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Boundary element method for
nonadhesive and adhesive contacts
of a coated elastic half-space
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and Valentin L Popov1,3,4

Abstract

We present a new formulation of the boundary element method for simulating the nonadhesive and adhesive contact

between an indenter of arbitrary shape and an elastic half-space coated with an elastic layer of different material. We use

the Fast Fourier Transform-based formulation of boundary element method, while the fundamental solution is deter-

mined directly in the Fourier space. Numerical tests are validated by comparison with available asymptotic analytical

solutions for axisymmetric flat and spherical indenter shapes.
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Introduction

Layered systems of materials having different mech-
anical properties have attracted a lot of scientific
interest over the last decades.1,2 A well-chosen coating
can improve the structural, mechanical, optical, or
thermal properties at the surface of a bulk material.
Layered structure can be created by ion implantation,
vacuum deposition, nanostructure burnishing, laser
implantation, and other manufacturing technologies.
Coatings are widely used e.g. for reducing wear,
increasing corrosion resistance, controlling friction,
influencing adhesion properties, or manipulating
thermal. Due to the significant influence surface
layers have on mechanical properties, a multitude of
experimental techniques has been developed for the
characterization of coatings, in particular measuring
their elastic properties.3

For the case of nonadhesive elastic contact with
coated systems, theoretical solutions of various inden-
ters have been obtained. These solutions range from
the early asymptotic solution for line and circular con-
tacts on a single layer coating on an otherwise rigid
foundation,4,5 to the semi-analytical solution for axi-
symmetric contacts on a general multilayer substrate.6

Usually the integral transform method or images
method are used for achieving an analytical solu-
tion.7,8 The adhesive contact between a rigid sphere
and an elastic multilayer coated half-space was inves-
tigated by use of an integral transform formulation

and Maugis-type adhesion model.9 Solutions for axi-
symmetric contacts on a single layer were found using
a JKR-type (Johnson–Kendall–Roberts) adhesion
model.10 For a randomly rough surface in contact
with a coated half-space only approximate analytical
theory is available.11

Numerical methods have also been intensively
developed to study the contact and tribological
behavior of layered materials. The finite element
method (FEM) is most commonly used. It is very
versatile and can be applied for various structures
without the restriction of linear material behavior.
In contrast to FEM, the Fast Fourier Transforms
(FFT)-based boundary element method (BEM) is
suitable for all problems where the elastic and geomet-
rical behavior is linear. In part because of its much
higher numerical efficiency for contact problems, the
BEM evolved to be the standard method in research
and development. The boundary element formulation
was presented for a contact of an arbitrary shaped
indenter with a homogeneous half-space.12 Later,
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it was extended to include JKR-type adhesion.13

The method was validated by available analytical solu-
tions including parabolic contacts (classical JKR solu-
tion), toroidal indenters,14 and flat elliptical
indenters.15 Recently, it was also applied to contacts
between flat-ended indenters of complicated shape and
a flat soft body.16 The BEM was extended also to
include contacts with power-law graded materials.17

In the present paper, we propose a further gener-
alization of BEM for the case of a coated half-space.
Several numerical tests will be carried out and the
results will be compared with the known analytical
solutions.

FFT-based BEM for layered half-space

We consider a half-space with a single elastic coating
of thickness h, elastic modulus E1 and Poisson ratio
v1. The corresponding elastic constants of the half-
space are E2 and v2 (Figure 1). The origin of coord-
inates is placed at the surface of the layer so that the
interface between two media is located at z ¼ h.

In previous versions of the BEM for contact of
homogeneous and power-law graded materials,12,17

we proceeded from the fundamental solution in
coordinate space and the corresponding integral for-
mulation of the stress–displacement relation. This
integral relation has the form of a convolution of
the surface pressure distribution with the fundamental
solution U0. This fundamental solution represents the
deformation resulting from a single localized normal
force. For the numerical solution of the contact prob-
lem, we consider a square region on the surface of the
body with the size L� L, discretized with N cells in
each direction. The size of each of the N2 square cells
is �x ¼ �y ¼ �. Pressure is assumed to be uniform in
each cell (see Figure 2).

