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For a subset A of the real line R, modification of the Sorgenfrey line SA is a 
topological space whose underlying points set is the reals R and whose topology 
id defined as follows: points from A are given the neighbourhoods of the right arrow 
while remaining points are given the neighbourhoods of the Sorgenfrey line S (or 
left arrow). A necessary and sufficient condition under which the space Cp(SA) is 
linearly homeomorphic to Cp(S) is obtained.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We use the following notation: N is the set of positive integers; R is the space of real numbers endowed 
with the usual Euclidean topology τE ; S is the Sorgenfrey line (also known as the “arrow” or the “left arrow” 
space), that is, the set of real numbers with the topology generated by the base {(a, b] : a, b ∈ R, a < b}. The 
topology of the space S is denoted by τ0. The symbol S→ denotes the set of real numbers with the topology 
generated by the base {[a, b) : a, b ∈ R, a < b}. Obviously, S is homeomorphic to S→. The topological space 
S→ is called the “right arrow”, the topology of this space is denoted by τS .

Let A ⊂ R. The symbol SA denotes a topological space in which the base of neighbourhoods of the point 
x is defined as follows:
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Bx = {(x− ε, x] : ε > 0}, ifx ∈ R \A;

Bx = {[x, x + ε) : ε > 0}, ifx ∈ A.

The space SA is called the modification of the Sorgenfrey line, and the topology on this space is denoted by 
τA. It is easy to show that the modification of the Sorgenfrey line SA, like the Sorgenfrey line S, is perfectly 
normal, hereditarily Lindelöf, hereditarily separable, hereditarily Baire space [3]. Given any set X ⊂ R, by 
X we denote its closure in the space (R, τE). Similarly, for any set X ⊂ Y , intY X denotes the interior of 
X in the space Y . If {Ai}i∈J is a family of pairwise disjoint sets, then we denote the union of these sets by 

�
i∈J

Ai rather than 
⋃
i∈J

Ai.

The following asseration was proved in [3].

Theorem 1. For any subset A of real line, the following conditions are equivalent:

(1) the spaces SA and S are homeomorphic;
(2) there exists no set ∅ �= V ⊂ A which is closed in A and satisfies the condition V = V \ V ;
(3) the set A is both Fσ and Gδ in R.

All topological spaces are assumed to be completely regular. By Cp(X) we denote the set of all continuous 
functions from X to R endowed with the topology of pointwise convergence.

The main result of this paper is the following theorem.

Theorem 2. For any set A ⊂ R, the following conditions are equivalent:

(i) the spaces S and SA are homeomorphic;
(ii) the spaces Cp(S) and Cp(SA) are linearly homeomorphic.

2. Proof of the main result

The standard base of the space Cp(X) consists of sets of the form W (x1, . . . , xn, U1, . . . , Un), where 
x1, . . . , xn ∈ X, U1, . . . , Un are open sets in R, n ∈ N, and

W (x1, . . . , xn, U1, . . . , Un) = {f ∈ C(X) : f(xi) ∈ Ui, i = 1, n}.

For each x ∈ X we consider the functional δx : Cp(X) → R defined by δx(f) = f(x). It is well known 
that δx is a linear continuous functional. In what follows, we identify the functional δx with x.

In the linear space CpCp(X) we consider the subspace of linear functionals

Lp(X) =
{

n∑
i=1

αixi ∈ CpCp(X) : x1, . . . , xn ∈ X,α1, . . . , αn ∈ R, n ∈ N

}
,

algebraically generated by the set X. For f ∈ Lp(X), let l(f) = n if f =
n∑

i=1
αixi, where αi �= 0 for 

each i = 1, n, and l(f) = 0 if f ≡ 0. It is known [1], that X is a closed subspace of the space Lp(X), 
Lp(X) = (Cp(X))∗, Cp(X) and Cp(Y ) are linearly homeomorphic if and only if Lp(X) and Lp(Y ) are 
linearly homeomorphic.

