
Explainable Reactive Synthesis󰂏

Tom Baumeister1, Bernd Finkbeiner2, and Hazem Torfah3

1 Saarland University, Saarland Informatics Campus
s8tobaum@stud.uni-saarland.de

2 CISPA Helmholtz Center for Information Security
finkbeiner@cispa.saarland

3 University of California, Berkeley, USA
torfah@berkeley.edu

Abstract. Reactive synthesis transforms a specification of a reactive
system, given in a temporal logic, into an implementation. The main
advantage of synthesis is that it is automatic. The main disadvantage
is that the implementation is usually very difficult to understand. In
this paper, we present a new synthesis process that explains the syn-
thesized implementation to the user. The process starts with a simple
version of the specification and a corresponding simple implementation.
Then, desired properties are added one by one, and the corresponding
transformations, repairing the implementation, are explained in terms of
counterexample traces. We present SAT-based algorithms for the syn-
thesis of repairs and explanations. The algorithms are evaluated on a
range of examples including benchmarks taken from the SYNTCOMP
competition.

Keywords: reactive synthesis · temporal logic · SAT-based synthesis

1 Introduction

In reactive synthesis, an implementation of a reactive system is automatically
constructed from its formal specification. Synthesis allows developers to define
the behavior of a system in terms of a list of its desired high-level properties,
delegating the detailed implementation decisions to an automatic procedure.
However, the great advantage of synthesis, that it is automatic, can also be an
obstacle, because it makes it difficult for the user to understand why the system
reacts in a particular way. This is particularly troublesome in case the user has
written an incorrect specification or forgotten to include an important property.
The declarative nature of formal specifications gives the synthesis process the
liberty to resolve unspecified behavior in an arbitrary way. This may result in
implementations that satisfy the specification, yet still behave very differently
from the developer’s expectations.

󰂏 This work was partially supported by the Collaborative Research Center “Foun-
dations of Perspicuous Software Systems” (TRR: 248, 389792660), the European
Research Council (ERC) Grant OSARES (No. 683300), the DARPA Assured Au-
tonomy program, the iCyPhy center, and by Berkeley Deep drive.

2 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

In this paper, we propose a new synthesis process that, while still fully au-
tomatic, provides the user with an explanation for the decisions made by the
synthesis algorithm. The explainable synthesis process builds the implementa-
tion incrementally, starting with a small subset of the desired properties and
then adding more properties, one at a time. In each step, the algorithm presents
an implementation that satisfies the currently considered specification and ex-
plains the changes that were required from the previous implementation in order
to accomodate the additional property. Such an explanation consists of a coun-
terexample trace, which demonstrates that the previous implementation violated
the property, and a transformation that minimally repairs the problem.

As an example, consider the specification of a two-client arbiter in linear-time
temporal logic (LTL) shown in Figure 1a. The specification consists of three prop-
erties: ϕmutex,ϕfairness and ϕnon-spurious, requiring mutual exclusion, i.e., there
is at most one grant at a time, fairness, i.e., every request is eventually granted,
and non-spuriousness, i.e., a grant is only given upon receiving a request4. Let
us suppose that our synthesis algorithm has already produced the transition
system shown in Figure 1b for the partial specification ϕmutex ∧ ϕfairness. This
solution does not satisfy ϕnon-spurious. To repair the transition system, the syn-
thesis algorithm carries out the transformations depicted in Figures 1c to 1g.
The transformations include a label change in the initial state and the redirec-
tion of five transitions. The last four redirections require the expansion of the
transition system to two new states t2 and t3. The synthesis algorithm justifies
the transformations with counterexamples, depicted in red in Figures 1c to 1f.

The algorithm justifies the first two transformations, (1) changing the label
in the initial state to ∅ as depicted in Figure 1c and (2) redirecting the transition
(t0, ∅, t1) to (t0, ∅, t0), as shown in Figure 1d, by a path in the transition system
that violates ϕnon-spurious, namely the path that starts with transition (t0, ∅, t1).
Changing the label of the initial state causes, however, a violation of ϕfairness,
because no grant is given to client 0. This justifies giving access to a new state
t2, as shown in Figure 1e and redirecting the transition with {r0} from t0 to t2.
The third transformation, leading to Figure 1f, is justified by the counterexample
that, when both clients send a request at the same time, then only client 1 would
be given access. Finally, the last two transformations, redirecting (t1, {r0}, t0)
to (t1, {r0}, t3) and (t1, {r0, r1}, t0) to (t1, {r0, r1}, t3), are justified by the coun-
terexample that if both clients alternate between sending a request then client
0 will not get a grant. This final transformation results in the transition system
shown in Figure 1g, which satisfies all three properties from Figure 1a.

We implement the explainable synthesis approach in the setting of bounded
synthesis [9,4]. Bounded synthesis finds a solution that is minimal in the number
of states; this generalizes here to a solution that is obtained from the previous
solution with a minimal number of transformations. Like bounded synthesis, we

4 The sub-formula ri R¬gi states that initially no grant is given to client i as long as no
request is received from this client. After that, the formula (gi → ri∨(©(riR¬gi)))
ensures that a grant is active only if the current request is still active, otherwise,
and from this point on, no grants are given as long as no new request is received.