In the discretized form, the pressure–displacement
relation can be written as

u ¼ Kp ð1Þ

where p is stress distribution acting on the surface
(vector of the length N2 with values of pressure in
the corresponding discrete cells), u is the normal dis-
placement of surface elements due to applied pressure,
and K is the compliance matrix having the size N4.
The contact problem is solved in BEM iteratively. In
each step, the displacements for a given (assumed)
pressure distribution are determined by evaluation
of equation (1). Because of the convolution-type
integral equation and the resulting structure of
matrix K, the operation is performed using direct
and inverse FFT

u ¼ IFFT FFT U0Þ � FFTðpÞð �½ ð2Þ

The number of operation for performing this oper-
ation is on the order of OðN2logNÞ (as compared with
OðN4Þ for direct evaluation of equation (1).

The compliance matrix K is basically a long version
of the discretized fundamental solution of the prob-
lem. To be used in equation (2), a known fundamental
solution U0 must first be Fourier-transformed.
However, if the fundamental solution can be found
directly in the Fourier space, this step could be
omitted. In the present paper, we determine the fun-
damental solution for a layered system directly in the
Fourier space in analytic form thus saving both one
Fourier transform and memory space.

For the derivation of the fundamental solution in
Fourier space, we consider a pressure distribution
acting on the surface of the layer in the form of a
plane wave with wave vector k and amplitude p0

p ¼ p0e
ikr ð3Þ

Here r is the (two-dimensional) radius vector in the
contact plane. Here and further in the text non-bold
symbol, k denotes the absolute values of vector,
k ¼ kj j. For simplicity, without loss of generality, let
us use the direction of wave vector k as the x-axis,
thus eikr ¼ eikx and equation (3) can be simplified as
p ¼ p0e

ikr ¼ p0e
ikx.

Figure 1. Scheme of the system under consideration. An

elastic layer with thickness h, elastic modulus E1, and Poisson

ratio �1 is located on top of an elastic half-space with elastic

parameters E2 and �2.
Figure 2. Discretization of the simulation area.
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In the homogeneous case, with E1 ¼ E2 ¼ E and
v1¼ v2 ¼ v, the vertical displacement of the surface
(z ¼ 0) is given by18

uz x, yð Þ ¼ uz kð Þe
ikx with uz kð Þ ¼

2p0
E�k

ð4Þ

where E� is the reduced elastic modulus
E� ¼ E= 1�v2

� �
. In the following, we provide the cor-

responding solution for a layered system.
The equilibrium equation of an elastic isotropic

medium reads19

grad div uþ 1� 2v1,2
� �

r2u ¼ 0 ð5Þ

where v1 is the Poisson number of the layer and v2
that of the half-space. The displacement vector u will
also have the form of a plane wave

u ¼ uxex þ uyey þ uzez ¼ u0xðzÞe
ikxex þ u0zðzÞe

ikxez

ð6Þ

Here ex and ez are unit vectors in directions of the
wave vector and perpendicular to the contact plane
correspondingly. Symbols ux, uy and uz denote projec-
tions of the displacement vector on the corresponding
directions. The projection in y direction is zero,
uy ¼ 0. The amplitudes u0x and u0z are only functions
of the vertical coordinate z.

Operators appearing in equation (5) read

div u ¼
@

@x
u0x zð Þeikx
� �

þ
@

@z
u0zðzÞe

ikx
� �

¼ iku0x zð Þeikx þ
@u0zðzÞ

@z
eikx

ð7Þ

grad div u ¼ �k2u0x zð Þeikx þ ik
@u0zðzÞ

@z
eikx

� �
ex

þ ik
@u0xðzÞ

@z
eikx þ

@2u0zðzÞ

@z2
eikx

� �
ez

ð8Þ

r2u ¼
@2

@x2
þ
@2

@z2

� 	
u0x zð Þeikx
� �

ex

þ
@2

@x2
þ
@2

@z2

� 	
u0zðzÞe

ikx
� �

ez

¼ �k2u0x zð Þeikx þ
@2u0xðzÞ

@z2
eikx

� �
ex

þ
@2u0zðzÞ

@z2
eikx � k2u0z zð Þeikx

� �
ez

ð9Þ

After substitution of these expressions into equa-
tion (5), we have the following relations

