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Abstract

An investigation has been undertaken as Soret and

Schmidt outcomes on the mixed convection flow using

Robin boundary conditions. The results use a vertical

channel being kept at constant cold temperature and

concentration at the left wall and hot temperature and

concentration at the right wall. The exchange of heat is

done by help of plates with a fluid. We consider the

external fluid with equal and different temperatures.

This physical problem is solved by using nondimen-

sional parameters with the corresponding boundary

conditions. To find analytical solution, the regular

perturbation series method is used, and for finding the

numerical solution, the well‐known Runge–Kutta meth-

od with shooting technique is employed. Comparison of

the current study is favorable with the previous

published results. The obtained results depend on the

governing parameters such as thermal Grashof number,

solutal Grashof number, Biot numbers, symmetric and

asymmetric wall temperatures, Schmidt number, Soret

number, and Brinkman number. An influence of these

parameters on the fields of velocity, temperature, and

concentration is reported. Further, the numerical results

for the Nusselt number, mean value of the velocity,

dimensionless bulk temperature, skin friction, and

molecular diffusion coefficient are tabulated for differ-

ent parametric conditions and explained. For small
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value of Brinkman number, the obtained values agree

with other published results for all considered cases.
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1 | INTRODUCTION

The induced buoyancy flows in ducts deserve wide attention in the engineering section owing
to their usefulness in a huge number of thermally controlled devices such as the heat
exchangers, electronics, solar collectors, and others. In the passive‐ or semipassive‐controlled
systems, purely free and mixed convection is done. Both the natural and forced convection heat
transfer mechanisms take place in the heat transfer situations and that phenomenon is called
mixed convection. The internal flow of fluid is either upward or downward in the vertical
channels. The flow of mixed convection in vertically heated channels happens in various
technical apparatus including internal cooling system by turbine rotor blade and cooling of the
nuclear reactors and electronic components. Tao1 worked on using the vertical channels flow of
fully developed mixed convection at the wall temperature. Aung and Worku2,3 studied the flow
of fluid through the vertical channel by the theory of combined free and forced convention and
they also assumed that temperature is asymmetric at the walls of the channel. Aung and
Worku,3 Barletta,4 and Umavathi et al5 worked on the mixed convection flow of fluid at
symmetric wall conditions in vertical channels. Later, Prathap Kumar et al6-9 studied mixed
convection flows in a vertical channel filled with immiscible fluids.

Recently, in the presence of chemical reaction, the coupled heat and mass transfer has many
processes. Distribution of temperature and moisture in agricultural field in drying processes,
water body evaporation, fruit tree growing, freezing on crops, the energy transfer in the wet
cooling tower, etc characterize a simultaneously transfer of heat and mass. In many industries,
this type of flow can be observed. By the moving conducting fluid, the electrical energy is
extracted in the power industry using the method as generating electric power. By the
homogeneous and heterogeneous processes, the chemical reactions are modeled. That depends
on an interface or a single‐phase volume reaction. In a given phase, the one and only one
homogeneous reaction occurs uniformly. Following the work of Das et al,10 Muthucumarswa-
my and Ganesan11 and Prathap Kumar et al12,13 worked on the effect of first‐order chemical
reaction on mixed convection flow of multifluid in vertical channel. Umavathi and Jaweriya14

analyzed the concentration effects on mixed convective flow of a micropolar fluid in a vertical
duct. Umavathi and Syed15 studied the influence of thermophysical variable properties on
liquid circulation in a duct using the first‐order chemical reaction.

In the case of chemical engineering and industrial section, the transfer of mass and the
multicomponent fluid is involved from point to point. By the concentration and
temperature gradient, energy flux is generated. The Dufour effect is energy flux obtained
by the concentration variation and the Soret effect is the mass flux generated by
the temperature gradient. When the temperature and concentration gradients are high, the
mentioned effects are very significant. Li et al16 studied, using the implicit finite volume
method, the strong endothermic chemical reacting flow in a porous medium effected by
Soret and Dufour phenomena. They found that the Soret and Dufour influences are very

2 | UMAVATHI ET AL.



strong for high initial temperature and very low conventional velocity of the feeding gas.
Sheremet17 investigated, numerically, double‐diffusive natural convection in a cavity with
solid walls and local energy and contaminant sources under the impacts of Soret and
Dufour phenomena. It was observed that a growth of the Soret parameter characterizes a
rise of the average Nusselt number at the heat source and a reduction of the mass transfer
coefficient at the contaminant source.

Following the works of Kandasamy et al,18,19 Seddeek20 worked on the chemical reaction by
heat and mass transfer and on magnetohydrodynamics (MHD) free convective heat generation
by thermal radiation and by buoyancy effects. After this, Seddeek and co‐workers21-23 pointed
out the MHD convection flow along the chemical reaction, variable viscosity, and thermal
radiation. Chamkha and Ben‐Nakhi24 studied MHD flow along vertical permeable surface in
porous medium with the presence of Soret and Dufour effect, while Pal and Mondal25 and
Shivaiah and Rao26 studied the non‐Darcy unsteady MHD mixed convection with heat and
mass transfer in the presence of Soret and Dufour effects. Zheng et al27 and Cheng28 worked on
the Soret and Dufour effects on MHD flow and mixed convection with constant wall
temperature and concentration. Also, Devi and Devi29 studied the Soret and Dufour influences
on magnetic slip motion combined with thermal radiation over a porous rotating disk. Rashad
and Chamkha30 pointed out the porous media natural convection flow through the heat and
mass transfer with effects of Soret and Dufour. Shivaiah and Rao,31 and Makinde32 investigated
unsteady MHD convection with the influences of Soret, Dufour, thermal radiation, and
chemical reaction. Rashidi et al33 discussed the viscous, laminar mixed convection boundary
layer flow over a horizontal plate with chemical reaction. A very new concept of group theory
was employed to determine the invariant solutions of the conservation equations. Recently,
Sarwar and Rashidi34 investigated the analytical approximate solutions for the Caputo‐type
fractional‐order two‐term diffusion, wave‐diffusion, and telegraph equations. Homotopy
method was used by Rashidi et al35 and Hany and Rashidi36 to study the axisymmetric
unsteady two‐dimensional flow of nonconducting, incompressible second grade fluid between
two circular plates and for the micropolar flow in a porous channel with mass injection for
different values of Reynolds number, respectively. It is interesting to note that Rashidi et al37

were also successful in employing the homotopy perturbation method to solve the nonlinear
time function for the equations of motion based on the Von‐Karman theory for a rectangular
isotropic plate considering the effect of shear deformation and rotary inertia. Makinde and
Olanrewaju38 worked on the effects of Soret and Dufour on analyzed unstudied mixed
convection.

