Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Linear homeomorphic classification of spaces of continuous functions defined on $S_A \stackrel{\approx}{\approx}$

T. Khmyleva, E. Sukhacheva*

Faculty of Mechanics and Mathematics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia

A R T I C L E I N F O

Article history: Received 31 January 2019 Received in revised form 29 March 2019 Accepted 30 March 2019 Available online 12 December 2019

MSC: 54E52 46E10

Keywords: Sorgenfrey line Condensation point Baire space Linear homeomorphism Space of continuous functions endowed with the topology of pointwise convergence

1. Introduction

We use the following notation: \mathbb{N} is the set of positive integers; \mathbb{R} is the space of real numbers endowed with the usual Euclidean topology τ_E ; \mathbb{S} is the Sorgenfrey line (also known as the "arrow" or the "left arrow" space), that is, the set of real numbers with the topology generated by the base $\{(a, b] : a, b \in \mathbb{R}, a < b\}$. The topology of the space \mathbb{S} is denoted by τ_0 . The symbol \mathbb{S}_{\rightarrow} denotes the set of real numbers with the topology generated by the base $\{[a, b] : a, b \in \mathbb{R}, a < b\}$. Obviously, \mathbb{S} is homeomorphic to \mathbb{S}_{\rightarrow} . The topological space \mathbb{S}_{\rightarrow} is called the "right arrow", the topology of this space is denoted by τ_S .

Let $A \subset \mathbb{R}$. The symbol S_A denotes a topological space in which the base of neighbourhoods of the point x is defined as follows:

* Corresponding author.

ABSTRACT

For a subset A of the real line \mathbb{R} , modification of the Sorgenfrey line S_A is a topological space whose underlying points set is the reals \mathbb{R} and whose topology id defined as follows: points from A are given the neighbourhoods of the right arrow while remaining points are given the neighbourhoods of the Sorgenfrey line \mathbb{S} (or left arrow). A necessary and sufficient condition under which the space $C_p(S_A)$ is linearly homeomorphic to $C_p(\mathbb{S})$ is obtained.

© 2019 Elsevier B.V. All rights reserved.

 $^{^{*}}$ The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the scientific project N 17-51-18051.

E-mail addresses: tex2150@yandex.ru (T. Khmyleva), sirius9113@mail.ru (E. Sukhacheva).

$$B_x = \{ (x - \varepsilon, x] : \varepsilon > 0 \}, \text{ if } x \in \mathbb{R} \setminus A; \\ B_x = \{ [x, x + \varepsilon) : \varepsilon > 0 \}, \text{ if } x \in A.$$

The space S_A is called the modification of the Sorgenfrey line, and the topology on this space is denoted by τ_A . It is easy to show that the modification of the Sorgenfrey line S_A , like the Sorgenfrey line \mathbb{S} , is perfectly normal, hereditarily Lindelöf, hereditarily separable, hereditarily Baire space [3]. Given any set $X \subset \mathbb{R}$, by \overline{X} we denote its closure in the space (\mathbb{R}, τ_E) . Similarly, for any set $X \subset Y$, $\operatorname{int}_Y X$ denotes the interior of X in the space Y. If $\{A_i\}_{i \in J}$ is a family of pairwise disjoint sets, then we denote the union of these sets by $\bigsqcup_i A_i$ rather than $\bigcup_i A_i$.

The following assertion was proved in [3].

Theorem 1. For any subset A of real line, the following conditions are equivalent:

(1) the spaces S_A and S are homeomorphic;

(2) there exists no set $\emptyset \neq V \subset A$ which is closed in A and satisfies the condition $\overline{V} = \overline{\overline{V} \setminus V}$;

(3) the set A is both F_{σ} and G_{δ} in \mathbb{R} .

All topological spaces are assumed to be completely regular. By $C_p(X)$ we denote the set of all continuous functions from X to \mathbb{R} endowed with the topology of pointwise convergence.