@2u0x zð Þ

@z2
þ

ik

1� 2v1,2

@u0z zð Þ

@z
�
2ð1�v1,2Þk

2

1� 2v1,2
u0x zð Þ ¼ 0 ð10Þ

@2u0z zð Þ

@z2
�

ik

2ðv1,2 � 1Þ

@u0x zð Þ

@z
þ
ð1� 2v1,2Þk

2

2ðv1,2 � 1Þ
u0z zð Þ ¼ 0

ð11Þ

We search solution of this system in the form

u0x zð Þ ¼ Aelz; u0z zð Þ ¼ Belz ð12Þ

Substitution of equation (12) into equations (10)
and (11) gives

Al2 þ B
ik

1� 2v1,2
l�

2ð1�v1,2Þk
2

1� 2v1,2
A ¼ 0 ð13Þ

Bl2 �
ik

2ðv1,2 � 1Þ
Alþ

ð1� 2v1,2Þk
2

2ðv1,2 � 1Þ
B ¼ 0 ð14Þ

The systems (13) and (14) have only trivial solution
if its determinant vanishes

l2 �
2ð1�v1,2Þk

2

1� 2v1,2

ik

1� 2v1,2
l

�
ik

2ðv1,2 � 1Þ
l l2 þ

ð1� 2v1,2Þk
2

2ðv1,2 � 1Þ






















¼ 0 ð15Þ

This characteristic equation has four roots l1,2,3,4 ¼
k, � k, k, � k. Thus the general solution has the form

u 1ð Þ
z x, zð Þ ¼ u0z zð Þeikx

¼ A1e
kz þ A2e

�kz þ A3ze
kz þ A4ze

�kz
� �

eikx
ð16Þ

u 1ð Þ
x x, zð Þ ¼ u0x zð Þeikx

¼ B1e
kz þ B2e

�kz þ B3ze
kz þ B4ze

�kz
� �

eikx
ð17Þ

inside the coating (04z4h) and the same general
form with another set of coefficients inside the half-
space (z4 h)

u 2ð Þ
z x, zð Þ ¼ u0z zð Þeikx

¼ A5e
kz þ A6e

�kz þ A7ze
kz þ A8ze

�kz
� �

eikx
ð18Þ

u 2ð Þ
x x, zð Þ ¼ u0x zð Þeikx

¼ B5e
kz þ B6e

�kz þ B7ze
kz þ B8ze

�kz
� �

eikx
ð19Þ

The superscripts (1) and (2) indicate the coating
and half-space respectively. There are 16 coefficients
to be determined. Substitution of u0z zð Þ and u0x zð Þ in
equations (16)–(19) into the differential equations (10)
and (11) generates

B1 ¼ i A1 þ
A3 3� 4v1ð Þ

k

� 	
,

B2 ¼ �i A2 �
A4 3� 4v1ð Þ

k

� 	
, B3 ¼ iA3, B4 ¼ �iA4

ð20Þ
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B5 ¼ i A5 þ
A7 3� 4v2ð Þ

k

� 	
,

B6 ¼ �i A6 �
A8 3� 4v2ð Þ

k

� 	
, B7 ¼ iA7, B8 ¼ �iA8

ð21Þ

We use the following boundary conditions:

(a) Displacements of half-space at infinite depth are
zero: uð2Þx x, z!1ð Þ ¼ 0 and uð2Þz x, z!1ð Þ ¼ 0;

(b) Continuity of displacements at the interface
between the half-space and coating: uð1Þz x, hð Þ ¼

uð2Þz x, hð Þ, uð1Þx x, hð Þ ¼ uð2Þx x, hð Þ;
(c) Vanishing of tangential stresses at the contact

plane (frictionless problem): �ð1Þzx x, 0ð Þ ¼ 0;
(d) Given normal stress distribution at the surface,

equation (3): �ð1Þzz x, z ¼ 0ð Þ ¼ �p0e
ikx;

(e) Continuity of stresses and strains at the interface
between the half-space and coating: �ð1Þzz x, hð Þ ¼

�ð2Þzz x, hð Þ, �ð1Þzx x, hð Þ ¼ �ð2Þzx x, hð Þ.