Wibulswal,39 Lyczkowski et al,40 and Javeri41 expressed the thermal entrance region of a
rectangular channel with the convective energy transport under laminar mode for the first kind
of thermal boundary condition, while Hicken42 and Sparrow and Siegel43 studied the boundary
condition of the second kind, expressed by the prescribed wall heat flux.

Javeri44 worked on the boundary condition of third kind for heat transfer in laminar regime.
Also, Javeri45 explored the energy transport in a rectangular channel under the third kind of
thermal boundary condition at the wall. Later, Zanchini46 analyzed the vertical channel mixed
convection flow with the boundary condition of third kind.

In the present study, the authors analyzed the viscous fluid flow, heat and mass transfer
characteristics through the vertical channel employing the boundary conditions of third kind.
These results can be applicable in many industries, transportation network, biomedical section,
and in electronics branches.
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2 | MATHEMATICAL FORMULATION

Here we contemplate the laminar flow in the parallel plate vertical channel with incompressible
fluid. The X‐axis lies on the axial plane and it shows direction of gravity. The Y‐axis lies along
the perpendicular to the walls. The vertical channel occupies the region –L/2≤ Y≤ L/2, which is
shown in Figure 1. The flow is fully developed, steady‐state, and incompressible. The flow is
driven by buoyancy due to temperature and concentration gradients in a vertical channel.
Viscous heating is also included in the model. Thermal dispersion, cross‐diffusion, and
stratification effects are neglected. In addition, the concentration of the solute constituent in the
solution at the left wall is C1 and at the right wall is C2, in a way, such that C2≥ C1. An (X, Y) co‐
ordinate system is employed and the origin is located at the mid‐plane of the channel. The
channel walls are infinite in the X‐direction. Therefore the flow becomes one‐dimensional along
the X‐axis, and hence velocity is a function of Y‐co‐ordinate only. The thermal conductivity,
thermal diffusivity, dynamic viscosity, and thermal expansion coefficient of fluids are
considered to be fixed. The Boussinesq approximation is stated as

ρ ρ β T T β C C= [ ( − ) − ( − )].T C0 0 0 (1)

Again, considering the equations of continuity with ∇⋅U = 0, gives

∂

∂

U

X
= 0. (2)

Component U depends only on Y‐co‐ordinate. Then considering the balance equation for X‐
axis and for Y‐axis, following can be obtained (following Zanchini,46 Umavathi et al,14,15 and
Muthucumaraswamy and Ganesan11)

∂

∂
β g T T β g C C

ρ

P

X
ν
d U

dY
( − ) + ( − ) −

1
+ = 0,T C0 0

0

2

2
(3)

X

Y

1T T 2T T

–0.5Y L 0.5Y L

g

Flow direction

1C C

= =

=

==

=

2C C

FIGURE 1 Schematic diagram [Color figure can be viewed at wileyonlinelibrary.com]
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∂

∂

P

Y
= 0. (4)

As a result, P p ρ gX= + 0 . By Equation (4), it is shown that P depends only on X. As a result,
Equation (3) can be rewritten as

T T
ρ gβ

dP

dX

μ

ρ gβ

d U

dY

β

β
C C( − ) =

1
− − ( − ).

T T

C

T

0

0 0

2

2 0 (5)

Equation (5) implies that

∂

∂

T

X ρ gβ

d P

dX
=

1
,

T0

2

2
(6)

∂

∂

∂

∂

T

Y ρ gβ

d U

dY

β

β

C

Y
= −

1
− ,

T

C

T0

3

3
(7)

∂

∂

∂

∂

T

Y ρ gβ

d U

dY

β

β

C

Y
= −

1
− .

T

C

T

2

2
0

4

4

2

2
(8)

Two walls exchange the heat by convection with external fluid and its thickness is very
negligible. At Y=−L/2 and Y= L/2, we have h1 and h2 as the external heat transfer coefficients.
The uniform reference temperatures are T1 and T2 of the fluid occupying the region Y<−L/2
and Y> L/2, respectively. The temperature boundary conditions are given as (T2≥ T1)

∂

∂
k
T

Y
h T T X L− = [ − ( , − /2)],

L− /2
1 1 (9)

∂

∂
k
T

Y
h T X L T− = [ ( , /2) − ].

L/2
2 2 (10)

Equations (9) and (10) can be rewritten using Equation (7)

⎛
⎝⎜

⎞
⎠⎟

d U

dY

β gh

kυ

kβ

Tβ
T T X L= 1 − [ − ( , − /2)],

Y L

T C

T

3

3
=− /2

1
1 (11)

⎛
⎝⎜

⎞
⎠⎟

d U

dY

β gh

kυ

kβ

Tβ
T X L T= 1− [ ( , /2) − ].

Y L

T C

T

3

3
= /2

2
2 (12)

Equations (11) and (12) show that ∂ ∂T X/ = 0 at both walls. It shows that the term ∂ ∂T X/ is
independent on Y‐co‐ordinate. It led to the conclusion that ∂ ∂T X/ is zero everywhere.
Therefore, temperature T depends only on Y; then
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dP

dX
A= , (13)

where A is constant. The energy balance equation for viscous dissipation can be stated as:

⎜ ⎟⎛
⎝

⎞
⎠

d T

dY

υ

αC

dU

dY
= − .

p

2

2

2

(14)

The concentration equation is:

d C

dY

k

T

d T

dY
= − .