The main result of this paper is the following theorem.

Theorem 2. For any set $A \subset \mathbb{R}$, the following conditions are equivalent:

- (i) the spaces S and S_A are homeomorphic;
- (ii) the spaces $C_p(\mathbb{S})$ and $C_p(S_A)$ are linearly homeomorphic.

2. Proof of the main result

The standard base of the space $C_p(X)$ consists of sets of the form $W(x_1, \ldots, x_n, U_1, \ldots, U_n)$, where $x_1, \ldots, x_n \in X, U_1, \ldots, U_n$ are open sets in \mathbb{R} , $n \in \mathbb{N}$, and

$$W(x_1,\ldots,x_n,U_1,\ldots,U_n) = \{f \in C(X) \colon f(x_i) \in U_i, i = \overline{1,n}\}.$$

For each $x \in X$ we consider the functional $\delta_x \colon C_p(X) \to \mathbb{R}$ defined by $\delta_x(f) = f(x)$. It is well known that δ_x is a linear continuous functional. In what follows, we identify the functional δ_x with x.

In the linear space $C_p C_p(X)$ we consider the subspace of linear functionals

$$L_p(X) = \left\{ \sum_{i=1}^n \alpha_i x_i \in C_p C_p(X) \colon x_1, \dots, x_n \in X, \alpha_1, \dots, \alpha_n \in \mathbb{R}, n \in \mathbb{N} \right\},\$$

algebraically generated by the set X. For $f \in L_p(X)$, let $\mathfrak{l}(f) = n$ if $f = \sum_{i=1}^n \alpha_i x_i$, where $\alpha_i \neq 0$ for

each $i = \overline{1, n}$, and $\mathfrak{l}(f) = 0$ if $f \equiv 0$. It is known [1], that X is a closed subspace of the space $L_p(X)$, $L_p(X) = (C_p(X))^*$, $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic if and only if $L_p(X)$ and $L_p(Y)$ are linearly homeomorphic.

Let X and Y be topological spaces and let $T: C_p(Y) \to C_p(X)$ be a linear continuous map. The conjugate map $T^*: L_p(X) \to L_p(Y)$ is defined by $T^*(F) = F \circ T$ for $F \in L_p(X)$. For each point $x \in X, T^*\delta_x = T^*x \in$ $L_p(Y)$ holds and, therefore, $T^*x = \sum_{i=1}^n \alpha_i y_i$, where $\alpha_i \neq 0$ for all $i = \overline{1, n}$. The subset $\{y_1, \ldots, y_n\}$ is called the support of x and it is denoted by supp(x). If $T^*y \equiv 0$, then $supp(y) = \emptyset$. The length of the support is the value of |supp(x)|. For any function $f \in C_p(Y)$ we have the following equality: $T(f)(x) = (\delta_x \circ T)(f) =$ $(T^*\delta_x)(f) = \sum_{i=1}^{n} \alpha_i f(y_i).$

Let $T: C_p(Y) \to C_p(X)$ be a continuous map and take $x \in X$ such that $supp(x) \neq \emptyset$. Then the multi-valued map $\varphi \colon X \to 2^Y$ defined by $\varphi(x) = supp(x)$ is lower semicontinuous [4].

We set $L_p^n(X) = \{z \in L_p(X); \mathfrak{l}(z) \leq n\}$ and $M_p^n(X) = \{z \in L_p(X); \mathfrak{l}(z) = n\} = L_p^n(X) \setminus L_p^{n-1}(X)$. It is known [1], that $L_n^n(X)$ is closed in $L_p(X)$ for each $n \in \mathbb{N}$ and the following theorem about the base of the point $y \in M_p^n(X)$ in $L_p^n(X)$ holds.