Let X and Y be topological spaces and let T : Cp(Y ) → Cp(X) be a linear continuous map. The conjugate 
map T ∗ : Lp(X) → Lp(Y ) is defined by T ∗(F ) = F ◦T for F ∈ Lp(X). For each point x ∈ X, T ∗δx = T ∗x ∈
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Lp(Y ) holds and, therefore, T ∗x =
n∑

i=1
αiyi, where αi �= 0 for all i = 1, n. The subset {y1, . . . , yn} is called 

the support of x and it is denoted by supp(x). If T ∗y ≡ 0, then supp(y) = ∅. The length of the support is 
the value of |supp(x)|. For any function f ∈ Cp(Y ) we have the following equality: T (f)(x) = (δx ◦ T )(f) =

(T ∗δx)(f) =
n∑

i=1
αif(yi).

Let T : Cp(Y ) → Cp(X) be a continuous map and take x ∈ X such that supp(x) �= ∅. Then the 
multi-valued map ϕ : X → 2Y defined by ϕ(x) = supp(x) is lower semicontinuous [4].

We set Ln
p (X) = {z ∈ Lp(X); l(z) ≤ n} and Mn

p (X) = {z ∈ Lp(X); l(z) = n} = Ln
p (X) \ Ln−1

p (X). It is 
known [1], that Ln

p (X) is closed in Lp(X) for each n ∈ N and the following theorem about the base of the 
point y ∈ Mn

p (X) in Ln
p (X) holds.

Theorem 3. Let X be a topological space and y =
n∑

i=1
αixi ∈ Mn

p (X). Then the family of the sets 

O(V1, . . . , Vn, ε) = {y′ =
n∑

i=1
α′
ix

′
i : |α′

i − αi| < ε, (αi − ε, αi + ε) ∈ R \ {0}, x′
i ∈ Vi, i = 1, n} is the 

base of the point y in the space Ln
p (X), where Vi are open, pairwise disjoint sets in X and ε > 0.

Recall that a topological space X is called perfect if any open subset of X has type Fσ in X. It is easy 
to see that a difference of two closed subsets of a perfect space is an Fσ-set.

Lemma 1. Let X and Y be topological spaces, X be a perfect space, T : Cp(Y ) → Cp(X) be a linear continuous 
map, Xn = {x ∈ X : |supp(x)| = n}, where n ∈ N, and X0 = {x ∈ X : T ∗x = 0}. Then T ∗(Xn) ⊂ Mn

p (Y )
and the set Xn is an Fσ in X.

Proof. Let us show that for each n ∈ N, the sets Zn = X \
(

n�
i=0

Xi

)
are open in X. It is clear that X0 is 

closed in X and, therefore, Z0 is open in X. Let x0 ∈ Zn. Then T ∗(x0) =
m∑
i=1

αi(x0)yi(x0), where m > n. 

Hence, for each i = 1,m there exist pairwise disjoint neighbourhoods Ui of points yi(x0). The multi-valued 
map ϕ = supp maps x0 to the set {yi(x0)}mi=1. Since this map ϕ is lower semicontinuous, it follows that 
there exists a neighbourhood Ox0 of point x0 such that for each point x ∈ Ox0 we have ϕ(x) ∩ Ui �= ∅ for 

all i = 1,m. Thus, Ox0 ⊂ Zn and, therefore, Zn is open in X for each n ∈ N ∪{0} and 
n�

i=0
Xi are closed for 

each n ∈ N ∪ {0}.
Because X is a perfect space, Xn =

(
n�

i=0
Xi

)
∩ Zn−1 is an Fσ-set in X. �

Corollary 1. Let X and Y be topological spaces, X be a perfect space and T : Cp(Y ) → Cp(X) be a linear 

continuous map. If the set V is closed in X, then V =
∞�

n=1

∞⋃
i=1

Fn
i , where Fn

i is closed in X and T ∗(Fn
i ) ⊂

Mn
p (Y ).

Proof. According to the previous lemma, Xn =
∞⋃
i=1

Φn
i , where the sets Φn

i are closed in X. Hence, the sets 

Fn
i = V ∩ Φn

i are closed in X for n, i ∈ N and V =
∞�

n=1

∞⋃
i=1

Fn
i . �
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Lemma 2. Let X and Y be topological spaces, T : Cp(Y ) → Cp(X) be a linear continuous map, and Xn =

{x ∈ X : |supp(x)| = n}, where n ∈ N, i.e., T ∗(x) =
n∑

i=1
αi(x)yi for each x ∈ Xn. Then the sets 

Xk
n = {x ∈ Xn; |αi(x)| ≤ k, i = 1, n} are closed in Xn for each k ∈ N.