2

2

2

2
(15)

From Equations (8) and (14), we have another equation for component U

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

d U

dY

β g

αC

dU

dY

β gk

αC T

dU

dY
= − .T

p

C

p

4

4

2 2

(16)

Boundary conditions for the velocity are

U L U L(− /2) = 0, ( /2) = 0. (17)

From Equation (5), Equations (11) and (12) can be rewritten as

d U

dY

h

k

d U

dY

Ah

μk

β gh

υk
T T

β gh

kυ
C C− = − + [ − ] + [ − ],

Y L Y L

T C
3

3
=− /2

1
2

2
=− /2

1 1
1 0

1
1 0 (18)

d U

dY

h

k

d U

dY

Ah

μk

β gh

υk
T T

β gh

kυ
C C+ = + [ − ] + [ − ].

Y L Y L

T C
3

3
= /2

2
2

2
= /2

2 2
0 2

2
2 0 (19)

Equation (15) using Equation (14) becomes

⎜ ⎟⎛
⎝

⎞
⎠

d C

dY

kυ

TαC

dU

dY
= .

p

2

2

2

(20)

The boundary conditions on the concentration are

C L C C L C(− /2) = , ( /2) = .1 2 (21)

The dimensionless parameters are
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u
U

U
θ

T T

T
y

Y

D
GR

gβ TD

υ

U D

υ

Br
U μ

k T
R

T T

T
GR

gβ TD

υ

GR GR

Bi
h D

k
Bi

h D

k
S

Bi Bi

Bi Bi Bi Bi
U

AD

μ

ϕ
C C

C
Sc

υ

D
Sr

k T D

T C υ

= , =
−

Δ
, = , =

Δ
, Re = ,

=
Δ

, =
−

Δ
, =

Δ
, Λ =

Re
, Λ =

Re
,

= , = , =
+ 2 + 2

, = −
48

,

=
−

Δ
, = , =

Δ

Δ
.

T
T

T C
C T C

m

m

0

0
3

2

0

0
2

2 1
3

2 1 2

1
1

2
2 1 2

1 2 1 2
0

2

0

(22)

where D= 2L is the hydraulic diameter, while velocity and temperature references are written
as

⎛
⎝⎜

⎞
⎠⎟U

AD

μ
T

T T
S

Bi Bi
T T C

C C
= −

48
, =

+

2
+

1
−

1
[ − ], =

+

2
.0

2

0
1 2

1 2
2 1 0

1 2 (23)

The reference temperature field difference is:

T T T if T TΔ = − < ,2 1 1 2 (24)

T
ν

C D
if T TΔ = = ,

p

2

2 1 2 (25)

C C CΔ = − .2 1 (26)

Therefore, the value of the dimensionless parameter RT can be either 0 or 1. More precisely,
RT equals 1 for asymmetric fluid temperatures, T T<1 2, and equals 0 for symmetric fluid
temperatures, T T=1 2. The dimensionless equations can be considered in the following form

⎛
⎝⎜

⎞
⎠⎟⋅ ⋅

d u

dy
Sr Sc Br

du

dy
= (Λ − Λ )

4

4 1 2

2

(27)

with velocity boundary conditions

u u(−1/4) = (1/4) = 0, (28)

⎛
⎝⎜

⎞
⎠⎟

d u

dy Bi

d u

dy

R S

Bi
−

1
= −48 +

Λ

2
1 +

4
+
Λ

2
,

y

T
2

2
1

3

3
=−1/4

1

1

2 (29)

⎛
⎝⎜

⎞
⎠⎟

d u

dy Bi

d u

dy

R S

Bi
+

1
= −48 −

Λ

2
1 +

4
−
Λ

2
,

y

T
2

2
2

3

3
=1/4

1

2

2 (30)
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⎛
⎝⎜

⎞
⎠⎟⋅ ⋅

d ϕ

dy
Br Sr Sc

du

dy
+ = 0,

2

2

2

(31)

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ϕ ϕ−

1

4
= −

1

2
,

1

4
=
1

2
. (32)

Similarly, Equations (14) and (22) yield

⎛
⎝⎜

⎞
⎠⎟

d θ

dy
Br

du

dy
+ = 0,

2

2

2

(33)

while from Equations (5) and (22), one obtains

⎛
⎝⎜

⎞
⎠⎟θ

d u

dy
ϕ= −

1

Λ
48 + + Λ .

1

2

2 2 (34)

3 | SOLUTIONS

Equations (27) to (32) are highly nonlinear. We resort to approximate analytical solutions using
regular perturbation series method, whose solutions are valid for small values of Brinkman
number. Assuming Brinkman number to be the perturbation parameter, the solution of
Equations (27) to (32) can be written as

⋅ ⋅ ⋯u y u y Br u y Br u y( ) = ( ) + ( ) + ( ) +
0 1

2
2 (35)

⋅ ⋅ ⋯ϕ y ϕ y Br ϕ y Br ϕ y( ) = ( ) + ( ) + ( ) +
0 1

2
2 (36)

Then we got the solutions of Equations (27) to (30) using Equations (35) and (36) and equating
the like powers of Br, which leads to a sequence of the unknown function ( )u yn as follows.

3.1 | Solution to Zeroth‐order BVP

Equating the zero power coefficient of Brinkman number n= 0, we obtain

d u

dy
= 0

4
0

4
(37)

and the corresponding boundary conditions are

u u(−1/4) = (1/4) = 0,0 0 (38)

⎛
⎝⎜

⎞
⎠⎟

d u

dy Bi

d u

dy

R S

Bi
−

1
= −48 +

Λ

2
1 +

4
+
Λ

2
,

y y

T
2

0

2
=−1/4 1

3
0

3
=−1/4

1

1

2 (39)
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⎛
⎝⎜

⎞
⎠⎟

d u

dy Bi

d u

dy

R S

Bi
+

1
= −48 −

Λ

2
1 +

4
−
Λ

2
.

y y

T
2

0

2
=1/4 2

3
0

3
=1/4

1

2

2 (40)

