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Nowadays, two-dimensional crystals (2D materials) and structures with quantum dots (0D materials) are con-
sidered as one of the most promising materials for electronics and photonics of the next generation. The basic
method of synthesis of heterostructures with 2D and OD structures is their self-induced formation during the
molecular beam epitaxy. Three epitaxial growth modes are distinguished: Frank-van der Merwe, Volmer-Weber,
and Stranski—Krastanow, that allow one to obtain multi-layered structures with 2D materials, quantum wells and
quantum dots. In this work generalized kinetic model of epitaxial growth of nanostructures by all three me-

chanisms is presented. Comparison of various growth modes is conducted and their peculiarities are pointed out.
Ways to control the properties of obtained 2D and 0D nanostructures are proposed with the help of the estab-

lished model.

1. Introduction

Nowadays, two-dimensional crystals (2D materials) and structures
with quantum dots (0D materials) are considered as one of the most
promising materials for electronics and photonics of the next generation
[1]. Unique properties of 2D materials make it possible to create on
their basis devices of a new generation: topological transistors, high-
sensitive gas sensors, energy-intensive sources of power, thermoelectric
generators, and quantum computers [2,3]. Meanwhile, nanoheteros-
tructures with quantum dots can be used to create highly efficient
photodetectors, solar cells and light-emitting devices [4]. Moreover,
these structures are actively used for surface modification and creation
of various coatings [5]. They may be adopted, for example, for creation
of textured surfaces, anti-reflection coatings or realization of photonic
crystals and microresonators [6,7].

The basic method of synthesis of heterostructures with 2D and 0D
structures nowadays is their self-induced formation during the mole-
cular beam epitaxy. For various applications in modern industries it is
essential to create heterostructures with 2D layers and 0D quantum dots
with different properties that are defined by such parameters as
thickness and roughness of 2D layers, elastic strain distribution, pre-
sence or absence of defects, average size and surface density of
quantum dots [1,2,5].

Three epitaxial growth modes are distinguished: so called
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Frank-van der Merwe, Volmer-Weber, and Stranski—Krastanow [8,9].

The Frank-van der Merwe growth mechanism is observed in auto-
epitaxial systems and heteroepitaxial systems with very low lattice
mismatch between the deposited material and the substrate. In this case
a film grows by two-dimensional mechanism either by emergence of
two-dimensional islands, or due to formation of monoatomic steps [9].
This mode is used for epitaxial synthesis of 2D materials (for instance,
silicene, germanene or stanene) or multi-layered structures with
quantum wells [1,2,5].

In heteroepitaxial systems with non-zero lattice mismatch layer-by-
layer growth occurs at the initial stages. However, thicker deposited
layer has greater elastic energy. Then a tendency appears that aimed to
reduce elastic strain by virtue of nucleation of three-dimensional is-
lands. In these systems the Stranski-Krastanow growth mode is rea-
lized. As a result, 3D clusters form on the substrate covered by thin
wetting layer [9,10].

Finally, the Volmer-Weber mechanism is typical for highly-mis-
matched systems, and island growth takes place directly on the sub-
strate without formation of the wetting layer [10].

These three mechanisms allow researchers to obtain all the spec-
trum of low-dimensional structures: multi-layered structures with 2D
materials, quantum wells and quantum dots.

In spite of the fact that the processes of the epitaxial formation of
two-dimensional layers and quantum dots have been actively studied
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for a long time, there are still many blank spots in this issue, especially
concerning the theoretical description of the processes occurring at
different stages of the growth of two-dimensional structures and na-
noislands. New experimental works are constantly appearing that re-
veal unexpected effects during epitaxy in various modes [11-13].

Nevertheless, for the successful application of structures with 2D
materials and quantum dots, it is necessary to be able to predict the
dependences of the thickness and roughness of two-dimensional layers,
elastic strain distribution, surface density, average size, and size dis-
tribution function of islands in an array of nanoislands on the condi-
tions of their synthesis by molecular beam epitaxy, such as temperature,
growth rate, and amount of deposited material.

In this work generalized kinetic model of epitaxial growth of na-
nostructures by all three mechanisms is presented. Comparison of
various growth modes is conducted and their peculiarities are pointed
out. Ways to control the properties of obtained 2D and OD nanos-
tructures for the purposes of surface modification, deposition of coat-
ings and creation of device-oriented structures are proposed with the
help of the established model.

