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Abstract—Android’s application framework plays a crucial
part in protecting users’ private data and the system integrity.
Consequently, it has been the target of various prior works
that analyzed its security policy and enforcement. Those works
uncovered different security problems, including incomplete doc-
umentation, permission re-delegation within the framework, and
inconsistencies in access control. However, all but one of those
prior works were based on static code analysis. Thus, their
results provide a one-sided view that inherits the limitations and
drawbacks of applying static analysis to the vast, complex code
base of the application framework. Even more, the performances
of different security applications—including malware classifica-
tion and least-privileged apps—depend on those analysis results,
but those applications are currently tarnished by imprecise and
incomplete results as a consequence of this imbalanced analysis
methodology. To complement and refine this methodology and
consequently improve the applications that are dependent on it,
we add dynamic analysis of the application framework to the
current research landscape and demonstrate the necessity of this
move for improving the quality of prior results and advancing the
field. Applying our solution, called DYNAMO, to four prominent
use-cases from the literature and taking a synoptical view on the
results, we verify but also refute and extend the existing results
of prior static analysis solutions. From the manual investigation
of the root causes of discrepancies between results, we draw new
insights and expert knowledge that can be valuable in improving
both static and dynamic testing of the application framework.

I. INTRODUCTION

Android provides apps with rich features, such as location
tracking, taking pictures, sensing, or access to managed user
data. Those features are offered to app developers through
Android’s application framework API and are implemented by
system services and system apps. The application framework
is responsible for controlling access to system resources and
user data, and consequently plays a crucial role in protecting
system integrity and user privacy. This access control is based
on the privileges (”permissions”), identity, or other attributes
of calling processes. However, the application framework has
continuously grown over the various Android releases and has
become a massive code-base that is even further extended
and modified by OEMs for their own purposes. As a result,
the framework also became less and less transparent, and the
correct enforcement of security policies harder to judge. This

problem is best exemplified by the seemingly simple task to
determine which API of the application framework is guarded
by which security conditions (i.e., a permission mapping),
something that has not been satisfyingly solved until today.

In fact, over the last decade, Android’s application frame-
work has been the target of a still ongoing line of research [20],
[11], [12], [47], [6], [4], [28], [5] to analyze and model the
complex security policy protecting the APIs of system services.
The modeled policy has been central to research and industrial
applications in assisting developers to write least-privileged
apps [51], to detect malware and over-privileged apps [18],
[48], [44], [9], [57], [40], [27], to detect vulnerabilities in
the application framework itself [47], [56], [6], [4], [28],
[29], and other use-cases [13], [35], [43]. This large body of
research and its applications underline the significance of a
complete and sound modeling of the security policy enforced
in Android’s application framework. The consequences from
lacking such a model include, for instance, developers writing
over-privileged apps that contribute to eroding users’ trust
and comprehension of the permission system [37], [31], app
analysis relying on incomplete and inaccurate information to
determine the severity of apps’ API calls and consequently
misclassifying apps or malware [9], unclear consequences of
OEM modifications on the default security policy and whether
they weaken it [6], or mistakes in the default security policy
jeopardizing system’s integrity and user’s privacy [29].

Looking back at this line of research, we make some ob-
servations on the methodology. Although this research started
with a dynamic analysis solution by Porter Felt et al. [20], ever
since all subsequent solutions [11], [12], [47], [6], [4], [28],
[5] have been exclusively relying on static analysis. The switch
to static analysis is understandable given that there exist well-
established and available static analysis tools (predominantly
Wala [3] and Soot [50]), which are capable of achieving
high code coverage. However, static analysis also has its own
well-known limitations, especially when applied to a massive,
complex code base like that of the application framework,
including over-approximation, simplification of analysis, and
inefficiency in bridging IPC. Given that there is no ground truth
for the security policy in Android and there is no systematic
approach for verifying results of static analysis at scale, it is
hard to judge the accuracy and completeness of those results.
In fact, looking at other software testing domains [22], [52],
[15], [58], [7], [42], it is common to compensate for inherent
limitations of static analysis by combining it with other tech-
niques, such as dynamic testing. Given the recent advances in
dynamic analysis techniques for Android, e.g., dynamic code
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instrumentation and the emergence of powerful fuzzing tools,
committing to only static approaches for analyzing Android’s
application framework is an unjustified methodology whose
results will be tipped to a one-sided view and be unnecessarily
bound by inherent limitations.