The solution of Equation (37) using boundary conditions (38) to (40) is given by

u y
C y C y

C y C( ) = −
6

−
2

− − .0
1

3
2

2

3 4 (41)

Then solutions for whole series at n> 0 are

∑ ⋅ ⋅
∞

d u

dy
Sc Sr

du

dy

du

dy
= (Λ − Λ ) ,n

n

j n j
4

4
=0

1 2
− −1 (42)

with the boundary conditions

u u(−1/4) = (1/4) = 0,n n (43)

d u

dy Bi

d u

dy
−

1
= 0,n

y

n

y

2

2
=−1/4 1

3

3
=−1/4

(44)

d u

dy Bi

d u

dy
+

1
= 0.n

y

n

y

2

2
=1/4 2

3

3
=1/4

(45)

Then the solution is in Equation (36) from Equation (31) by equating the like powers of
Brinkman number. Thus, we obtain the sequence for this problem and yield the function ϕ y( )n

d ϕ

dy
= 0

2
0

2
(46)

with the boundary conditions

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ϕ ϕ−

1

4
= −

1

2
,

1

4
=
1

2
.0 0 (47)

The solution of Equation (46) is given by

ϕ C y C= +0 5 6 (48)

Then the whole recurrence relations for every n> 0 is

∑ ⋅ ⋅
∞d ϕ

dy
Sc Sr

du

dy

du

dy
=n

n

j n j
2

2
=0

− −1
(49)

with the boundary conditions
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FIGURE 2 Velocity profiles for Λ1 =−500, −1000, 0.0, 500, 1000 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 A, Temperature profiles for Br= 0, 0.5, 1.0. B, Temperature profiles for Br= 0, 0.5, 1.0
[Color figure can be viewed at wileyonlinelibrary.com]
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⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ϕ ϕ−

1

4
=

1

4
= 0.n n (50)

From Equation (41), we obtained the function as u y( )0 and the solutions for Equations (42)
to (45) are u y n( ), > 0n . The solution for θ from Equations (34), (41), and (48) is

⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑⋅ ⋅

∞

θ y R S y y S S
Bi

Br ϕ
d u

dy
( ) = 2 −

1

Λ
2Λ (1 − ) +

Λ

2
1 − 1 +

4
+ Λ + .T

n

n
n

1
2

2

1 =1

2

2

2
(51)

3.2 | Nusselt number, skin friction, and Sherwood number

The definition for Nusselt number is given as follows:

Nu
D

R T L T L R T

dT

dY
=

[ ( /2) − (− /2)] + (1 − )Δ
,

T T Y L
1

=− /2

(52)

Nu
D

R T L T L R T

dT

dY
=

[ ( /2) − (− /2)] + (1 − )Δ
.

T T Y L
2

= /2

(53)

FIGURE 4 A, Velocity profiles for Λ1 = 1, 5, 10, 20. B, Temperature profiles for Λ1 = 1, 5, 10, 20. C, Velocity
profiles for Λ1 = 1, 5, 10, 20. D, Temperature profiles for Λ1 = 1, 5, 10, 20 [Color figure can be viewed at
wileyonlinelibrary.com]
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Equations (53) and (52) rewritten using Equation (22) are

Nu
D

R θ θ R

dθ

dy
=

[ (1/4) − (−1/4)] + (1 − )
,

T T y

1

=−1/4

(54)

Nu
D

R θ θ R

dθ

dy
=

[ (1/4) − (−1/4)] + (1 − )
.

T T y

2

=1/4

(55)

Similarly, skin friction and Sherwood numbers in dimensionless form become:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟τ

du

dy
τ

du

dy
= , =

y y

1

=−

2

=1
4

1
4

(56)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Sh

dϕ

dy
Sh

dϕ

dy
= , = .

y y

1

=−

2

=1
4

1
4

(57)

FIGURE 5 A, Velocity profiles for Λ2 = 1, 10, 20, 30. B, Temperature profiles for Λ2 = 1, 10, 20, 30. C,
Velocity profiles for Λ2 = 1, 10, 20, 30. D, Temperature profiles for Λ2 = 1, 10, 20, 30 [Color figure can be viewed at
wileyonlinelibrary.com]
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3.3 | Mean velocity and bulk temperature

The average velocity ū and the bulk temperature θb

∫u u dy¯ = 2 ,
−1/4

1/4
(58)

∫ ⋅θ
u

u θ dy=
2

¯
.b

−1/4

1/4
(59)

FIGURE 6 A, Velocity profiles for Sc= 0, 2, 4, 6. B, Temperature profiles for Sc= 0, 2, 4, 6. C,
Concentration profiles for Sc= 0, 2, 4, 6. D, Velocity profiles for Sc= 0.5, 1.0, 1.5, 2.0. E, Temperature profiles for
Sc= 0.5, 1.0, 1.5, 2.0. F, Concentration profiles for Sc= 0.5, 1.0, 1.5, 2.0 [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | NUMERICAL SOLUTIONS

By the regular perturbation method, all above results are obtained and they are valid for small
Brinkman numbers as perturbation parameter. The solution is valid to whole series by using
numerical methods as using Runge–Kutta fourth‐order integration scheme. Validity of the
numerical scheme is justified by comparing the analytical solutions with the numerical
solutions and good agreement is found for small values of the perturbation parameter.