2. Theory

We will consider the Volmer-Weber mechanism as a limiting case of
the Stranski-Krastanow growth when the critical thickness of the wet-
ting layer tends to zero, and growth according to the Frank-van der
Merwe mechanism as a limiting case of the Stranski—-Krastanow growth
with an unlimited increase in the critical thickness of transition from
two-dimensional to three-dimensional growth. The nucleation of is-
lands practically without the formation of an intermediate two-di-
mensional layer occurs with an increase in the mismatch between the
lattice constants of the deposited material and the substrate. And the
transition to pure two-dimensional growth by the Frank-van der Merwe
mechanism is realized at close values of the lattice constants. Thus, by
varying the value of the mismatch parameter, we can sequentially
consider all possible modes of epitaxial growth.

Similar to considering the formation of islands on a wetting layer in
the Stranski-Krastanow mode [14-16] for establishment of theoretical
models of growth of two-dimensional layers and quantum dots by the
Frank-van der Merwe and Volmer-Weber mechanisms we will find,
first of all, change in free energy of the system during the formation of
an island.

For simplicity we will consider islands with the shape of a spherical
cap with the base diameter L and height H (besides that, this shape is
observed experimentally, for example, in the Ge/SiO,/Si system
[17-19D).

The expression for the change in free energy upon nucleation of an
island containing i atoms may be written in the following form:

AF(I) = AF;u;f (l) + AFqs (l) + AFyy, (l) (€8]

This expression takes into account three competing factors that in-
fluence island formation: the change in surface energy AF;,, elastic
strain relaxation AF,,, and decrease in attraction of atoms to the
substrate AF .

The change in surface energy AFy, is equalto the difference be-
tween the energy of external surface of an island and the energy of a 2D
layer with the area equal to the area of an island base [9,16], and may
be written as a function of a number of atoms in an island i:

ABuy (i) = Ty (o + 1) =yl i, @
where vy, and y are specific surface energies of the base and free surface
of an island, xk = H / L is the island height to diameter ratio, I, is the
distance between atoms on the surface of the substrate, d, is the height
of one monolayer (ML) of deposited material, and a is the geometrical
factor, predetermined by the shape of an island:
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The second term AF,;, in expression (1) is equal to the difference in

elastic energies of i atoms in 2D layer and in an island with respect to
the relaxation of elastic strain [9,16]:

AFyes(D) = —(1 = Z2)2eq1o’do, 4

where Z is the Ratsch-Zangwill elastic strain relaxation coefficient,
showing the decrease in elastic energy of an island with given geometry
[20,21], A is the elastic modulus of the deposited material, and ¢ is the
lattice mismatch between deposited material and the substrate.

The change in the wetting energy AF,,, amounts to the difference of
energies of attraction to the substrate of atoms in 2D layer and in an
island and is defined as

h
lo2doi,
kodO) oot 5)

where W, is the wetting energy density, h is the thickness of two-di-
mensional layer, and kg is the relaxation coefficient (of order of unity),
characterizing exponential decrease in the attraction energy with the
thickness typical for semiconductor materials [10,11]. Dimensionless
value { = (h / h,g — 1) is called 2D layer superstress and characterizes
the level of meta-stability of the system. Here h,, is the equilibrium
thickness of two-dimensional layer [9,22]:

, R4
AFy (i) = d—" exp(—
0

ey = kodom(%].
do(1 — Z)2gy (6)
Thus, the dependence of free energy function AF on the number of
atoms in an island, expressed in the thermal units kgT (where kg is the
Boltzmann's constant, T is the substrate temperature), may be written in
the following form:

AF (i) = Ai*3 — B4, )
where

T all?
A=—[y#2+1) —y]—2,
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From the expression (7) the critical number of atoms in an island i,
may be found:

(3]
3B ) (10)

For i = i, the function AF(i) reaches its maximum. After that acti-
vation barrier of nucleation AF(i) is calculated. Then, using the
Zeldovich formula, the rate of islands nucleation is evaluated [23,24]:
1= W) [AFTGe)

()
1g 27 an

where W™ (i) is the rate of atoms incorporation into an island of critical
size.