Explainable Reactive Synthesis 3

ϕmutex := (¬g0 ∨ ¬g1)

ϕfairness :=
󰁡

i∈{0,1}

(ri → gi)

ϕnon-spurious :=
󰁡

i∈{0,1}

((riR¬gi) ∧ (gi → ri ∨ (©(riR¬gi))))

(a) Specification of a two-client arbiter

t0{g0} t1

{g1}∅, {r0}, {r1}, {r0, r1}

∅, {r0}, {r1}, {r0, r1}

(b) An implementation
for specification ϕmutex ∧
ϕfairness

t0∅ t1

{g1}∅, {r0}, {r1}, {r0, r1}

∅, {r0}, {r1}, {r0, r1}

(c) ∆1: Changing the la-
bel of the initial state

t0∅ t1

{g1}
∅

{r0}, {r1}, {r0, r1}

∅,{r0}, {r1}, {r0, r1}

(d) ∆2: Redirecting the
transition (t0, ∅, t1) to
(t0, ∅, t0)

t0∅ t1

{g1}

t2

{g0}

∅

{r1},{r0, r1}

{r0}

∅, {r0}, {r1}, {r0, r1}

∅, {r0}

{r1
}, {

r0
, r1

}

(e) ∆3: Redirecting the
transition (t0, {r0}, t1) to
(t0, {r0}, t2)

t0∅ t1

{g1}

t2

{g0}

t3

{g0}

∅

{r1}

{r0}

{r
0 , r

1}

∅,{r0}, {r1}, {r0, r1}

∅, {r0}

{r1},
{r0, r1

} ∅,
{r

0
},

{r
1
},
{r

0
,r

1
}

(f) ∆4: Redirecting the
transition (t0, {r0, r1}, t1)
to (t0, {r0, r1}, t3)

t0∅ t1

{g1}

t2

{g0}

t3

{g0}

∅

{r1}

{r0}

{r
0 , r

1}
∅, {r1}

{r0
}, {

r0
, r1

}

∅, {r0}

{r1},
{r0, r1

} ∅,
{r

0
},
{r

1
},
{r

0
,r

1
}

(g) ∆5: Redirect-
ing the transitions
(t1, v, t0) to (t1, v, t3) for
v ∈ {{r0, r1}, {r0}}

Fig. 1: Using explainable reactive synthesis to synthesize an implementation for
a two-client arbiter. Clients request access to the shared resource via the signals
r0 and r1. Requests are granted by the arbiter via the signals g0 and g1.

use a SAT encoding to find the transition system, with additional constraints on
the type and number of transformations. As explained above, the transforma-
tions involve a change of a state label or a redirection of a transition. Within the
given budget of states, new states are accessed by redirecting transitions to these
states. In the example in Figure 1, a budget of four states is fixed and initially
unreachable states, such as t2 and t3, are accessed by redirecting transitions to
them as done in Figure 1e and Figure 1f. For the construction of explanations,
we use bounded model checking [9]. In this way, both the repair and the expla-
nation can be ensured to be minimal. We evaluate our approach on a series of
examples, including benchmarks from the SYNTCOMP competition [12].

4 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

Related Work

The importance of incremental algorithms for solving the reactive synthesis prob-
lem has quickly manifested itself in the research community after the introduc-
tion of the problem. By decomposing a synthesis problem into smaller instances
and combining the results of these instances to a solution for the full problem,
the hope is to provide scalable algorithms for solving the in general difficult
problem [6,15,16,17,20,21]. For example, for a set of system specifications, one
can construct implementations for the individual specifications and construct an
implementation for the full specification by composing the results for the smaller
specifications [15]. To check the realizability of a specification, one can check the
realizability of gradually larger parts of the specification [21]. Refinement-based
synthesis algorithms incrementally construct implementations starting with an
abstraction that is gradually refined with respect to a given partial order that
guarantees correctness [6,16,17,20]. The key difference between our approach and
the incremental approaches mentioned above is the underlying repair process.
The advantage of program repair is that it constructs an implementation that
is close to the original erroneous implementation. In our approach, this makes
it possible to derive explanations that justify the repairs applied to the previous
implementation. Other repair problems for temporal logics have previously been
considered in [13,3]. In [13], an expression or a left-hand side of an assignment is
assumed to be erroneous and replaced by one that satisfies the specification. In
[3], the repair removes edges from the transition system. By contrast, our repair
algorithm changes labels of states and redirects transitions.

A completely different approach to make synthesized implementation more
understandable is by posing conditions on the structure of synthesized imple-
mentations [14,8]. Bounded synthesis [9] allows us to bound the size of the con-
structed implementation. Bounded cycle synthesis [7] additionally bounds the
number of cycles in the implementation. Skeleton synthesis [10] establishes the
relations between the specification and the synthesized implementation to clar-
ify which parts of the implementation are determined by the specification and
which ones where chosen by the synthesis process.

2 Preliminaries

Linear-time Temporal Logic: As specification language, we use Linear-Time
Temporal Logic (LTL) [19], with the usual temporal operators Next , Until U
and the derived operators Release R, which is the dual operator of U , Eventually

and Globally . Informally, the Release operator ϕ1 Rϕ2 says that ϕ2 holds in
every step until ϕ1 releases this condition. LTL formulas defining specifications
for reactive systems are defined over a set of atomic propositions AP = I ∪ O,
which is partitioned into a set I of input propositions and a set O of output
propositions. We denote the satisfaction of an LTL formula ϕ by an infinite se-
quence σ : N → 2AP of valuations of the atomic propositions by σ ⊨ ϕ. For an
LTL formula ϕ we define the language L(ϕ) by the set {σ ∈ (N → 2AP) | σ ⊨ ϕ}.

Explainable Reactive Synthesis 5

Implementations: We represent implementations as labeled transition systems.
For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled
Υ -transition system is a tuple T = (T, t0, τ, o), consisting of a finite set of states
T , an initial state t0 ∈ T , a transition function τ : T × Υ → T , and a labeling
function o : T → Σ. For a set I of input propositions and a set O of output
propositions, we represent reactive systems as 2O-labeled 2I -transition systems.
For reactive systems, a path in T is a sequence π ∈ N → T × 2I of states and
directions that follows the transition function, i.e., for all i ∈ N, if π(i) = (ti, ei)
and π(i+1) = (ti+1, ei+1), then ti+1 = τ(ti, ei). We call a path initial if it starts
with the initial state: π(0) = (t0, e) for some e ∈ 2I . We denote the set of initial
paths of T by Paths(T). For a path π ∈ Paths(T), we denote the sequence
σπ : i 󰀁→ o(π(i)), where o(t, e) = (o(t) ∪ e) by the trace of π. We call the set of
traces of the paths of a transition system T the language of T , denoted by L(T).