FIGURE 7 A, Velocity profiles for Sr= 0, 2, 4, 6. B, Temperature profiles for Sr= 0, 2, 4, 6. C, Concentration
profiles for Sr= 0, 2, 4, 6. D, Velocity profiles for Sr= 0.5, 1.0, 1.5, 2.0. E, Temperature profiles for Sr= 0.5, 1.0,
1.5, 2.0. F, Concentration profiles for Sr= 0.5, 1.0, 1.5, 2.0 [Color figure can be viewed at wileyonlinelibrary.com]
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5 | RESULTS AND DISCUSSION

In this part, the results on the buoyancy force and viscous dissipation containing pure viscous
fluid for combined effects of the heat and mass transfer within the channel are discussed. The
Robin boundary conditions are used for the mixed convection flow. The impacts of major
parameters such as thermal Grashof number, mass Grashof number, Schmidt number, Soret
number, Brinkman number, symmetric and asymmetric wall temperatures on the heat and
mass flow for equal and unequal Biot numbers are analyzed numerically and shown
graphically. The equations describing the liquid flow and energy transport are nonlinear and

FIGURE 8 A, Velocity profiles for Br= 0, 0.1, 0.5, 1.0. B, Temperature profiles for Br= 0, 0.1, 0.5, 1.0. C,
Concentration profiles for Br= 0, 0.1, 0.5, 1.0. D, Velocity profiles for Br= 0, 0.1, 0.3, 0.5. E, Temperature profiles
for Br= 0, 0.1, 0.3, 0.5. F, Concentration profiles for Br= 0, 0.1, 0.3, 0.5 [Color figure can be viewed at
wileyonlinelibrary.com]
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hence the closed form solutions are not possible to find. Hence approximate systematic
solutions are obtained using perturbation parameter as Brinkman number Br, but for higher
values of Brinkman number, such a solution cannot be applied. To relax this condition on
Brinkman number, the numerical results using Runge–Kutta method with shooting technique
were obtained. Comparing the solutions which were obtained by perturbation method and
Runge–Kutta method with shooting algorithm is valid.

For the negligible viscous dissipation and buoyancy forces, the exact solutions obtained.
Heat is transferred by pure conduction at Br= 0 with (RT= 1) and temperature is uniform. As
shown in Figure 2, the velocity at Λ1 = 500, 1000 at cold wall flow is reversal for upward flow
Λ1, and it indicates that at the cold wall, flow reversal occurs by buoyancy forces. At y‐axis with
Λ1 =−500, −1000, it shows that at hot wall the reversal flows are obtained.

In the absence of thermal Grashof number, for different values of Br, the values of the
temperature field θ are obtained and are depicted in Figure 3A and 3B for Bi1 = Bi2 and for Bi1≠ Bi2.
Since the negligible buoyancy force results in a purely forced convection, therefore, the plots for the
field is linear and there is no dissipation (Br=0) for Bi1 = Bi2 and for Bi1≠ Bi2 as represented in
Figure 3A and 3B. As the Brinkman number increases, temperature increases for both Bi1 = Bi2 and
for Bi1≠ Bi2. However, there is a distinction of profiles for equal and unequal Biot numbers. This is
due to the fact that when Bi1 =Bi2 = 10, one obtains S=0.61 and for Bi1 = 1, Bi2 = 10 the values of
S=0.25. That is to say that for unequal Biot numbers, T(–L/2) >T(L/2) and hence the temperature
field is very influenced at the cold wall for unequal Biot number.

FIGURE 9 A, Velocity profiles for Λ1 = 1, 5, 10, 20 with RT= 0. B, Temperature profiles for Λ1 = 1, 5, 10, 20
with RT= 0. C, Velocity profiles for Λ1 = 1, 5, 10, 20 with RT= 0. D, Temperature profiles for Λ1 = 1, 5, 10, 20
with RT= 0 [Color figure can be viewed at wileyonlinelibrary.com]
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For asymmetric wall heating condition, the effects of thermal Grashof number Λ1 (Figure 4A‐D)
and mass Grashof number Λ2 (Figure 5A‐D) on the velocity field and temperature field for
both Bi1 = Bi2 and for Bi1≠Bi2 are displayed. If the thermal Grashof number Λ1 increases, both
the velocity and temperature fields are enhanced for both Bi1 = Bi2 and Bi1≠ Bi2 as seen in
Figure 4A–D. The thermal Grashof number Λ1 acts as the driving force in the balance equation
which results in the increase in the velocity field or velocity gradient. If the effects of viscous
dissipation increase, it increases the temperature field. Here also the temperature profiles for
Bi1≠Bi2 show significant role at the cold wall as T(–L/2) >T(L/2). As the mass Grashof number Λ2

increases, the velocity and temperature fields decrease at the cold wall and increase at the hot wall
for both cases Bi1 =Bi2 and Bi1≠Bi2. Also the mass Grashof number effect is not very significant on
the flow profiles. However, for Bi1≠Bi2 the effect of mass Grashof number is noticeable at left wall
distinctly.

Figure 6A–F illustrate the response of velocity, temperature, and concentration profiles for
equal and unequal Biot numbers to different values of Schmidt number Sc. The Schmidt
number is a fundamental parameter in species diffusion (mass transfer), which is defined as
Sc υ D= / m; therefore on the velocity, temperature, and concentration field, Schmidt effect is
more relevant for mass and momentum. When Sc> 1, it shows that momentum diffusion rate
dominates to the rate of species diffusion, the opposite applies for Sc< 1 and for Sc= 1, both the
rates are as momentum and concentration diffusivity equal. It is observed from Figure 6A–C
that as the Schmidt number increases, the velocity, temperature, and concentration increase

FIGURE 10 A, Velocity profiles for Λ2 = 1, 10, 20, 30 with RT= 0. B, Temperature profiles for Λ2 = 1, 10,
20, 30 with RT= 0. C, Velocity profiles for Λ2 = 1, 10, 20, 30 with RT= 0. D, Temperature profiles for Λ2 = 1, 10,
20, 30 with RT= 0 [Color figure can be viewed at wileyonlinelibrary.com]
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and its effect is dominant in the center of the channel. Therefore, the mass transfer exerts
interplay with the flow field and the distribution of species in material can control via the
Schmidt number. The results are similar to the results obtained by Shamshuddin et al47 who
have studied heat and mass transfer for micropolar fluid. However it is interesting to note that
when the temperature at the cold wall exceeds the temperature at the hot wall, reversal effect is
observed on the flow structure as seen in Figure 6D‐F. That is to say that if the Schmidt number
increases, then the velocity and temperature fields are suppressed. The concentration field
decreases at the left plate from y=−0.25 to 0.03 and increases from y= 0.03 to 0.25. Hence one
can conclude that momentum and concentration diffusivity rates are not only the factors, which
account for the velocity, temperature, and mass transport but also the wall heating conditions
significantly affect the flow field and the distribution of species within materials.