The first boundary condition (a) leads to

A5 ¼ 0, A7 ¼ 0, B5 ¼ 0, B7 ¼ 0 ð22Þ

and the others lead to the system of linear algebraic
equations

E1 A1k 1� 2v1ð Þ þ A2k �1þ 2v1ð Þ½

þA3 1� 4v1 þ 4v21
� �

þ A4 1� 4v1 þ 4v21
� �

�

� �
1þv1ð Þ 1� 2v1ð Þ

¼ �p0

ð23Þ

A1e
2kh þ A2 þ A3he

2kh þ A4h� A6 � A8h ¼ 0

ð24Þ

kA1 þ A3 3� 4v1 þ khð Þ½ �e2kh � kA2

þ A4 3� 4v1 � khð Þ þ kA6 � A8 3� 4v2 � khð Þ ¼ 0

ð25Þ

E1

1þv1ð Þ 1� 2v1ð Þ
e2kh A1k 1� 2v1ð Þð
�

þ A3 1þ kh� 4v1 � 2v1khþ 4v21
� ��

þ A2k �1þ 2v1ð Þ

þ A4 1� kh� 4v1 þ 2v1khþ 4v21
� ��

�
E2

1þv2ð Þ 1� 2v2ð Þ
A6k �1þ 2v2ð Þ½

þ A8 1� kh� 4v2 þ 2v2khþ 4v22
� ��

¼ 0

ð26Þ

E1

1þv1ð Þ
A1kþ A3 2� 2v1 þ khð Þð Þe2kh

�
þ A2kþ A4 �2þ 2v1 þ khð Þ�

�
E2

1þv2ð Þ
A6kþ A8 �2þ 2v2 þ khð Þ½ � ¼ 0

ð27Þ

A1kþ A2kþ 2A3 1�v1ð Þ þ 2A4 �1þv1ð Þ ¼ 0 ð28Þ

For the plain normal contact problem, we only
need normal displacements at the contact surface.
The solution of the systems (23)–(28) can be substi-
tuted into equation (16) and we obtain

uz x, z ¼ 0ð Þ

¼
2p0 1� v21

� �
Ae�4kh þ Bkhe�2kh þD
� �

kE1 �Ae�4kh � Bk2h2e�2kh þ 2Ce�2kh þDð Þ
eikx

ð29Þ

where the constants A, B, C, D are given by the fol-
lowing expressions

A ¼ E2 3� 4v1ð Þ 1þv1ð Þ � E1 3� 4v2ð Þ 1þv2ð Þ½ �

� E1 1þv2ð Þ � E2 1þv1ð Þ½ �

B ¼ 4 E2 1þv1ð Þ þ E1 3� 4v2ð Þ 1þv2ð Þ½ �

� E1 1þv2ð Þ � E2 1þv1ð Þ½ �

C ¼ E2
1 4v2 � 3ð Þ 1þv2ð Þ

2

� 2E1E2 v1 þ 1ð Þ 2v1 � 1ð Þ v2 þ 1ð Þ 2v2 � 1ð Þ

þ E2
2 8v21 � 12v1 þ 5
� �

1þv1ð Þ
2

D ¼ E2 1þv1ð Þ þ E1 3� 4v2ð Þ 1þv2ð Þ½ �

� E2 3� 4v1ð Þ 1þv1ð Þ þ E1 1þv2ð Þ½ �

ð30Þ

For any given pressure distribution p, the vertical
displacement of the surface at z¼ 0 can now be calcu-
lated explicitly using equation (29)

u ¼ IFFT
2 1� v21
� �
E1

Ae�4kh þ Bkhe�2kh þD

k �Ae�4kh � Bk2h2e�2kh
�
þ2Ce�2kh þDÞ

( ) � FFTðpÞ
2
66664

3
77775

ð31Þ

Note that the middle item in the square bracket is
the function of k. For some certain k, it is constant
and one can consider it as the coefficient of the term
FFT(p) for the corresponding value of k. Numerically
both terms are 2D matrices and the operation
<�>will then be element-wise multiplication.
Similar to equation (4), this procedure only gives
results for k 6¼ 0, in other words, the pressure distri-
bution must have no DC component. The usual BEM
procedure reduces to performing the FFT of pressure
distribution, multiplying the result with the analytical
fundamental solution (equation (29)) and performing
inverse FFT to find the displacement field. The inverse
problem of finding pressure for producing given
deformations can be solved by the conjugate graded
method.12 Conjugate graded method is a widely used
numerical algorithm for solution of systems of linear
equations, and it has been used in contact problems

4 Proc IMechE Part J: J Engineering Tribology 0(0)



frequently. A detailed discussion of this method and
its extension in contact mechanics can be found in the
paper.20 Proper preconditioning20 allows keeping the
number of iteration steps of the procedure bounded
by approximately 10 independently of the complexity
of contact configuration and mesh size. These two
steps complete the formulation of BEM for nonadhe-
sive contacts with layered systems. For adhesive con-
tacts, an additional detachment criterion is needed
which is discussed in the remainder of this section.