Drawing inspiration from the software engineering do-
main [22], [52], [15], [58], [7], [42], we show that combining
static and dynamic analysis should be the natural next step
in this line of work to analyze Android’s pivotal application
framework. The concrete challenge at hand is that while there
exist well-established static analysis tools [3], [50], no proper
solution for dynamically testing and modeling the security pol-
icy of the application framework exists—the last solution [20]
is obsolete and technically as well as conceptually limited (see
Section III for a detailed discussion).

Our contributions: First, to fill the gap that is caused by the
absence of a dynamic testing tool for analyzing the application
framework, we introduce in this paper a dynamic testing tool,
called DYNAMO, that is designed with two objectives in mind:
(1) analyzing the security policy of the application framework
for different versions of Android, and (2) revisiting the existing
results of static analysis tools. While DYNAMO uses well-
known techniques of dynamic testing and fuzzing (e.g., run-
time instrumentation, feedback-driven testing), the novelty of
this work comes from the right application of those techniques
in studying the security policy of the application framework.
As such, DYNAMO does not replace current solutions in this
domain but complements the current methodology that has
been tipped towards static analysis. To enable the community
to reproduce and extend our results, we open source our tool
and results [16].

Second, we use our tool to reproduce, extend, and ver-
ify the results of prior works for building permission map-
pings [12], [5], [11], for discovering permission re-delegation
vulnerabilities [29], and for detecting inconsistencies in the
security policy of two Android versions [47]. We further
use a permission mapping built by DYNAMO for the latest
Android release to assess the correctness and completeness of
permission annotations in Android’s developer documentation.
DYNAMO’s results have an immediate security impact (i.e.,
better developer documentation and discovery of permission
inconsistencies and misconfigurations) but also have an im-
plicit impact through more trustworthy permission mappings
for a wide range of dependent security applications on An-
droid (e.g., [44], [40], [9], [18], [27], [36], [48], [57], [4], [6],
[28], [29], [47], [56], [13], [35], [43], [51]).

Third, our root cause analysis of the discrepancies between
existing results and our dynamic analysis results provides
valuable feedback to the designers of both static and dynamic
testing tools. Concretely, we highlight implementation and
approach-inherent shortcomings in existing tools that are based
on static analysis. Through a quantitative and qualitative anal-
ysis, we measure the negative impact of those shortcomings
on previous results. We additionally contribute new insights
that help to better understand how system services are in-
terconnected and protected, and we add crucial contextual
information about access control enforcement, such as the
resolution of the subject’s identity and locality and order
of security checks (which are fundamental to permission re-

delegation and inconsistency analysis [29]).

DYNAMO clearly improves on the status quo. Specifically,
our evaluation of the permission mapping by Arcade [5]—
the latest and most sophisticated permission mapping—shows
that the mapping of 76.1% of 951 analyzed APIs (that exist in
both Arcade’s and DYNAMO’s mapping) are verified, 3.1% are
incorrect, and 10.6% are incomplete. DYNAMO additionally re-
ports permission mappings for 343 APIs that are missing from
Arcade’s results while DYNAMO misses 247 APIs reported by
Arcade. We shared our findings with Arcade’s authors who,
following our discussion, upgraded their tool and published a
new permission mapping accordingly. We discuss the changes
to their original permission mapping separately in Section 3.
We also evaluated results from ARF [29] for discovering
permission re-delegations within system services and found
that 5 out of 33 reported vulnerabilities are False Positives
(FPs) while 10 could be confirmed as true vulnerabilities. Our
consistency analysis of the permission enforcement revealed
5 sensitive APIs that are unprotected and 65 APIs with
permission misconfigurations. Finally, evaluating Android’s
developer documentation [24] for 439 APIs showed that it
is incomplete (66 APIs) and imprecise (9 APIs), which we
reported to Google for corrective actions. Section VI discusses
the security impact of these findings.