Figure 7A–F presents the effect of thermodiffusive parameters, that is, Soret number on the
velocity, temperature, and concentration fields for both cases, namely, Bi1 = Bi2 and Bi1≠ Bi2.
The small light and large heavy molecules are separated under temperature gradient when the
effect of Soret arises. This type of effect is most important, where very large temperature
gradient in form of more than one chemical species is present. This type of flow can be obtained
in polymer material possessing, chemical reactors, and energy generators. The effects of both
Soret number Sr and Schmidt number Sc on the flow field for Bi1 = Bi2 and Bi1≠ Bi2 are similar.

TABLE 1 Velocity values for Br= 0, 0.01, 0.5, Sr= 0.5, Sc= 1.0, Λ1 = 5, Λ2 = 5, and RT= 1 with the series
expansion is up to two terms only

y

Bi Bi= = 101 2

u u Br u= +0 1

Br= 0.0 Br= 0.01 Br= 0.5

Analytical Numerical Analytical Numerical Analytical Numerical

−0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

−0.15 0.94285714 0.94285714 0.94439116 0.94474602 1.01955790 1.06153101

−0.05 1.43142857 1.43142857 1.43375111 1.43430160 1.54755535 1.61234542

0.05 1.44857143 1.44857143 1.45089839 1.45144941 1.56491971 1.63032498

0.15 0.97714286 0.97714286 0.97868607 0.97904227 1.05430378 1.09736718

0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

y

Bi Bi= 1.0, = 101 2

u u Bru= +0 1

Br= 0.0 Br= 0.01 Br= 0.5

Analytical Numerical Analytical Numerical Analytical Numerical

−0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

−0.15 0.94687500 0.94687500 0.95107542 0.95145802 1.15689620 1.45926542

−0.05 1.43343750 1.43343750 1.43942533 1.44001411 1.73282895 2.16913498

0.05 1.44656250 1.44656250 1.45222051 1.45280675 1.72946301 2.14641314

0.15 0.97312500 0.97312500 0.97666605 0.97704372 1.15017745 1.41288117

0.25 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
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TABLE 2 Velocity values for Br= 0, 0.01, 0.5, Sr= 0.5, Sc= 1.0, Λ1 = 5, Λ2 = 5, and RT= 1 with 13 terms of
the series expansion

y

Bi Bi= = 101 2

u u Br u Br u Br u Br u Br u Br u

Br u Br u Br u Br u Br u Br u

= + + + + + + +

+ + + + +

0 1
2

2
3

3
4

4
5

5
6

6

7
7

8
8

9
9

10
10

11
11

12
12

Br= 0.0 Br= 0.01 Br= 0.5

Analytical Numerical Analytical Numerical Analytical Numerical

−0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

−0.15 0.94285714 0.94285714 0.94099251 0.94474602 0.86417250 1.06153101

−0.05 1.43142857 1.43142857 1.42859372 1.43430160 1.31179292 1.61234542

0.05 1.44857143 1.44857143 1.44573261 1.45144941 1.32875501 1.63032498

0.15 0.97714286 0.97714286 0.97526971 0.97904227 0.89807094 1.09736718

0.25 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

y

Bi Bi= 1.0, = 101 2

Br= 0.0 Br= 0.01 Br= 0.5

Analytical Numerical Analytical Numerical Analytical Numerical

−0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

−0.15 0.94687500 0.94687500 0.94501037 0.95145802 0.86819041 1.45926542

−0.05 1.43343750 1.43343750 1.43060265 1.44001411 1.31380192 2.16913498

0.05 1.44656250 1.44656250 1.44372368 1.45280675 1.32674615 2.14641314

0.15 0.97312500 0.97312500 0.97125185 0.97704372 0.89405313 1.41288117

0.25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

TABLE 3 Velocity and temperature values for Br= 0.0001, Sr= 0.0, Sc= 0.0, Λ1 = 100, Λ2 = 0, and RT= 1 in
comparison with data of Zanchini41

y

Bi Bi= = 101 2

u u Br u Br u Br u Br u Br u Br u

Br u Br u Br u Br u Br u Br u

= + + + + + + +

+ + + + +

0 1
2

2
3

3
4

4
5

5
6

6

7
7

8
8

9
9

10
10

11
11

12
12

Velocity Temperature

Zanchini Present model Zanchini Present model

Analytical Numerical Analytical Numerical

−0.25 0.00000000 0.00000000 −0.35714178 −0.35703534

−0.15 0.81712412 0.81752467 −0.21429491 −0.21410690

−0.05 1.36854296 1.36916041 −0.07143830 −0.07122816

0.05 1.51140007 1.51202552 0.07141881 0.07163487

0.15 1.10283833 1.10325603 0.21427638 0.21449135

0.25 0.00000000 0.00000000 0.35713677 0.35728440
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To know the effects of viscous dissipation on the flow, the Brinkman number is varied and the
results are displayed graphically in Figure 8A–F for the concentration and flow fields for both
Bi1 = Bi2 and Bi1≠ Bi2. As the Brinkman number increases, then velocity and temperature fields
are promoted. This result is very casual because when Brinkman number Br increases, then both
fields, namely, temperature and velocity, also increase for two considered cases for the Biot
numbers. However, the effect of Brinkman number at the cold wall is highly significant compared
to the hot wall for the case of T(–L/2) > T(L/2). For equal Biot numbers, Figure 8C shows that as
Br increases, the concentration decreases from y=−0.25 to 0.0 and then increases from y= 0.0 to
0.25. For unequal Biot numbers, the concentration decreases from y=−0.25 to 0.02, whereas it
increases from y= 0.02 to 0.25 as depicted in Figure 8F. The concentration reversal point is varied
for both cases as Bi1 = Bi2 and Bi1≠ Bi2 as there will be change in wall temperatures.