To find W™ (i) for islands with the shape of a spherical cap with base
perimeter xt, it is necessary to use the following expression:

QOCB(§+ 1)i1/3

+(i =
WD =97 12)

where D is the coefficient of atoms diffusion on the surface [9,25], and v
is the cut-off parameter of the elastic strain field that shows how far the
elastic strain field propagates from the border of an island and has ty-
pical values of order of 10 [23]. Hereafter, for islands nucleation rate as
a function of the superstress the following formula will be obtained:
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Critical thickness of transition from 2D to 3D growth h, is found by
solving the following equation for the critical superstress {. = (h. / heq—
1) [9,16]:

i@ {C ZF(gc)i
3UT dp 2a(C + DFE) | &2ty

where t,; = h.q / Vis the time of growth of a 2D layer with equilibrium
thickness, and V is the deposition rate.

All further calculations of the kinetics of the formation of quantum
dots by the Volmer—-Weber mechanism are carried out similarly to the
case of growth according to the Stranski-Krastanow mode [9,26], but
with parameters recalculated according to the above formulas.

}2 explF ()] = 1,
16)

3. Results and discussion

When modeling the dependences of the parameters of two-dimen-
sional layers and quantum dot array on the lattice mismatch between
the deposited material and the substrate g, we used the following values
for the parameters of the theoretical model: [, = 0.4 nm, dy = 0.15 nm,
A = 1.5-10'% dyn/cm?, y = yo = 1000 erg/cm? W, = 500 erg/cm?,
k =01,k =1,v=10,Z = 0.7, D(T) = 10~ *exp(—1.2 / kgT) cm?/s.
These values approximately correspond to the parameters for the case
of germanium deposition on a silicon surface [16,23,26].

Fig. 1 shows the dependence of the critical size of an island calcu-
lated with the help of expression (10) on the value of lattice mismatch
for the growth temperature T = 450 °C.

It is seen from Fig. 1 that with increase in ¢q the critical size of an
island i. decreases, that means the lowering of activation barrier of
nucleation AF(i.) and gradual shift from the growth of two-dimensional
layers (the Frank-van der Merwe mechanism) to the nucleation of is-
lands directly on the surface of the substrate (the Volmer-Weber me-
chanism). Areas corresponding to all three possible growth modes are
formally outlined in Fig. 1.

The critical thickness of the two-dimensional layer was estimated by

10°% ¢

c
b

I — Frank—van der Merwe
1T — Stranski—Krastanow
mer—Weber

Critical number of atoms , i

0 2 4 6 8 10 12 14
Lattice mismatch , %

Fig. 1. Dependence of the critical number of atoms in an island on the value of
lattice mismatch for the growth temperature T = 450 °C.
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Fig. 2. Dependence of the critical thickness of the transition from 2D to 3D
growth on the value of lattice mismatch for the growth temperature T = 450 °C.

solving Eq. (16). Calculated values of the critical thickness of the
transition from 2D to 3D growth as function of lattice mismatch be-
tween the deposited material and the substrate are shown in Fig. 2.

For the thicknesses of the two-dimensional layer h < h, a layer-by-
layer growth of one material on the surface of another is realized. With
the increase in the deposited material thickness h > h, a transition
from layer to island growth is observed, which reduces the energy of the
system due to the relaxation of elastic strain [9,23]. In accordance with
Fig. 2, the higher the value of lattice mismatch, the earlier a nucleation
of 3D islands begins.

Using Fig. 2, the borders of ranges of g, corresponding to three
modes of epitaxial growth may be determined more sharply. The range
of values g < 2% is traditionally referred as the Frank-van der Merwe
growth mode in low-mismatched epitaxial systems. The range of values
of mismatch parameter ¢, where h, < 1 ML corresponds to the growth
by the Volmer-Weber mechanism. In this case nucleation of 3D islands
takes place nearly immediately after the start of deposition, during
formation of the first monolayer. Finally, the range of intermediate
values of mismatch parameter g, is characterized by growth in the
Stranski-Krastanow mode, when the nucleation of 3D islands begins
after reaching by 2D wetting layer of certain critical thickness.