Theorem 3. Let X be a topological space and $y = \sum_{i=1}^{n} \alpha_i x_i \in M_p^n(X)$. Then the family of the sets $O(V_1, \ldots, V_n, \varepsilon) = \{y' = \sum_{i=1}^{n} \alpha'_i x'_i : |\alpha'_i - \alpha_i| < \varepsilon, (\alpha_i - \varepsilon, \alpha_i + \varepsilon) \in \mathbb{R} \setminus \{0\}, x'_i \in V_i, i = \overline{1, n}\}$ is the

base of the point y in the space $L_p^n(X)$, where V_i are open, pairwise disjoint sets in X and $\varepsilon > 0$.

Recall that a topological space X is called perfect if any open subset of X has type F_{σ} in X. It is easy to see that a difference of two closed subsets of a perfect space is an F_{σ} -set.

Lemma 1. Let X and Y be topological spaces, X be a perfect space, $T: C_p(Y) \to C_p(X)$ be a linear continuous map, $X_n = \{x \in X : |supp(x)| = n\}$, where $n \in \mathbb{N}$, and $X_0 = \{x \in X : T^*x = 0\}$. Then $T^*(X_n) \subset M_p^n(Y)$ and the set X_n is an F_{σ} in X.

Proof. Let us show that for each $n \in \mathbb{N}$, the sets $Z_n = X \setminus \left(\bigsqcup_{i=0}^n X_i \right)$ are open in X. It is clear that X_0 is closed in X and, therefore, Z_0 is open in X. Let $x_0 \in Z_n$. Then $T^*(x_0) = \sum_{i=1}^m \alpha_i(x_0)y_i(x_0)$, where m > n. Hence, for each $i = \overline{1, m}$ there exist pairwise disjoint neighbourhoods U_i of points $y_i(x_0)$. The multi-valued map $\varphi = supp$ maps x_0 to the set $\{y_i(x_0)\}_{i=1}^m$. Since this map φ is lower semicontinuous, it follows that there exists a neighbourhood O_{x_0} of point x_0 such that for each point $x \in O_{x_0}$ we have $\varphi(x) \cap U_i \neq \emptyset$ for all $i = \overline{1, m}$. Thus, $O_{x_0} \subset Z_n$ and, therefore, Z_n is open in X for each $n \in \mathbb{N} \cup \{0\}$ and $\bigsqcup_{i=0}^{n} X_i$ are closed for each $n \in \mathbb{N} \cup \{0\}$.

Because X is a perfect space, $X_n = \left(\bigsqcup_{i=0}^n X_i\right) \cap Z_{n-1}$ is an F_{σ} -set in X. \Box

Corollary 1. Let X and Y be topological spaces, X be a perfect space and $T: C_p(Y) \to C_p(X)$ be a linear continuous map. If the set V is closed in X, then $V = \bigsqcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} F_i^n$, where F_i^n is closed in X and $T^*(F_i^n) \subset \mathbb{C}$ $M_p^n(Y).$

Proof. According to the previous lemma, $X_n = \bigcup_{i=1}^{\infty} \Phi_i^n$, where the sets Φ_i^n are closed in X. Hence, the sets $F_i^n = V \cap \Phi_i^n$ are closed in X for $n, i \in \mathbb{N}$ and $V = \bigsqcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} F_i^n$. \Box

Lemma 2. Let X and Y be topological spaces, $T: C_p(Y) \to C_p(X)$ be a linear continuous map, and $X_n = \{x \in X : |supp(x)| = n\}$, where $n \in \mathbb{N}$, i.e., $T^*(x) = \sum_{i=1}^n \alpha_i(x)y_i$ for each $x \in X_n$. Then the sets $X_n^k = \{x \in X_n; |\alpha_i(x)| \le k, i = \overline{1, n}\}$ are closed in X_n for each $k \in \mathbb{N}$.