Proof. Let x0 ∈ Xn be the limit point for Xk
n. Since x0 ∈ Xn, it follows that T ∗x0 =

n∑
i=1

αi(x0)y0
i . 

Suppose that |αj(x0)| > k for some j = 1, n. Consider a neighbourhood O(U1, . . . , Un, ε) of the point 
T ∗x0 in Ln

p (Y ) for ε < |αj(x0)| − k. Because the map T ∗ is continuous, there exists a neighbourhood Ux0

such that T ∗Ux0 ⊂ O(U1, . . . , Un, ε). Hence |αi(x0) − αi(x)| < ε for x ∈ Xk
n ∩ Ux0 and all i = 1, n. Due 

ε > |αj(x0) − αj(x)| ≥ |αj(x0)| − |αj(x)| ≥ |αj(x0)| − k we obtain a contradiction. �
The idea of the proof of the following lemma is borrowed from [2] for the space S.

Lemma 3. Let X be a subset of SA such that eighter X ⊂ A or X ⊂ SA \ A and let the map f : X → S be 
continuous. Then X can be represented as a countable union of closed subsets of X, on each of which the 
map f is non-increasing or non-decreasing, respectively.

Proof. Let X ⊂ A. For each n ∈ N we set

Fn =
{
x ∈ X;x ≤ y < x + 1

n
⇒ f(y) ≤ f(x)

}
.

Let us prove that the set Fn is closed in X. Indeed, if x0 ∈ X is a limit point of Fn, then there exists 
a sequence {xi}∞i=1 ⊂ Fn such that xi+1 < xi for every i ∈ N and lim

i→∞
xi = x0. For each point y ∈(

x0, x0 + 1
n

)
, there exists a number i0 ∈ N such that xi < y for all i > i0. Since xi ∈ Fn and xi ≤ y <

x0 + 1
n
< xi + 1

n
, it follows that f(y) ≤ f(xi) for each i > i0 and, therefore, f(y) ≤ f(x0). This proves the 

closedness of Fn in X. It is easy to see that X =
∞⋃

n=1
Fn. Now, let 

{
Ikn

}∞
k=1 be a countable family of closed 

intervals shorter than 
1
n

which forms a cover of the set Fn. Then F k
n = Fn ∩ Ikn are closed subsets of X, and 

X =
⋃

n,k∈N
F k
n . Let us show that the map f is non-increases on each of the sets F k

n . Take x, y ∈ F k
n , x < y. 

Since x, y ∈ Ikn, it follows that x < y < x + 1
n

, and since x ∈ Fn, it follows that f(y) ≤ f(x).
In the case X ⊂ SA \A, we consider the subsets

Fn =
{
x ∈ X;x− 1

n
< y ≤ x ⇒ f(y) ≤ f(x)

}

of X and, as in the previous case, prove that the map f is non-decreasing on each F k
n in the same way as 

in the case considered above. �
Let T : Cp(S) → Cp(SA) be a linear homeomorphism. Because R is a linearly ordered space, for each 

point t ∈ SA and its support supp(t) = {q1, . . . , qn} we assume q1 < . . . < qn, i.e. the numbering of the 
points in the support corresponds to the natural order in the set of real numbers.

For each n ∈ N we define the map πj : Mn
p (S) → S by πj

(
n∑

i=1
αiqi

)
= qj . By Theorem 3, it is easy to 

see that the map πj is continuous on Mn
p (S) for each j = 1, n.
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Lemma 4. Let T : Cp(S) → Cp(SA) be a linear homeomorphism, a set B ⊂ SA be such that |B| ≥ ℵ0 and 
T ∗(B) ⊂ Mn

p (S). Then there exists a number 1 ≤ j ≤ n such that |(πj ◦ T ∗)(B)| ≥ ℵ0.