From the point of view of device applications, the most interesting
are the dependences of the parameters of the formed structures on the
conditions of their synthesis. Fig. 3 shows the calculated dependences
of the average size and surface density of islands on the lattice
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Fig. 3. Dependences of average size (1) and surface density (2) of islands on the
value of lattice mismatch for the growth temperature T = 450 °C.
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Fig. 4. Comparison of the experimental [32] and calculated values of the cri-
tical thickness of transition to 3D growth for the substrate temperature
T = 400 °C and various mismatch parameters (contents x) in the Ge,Si;_/Si
system.

mismatch for the growth temperature T = 450 °C and growth rate
V = 0.1 ML/s.

In accordance with Fig. 3 the average size of nanoclusters decreases
with an increase in the mismatch parameter, while the surface density
of islands, on the contrary, increases. Therefore, to achieve the highest
densities of quantum dots of the minimum size, the Volmer-Weber
growth mode should be used, which is implemented in highly mis-
matched systems.

As a real material system for comparing the results of numerical
simulations and experimental data, we will consider the processes of
the formation of two-dimensional layers and quantum dots during
molecular beam epitaxy in the germanium-silicon system. The Ge/Si
material system is currently one of the most promising for the devel-
opment of semiconductor nanoelectronics and nanophotonics.
Structures with quantum dots of germanium in silicon are of interest
from the point of view of creating high-speed transistors, photonic
crystals, photodetectors, and solar cells [7,27]. The main method to
create nanoislands is their self-organization during molecular beam
epitaxy [5].

Historically, the first to use for germanium epitaxy were clean si-
licon surfaces with the crystallographic orientations (001) and (111)
[28,29]. The lattice mismatch for germanium on a clean silicon surface
is 4.2%. Therefore, these systems are characterized by the Stranski—K-
rastanow growth mechanism, when a two-dimensional wetting layer of
the deposited material is formed at the first stage, and then 3D islands
nucleate [5,30,31].

In the case of deposition of layers of Ge,Si;., solid solution on a
clean silicon surface, for the Ge contents from x = 1 to x = 0 the lattice
mismatch linearly decreases from 4.2% to zero [32,33]. So, this system
is convenient for observation of gradual increase in the critical thick-
ness of the transition to 3D growth and moving from the Stranski-K-
rastanow mechanism to the Frank-van der Merwe growth mode.

Dependence of the critical thickness of the transition from 2D to 3D
growth on the value of mismatch parameter (that is on the content x) in
the Ge,Si;.,/Si system for the temperature T = 400 °C wascalculated
(Fig. 4). Results of calculations show good agreement with the experi-
mental data [32].

And finally, for the germanium/silica system, the lattice mismatch is
15.2%, which determines the realization of the Volmer-Weber growth
mode in this system [34]. This system is of particular interest to re-
searchers, since they often face the task of minimizing the size of the
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synthesized islands and increasing their density. It is in this system that
islands with an extremely high density of up to 10'2-10'® cm~2 and
sizes < 10 nm were obtained [17-19].

Calculations with the presented model give for the Ge/SiO, system
at the growth temperature T = 400 °C the surface density of quantum
dots N = 1.5 - 10" ecm~2 and the average size of quantum dots
Loy, = 9 nm. These values of the surface density and average size of
islands are in good agreement with the experimental data on the growth
of germanium islands on the oxidized silicon surface [17-19].

Thus, varying the value of the mismatch parameter, we can se-
quentially examine all possible modes of epitaxial growth, and the
approximation of the consideration of the Frank-van der Merwe and
Volmer-Weber mechanisms as the limiting cases of the growth ac-
cording to the Stranski-Krastanow mode is reasonable.

4. Conclusions

As a result, in the presented work the main features of the epitaxial
nucleation and growth of two-dimensional layers and quantum dots by
the Frank-van der Merwe, Stranski—Krastanow, and Volmer—Weber
mechanisms are described. The generalized kinetic model of the growth
of 2D structures and 3D islands by various mechanisms is developed.
Comparison of different growth modes is conducted and their peculia-
rities are pointed out. Ways to control the properties of obtained 2D and
0D nanostructures for the purposes of surface modification, coatings
deposition and creation of device-oriented structures are proposed with
the help of the established model. The dependences of the average size
and surface density of quantum dots on the parameters of their synth-
esis and the value of the lattice mismatch between the deposited ma-
terial and the substrate are obtained. Good agreement between the
calculated values and experimental results confirms the applicability of
the proposed model.
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