For a given finite sequence v∗ ∈ (2I)∗, we denote the transitions sequence
where we reach a state t′ from state t after applying the transition function τ for
every letter in v∗ starting in t by τ∗(t, v∗) = t′. The size of a transition system
is the size of its set of states, which we denote by |T |.

For a set of atomic propositions AP = I ∪ O, we say that a 2O-labeled 2I -
transition system T satisfies an LTL formula ϕ, if and only if L(T) ⊆ L(ϕ), i.e.,
every trace of T satisfies ϕ. In this case, we call T a model of ϕ.

3 Minimal Repairs and Explanations

In this section, we lay the foundation for explainable reactive synthesis. We
formally define the transformations that are performed by our repair algorithm
and determine the complexity of finding a minimal repair, i.e., a repair with the
fewest number of transformations, with respect to a given transition system and
an LTL specification and show how repairs can be explained by counterexamples
that justify the repair.

3.1 Generating Minimal Repairs

For a 2O-labeled 2I -transition system T = (T, t0, τ, o), an operation ∆ is either
a change of a state labeling or a redirection of a transition in T . We denote the
transition system T ′ that results from applying an operation ∆ to the transition
system T by T ′ = apply(T ,∆).

A state labeling change is denoted by a tuple ∆label = (t, v), where t ∈ T
and v ∈ 2O defines the new output v of state t. The transition system T ′ =
apply(T ,∆label) is defined by T ′ = (T, t0, τ, o

′), where o′(t) = v and o′(t′) = o(t′)
for all t′ ∈ T with t′ ∕= t.

A transition redirection is denoted by a tuple ∆transition = (t, t′, V), where
t, t′ ∈ T and V ⊆ 2I . For a transition redirection operation∆transition = (t, t′, V),
the transition system T ′ = apply(T ,∆transition) is defined by T ′ = (T, t0, τ

′, o),
with τ ′(t, v) = t′ for v ∈ V and τ ′(t, v) = τ(t, v) for v /∈ V . For t′′ ∕= t and
v ∈ 2I , τ ′(t′′, v) = τ(t′′, v).

6 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

A finite set of operations ξ is called a transformation. A transformation
ξ is consistent if there is no transition system T and ∆1,∆2 ∈ ξ such that
apply(apply(T ,∆1),∆2) ∕= apply(apply(T ,∆2),∆1), i.e. the resulting transition
system does not differ depending on the order in which operations are applied.
For a consistent transformation ξ, we denote the 2O-labeled 2I -transition system
T ′ that we reach after applying every operation in ξ starting with a 2O-labeled
2I -transition system T by T ′ = apply∗(T , ξ).

Note that there is no operation which explicitly adds a new state. In the
example in Figure 1, we assume a fixed number of available states (some that
might be unreachable in the initial transition system). We reach new states by
using a transition redirection operation to these states.

Definition 1 (Minimal Repair). For an LTL-formula ϕ over AP = I∪O and
a 2O-labeled 2I-transition system T , a consistent transformation ξ is a repair
for T and ϕ if apply∗(T , ξ) ⊨ ϕ. A repair ξ is minimal if there is no repair ξ′

with |ξ′| < |ξ|.

Example 1. The arbiter Arb1 in Figure 1c can be obtained from the round-
robin arbiter Arb0, shown in Figure 1b, by applying ∆label = (t0, ∅), i.e. Arb1 =
apply(Arb0,∆label). Arbiter Arb3, depicted in Figure 1e is obtained from Arb1
with the transformation ξ1 = {∆transition1,∆transition2} where ∆transition1 =
(t0, t0, {∅}) and ∆transition2 = (t0, t2, {{r0}}) such that apply∗(Arb1, ξ1) = Arb3.
A minimal repair for Arb0 and ϕmutex ∧ ϕfairness ∧ ϕnon-spurious, defined in
Section 1, is ξ2 = {∆label,∆transition1,∆transition2,∆transition3,∆transition4} with
∆transition3 = (t0, t3, {{r0, r1}}) and ∆transition = (t1, t2, {{r0}, {r0, r1}}). The
resulting full arbiter Arb5 is depicted in Figure 1g, i.e. apply∗(Arb0, ξ2) = Arb5.

We are interested in finding minimal repairs. The minimal repair synthesis
problem is defined as follows.

Problem 1 (Minimal Repair Synthesis) Let ϕ be an LTL-formula over a
set of atomic propositions AP = I ∪ O and T be a 2O-labeled 2I-transition
system. Find a minimal repair for ϕ and T ?

In the next lemma, we show that for a fixed number of operations, the prob-
lem of checking if there is a repair is polynomial in the size of the transition
system and exponential in the number of operations. For a small number of op-
erations, finding a repair is cheaper than synthesizing a new system, which is
2EXPTIME-complete in the size of the specification [18].

Lemma 1. For an LTL-formula ϕ, a 2O-labeled 2I-transition system T , and a
bound k, deciding whether there exists a repair ξ for T and ϕ with |ξ| = k can be
done in time polynomial in the size of T , exponential in k, and space polynomial
in the length of ϕ.