Proof. Suppose the contrary, i.e. for each j = 1, n the set (πj ◦T ∗)(B) is finite. Since the set (π1 ◦ T ∗) (B) is 
finite, there exists a set B1 ⊂ B such that |B1| ≥ ℵ0 and |(π1 ◦T ∗)(B1)| = 1, i.e., there exists a point q0

1 ∈ S

such that for each b ∈ B1 we have T ∗(b) = α1(b)q0
1 +

n∑
i=2

αi(b)qi(b). Repeating a similar reasoning for each 

j ≤ n we get a sets B1, . . . , Bn such that Bj+1 ⊂ Bj , |Bj | ≥ ℵ0, |(πj◦T ∗)(Bj)| = 1 for all j = 1, n. This means 
that there are points q0

j ∈ S, q0
1 < . . . < q0

n, such that for any point b ∈ Bn we have T ∗(b) =
∑n

i=1 αi(b)q0
i . 

Because Bn is infinite, there are pairwise different points {b1, . . . , bn+1} ⊂ Bn. Since T ∗ is a linear bijection 
and the set {b1, . . . , bn+1} ⊂ Lp(SA) is linearly independent, it follows that the set {T ∗(b1), . . . , T ∗(bn+1)} ⊂
Lp(S) is also linearly independent. Then the vectors α(bk) = (α1(bk), . . . , αn(bk)) ∈ Rn for k = 1, n + 1 are 
linearly independent, which is impossible. �

Now, let us prove the Theorem 2.

Proof. The implication (i) ⇒ (ii) is obvious.
(ii) ⇒ (i). Let T : Cp(S) → Cp(SA) be a linear homeomorphism. Then the map T ∗ : Lp(SA) → Lp(S)

is also a linear homeomorphism. Since SA is closed in Lp(SA), T ∗(SA) is closed in Lp(S). Now, suppose 
that SA is not homeomorphic to S. Then, by Theorem 1 there exists a set V ⊂ R closed in A such that 
V = V \ V . Let V ′ = V \ E, where E is the set of τA-isolated points of V . Because V

′ is closed in SA, by 

Corollary 1, V ′ =
∞�

n=1

∞⋃
m=1

Fn
m, where Fn

m are closed in SA and T ∗(Fn
m) ⊂ Mn

p (S).

Two mutually exclusive cases are possible:

1. Either there exists an interval (a, b) such that (a, b) ∩V
′ ⊂ V , or there exists an interval (a, b) such that 

(a, b) ∩ V
′ ⊂ V \ V .

2. For each interval (a, b), B = (a, b) ∩ V
′ ∩ V �= ∅ if and only if C = (a, b) ∩ V

′ ∩ (V \ V ) �= ∅.

Case 1. Since the set (a, b) is open in SA and V
′ is Baire (because V

′ is closed in the hereditary Baire space 
SA), then the set (a, b) ∩V

′ is Baire. Then (a, b) ∩Fn
m are closed in (a, b) ∩V

′ for n, m ∈ N. Therefore, there 
are n, m ∈ N and an interval I ⊂ (a, b) such that I ∩ V

′ ⊂ Fn
m and, therefore, T ∗(I ∩ V

′) ⊂ Mn
p (S).

Let the interval (a, b) be such that (a, b) ∩ V
′ ⊂ V .

Because I ∩ V
′ is Baire, then by Lemma 3, there exists an interval I1 ⊂ I such that π1 ◦ T ∗|I1∩V

′ is 
non-increasing. For the same reasons, there exists an interval I2 ⊂ I1 such that π2◦T ∗|I2∩V

′ is non-increasing. 
Continuing this process for each j = 3, n we get an interval In ⊂ In−1 such that the map πj ◦ T ∗|In∩V

′ are 
non-increasing for each j = 1, n. Let

Rk =
{
t ∈ I1 ∩ V

′;T ∗(t) =
n∑

i=1
αi(t)qi(t), |αi(t)| ≤ k, i = 1, n

}
.

The sets Rk are closed in Xn by Lemma 2 and I1 ∩ V
′ =

∞⋃
k=1

Rk. Since I1 ∩ V
′ is Baire, there are k ∈ N

and the interval I2 such that I2 ∩ V
′ ⊂ Rk.