As shown in Figures 2 to 8, the graphs are drawn for asymmetric wall heating condition
(RT=1). The results are drawn for symmetric wall temperatures in Figures 9 and 10 for the
variations of thermal Grashof number Λ1 and mass Grashof number Λ2 for Bi1 = Bi2 and Bi1≠ Bi2.
The results are similar to asymmetric wall heating conditions as seen in Figures 4 and 5. This
implies that, as the thermal Grashof number increases then the velocity and temperature fields are
enhanced for both equal (Figure 9A and 9B) and unequal (Figure 9C and 9D) Biot numbers. Here,
also the temperature field is dominated at the left wall compared to the right wall when the thermal
Grashof number affects on the temperature field for unequal Biot number. The effect of mass
Grashof number is to suppress the velocity and temperature fields at the left wall and promote at
the right wall for equal Biot number as predicted in Figure 10A and 10B. For Bi1≠ Bi2, velocity
increases at the hot wall and reduces at the cold wall, whereas it decreases the temperature field at
the left wall and no effect is observed at the right wall as seen in Figure 10C and 10D, respectively.

For justification purpose, we compared the analytical and numerical solutions by using Tables 1
and 2. In Table 1, the series of two terms is found for analytical solutions as u (ie, ⋅u u Br u= +0 1)
for Bi1 = Bi2 and Bi1≠ Bi2. Comparing these analytical and numerical results, we can conclude that
when Br=0, both solutions are equal. At Br=0.01, up to two decimal places, both the solutions are

TABLE 4 Values of Nusselt number, mean velocity, and bulk temperature with
R Br Sc SrΛ = Λ = 5.0, = 1.0, = 0.1, = 1.0, = 0.5T1 2

Bi Bi= = 101 2 Bi Bi= 1.0, = 101 2

Nu1 Nu2 ū θb Nu1 Nu2 ū θb

Λ1

0 3.6515 0.3021 1.2464 0.15178 −59.2228 64.9470 1.2464 0.33778
10 3.6121 0.2755 1.2858 0.15447 −72.0313 79.4484 1.3342 0.34228
15 3.5929 0.2619 1.3055 0.15581 −80.7047 89.2757 1.3779 0.34426
20 3.5743 0.2480 1.3252 0.15716 −91.6998 101.739 1.4214 0.34608

Λ2
0 3.6595 0.3072 1.2696 0.15216 −49.4660 53.9146 1.2942 0.34218
10 3.6044 0.2701 1.2625 0.15415 −94.2616 104.644 1.2866 0.33822
15 3.5780 0.2508 1.2590 0.15526 −169.428 189.928 1.2828 0.33647
20 3.5524 0.2311 1.2554 0.15644 −790.786 895.445 1.2790 0.33485

Br

0 2.0000 2.0000 1.2500 0.00170 2.0000 2.00000 1.2500 0.00057
0.01 2.164 1.82801 1.2661 0.15312 2.42166 1.56269 1.2904 0.34013
0.5 9.9766 −6.3665 1.3304 0.76782 −2.40419 6.56769 1.4519 1.74674
1.0 17.522 −14.278 1.4108 1.55419 −1.94364 6.09004 1.6537 3.58733
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equal for both Bi1 = Bi2 and Bi1≠ Bi2, and for Br=0.5, it is seen that the both analytical and
numerical solutions are not equal with small error in the considered cases for the Biot numbers.
Similarly, for the series expansion of u up to 13 terms, the analytical and numerical solutions are
equal for Br=0. Analytical and numerical solutions agree up to two decimal places when Br=0.01
at Bi1 =Bi2 and Bi1≠ Bi2. When Br=0.5 it is observed that the maximum error occurs between the
analytical and numerical solutions for both Bi1 = Bi2 and Bi1≠Bi2. However one can observe from
Tables 1 and 2, that we can minimize this error by considering thirteen terms of the series instead of
two terms in numerical and analytical solution. Here we do not compare the values of temperature
field. It follows only for velocity field. For further observation of the numerical solutions, the present
problem is solved in the absence of the chemical reaction and as shown in results with Zanchini46

by considering large series expansion as for thirteen terms and it is tabulated in Table 3. From this,
we observed that the numerical solutions of the present model agree with Zanchini.46

In Table 4, we tabulated the effects of thermal Grashof number Λ1, mass Grashof number Λ2,
and Brinkman number Br on the Nusselt number Nu, mean velocity ū, and on bulk temperature
θb. Increase in the thermal Grashof number decreases the Nusselt number at the left and right
walls but the values of average velocity ū and bulk temperature θb are increased with raising the
thermal Grashof number for Bi1 = Bi2. For the case of Bi1≠ Bi2, the Nusselt number decreases at
the cold wall and the Nusselt number increases at the hot wall, whereas the average velocity ū
and bulk temperature θb are increased with the thermal Grashof number. Increasing the value

TABLE 5 Values of skin friction with R Br Sc SrΛ = Λ = 5.0, = 1.0, = 0.1, = 1.0, = 0.5T1 2

Bi Bi= = 101 2 Bi Bi= 1.0, = 101 2

τ1 τ2 τ1 τ2

Λ1

0 11.7542 −12.1708 11.7542 −12.1708
10 11.9041 −12.9218 12.7921 −13.1961
15 11.9782 −13.2991 13.3074 −13.7076
20 12.0521 −13.6778 13.8203 −14.2183

Λ2
0 12.0758 −12.3743 12.5242 −12.5146
10 11.5834 −12.7170 12.0248 −12.8531
15 11.3373 −12.8882 11.7755 −13.0223
20 11.0913 −13.0591 11.5264 −13.1914

Br

0 11.6429 −12.3571 11.7266 −12.2734
0.1 11.8295 −12.5457 12.2744 −12.6838
0.5 12.5761 −13.2999 14.4656 −14.3256
1.0 13.5093 −14.2427 17.2046 −16.3778

Sr

0.5 11.8295 −12.5457 12.2744 −12.6839
1.0 11.7921 −12.5081 12.2369 −12.6463
1.5 11.7547 −12.4704 12.1995 −12.6087
2.0 11.7173 −12.4328 12.1621 −12.5711

Sc

0.5 11.8482 −12.5645 12.2931 −127027
1.0 11.8295 −12.5457 12.2744 −12.6838
1.5 11.8108 −12.5269 12.2557 −12.6651
2.0 11.7921 −12.5081 12.2369 −12.6463
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of mass Grashof number, the Nusselt number at both the walls and velocity ū are decreased,
whereas the bulk temperature θb increases. For Bi1≠ Bi2, increasing the values of mass Grashof
number decreases the Nusselt number at left wall and increases at the right wall, whereas the
velocity ū and bulk temperature θb are decreased. Increasing the Brinkman number Br,
the Nusselt number increases at the left wall, whereas it decreases at the right wall, whereas the
mean velocity and bulk temperature are increased for Bi1 = Bi2. While for the case of Bi1≠ Bi2,
the Nusselt number decreases at the left wall and increases at the right wall but the mean
velocity and bulk temperature are increased as the Brinkman number increases.