Proof. Checking for a transformation ξ if apply∗(T , ξ) ⊨ ϕ is PSPACE-complete
[22]. There are |T |·2|O| different state labeling operations and |T |2 ·2|I| transition
redirections. Thus, the number of transformations ξ with |ξ| = k is bounded by

Explainable Reactive Synthesis 7

O((|T |2)k). Hence, deciding the existence of such a repair is polynomial in |T |
and exponential in k. ⊓⊔

The size of a minimal repair is bounded by a polynomial in the size of the
transition system under scrutiny. Thus, the minimal repair synthesis problem can
be solved in time at most exponential in |T |. In most cases, we are interested in
small repairs resulting in complexities that are polynomial in |T |.

Theorem 1. For an LTL-formula ϕ, a 2O-labeled 2I-transition system T , find-
ing a minimal repair for T and ϕ can be done in time exponential in the size of
T , and space polynomial in the length of ϕ.

3.2 Generating Explanations

For an LTL-formula ϕ over AP = I ∪ O, a transformation ξ for a 2O-labeled
2I -system T is justified by a counterexample σ if σ 󰃺 ϕ, σ ∈ L(T) and σ /∈
L(apply∗(T , ξ)). We call σ a justification for ξ. A transformation ξ is called
justifiable if there exists a justification σ for ξ.

A transformation ξ for T and ϕ is minimally justified by σ if ξ is justified by
σ and there is no ξ′ ⊂ ξ where σ is a justification for ξ′. If a transformation ξ is
minimally justified by a counterexample σ, we call σ a minimal justification.

Definition 2 (Explanation). For an LTL-formula ϕ over AP = I ∪ O, an
initial 2O-labeled 2I-transition system T , and a minimal repair ξ, an explanation
ex is defined as a sequence of pairs of transformations and counterexamples.
For an explanation ex = (ξ1,σ1), . . . , (ξn,σn), it holds that all transformations
ξ1, . . . , ξn are disjoint, ξ =

󰁖
1≤i≤n ξi, and each transformation ξi with 1 ≤ i ≤ n

is minimally justified by σi for apply∗(T ,
󰁖

1≤j<i ξj) and ϕ.

Example 2. Let ϕ1 = g ∧ ¬g over I = {r} and O = {g} and consider the
2O-labeled 2I -transition system T with states {t0, t1}, depicted in Figure 2.

t0 t1{g} {g}∅, {r} ∅, {r}

Fig. 2: A transition system over I = {r}
and O = {g} that is not a model of ϕ1.

For T and ϕ1, the transforma-
tion ξ with ξ = {∆transition}
where ∆transition = (t0, t1, {{g}, ∅}),
is not justifiable because L(T) =
L(apply∗(T , ξ)). For our running ex-
ample, introduced in Section 1, the
transformation ξ1 = {∆label} that is
defined in Example 1, is justifiable
for the round-robin arbiter Arb0 and
ϕmutex ∧ ϕfairness ∧ ϕnon-spurious. It is justified by the counterexample σ1 =
({g0} ∪ ∅, {g1} ∪ ∅)ω, indicated by the red arrows in Figure 1b. Further, σ1 is a
minimal justification. The transformation ξ2 = {∆label,∆transition1} for Arb0 is
not minimally justified by σ1 as σ1 is a justification for ξ1 and ξ1 ⊂ ξ2. An expla-
nation ex for Arb0, the LTL-formula ϕmutex∧ϕfairness∧ϕnon-spurious and the min-
imal repair ξ3 = {∆label,∆transition1,∆transition2,∆transition3,∆transition4} is ex =
(∆label,σ1), (∆transition1,σ2), (∆transition2,σ3), (∆transition3,σ4), (∆transition4,σ5)

8 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

with σ2 = (∅∪∅, {g1}∪∅)ω, σ3 = (∅∪{r0}, {g1}∪{r0})ω, σ4 = (∅∪{r0, r1}, {g1}∪
∅)ω and σ5 = (∅ ∪ {r1}, {g1} ∪ {r0})ω. The different justifications are indicated
in the subfigures of Figure 1.

In the next theorem, we show that there exists an explanation for every
minimal repair.

Theorem 2. For every minimal repair ξ for an LTL-formula ϕ over AP = I∪O
and a 2O-labeled 2I-transition system T , there exists an explanation.

Proof. Let ξ = {∆1, . . . ,∆n} be a minimal repair for the LTL-formula ϕ and the
transition system T . An explanation ex can be constructed as follows. Let σ ∈
L(T) with σ 󰃺 ϕ. Since ξ is a minimal repair, σ /∈ L(apply∗(T , ξ)). The smallest
subset ξ′ ⊆ ξ with σ /∈ L(apply∗(T , ξ′)) is minimally justified by σ. Thus (ξ′,σ) is
the first element of the explanation ex . For the remaining operations in ξ\ξ′, we
proceed analogously. The counterexample σ is now determined for apply∗(T , ξ′).
The construction is finished if either every transformation is minimally justified
by a counterexample and there is no operation left or there is no justification for
a transformation which clearly contradicts that ξ is a minimal repair. Hence, ex
is an explanation for ξ. ⊓⊔

From the last theorem we know that we can find an explanation for ev-
ery minimal repair. It is however important to notice that it is not neces-
sarily the case that we can find justifications for each singleton transforma-
tion in the repair as shown by the following example. Let ϕ2 = ¬g ∧ ¬g ∧
((¬r) → g) over I = {r}, O = {g} and consider the 2O-labeled 2I -
transition system T with the set of states {t0, t1, t2}, depicted in Figure 3.

t0 t1 t2

∅ ∅ {g}

∅

{r}

∅

{r}

∅, {r}

Fig. 3: A transition system over I = {r}
and O = {g} that is not a model of ϕ2.