Proof. Let $x_0 \in X_n$ be the limit point for X_n^k . Since $x_0 \in X_n$, it follows that $T^*x_0 = \sum_{i=1}^n \alpha_i(x_0)y_i^0$. Suppose that $|\alpha_j(x_0)| > k$ for some $j = \overline{1, n}$. Consider a neighbourhood $O(U_1, \ldots, U_n, \varepsilon)$ of the point T^*x_0 in $L_p^n(Y)$ for $\varepsilon < |\alpha_j(x_0)| - k$. Because the map T^* is continuous, there exists a neighbourhood U_{x_0} such that $T^*U_{x_0} \subset O(U_1, \ldots, U_n, \varepsilon)$. Hence $|\alpha_i(x_0) - \alpha_i(x)| < \varepsilon$ for $x \in X_n^k \cap U_{x_0}$ and all $i = \overline{1, n}$. Due $\varepsilon > |\alpha_j(x_0) - \alpha_j(x)| \ge |\alpha_j(x_0)| - |\alpha_j(x)| \ge |\alpha_j(x_0)| - k$ we obtain a contradiction. \Box

The idea of the proof of the following lemma is borrowed from [2] for the space S.

Lemma 3. Let X be a subset of S_A such that eighter $X \subset A$ or $X \subset S_A \setminus A$ and let the map $f: X \to S$ be continuous. Then X can be represented as a countable union of closed subsets of X, on each of which the map f is non-increasing or non-decreasing, respectively.

Proof. Let $X \subset A$. For each $n \in \mathbb{N}$ we set

$$F_n = \left\{ x \in X; x \le y < x + \frac{1}{n} \Rightarrow f(y) \le f(x) \right\}.$$

Let us prove that the set F_n is closed in X. Indeed, if $x_0 \in X$ is a limit point of F_n , then there exists a sequence $\{x_i\}_{i=1}^{\infty} \subset F_n$ such that $x_{i+1} < x_i$ for every $i \in \mathbb{N}$ and $\lim_{i \to \infty} x_i = x_0$. For each point $y \in \left(x_0, x_0 + \frac{1}{n}\right)$, there exists a number $i_0 \in \mathbb{N}$ such that $x_i < y$ for all $i > i_0$. Since $x_i \in F_n$ and $x_i \leq y < x_0 + \frac{1}{n} < x_i + \frac{1}{n}$, it follows that $f(y) \leq f(x_i)$ for each $i > i_0$ and, therefore, $f(y) \leq f(x_0)$. This proves the closedness of F_n in X. It is easy to see that $X = \bigcup_{n=1}^{\infty} F_n$. Now, let $\{I_n^k\}_{k=1}^{\infty}$ be a countable family of closed intervals shorter than $\frac{1}{n}$ which forms a cover of the set F_n . Then $F_n^k = F_n \cap I_n^k$ are closed subsets of X, and $X = \bigcup_{n,k\in\mathbb{N}} F_n^k$. Let us show that the map f is non-increases on each of the sets F_n^k . Take $x, y \in F_n^k$, x < y.

Since $x, y \in I_n^k$, it follows that $x < y < x + \frac{1}{n}$, and since $x \in F_n$, it follows that $f(y) \leq f(x)$. In the case $X \subset S_A \setminus A$, we consider the subsets

$$F_n = \left\{ x \in X; x - \frac{1}{n} < y \le x \Rightarrow f(y) \le f(x) \right\}$$

of X and, as in the previous case, prove that the map f is non-decreasing on each F_n^k in the same way as in the case considered above. \Box

Let $T: C_p(\mathbb{S}) \to C_p(S_A)$ be a linear homeomorphism. Because \mathbb{R} is a linearly ordered space, for each point $t \in S_A$ and its support $supp(t) = \{q_1, \ldots, q_n\}$ we assume $q_1 < \ldots < q_n$, i.e. the numbering of the points in the support corresponds to the natural order in the set of real numbers.

For each $n \in \mathbb{N}$ we define the map $\pi_j \colon M_p^n(\mathbb{S}) \to \mathbb{S}$ by $\pi_j\left(\sum_{i=1}^n \alpha_i q_i\right) = q_j$. By Theorem 3, it is easy to see that the map π_j is continuous on $M_p^n(\mathbb{S})$ for each $j = \overline{1, n}$.