In each step of an adhesive BEM simulation, the
pressure distribution is calculated in all discretized
grid cells and it has to be decided whether each point
remains in contact or detaches. In Pohrt and Popov13

and Popov et al.,16 it was suggested to make the deci-
sion based on the energy balance criterion of Griffith.21

For a nonperiodic system of a homogenous elastic
half-space and a rigid indenter, this leads to a local
mesh-dependent detachment criterion: A surface elem-
ent at the boundary of the contact loses its contact as
soon as tensile stress in this element exceeds the critical
value given by

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�1��

0:473201 ��

r
ð32Þ

Here �� is the specific work of adhesion between
the indenter and substrate, and E�1 ¼ E1= 1� v21

� �
.

Note that this criterion contains only elastic proper-
ties of the coating. This criterion applies also to
layered systems, as long as the size � of the discrete
cell is much smaller than the thickness of the layer.
Under this assumption, the elastic energy released due
to the detachment of an element is completely ‘‘con-
fined’’ in the coating, thus the detachment criterion
has the same form as in the case of the homogeneous
material9,12 with elastic properties of the coating.

The calculation procedure for numerical simula-
tion of an adhesive contact is basically the same as
for nonadhesive contacts. The main difference is in the
condition for the loss of contact. Instead of requiring
all normal stresses to satisfy p4 0, the condition
p4 � �c is imposed. Because the adhesive solution
is potentially not unique, we can only approach it
from the state of full contact.

If the entire detachment process is considered, then
starting from full contact, the indenter is moved
upwards by a distance �d (displacement-controlled
pull off) in each step. First it is assumed that the con-
tact area does not change, so that all displacements of
contact points are augmented by �d. In the second
stage, the new stress distribution p0 is calculated,
which satisfies the new displacement field (inverse
problem). In the third stage, stresses are checked in
all elements at the boundary of the contact area. If the
tensile stress in an element is larger than the critical
value (32), this element detaches (the stress is set zero),
and a reduced contact area A0 is obtained. The stress
distribution is calculated again with the new contact

area and the contact criterion is checked again. This
iteration procedure is continued until the tensile stress
in each element is smaller than �c in (32) which means
that the correct contact zone and stresses have been
found. Then the simulation continues with the next
pull-off step.

Numerical results and comparison with
analytic solutions

In recent studies,10,22,23 it was shown that the solution
for axis-symmetric adhesive contact problems can be
deduced from the solution of the nonadhesive contact
problem: The critical separation distance dc in adhe-
sive contact is determined by the equation

dks að Þ

da

d 2
c

2
¼ 2�a�� ð33Þ

where ks að Þ is the dependency of the incremental stiff-
ness on the contact radius a for the nonadhesive con-
tact problem. Let us apply this relation to the limiting
case of an elastic layer bonded to a rigid substrate.
The asymptotically exact result in this case with the
additional condition a� h is given by24

ks ¼
�a2

h
~E1 ð34Þ

~E1 ¼ E1
1�v1

1þv1ð Þ 1� 2v1ð Þ
ð35Þ

Substitution into equation (33) provides the follow-
ing critical values for the indentation depth and the
pull-off force.

dc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
2��h

~E1

s
, Fc ¼ ksdc ¼ ��a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~E1��

h

s
ð36Þ

In the frame of the proposed BEM formulation, we
can simulate this limiting case by assuming a very large
ratio of E2=E1. Simulation results of the pull off of a
flat cylindrical indenter are shown in Figure 3 for two
ratios E2=E1 ¼ 105 and E2=E1 ¼ 102 with E1 ¼

2 � 109 Pa, v1¼ v2 ¼ 0:3 and a ¼ 50h. The displacement
and the force are normalized to the critical values (36):
~F ¼ F= Fcj j vs ~d ¼ d= dcj j. As expected, the force–
displacement relation is linear up to the moment of
sudden complete detachment. In the case of E2=E1 ¼