For ϕ2 and T , the transformation
ξ with ξ = {∆transition1,∆transition2}
where ∆transition1 = (t0, t1, {∅}), and
∆transition2 = (t1, t2, {∅}), is a mini-
mal repair. The counterexample σ =
∅ω is the only one with σ ∈ L(T). For
an explanation ex = (ξ1,σ1), (ξ2,σ2)
where ξi is a singleton, for all 1 ≤
i ≤ 2, either ξ1 = {∆transition1} or
ξ1 = {∆transition2}. However, in both
cases, σ ∈ L(apply∗(T , ξ1)). Thus,
there are minimal repairs where not
every operation can be justified on its own. Furthermore, it should be noted
that explanations are not unique as there can exist different justifications for
the same transformation, i.e. there can exist multiple different explanations for
the same minimal repair. For the round-robin arbiter in Figure 1b and the spec-
ification ϕmutex ∧ ϕfairness ∧ ϕnon-spurious, the transformation ξ1 = {∆label} can
be minimally justified by ({g0} ∪ ∅, {g1} ∪ ∅)ω and by ({g0} ∪ {r1}, {g1} ∪ ∅)ω.

We refer to the problem of finding an explanation for a minimal repair as the
the explanation synthesis problem.

Explainable Reactive Synthesis 9

Algorithm 1 MinimalRepair(T ,ϕ)

1: left ← 0
2: right ← |T |+ |T | · |T |
3: exist ← false
4: while left < right do
5: k ← ⌊ left+right

2
⌋

6: (found , ξ) ← Repair(T ,ϕ, k)
7: if found then
8: right ← k − 1
9: ξmin ← ξ
10: exists ← true
11: else
12: left ← k + 1

13: (found ′, ξ′) ← Repair(T ,ϕ, left)
14: if !exists then
15: return no minimal repair exists

16: if found ′ then
17: return ξ′

18: else
19: return ξmin

Problem 2 (Explanation Synthesis) Let ϕ be an LTL-formula over AP =
I ∪ O, T be a 2O-labeled 2I-transition system and ξ be a minimal repair. Find
an explanation ex for ϕ, T and ξ.

4 SAT-based Algorithms for Minimal Repair and
Explanation Synthesis

In this section, we present SAT-based algorithms to solve the minimal repair
synthesis problem and the explanation synthesis problem.

4.1 Generating Minimal Repairs

The procedure MinimalRepair(T ,ϕ), shown in Algorithm 1, solves the mini-
mal repair synthesis problem. For a given LTL-formula ϕ over AP = I ∪O and
2O-labeled 2I -transition system T , Algorithm 1 constructs a minimal repair ξ
if one exists. We use binary search to find the minimal number k of required
operations. The possible number of operations can be bounded by |T |+ |T | · |T |
as there are only |T | state labelings and |T | · |T | transition redirects. Checking
whether there is a transformation ξ with |ξ| ≤ k such that apply∗(T , ξ) ⊨ ϕ is
done by using the procedure Repair(T ,ϕ, k) which is explained next.

Repair(T ,ϕ, k) : To check whether there is a repair ξ for a 2O-labeled 2I -
transition system T with k operations, we need to ensure that the resulting
transition system is a model for ϕ, i.e. apply∗(T , ξ) ⊨ ϕ. To check the existence
of a transition system T ′ with bound n = |T ′| that implements ϕ, we use the
SAT-based encoding of bounded synthesis [4]. Bounded synthesis is a synthesis
procedure for LTL-formulas that produces size-optimal transition systems [9].
For a given LTL formula ϕ, a universal co-Büchi automaton A that accepts

10 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

φcost =
󰁡

0≤t,n<|T |,c≤k

rdTranst,n,c ∧ notRdTranst,n,c ∧ ¬costt,n,k+1

󰁡

0≤t<|T |,c≤k

changeLabel t,c ∧ notChangeLabel t,c ∧ ¬costt,|T |,k+1

rdTranst,n,c =

󰀻
󰁁󰀿

󰁁󰀽

trans0,0 → cost0,0,1 if t = 0 ∧ n = 0

costt−1,|T |,c ∧ transt,n → costt,n,c+1 if t > 0 ∧ n = 0

costt,n−1,c ∧ transt,n → costt,n,c+1 if n > 0

notRdTranst,n,c =

󰀻
󰁁󰀿

󰁁󰀽

¬trans0,0 → cost0,0,0 if t = 0 ∧ n = 0

costt−1,|T |,c ∧ ¬transt,n → costt,n,c if t > 0 ∧ n = 0

costt,n−1,c ∧ ¬transt,n → costt,n,c if n > 0

changeLabel t,c = costt,|T |−1,c ∧ label t → costt,|T |,c+1

notChangeLabel t,c = costt,|T |−1,c ∧ ¬label t → costt,|T |,c

label t =
󰁢

o∈O

󰀫
o′t if o /∈ o(t)

¬o′t if o ∈ o(t)

transt,t′ =
󰁢

i∈2I

󰀫
τ ′
t,i,t′ if τ(t, i) ∕= t′

⊥ if τ(t, i) = t′

Fig. 4: The constraint φcost ensures that at most k operations are applied.

L(ϕ) is constructed. A transition system T satisfies ϕ if every path of the run
graph, i.e. the product of T and A, visits a rejecting state only finitely often.
An annotation function λ confirms that this is the case. The bounded synthesis
approach constructs a transition system with bound n by solving a constraint
system that checks the existence of a transition system T and a valid annotation
function λ. In the bounded synthesis constraint system for the 2O-labeled 2I -
transition system T ′ = (T, t0, τ

′, o′), the transition function τ ′ is represented by
a variable τ ′t,i,t′ for every t, t′ ∈ T and i ∈ 2I . The variable τ ′t,i,t′ is true if and
only if τ ′(t, i) = t′. The labeling function o′ is represented by a variable o′t for
every o ∈ O and t ∈ T and it holds that o′t is true if and only if o ∈ o′(t). For
simplicity, states are represented by natural numbers.

