selection procedure based on the weighted LSE from 
(Konev and Pergamenshchikov 2015) for different 
numbers of observation period n. Table 2 gives the 
values for the sample risks of the model selection 
procedure based on the weighted LSE from (Konev and 
Pergamenshchikov 2015) and it's improved version for 
different numbers of observation period n.  
 
Table 1: The sample quadratic risks for different 
optimal    

n 100 200 500 1000 

 * ,R S S

  0.0289 0.0089 0.0021 0.0011 

 ˆ
ˆ ,R S S  0.0457 0.0216 0.0133 0.0098 

 
 *

ˆ
ˆ ,

,

R S S

R S S






 1.6 2.4 6.3 8.9 

 
From the Table 2 for the same weights   with various 

observations numbers n we can conclude that 
theoretical result on the improvement effect is 
confirmed by the numerical simulations. Moreover, 
from Table 1 and Figure 1, we can see that the proposed 
method has the higher estimation quality then LSE. 
On the figures the bold line is the signal S, the 
continuous line is the model selection procedure based 

on the least squares estimators Ŝ  and the dashed line is 
the improved model selection procedure *S . 

 
Table 2: The sample quadratic risks for the same 
optimal ̂  

n 100 200 500 1000 

 * ,R S S

  0.0391 0.0159 0.0098 0.0066 

 ˆ
ˆ ,R S S  0.0457 0.0216 0.0133 0.0098 

 
 *

ˆ
ˆ ,

,

R S S

R S S






 1.2 1.4 1.3 1.5 

 

 
a) n=500 

 
b) n=1000 

Figure 1: Behavior of the regression function and its 
estimates 
 
5. ASYMPTOTIC EFFICIENCY 
We define the following functional Sobolev ball 
 

2( )
,

0

[0,1] :
k

k i
k p

i

W f C f


    
 

r r ,                 (22) 

 
where r > 0 and 1k   are some unknown parameters, 

[0,1]k
pC  is the space of k times differentiable 1-periodic 

functions such that for any 0 1i k   : 
( ) ( )(0) (1)i if f . In order to formulate our asymptotic 

results we set 
 

 
2 /(2 1)

1/ (2 1)

*
,  ( ) (2 1)

( 1)

k k
k

n k

n k
v l k

k


  

     
r r  (23) 

 

and we denote by n  of all estimates ˆ
nS  of S from 

discrete observations of the process in the Equation (1). 
Also we denote by Q* the distribution of the process in 
the Equation (1) with *

t tw  , i.e. white noise model 

with the intensity * . 

Theorem 3. Assume that * *
nQ Q . Then the robust risk 

defined in the Equation (4) admits the following 
asymptotic lower bound 
 

 
,

2 / (2 1)

ˆ
ˆliminf inf sup , ( )

n n k

k k
n n kn S S W

v S S l 

  


r

rR  .            (24) 

 
This lower bound is sharp in the following sense. 
Theorem 4. Assume that * *

nQ Q  and there exists 

0   such that 5/6lim / 0n n p
  . Then the robust 

risk defined in the Equation (4) for the estimating 

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

93



procedure in the Equation (19) has the following 
asymptotic upper bound 
 

 
,

2 / (2 1) *limsup sup , ( )
k

k k
n k

n S W
v S S l 

 


r

rR  .                   (25) 

Theorems 3 and 4 imply that the model selection 
procedure *S  is efficient and the parameter ( )kl r   

defined in the Equations (23) is the Pinsker constant in 
this case (Pchelintsev and Pergamenshchikov 2018, 
2019). 
 
6. CONCLUSION 
In this paper, we considered the problem of 
nonparametric signal processing on the basis of the 
discrete time observations with the dependent non-
Gaussian impulse noises modelled by Ornstein-
Uhlenbeck processes.  We developed adaptive efficient 
statistical model selection procedure based on the 
improved methods which outperforms the LSE in mean 
square accuracy. The obtained theoretical results are 
confirmed by the numerical simulation. We obtained the 
adaptive efficiency property for the proposed statistical 
method, which means that we provide the best mean 
square accuracy without using the smoothness 
information about the form of unknown signal. We 
studied the accuracy properties for the proposed method 
on the basis of the robust approach, i.e. uniformly over 
all possible unknown noise distributions. This allows us 
to synthesize the statistical algorithms possessing the 
high noise immunity properties. The results (their 
satisfactory concordance with the corresponding 
experimental data) can be used for the estimation of the 
signals. Such problems are of a great importance in the 
fields of radio-and-hydroacoustic communications and 
positioning, radio-and-hydrolocation, etc. (see, for 
details, Chernoyarov, Kutoyants, and Marcokova 2018 
and references therein). 
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