102, this instability point does not match the critical
values (36) ~F ¼ �1 and ~d ¼ �1. This is due to the fact
that the two ratios E2=E1 and a=h are of the same order
of magnitude. Therefore, the asymptotic solution is not
suitable for predicting the detachment. For E2=E1 ¼

105, the condition for the asymptotical solution is satis-
fied, thus it can be used to validate the correctness of
our numerical criterion. Indeed, at the point of sudden
detachment, the normalized numerical values approach
(�1, �1) very closely.
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Indentation of a parabolic indenter

For a thin elastic layer, an asymptotically exact ana-
lytic solution exists for arbitrary indenter shapes pro-
vided the condition a� h is satisfied. In the limiting
case, E2!1, displayed in Figure 4, the solution for
a parabolic indenter reads10,25

F ¼
� ~E1a

2

h

a2

4R
�

ffiffiffiffiffiffiffiffiffiffiffiffi
2��h

~E1

s !
ð37Þ

d ¼
a2

2R
�

ffiffiffiffiffiffiffiffiffiffiffiffi
2��h

~E1

s
ð38Þ

The critical values of force, separation, and contact
radius are given by

dcrit ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
2��h

~E1

s
, acrit ¼

8R2h��

~E1

� 	1=4

, Fcrit ¼ �2�R��

ð39Þ

With dimensionless variables, ~a ¼ a
acrit

, ~d ¼ d
dcritj j

,
~F ¼ F

Fcritj j
, the dependencies of the normal force on

indentation depth and contact radius (37) and (38)
can be written in the form

~F ¼ ~a4 � 2 ~a2 ð40Þ

~d ¼ ~a2 � 1 ð41Þ

These relations are plotted with a black dashed line
in Figure 5(a) and (b). The corresponding numerical
results are shown by the curve with ‘‘plus’’ symbols
for the case of � ¼ 15, which we will define later
in equation (47), now indicating the case of a� h.
The other parameters can be found in the following
discussion. Numerical and asymptotical solutions are
a very close match. The small discrepancy may again
be due to finite values of E2=E1 and a=h used in the
numerical simulation.

In the opposite limiting case of the contact radius
being small compared to the thickness of the layer,
analytical solutions exist in form of asymptotic
series26 in dimensionless parameter " ¼ a=h� 1

F ¼
4E�1a

3

3R
1� "3

8a1
3�

� 	
1�

3R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�E�1a��

p
2E�1a

2

 !
ð42Þ

d ¼
a2

R
1� "

4a0
3�
� "3

16a1
5�
þ "4

32a0a1
9�2

�

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�E�1a��

p
E�1a

2
1� "

2a0
�
� "3

16a1
3�
þ "4

16a0a1
3�2

� 	#

ð43Þ

The coefficients in equations (42) and (43) are
given by

am ¼
�1ð Þm

22m m!ð Þ2

Z 1
0

� uð Þu2mdu ð44Þ

� uð Þ ¼
2KLe�4u � Lþ Kþ 4uKþ 4u2K

� �
e�2u

1� Lþ Kþ 4u2Kð Þe�2u þ KLe�4u
ð45Þ

with coefficients

K ¼
1� n

1þ n 3� 4v1ð Þ
, L ¼

3� 4v2ð Þ � n 3� 4v1ð Þ

3� 4v2ð Þ þ n
,

n ¼
E2 1þv1ð Þ

E1 1þv2ð Þ

ð46Þ

The dependencies (42) and (43) for F and d depend
on the following adhesion parameter24,26

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��R2

E�1h
3

s
ð47Þ

Figure 3. Dependencies of the dimensionless elastic force vs.

dimensionless distance for the adhesive contact of a cylindrical

indenter on an elastic layer.