To ensure that the transition system T ′ can be obtained with at most k op-
erations from a given transition system T = (T, t0, τ, o), the bounded synthesis
encoding is extended with the additional constraint φcost shown in Figure 4. For
states t, t′, the constraint transt,t′ holds iff there is a redirected transition from
t to t′, i.e. there exists an i ∈ 2I with τ ′(t, i) = t′ and τ(t, i) ∕= t′. The constraint
labelt holds iff the state labeling of state t is changed, i.e. o(t) ∕= o′(t). To count

Explainable Reactive Synthesis 11

Algorithm 2 Explanation(T ,ϕ, ξ)

1: Told ← T
2: ex ← ()
3: while ξ ∕= ∅ do
4: σ ← BMC(Told,ϕ)
5: minimal ← false
6: ξ′ ← ξ
7: while !minimal do
8: minimal ← true
9: for ∆ ∈ ξ′ do
10: Tnew ← apply∗(Told, ξ

′\{∆})
11: if σ /∈ L(Tnew) then
12: minimal ← false
13: ξ′ ← ξ′\{∆}
14: Told ← apply∗(Told, ξ

′)
15: ex ← ex .Append(ξ′,σ)
16: ξ ← ξ\ξ′

17: return ex

the number of applied operations, we use an implicit ordering over all the pos-
sible operations: starting from state 0, we first consider all potential transition
redirects to states 0, 1, . . . , |T |− 1, then the potential state label change of state
0, then the transition redirects from state 1, and so on. For state t and operation
n, where n ranges from 0 to |T | (where n < |T | refers to the transition redirect
operation to state n and n = |T | refers to the state label change operation), the
variable cost t,n,c is true if the number of applied operations so far is c. This book-
keeping is done by constraints rdTranst,n,c, notRdTranst,n,c, changeLabel t,c and
notChangeLabel t,c. Constraints rdTrans and notRdTrans account for the pres-
ence and absence, respectively, of transition redirects, constraints changeLabel t,c
and notChangeLabel t,c for the presence and absence of state label changes. In or-
der to bound the total number of operations by k, φcost requires that costt,n,k+1

is false for all states t and operations n.
In the next theorem, we state the size of the resulting constraint system,

based on the size of the bounded synthesis constraint system given in [4].

Theorem 3. The size of the constraint system is in O(nm2 · 2|I| · (|δq,q′ | +
n log(nm))+kn2) and the number of variables is in O(n(m log(nm)+2|I| ·(|O|+
n)) + kn2), where n = |T ′|,m = |Q| and k the number of allowed operations.

4.2 Generating Explanations

We describe now how we can solve the explanation synthesis problem for a given
LTL-formula ϕ over AP = I ∪ O, a 2O-labeled 2I -transition system T and a
minimal repair ξ. The minimal repair ξ can be obtained from Algorithm 1. The
construction of the explanation follows the idea from the proof of Theorem 2 and

12 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

is shown in Algorithm 2. An explanation ex is a sequence of transformations ξi
and counterexamples σi such that every transformation ξi can be minimally
justified by σi. A counterexample σ for the current transition system Told is ob-
tained by Bounded Model Checking (BMC) [2] and is a justification for ξ as ξ is
a minimal repair. BMC checks if there is a counterexample of a given bound n
that satisfies the negated formula ¬ϕ and is contained in L(T). The constraint
system φT ∧φloop∧󰌻¬ϕ󰌼 is composed of three components. φT encodes the tran-
sition system T , where each state t ∈ T is represented as a boolean vector. φloop

ensures the existence of exactly one loop of the counterexample, and the fixpoint
formula 󰌻¬ϕ󰌼 ensures that the counterexample satisfies the LTL formula. To ob-
tain a minimal justification, we need to ensure that there is no transformation
ξ′ ⊂ ξ such that σ justifies ξ′. As long as there is an operation ∆ such that
σ /∈ L(apply∗(Told, ξ′\{∆})), σ is not a minimal justification for ξ′. Otherwise σ
minimally justifies ξ′ and (ξ′,σ) can be appended to the explanation. The algo-
rithm terminates and returns an explanation if ξ is empty, i.e. every operation
is justified. The presented algorithm solves the BMC-problem at most |ξ|-times
and the number of checks if a counterexample is contained in the language of a
transition system is bounded by |ξ|2. The correctness of Algorithm 2 is shown
in Theorem 2.

5 Experimental Results

We compare our explainable synthesis approach with BoSy [5], a traditional
synthesis tool, on several benchmarks. After describing the different benchmark
families and technical details, we explain the observable results.

5.1 Benchmark Families

The benchmarks families for arbiter, AMBA and load balancer specifications are
standard specifications of SYNTCOMP [11]. For the scaling benchmarks only a
constant number of operations is needed. The remaining benchmarks synthesize
support for different layers of the OSI communication network.

– Arbiter: An arbiter is a control unit that manages a shared resource. Arbn
specifies a system to eventually grant every request for each of the n clients
and includes mutual exclusion, i.e. at most one grant is given at any time.
ArbFulln additionally does not allow spurious grants, i.e. there is only given
a grant for client i if there is an open request of client i.

– AMBA: The ARM Advanced Microcontroller Bus Architecture (AMBA) is
an arbiter allowing additional features like locking the bus for several steps.
The specification AMBAEncn is used to synthesize the encode component
of the decomposed AMBA arbiter with n clients that need to be controlled.
AMBAArbn specifies the arbiter component of a decomposed AMBA arbiter
with an n-ary bus, and AMBALockn specifies the lock component.

– Load Balancer: A load balancer distributes a number of jobs to a fixed
number of server. LoadFulln specifies a load balancer with n clients.

Explainable Reactive Synthesis 13

Table 1: Benchmarking results of BoSy and our explainable synthesis tool
Initial Extended Size Operations Number Time in sec. Time in sec.