Lemma 4. Let $T: C_p(\mathbb{S}) \to C_p(S_A)$ be a linear homeomorphism, a set $B \subset S_A$ be such that $|B| \ge \aleph_0$ and $T^*(B) \subset M_p^n(\mathbb{S})$. Then there exists a number $1 \le j \le n$ such that $|(\pi_j \circ T^*)(B)| \ge \aleph_0$.

Proof. Suppose the contrary, i.e. for each $j = \overline{1, n}$ the set $(\pi_j \circ T^*)(B)$ is finite. Since the set $(\pi_1 \circ T^*)(B)$ is finite, there exists a set $B_1 \subset B$ such that $|B_1| \geq \aleph_0$ and $|(\pi_1 \circ T^*)(B_1)| = 1$, i.e., there exists a point $q_1^0 \in \mathbb{S}$ such that for each $b \in B_1$ we have $T^*(b) = \alpha_1(b)q_1^0 + \sum_{i=2}^n \alpha_i(b)q_i(b)$. Repeating a similar reasoning for each $j \leq n$ we get a sets B_1, \ldots, B_n such that $B_{j+1} \subset B_j, |B_j| \geq \aleph_0, |(\pi_j \circ T^*)(B_j)| = 1$ for all $j = \overline{1, n}$. This means that there are points $q_j^0 \in \mathbb{S}, q_1^0 < \ldots < q_n^0$, such that for any point $b \in B_n$ we have $T^*(b) = \sum_{i=1}^n \alpha_i(b)q_i^0$. Because B_n is infinite, there are pairwise different points $\{b_1, \ldots, b_{n+1}\} \subset B_n$. Since T^* is a linear bijection and the set $\{b_1, \ldots, b_{n+1}\} \subset L_p(S_A)$ is linearly independent, it follows that the set $\{T^*(b_1), \ldots, T^*(b_{n+1})\} \subset L_p(\mathbb{S})$ is also linearly independent. Then the vectors $\alpha(b_k) = (\alpha_1(b_k), \ldots, \alpha_n(b_k)) \in \mathbb{R}^n$ for $k = \overline{1, n+1}$ are linearly independent, which is impossible. \Box

Now, let us prove the Theorem 2.

Proof. The implication $(i) \Rightarrow (ii)$ is obvious.

 $(ii) \Rightarrow (i)$. Let $T: C_p(\mathbb{S}) \to C_p(S_A)$ be a linear homeomorphism. Then the map $T^*: L_p(S_A) \to L_p(\mathbb{S})$ is also a linear homeomorphism. Since S_A is closed in $L_p(S_A)$, $T^*(S_A)$ is closed in $L_p(\mathbb{S})$. Now, suppose that $\underline{S_A}$ is not homeomorphic to \mathbb{S} . Then, by Theorem 1 there exists a set $V \subset \mathbb{R}$ closed in A such that $\overline{V} = \overline{V} \setminus V$. Let $\overline{V}' = \overline{V} \setminus E$, where E is the set of τ_A -isolated points of \overline{V} . Because \overline{V}' is closed in S_A , by Corollary 1, $\overline{V}' = \bigsqcup_{m=1}^{\infty} \bigcup_{m=1}^{\infty} F_m^n$, where F_m^n are closed in S_A and $T^*(F_m^n) \subset M_p^n(\mathbb{S})$.

Two mutually exclusive cases are possible:

- 1. Either there exists an interval (a, b) such that $(a, b) \cap \overline{V}' \subset V$, or there exists an interval (a, b) such that $(a, b) \cap \overline{V}' \subset \overline{V} \setminus V$.
- 2. For each interval $(a, b), B = (a, b) \cap \overline{V}' \cap V \neq \emptyset$ if and only if $C = (a, b) \cap \overline{V}' \cap (\overline{V} \setminus V) \neq \emptyset$.