Since I2 ∩ V �= ∅, it follows that there exists x0, x1 ∈ I2 ∩ (V \ V ) ⊂ V \ A, x0 < x1. The last inclusion 
is true due to the closedness of the set V in A. Because I2 ∩ V

′ ⊂ V , then x0, x1 ∈ E, i.e., they are 
isolated in τA. This means that (x0 − ε, x0] ∩ V = {x0} and (x1 − ε, x1] ∩ V = {x1} holds for a sufficiently 
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small ε > 0. Since all points in (V, τE) are condensation points, there exists a point t0 ∈ I2 ∩ V
′ such that 

x0 < t0 < x1 and a decreasing sequence {tl}∞l=1 ⊂ I2 ∩ V
′, tl > x1, converging in the Euclidean topology 

to the point x1. This means that the sequence {tl}∞l=1 in SA is divergent. Because the points tl ∈ Rk, then 

T ∗(tl) =
n∑

i=1
αi(tl)qi(tl) and |αi(tl)| ≤ k for all i, l ∈ N. Since the map (πj ◦ T ∗)|I1∩V

′ is non-increasing and 

the sequence {tl}∞l=1 is decreasing, it follows that the sequences {qj(tl)}∞l=1 are increasing and qj(tl) ≤ qj(t0)
for all j = 1, n and l ∈ N. Therefore, the sequences {qj(tl)}∞l=1 converge to points qj in S for each j = 1, n. 
Due to the fact that |α1(tl)| ≤ k, there is a subsequence 

{
t
(1)
l

}∞

l=1
such that there exists α1 = lim

l→∞
α1

(
t
(1)
l

)
. 

Next, choose a subsequence {t(2)l }∞l=1 ⊂ {t(1)l }∞l=1 such that lim
l→∞

α2(t(2)l ) = α2. At the n-th step, we get the 

subsequence {t(n)
l }∞l=1, for which there are lim

l→∞
αi(t(n)

l ) = αi for each i = 1, n. It is easy to see that the 

sequence 
{
T ∗

(
t
(n)
l

)}∞

l=1
converges to the point 

n∑
i=1

αiqi. Thus, we obtain a contradiction to the fact that 

the map T ∗ is a homeomorphism.
The case when there exists an interval (a, b) such that (a, b) ∩V

′ ⊂ V \V is proved similarly, considering 
the increasing sequence {tl}∞l=1 ⊂ I2 ∩ V

′, tl < x0, converging on the Euclidean topology to the point 
x0 ∈ I2 ∩ V .

Case 2. Since SA is hereditarily Baire, the set V ′ ⊂ SA is Baire, and therefore there are n, m ∈ N and the 
interval I = (p, q) such that I ∩ V

′ ⊂ Fn
m and T ∗(I ∩ V

′) ⊂ Mn
p (S).

Because I is open in SA and V
′ is Baire, I ∩ V

′ is Baire by [5, p. 228]. In this case, it follows from the 
assertion of case 2 that I ∩ V

′ = B �C, where B, C �= ∅. Therefore, at least one of the sets B or C is of the 
second category.

Let B be of the second category. By Lemma 3, B =
∞⋃
k=1

Bk, where Bk are closed subsets of B and the 

maps (πj ◦ T ∗)|Bk
are non-increasing for each j = 1, n. Since B is of the second category, it follows that 

there exists a number k ∈ N and an interval I1 such that ∅ �= I1 ∩B ⊂ Bk. Let t ∈ I1 ∩C. Then there is an 
increasing sequence {tl}∞l=1, tl ∈ I1 ∩B, converging to t in SA. By Lemma 4, there exists a number j = 1, n
such that the set {(πj ◦T ∗)(tl)}∞l=1 is infinite. Since the mapping πj ◦T ∗ is non-increasing and the sequence 
{tl}∞l=1 is increasing, it follows that it turns into a decreasing sequence {(πj ◦ T ∗)(tl)}∞l=1, i.e., it diverges in 
S. Thus, we obtain a contradiction, because the map πj ◦ T ∗ is continuous.

The case when the set C is of the second category is proved similarly. �
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