Ben. Size Ben. Size Aut. chL/rdT Just. BoSy Explainable

Arb2 2 Arb4 4 5 0/3 3 0.348 1.356
Arb4 4 Arb5 5 6 0/2 2 2.748 12.208
Arb4 4 Arb6 6 7 0/3 3 33.64 139.088
Arb4 4 Arb8 - 9 - - timeout timeout
Arb2 2 ArbFull2 4 6 3/7 10 0.108 0.352

ArbFull2 4 ArbFull3 8 8 1/18 19 26.14 288.168

AMBAEnc2 2 AMBAEnc4 4 6 1/11 12 0.26 7.16
AMBAEnc4 4 AMBAEnc6 6 10 1/21 22 5.76 973.17
AMBAArb2 - AMBAArb4 - 17 - - timeout timeout
AMBAArb4 - AMBAArb6 - 23 - - timeout timeout
AMBALock2 - AMBALock4 - 5 - - timeout timeout
AMBALock4 - AMBALock6 - 5 - - timeout timeout

LoadFull2 3 LoadFull3 6 21 1/10 10 6.50 49.67
Loadfull3 6 LoadFull4 - 25 - - timeout timeout

BitStuffer2 5 BitStuffer3 7 7 2/7 9 0.08 1.02
BitStuffer3 7 BitStuffer4 9 9 1/6 7 0.21 3.97

ABPRec1 2 ABPRec2 4 9 2/5 7 0.11 1.52
ABPRec2 4 ABPRec3 8 17 4/9 13 2.87 326.98
ABPTran1 2 ABPTran2 4 31 1/5 5 0.76 76.93
ABPTran2 4 ABPTran3 - 91 - - timeout timeout

TCP1 2 TCP2 4 6 1/4 5 0.05 0.19
TCP2 4 TCP3 8 8 3/14 17 0.58 14.47

Scaling4 4 Scaling ′
4 4 4 4/0 4 0.02 0.10

Scaling5 5 Scaling ′
5 5 5 4/0 4 0.03 0.22

Scaling6 6 Scaling ′
6 6 6 4/0 4 0.04 0.51

Scaling8 8 Scaling ′
8 8 8 4/0 4 0.12 2.54

Scaling12 12 Scaling ′
12 12 12 4/0 4 34.02 167.03

– Bit Stuffer: Bit stuffing is a part of the physical layer of the OSI communi-
cation network which is responsible for the transmission of bits. Bit stuffing
inserts non-information bits into a bit data stream whenever a defined pat-
tern is recognized. BitStuffern specifies a system to signal every recurrence
of a pattern with length n.

– ABP: The alternating bit protocol (ABP) is a standard protocol of the
data link layer of the OSI communication network which transmits packets.
Basically, in the ABP, the current bits signals which packet has to be trans-
mitted or received. ABPRecn specifies the ABP with n bits for the receiver
and ABPTrann for the transmitter.

– TCP-Handshake:A transmission control protcol (TCP) supports the trans-
port layer of the OSI communication network which is responsible for the
end-to-end delivery of messages. A TCP-handshake starts a secure connec-
tion between a client and a server. TCPn implements a TCP-handshake
where n clients can continuously connect with the server.

– Scaling: The Scalingn benchmarks specify a system of size n. To satisfy the
specification Scaling ′n a constant number of operations is sufficient.

5.2 Technical Details

We instantiate BoSy with an explicit encoding, a linear search strategy, an input-
symbolic backend and moore semantics to match our implementation. Both tools

14 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

only synthesize winning strategies for system players. We use ltl3ba[1] as the
converter from an LTL-specification to an automaton for both tools. As both
constraint systems only contain existential quantifiers, CryptoMiniSat[23] is
used as the SAT-solver. The solution bound is the minimal bound that is given
as input and the initial transition system is synthesized using BoSy, at first. The
benchmarks results were obtained on a single quad-core Intel Xeon processor (E3-
1271 v3, 3.6GHz) with 32 GB RAM, running a GNU/Linux system. A timeout
of 2 hours is used.

5.3 Observations

The benchmark results are shown in Table 1. For each benchmark, the table
contains two specifications, an initial and an extended one. For example, the
initial specification for the first benchmark Arb2 specifies a two-client arbiter
and the extended one Arb4 specifies a four-client arbiter. Additionally, the table
records the minimal solution bound for each of the specifications. Our explainable
synthesis protoype starts by synthesizing a system for the initial specification
and then synthesizes a minimal repair and an explanation for the extended one. If
the minimal repair has to access additional states, that are initially unreachable,
our prototype initializes them with a self loop for all input assignments where
no output holds. The traditional synthesis tool BoSy only synthesizes a solution
for the extended specification. The size of the universal co-Büchi automaton,
representing the extended specification is reported. For the explainable synthesis,
the applied operations of the minimal repair and the number of justifications is
given. For both tools, the runtime is reported in seconds.

The benchmark results reveal that our explainable synthesis approach is able
to solve the same benchmarks like BoSy. In all cases, except two, we are able
to synthesize explanations where every operation can be single justified. The
applied operations show that there are only a small number of changed state
labelings, primarily for reaching additional states. Since only minimal initial
systems are synthesized, the outputs in the given structure are already fixed.
Redirecting transitions repairs the system more efficient. In general, the eval-
uation reveals that the runtime for the explainable synthesis process takes a
multiple of BoSy with respect to the number of applied operations. Thus, the
constraint-based synthesis for minimal repairs is not optimal if a small number
of operations is sufficient since the repair synthesis problem is polynomial in
the size of the system as proven in Lemma 1. To improve the runtime and to
solve more instances, many optimizations, used in existing synthesis tools, can
be implemented. These extensions include different encodings such as QBF or
DQBF or synthesizing strategies for the environment or a mealy semantics.