Case 1. Since the set (a, b) is open in S_A and \overline{V}' is Baire (because \overline{V}' is closed in the hereditary Baire space S_A), then the set $(a, b) \cap \overline{V}'$ is Baire. Then $(a, b) \cap F_m^n$ are closed in $(a, b) \cap \overline{V}'$ for $n, m \in \mathbb{N}$. Therefore, there are $n, m \in \mathbb{N}$ and an interval $I \subset (a, b)$ such that $I \cap \overline{V}' \subset F_m^n$ and, therefore, $T^*(I \cap \overline{V}') \subset M_p^n(\mathbb{S})$.

Let the interval (a, b) be such that $(a, b) \cap \overline{V}' \subset V$.

Because $I \cap \overline{V}'$ is Baire, then by Lemma 3, there exists an interval $I_1 \subset I$ such that $\pi_1 \circ T^*|_{I_1 \cap \overline{V}'}$ is non-increasing. For the same reasons, there exists an interval $I_2 \subset I_1$ such that $\pi_2 \circ T^*|_{I_2 \cap \overline{V}'}$ is non-increasing. Continuing this process for each $j = \overline{3, n}$ we get an interval $I_n \subset I_{n-1}$ such that the map $\pi_j \circ T^*|_{I_n \cap \overline{V}'}$ are non-increasing for each $j = \overline{1, n}$. Let

$$R_k = \left\{ t \in I_1 \cap \overline{V}'; T^*(t) = \sum_{i=1}^n \alpha_i(t)q_i(t), |\alpha_i(t)| \le k, i = \overline{1, n} \right\}.$$

The sets R_k are closed in X_n by Lemma 2 and $I_1 \cap \overline{V}' = \bigcup_{k=1}^{\infty} R_k$. Since $I_1 \cap \overline{V}'$ is Baire, there are $k \in \mathbb{N}$ and the interval I_2 such that $I_2 \cap \overline{V}' \subset R_k$.

Since $I_2 \cap \overline{V} \neq \emptyset$, it follows that there exists $x_0, x_1 \in I_2 \cap (\overline{V} \setminus V) \subset \overline{V} \setminus A$, $x_0 < x_1$. The last inclusion is true due to the closedness of the set V in A. Because $I_2 \cap \overline{V}' \subset V$, then $x_0, x_1 \in E$, i.e., they are isolated in τ_A . This means that $(x_0 - \varepsilon, x_0] \cap \overline{V} = \{x_0\}$ and $(x_1 - \varepsilon, x_1] \cap \overline{V} = \{x_1\}$ holds for a sufficiently small $\varepsilon > 0$. Since all points in (V, τ_E) are condensation points, there exists a point $t_0 \in I_2 \cap \overline{V}'$ such that $x_0 < t_0 < x_1$ and a decreasing sequence $\{t_l\}_{l=1}^{\infty} \subset I_2 \cap \overline{V}', t_l > x_1$, converging in the Euclidean topology to the point x_1 . This means that the sequence $\{t_l\}_{l=1}^{\infty}$ in S_A is divergent. Because the points $t_l \in R_k$, then $T^*(t_l) = \sum_{i=1}^n \alpha_i(t_l)q_i(t_l)$ and $|\alpha_i(t_l)| \leq k$ for all $i, l \in \mathbb{N}$. Since the map $(\pi_j \circ T^*)|_{I_1 \cap \overline{V}'}$ is non-increasing and the sequence $\{t_l\}_{l=1}^{\infty}$ is decreasing, it follows that the sequences $\{q_j(t_l)\}_{l=1}^{\infty}$ are increasing and $q_j(t_l) \leq q_j(t_0)$ for all $j = \overline{1, n}$ and $l \in \mathbb{N}$. Therefore, the sequence $\{t_l\}_{l=1}^{\infty}$ such that there exists $\alpha_1 = \lim_{l \to \infty} \alpha_1(t_l^{(1)})$. Next, choose a subsequence $\{t_l\}_{l=1}^{\infty} \subset \{t_l^{(1)}\}_{l=1}^{\infty}$ such that $\lim_{l \to \infty} \alpha_2(t_l^{(2)}) = \alpha_2$. At the n-th step, we get the subsequence $\{t_l^{(n)}\}_{l=1}^{\infty}$, for which there are $\lim_{l \to \infty} \alpha_i(t_l^{(n)}) = \alpha_i$ for each $i = \overline{1, n}$. It is easy to see that the sequence $\{T^*(t_l^{(n)})\}_{l=1}^{\infty}$ converges to the point $\sum_{i=1}^n \alpha_i q_i$. Thus, we obtain a contradiction to the fact that the map T^* is a homeomorphism.