Then in Table 5, we observed the effects of thermal Grashof number, mass Grashof number,
Brinkman number, Soret number, and Schmidt number on the skin friction. Increasing the values of
thermal Grashof number increases the values of skin friction at left wall and decreases the value at
right wall for Bi1 =Bi2 and Bi1≠Bi2. The rise of the mass Grashof number decreases the skin friction
at both the walls for two considered case for the Biot numbers. Increasing the value of Brinkman
number, the values of skin friction are also increased at the left wall and decreased at the right wall for
both Biot numbers cases. The values of skin friction are decreased at the left wall and increased at the
right wall for increasing values of Soret and Schmidt numbers for both Biot numbers cases.

The effects of the Brinkman number, Soret number, and Schmidt number on the Sherwood
number Sh for Bi1 = Bi2 and Bi1≠ Bi2 are shown in Table 6. Increasing the values of Soret,
Schmidt, and Brinkman numbers the values of Sherwood number are decreased at the cold wall
and Sherwood numbers are increased at the hot wall for both Biot numbers cases.

6 | CONCLUSIONS

Results are obtained with combined effects of buoyancy force and viscous dissipation
containing pure viscous fluid. The thermal boundary conditions of third kind are used for the
mixed convection flow and results are obtained for different Biot numbers with symmetric and
asymmetric wall temperatures. For small values of the perturbation parameter (Brinkman

TABLE 6 Values of Sherwood numbers with R Br Sc SrΛ = Λ = 5.0, = 1.0, = 0.1, = 1.0, = 0.5T1 2

Bi Bi= = 101 2 Bi Bi= 1.0, = 101 2

Sh1 Sh2 Sh1 Sh2

Sr

0.5 1.41397 2.61461 1.41041 2.61078
1.0 0.82793 3.22921 0.82150 3.22225
1.5 0.24324 3.84515 0.23327 3.83445
2.0 −0.34056 4.46199 −0.35426 4.44723

Sc

0.5 1.70665 2.30697 1.70512 2.30531
1.0 1.41352 2.61416 1.41041 2.61078
1.5 1.12062 2.92157 1.11587 2.91643
2.0 0.82793 3.22921 0.82150 3.22225

Br

0 2.00000 2.00000 2.00000 2.00000
0.1 1.41397 2.61460 1.41075 2.61112
0.5 −0.93017 5.07302 −0.94625 5.05562
1.0 −3.86033 8.14605 −3.89249 8.11124
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number), we obtained the results by analytical method, and for large values of this parameter,
we got the results using numerical technique based on the Runge–Kutta fourth‐order algorithm
with shooting approach. The thermal Grashof number, mass Grashof number, Schmidt
number, Soret number, Brinkman number, and symmetric and asymmetric wall temperatures
enhance the flow and energy transport. The concentration field was suppressed at the left wall
and promoted at the right wall for the effects of Schmidt number, Soret number, and Brinkman
number for both equal and unequal Biot numbers. If there is no Brinkman number, then the
solutions found analytically and numerically were exact and little variation can be found when
the Brinkman number increases. The numerical and analytical solutions are similar to Zanchini
data46 in the absence of Schmidt number and Soret number.

NOMENCLATURE

A constant (Pa/m)
Bi1, Bi2 Biot numbers
Br Brinkman number
Sr Soret number
Sc Schmidt number
Cp specific heat at constant pressure
C1,C2 reference concentration of the external fluid
C0 reference concentration
C concentration
D (=2L) hydraulic diameter (m)
Dm mass diffusivity of the solute
g acceleration due to gravity (m/s)
GrT Grashof number gβ TD v( Δ / )3 2

GrC solute Grashof number gβ CD v( Δ / )3 2

h1, h2 external heat transfer coefficients (W·m−2·k−1)
k thermal conductivity (W·m−1·k−1)
L channel width (m)
n non‐negative integer number
Nu1, Nu2 Nusselt numbers
p pressure (Pa)
P p ρ gX= + 0 difference between the pressure and the hydrostatic pressure (Pa)
Pr Prandtl number v α( / )

Re Reynolds number U D ν( / )0

Sh1, Sh2 Sherwood numbers
RT temperature difference ratio T T T(( − )/Δ )2 1

S dimensionless parameter
T temperature (K)
T1, T2 reference temperature of the external fluid (K)
T0 reference temperature (K)
u dimensionless velocity in the X‐direction
( )u yn dimensionless functions

ū mean value of u
U velocity component in the X‐direction (m/s)
X stream wise co‐ordinate (m)
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y dimensionless transverse co‐ordinate
Y transverse co‐ordinate (m)

GREEK SYMBOLS

α thermal diffusivity K ρ c( / )0 0 (m2/s)
βT thermal expansion coefficient (K−1)
βC concentration expansion coefficient
TΔ reference temperature
CΔ reference concentration
τ τ,1 2 skin frictions
ε dimensionless parameter
θ dimensionless temperature
θb dimensionless bulk temperature
ϕ dimensionless concentration
μ dynamic viscosity (Pa/s)
ν kinematic viscosity μ ρ( / )0 (m2/s)
Λ1 thermal Grashof number Gr( /Re)T

Λ2 mass Grashof number Gr( /Re)C

ρ mass density (kg/m3)
ρ0 value of the mass density when T T= 0 (kg/m

3)
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