6 Conclusion

In this paper, we have developed an explainable synthesis process for reactive
systems. For a set of specification, expressed in LTL, the algorithm incrementally

Explainable Reactive Synthesis 15

builds an implementation by repairing intermediate implementations to satisfy
the currently considered specification. In each step, an explanation is derived
to justify the taken changes to repair an implementation. We have shown that
the decision problem of finding a repair for a fixed number of transformations is
polynomial in the size of the system and exponential in the number of operations.
By extending the constraint system of bounded synthesis, we can synthesize
minimal repairs where the resulting system is size-optimal. We have presented
an algorithm that constructs explanations by using Bounded Model Checking
to obtain counterexample traces. The evaluation of our prototype showed that
explainable synthesis, while more expensive, can still solve the same benchmarks
as a standard synthesis tool. In future work, we plan to develop this approach into
a comprehensive tool that provides rich visual feedback to the user. Additionally,
we plan to investigate further types of explanations, including quantitive and
symbolic explanations.

References

1. Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček. Ltl to büchi
automata translation: Fast and more deterministic. In Cormac Flanagan and Bar-
bara König, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 95–109, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

2. Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan
Zhu, et al. Bounded model checking. Advances in computers, 58(11):117–148, 2003.

3. Borzoo Bonakdarpour and Bernd Finkbeiner. Program repair for hyperproper-
ties. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated
Technology for Verification and Analysis, pages 423–441, Cham, 2019. Springer
International Publishing.

4. Peter Faymonville, Bernd Finkbeiner, Markus Rabe, and Leander Tentrup. En-
codings of bounded synthesis. pages 354–370, 03 2017.

5. Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. Bosy: An experimen-
tation framework for bounded synthesis. In Proceedings of CAV, volume 10427 of
LNCS, pages 325–332. Springer, 2017.

6. Bernd Finkbeiner and Swen Jacobs. Lazy synthesis. In Viktor Kuncak and Andrey
Rybalchenko, editors, Verification, Model Checking, and Abstract Interpretation -
13th International Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-
24, 2012. Proceedings, volume 7148 of Lecture Notes in Computer Science, pages
219–234. Springer, 2012.

7. Bernd Finkbeiner and Felix Klein. Bounded cycle synthesis. volume 9779 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2016.

8. Bernd Finkbeiner and Felix Klein. Reactive synthesis: Towards output-sensitive
algorithms. In Alexander Pretschner, Doron Peled, and Thomas Hutzelmann,
editors, Dependable Software Systems Engineering, volume 50 of NATO Science
for Peace and Security Series, D: Information and Communication Security, pages
25–43. IOS Press, 2017.

9. Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on
Software Tools for Technology Transfer, 15(5-6):519–539, 2013.

10. Bernd Finkbeiner and Hazem Torfah. Synthesizing skeletons for reactive systems.
In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for

16 Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah

Verification and Analysis - 14th International Symposium, ATVA 2016 Proceed-
ings, Lecture Notes in Computer Science, 2016.

11. Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maximilien
Colange, Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein,
Thibaud Michaud, Guillermo A. Perez, Jean-Francois Raskin, Ocan Sankur, and
Leander Tentrup. The 4th reactive synthesis competition (SYNTCOMP 2017):
Benchmarks, participants and results. In SYNT 2017, volume 260 of EPTCS,
pages 116–143, 2017.

12. Swen Jacobs, Roderick Bloem, Maximilien Colange, Peter Faymonville, Bernd
Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Philipp J. Meyer,
Thibaud Michaud, Mouhammad Sakr, Salomon Sickert, Leander Tentrup, and
AdamWalker. The 5th reactive synthesis competition (SYNTCOMP 2018): Bench-
marks, participants & results. CoRR, abs/1904.07736, 2019.

13. Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair
as a game. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, 17th International Conference, CAV Proceedings. Springer, 2005.

14. Hadas Kress-Gazit and Hazem Torfah. The challenges in specifying and explaining
synthesized implementations of reactive systems. In Proceedings CREST@ETAPS,
EPTCS, pages 50–64, 2018.

15. Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional
synthesis. In Thomas Ball and Robert B. Jones, editors, Computer Aided Verifica-
tion, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4144 of Lecture Notes in Computer Science, pages 31–44.
Springer, 2006.

16. P. Nilsson and N. Ozay. Incremental synthesis of switching protocols via abstrac-
tion refinement. In 53rd IEEE Conference on Decision and Control, pages 6246–
6253, 2014.

17. Hans-Jörg Peter and Robert Mattmüller. Component-based abstraction refinement
for timed controller synthesis. In Theodore Baker, editor, Proceedings of the 30th
IEEE Real-Time Systems Symposium (RTSS 2009), December 1 - December 4,
2009, Washington, D.C., USA, pages 364–374, Los Alamitos, CA, USA, December
2009. IEEE Computer Society.

18. A. Pnueli and Roni Rosner. On the synthesis of a reactive module. Automata
Languages and Programming, 372:179–190, 01 1989.

19. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 77, page 4657, USA, 1977.
IEEE Computer Society.

20. G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations for the
synthesis of symbolic controllers. IEEE Transactions on Automatic Control,
62(4):1781–1796, 2017.

21. Leonid Ryzhyk and Adam Walker. Developing a practical reactive synthesis tool:
Experience and lessons learned. In Ruzica Piskac and Rayna Dimitrova, editors,
Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada,
July 17-18, 2016, volume 229 of EPTCS, pages 84–99, 2016.

22. A. Sistla and Edmund Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32:733–749, 07 1985.

23. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers to cryp-
tographic problems. In Oliver Kullmann, editor, Theory and Applications of Sat-
isfiability Testing - SAT 2009, pages 244–257. Springer Berlin Heidelberg, 2009.