The case when there exists an interval (a, b) such that $(a, b) \cap \overline{V}' \subset \overline{V} \setminus V$ is proved similarly, considering the increasing sequence $\{t_l\}_{l=1}^{\infty} \subset I_2 \cap \overline{V}', t_l < x_0$, converging on the Euclidean topology to the point $x_0 \in I_2 \cap V$.

Case 2. Since S_A is hereditarily Baire, the set $\overline{V}' \subset S_A$ is Baire, and therefore there are $n, m \in \mathbb{N}$ and the interval I = (p, q) such that $I \cap \overline{V}' \subset F_m^n$ and $T^*(I \cap \overline{V}') \subset M_p^n(\mathbb{S})$. Because I is open in S_A and \overline{V}' is Baire, $I \cap \overline{V}'$ is Baire by [5, p. 228]. In this case, it follows from the

Because I is open in S_A and \overline{V}' is Baire, $I \cap \overline{V}'$ is Baire by [5, p. 228]. In this case, it follows from the assertion of case 2 that $I \cap \overline{V}' = B \sqcup C$, where $B, C \neq \emptyset$. Therefore, at least one of the sets B or C is of the second category.

Let *B* be of the second category. By Lemma 3, $B = \bigcup_{k=1}^{\infty} B_k$, where B_k are closed subsets of *B* and the maps $(\pi_j \circ T^*)|_{B_k}$ are non-increasing for each $j = \overline{1, n}$. Since *B* is of the second category, it follows that there exists a number $k \in \mathbb{N}$ and an interval I_1 such that $\emptyset \neq I_1 \cap B \subset B_k$. Let $t \in I_1 \cap C$. Then there is an increasing sequence $\{t_l\}_{l=1}^{\infty}, t_l \in I_1 \cap B$, converging to t in S_A . By Lemma 4, there exists a number $j = \overline{1, n}$ such that the set $\{(\pi_j \circ T^*)(t_l)\}_{l=1}^{\infty}$ is infinite. Since the mapping $\pi_j \circ T^*$ is non-increasing and the sequence $\{t_l\}_{l=1}^{\infty}$ is increasing, it follows that it turns into a decreasing sequence $\{(\pi_j \circ T^*)(t_l)\}_{l=1}^{\infty}$, i.e., it diverges in S. Thus, we obtain a contradiction, because the map $\pi_j \circ T^*$ is continuous.

The case when the set C is of the second category is proved similarly. \Box

References

- [1] A.V. Arhangelskii, Topological Spaces of Functions, MSU, Moscow, 1989, p. 222 (in Russian).
- [2] E.K. Van Douwen, Retracts of the Sorgenfrey line, Compos. Math. 38 (2) (1979) 155-161.
- [3] T.E. Khmyleva, E.S. Sukhacheva, On a homeomorphism between the Sorgenfrey line S and its modification S_P , Math. Notes 103 (1–2) (2018) 259–270.
- [4] J. Van Mill, The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001, p. 630.
- [5] V.V. Tkachuk, A C_p-Theory Problems Book. Topological and Functions Space, Springer, New York, 2011, p. 485.