Figure 4. Adhesive contact between a rigid indenter and an

elastic layer bound to a rigid foundation.
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Numerically we carried out the pull-off simulation
with five different adhesion parameters � ranging
from 0.1 to 15, where the constant parameters are
set as E1 ¼ 109 Pa, E2 ¼ e100 Pa (which means1, cor-
responding to the limiting case of rigid foundation),
�1 ¼ 0:3, h ¼ 2mm, �� ¼ 100 J=m2 and � is varied by
changing the radius of curvature R of the indenter.
The results are shown in Figure 5 in the same dimen-
sionless coordinates as given by equations (40) and
(41). The curves for � ¼ 0:1 and 0.2 corresponding
to small contact radii are compared with the asymp-
totic relations (42) and (43) while that of large param-
eter � are compared with the asymptotic relations (40)
and (41). In both limiting cases, we see very good
agreement between numerical and analytical results.
For intermediate values of � an interesting behavior
can be observed. For example in the case of � ¼ 0:5,
for the small indentation depth when the contact

radius is much smaller than the layer thickness
a� h, a good coincidence can be observed between
numerical (triangles) and analytical results (dash-dot
line). With an increasing indentation depth, the ana-
lytical solution is not valid any more. At large inden-
tation depths, the numerical results approach the
dashed line (the other limiting case a� h) due to a
large contact radius. We thus conclude that numerical
results coincide with all available analytical results in
region of their validity.

Instead of varying the adhesive parameter, let us
now look at the influence of the elastic parameters of
the foundation on the detachment process. The
approximate equations (42) and (43) provide results
with a high accuracy (see Figure 5) for low values of
�. We choose fixed values � ¼ 0:1 and R 	 21mm
with the other parameters identical as in the above
case but at varying values of E2=E1. Results for

Figure 5. Dependencies of dimensionless contact force on dimensionless indentation depth and contact radius, for the adhesive

indentation of a spherical indenter into a layered counter body. Curves for different values of adhesion parameter a are shown.

Dashed lines depict the dependencies (40) and (41) for the case of a>>h. Dash-dot and solid lines are given by expressions (42) and

(43) for the case of a<<h. Symbols are numerical results obtained by the BEM presented in this paper.

Figure 6. (a) Force–displacement and (b) force–contact radius relation for different ratios of E2/E1.
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~F over ~d and ~a are shown in Figure 6 and coincide
with analytical approximation very well for different
values of E2=E1.

From Figure 6 it can be seen that with increasing
ratio of elastic moduli E2=E1 the dependencies
become universal, as the limit of a very rigid half-
space is approached (see Figure 5). Note that in
the case of E2=E1 ¼ 0:05, analytical approximation
(solid line) gives wrong result in the range of a large
contact radius ( ~a4 1:25) due to the limitation a� h,
(see upper limit of Figure 6(b)).

Case studies of flat-ended indenters

Here we present two applications of the above-
validated numerical method: The indentation test of
a square punch on stiff coatings and the adhesive pull
off of a star-shaped indenter. Both are non-axisym-
metric contact problems and analytical solutions are
not available.

Indentation of a square punch on hard coatings

We consider a nonadhesive contact between a square
indenter with length L0 and an elastic half space
coated by a stiff layer (E2=E1 5 1). We put special
focus on the contact area A. For the homogeneous
contact, it is known that the contact area is simply
the area of the full square, A0. However, when we
introduce a stiff coating, an interesting behavior can
be observed in the indentation test. If the stiff layer is
thin and the foundation is relatively soft, then the
indentation leads to the loss of contact in the middle
of the square (Figure 7(a)). Because of linearity,
the contact area is independent of the indentation
depth. Figure 7(a) shows the dependency of A=A0

on the ratio of E2=E1 for the case of h=L0 ¼ 0:5.
It can be seen that the contact area decreases with
decreasing ratio E2=E1 (stiffer layer) and finally
approaches a constant plateau. At the plateau, the
contact zone is limited by the edges of the initial
square. There is a critical value of E2=E1 dividing
the cases of partial and full contact, e.g. E2=E1 	

0:15, for the case of the layer thickness h=L0 ¼ 0:5.
Figure 7(b) shows that this critical value is dependent
of the relative layer thickness: for a thinner layer,
full contact can be achieved with a softer layer mater-
ial. For a thick layer h=L0 ¼ 0:9, the contact is always
complete because the deformation occurs mainly in
the layer. We also find that in the case of a very
thin layer h=L0 ¼ 0:1 another behavior can be
observed: contact exists both in the center and at
edges (see inset picture in Figure 7(b)).

The described multiple contact behavior has been
observed in the analytical27,28 and in numerical stu-
dies29 for indentation problem of a layered medium
by a rigid one-dimensional (infinite long) flat punch. It
was found that the multiple contact appears only in
the case of stiff layer and soft half space, and the
solutions to the full contact, border contact, and
border center contact depends on the material and
geometrical properties, not on the indentation
depth. For the complicated form of indenters (e.g.,
the studied case) an analytical solution is not possible,
but the BEM shows that behavior is similar to that of
simpler geometries.

Adhesive contact of a star-shaped indenter

The adhesive detachment of a flat indenter with odd
shape from a homogeneous elastic half space has been
studied in Popov et al.16 It was found that flat

Figure 7. (a) Dependency of contact area on the ratio of elastic moduli E2/E1. Inset pictures show the contact areas (black color) at

the given ratio. The color picture in the upper left shows a sample contact configuration of the square indenter and the deformed

surface of the layer, with a noncontact bump in the center. (b) Same as (a) but for different values of the relative layer thickness h.
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indenters tend to detach at their outer edges first, in
particular at sharp corners. It was also found that for
most shapes Kendall’s solution for the detachment of
a cylindrical punch30 applies to both force Fc,homo ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�E���a3

p
and displacement dc,homo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2���a=E�
p

at the point of final detachment. In Kendall’s solution
a is radius of the cylinder, while for odd shapes the
incircle of the shape should be chosen. In the follow-
ing, we will normalize with these two quantities and
also set a ¼ aincircle.

We would like to exemplify the application of the
above method by simulation of contacts of star-
shaped indenters. The force–displacement relation
for the homogeneous contact can be found in
Figure 8. Similarly to Figures 5 and 6, the force–
displacement dependencies for the star-shaped inden-
ter were obtained by pull-off BEM simulations. For a
layered system, we set E� ¼ E1= 1� �21

� �
. Figure 8

shows the relations for different layer thicknesses
and elastic moduli of the layers. It can be seen that
both the thickness of the layer and the elastic proper-
ties have strong influence on the detachment behavior.
While the dependencies of adhesive force and dis-
placement vary significantly, the evolution of the con-
tact area is almost universal and resembles the
homogenous case: The detachment begins from
points which are far from the center and at sharp
corners. When the contact area shrinks to the incircle
of the shape, the two surfaces separate suddenly and
completely. Figure 8(b) right shows the evolution of
the contact area corresponding to the six positions in
all five curves.

We find that deviations from this universal evolu-
tion occur only for extreme values of the stiffness
ratio. If the layer is very thin (e.g., h=aincircle ¼ 0:01)

and soft, then we observe a different contact behavior
shown in Figure 9. Here the contact area at the final
detachment is significantly bigger than the incircle.
The softer the layer, the larger the contact area at
detachment will be.

Conclusions

We generalized the BEM proposed in papers12,20 for
normal nonadhesive and adhesive contacts of an elas-
tic half-space coated with a layer having a different
elastic modulus. It is assumed that the layer is bonded

Figure 8. Example of adhesive detachment of a star-shaped flat indenter from a coated elastic half space. (a) Normalized tensile force

vs. normalized lifting displacement. (b) Evolution of the contact zone during pull off (obtained for homogenous material).

Figure 9. Example of adhesive detachment of a star-shaped

flat indenter as in Figure 8(a) but for very thin and soft layers.

Here the evolution of the contact zone deviates from the

universal behavior of moderate parameters and sudden

detachment occurs at larger contact area.
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to the elastic half-space and that the contact between
the layer and the indenter is frictionless. The method
is based on the fundamental solution of load–
displacement of the one-layer system in the Fourier
domain and is valid for linear elastic contact
problems. For nonadhesive contact, it is applicable
for arbitrary loading. We presented the simulation
procedure of the adhesive pull off. The opposite case
of approaching adhesive bodies was not considered in
the present paper. With the suggested BEM formula-
tion, we carried out simulations of adhesive contacts
with cylindrical flat-ended and parabolic indenters
and compared the results with available asymptotic
analytic solutions. We found that numerical results
coincide with all available analytical results in the
regions of their validity. We displayed two sample
applications of non-axisymmetric contacts—the
indentation of a square punch and the pull off of a
star-shaped flat-ended indenter. In both cases, nontri-
vial behavior has been observed.
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