All in all, our contributions demonstrate the importance of
a more diverse set of analysis tools for Android’s middleware
and the feedback loop between those tools. The fact that
DYNAMO reproduces the vast majority of results of previous
works, reports new findings, and adds trustworthiness to the
results along the way, shows how static and dynamic analysis
can go hand-in-hand in providing better results.

II. BACKGROUND

Android is a Linux-based OS that is characterized by its
open-source software stack. Most relevant to this work from
that stack is the application framework, which offers a variety
of system services that expose a wide range of features to
app developers and other components of the framework. Those
features are implemented as Service APIs and they are
reachable over an Inter-Process Communication (IPC), called
Binder. A subset of those APIs is encapsulated in Manager
APIs (e.g., by WifiManager and LocationManager classes) that
sanitize inputs and invoke service APIs over IPC (e.g., of
WifiService and LocationManagerService classes). However,
the manager APIs can be circumvented by invoking service
APIs directly, e.g., via Java reflection or native code.

Invoking an API is a multi-step operation (see Figure 1)
that starts by querying for the reference to the target service
from a central directory, called ServiceManager that keeps
track of all registered system services in the system. This
reference is then used to construct a proxy object that exposes
the APIs of the target service. When a specific API from the
proxy is invoked, the kernel transfers the call’s payload to the
service side, conveying the Linux UID and PID of the calling
process along the way. At the receiving end, the payload is
decoded and the target method is invoked.

One of the crucial features of the Binder IPC is conveying
the caller’s identity (i.e., UID and PID of the calling process) to
the callee. This feature is used to implement high-level access
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Fig. 1. Multi-Step Binder IPC to call Service API

control protecting sensitive APIs. This access control relies on
permissions as the main policy. Permissions are special strings
centrally managed by the PackageManagerService (PMS)
and assigned to the apps, e.g., after being granted to the app
by the user. Every app is identified by its UID and granted per-
missions are bound to the UID. The access control further uses
three other known types of checks to regulate access to sensi-
tive APIs. Those types are: 1) Checks of the caller’s UID and
PID that are retrieved via Binder.getCallingUid/Pid()
and are used to allow calls from specific privileged contexts.
For example, they can be used to exclusively allow the system
(getCallingUid()== 1000) or calls from the same process
(getCallingPid()== currentPid) to execute a specific
API. 2) Across-profile checks that use the caller’s userId
derived from the caller’s UID to distinguish between calls from
the current and other profiles (where a profile corresponds to
a physical user) and treat them differently. For example, some
APIs might reject calls from secondary profiles or enforce
more permissions on them. This type of checks also includes
user restriction checks that are used to restrict calls from
work profiles [26] to the main profile. 3) AppOps permissions
that are complementary to normal permissions to change the
runtime behaviour. For example, when a permission is granted
but the AppOps permission is ”ignored,” some APIs are
configured to return a dummy data or to fail silently. Since
access control in native system services has not been studied
yet, we rely on our own observations that suggest that the
access control in native APIs also uses permissions and checks
based on UID/PID. For example, permissions checks in native
APIs are routed to the PMS as a policy decision point via an
intermediate service called PermissionController.

Finally, the high-level access control is complemented
by low-level Discretionary and Mandatory Access Control
(DAC and MAC, respectively). DAC uses conventional Unix
permissions (based on groups and UIDs) to confine application
sandboxes and processes, e.g., from circumventing the service
APIs by directly accessing the resources encapsulated by the
system services and apps, such as private user data or device
drivers. Since Android 5.0, fully enforced SELinux is used for
MAC to reinforce the confinement of processes and harden the
system against privilege escalations.

III. RELATED WORKS AND MOTIVATION

We summarize related works that studied Android’s appli-
cation framework and motivate our work.

Permission Mapping: Four major works [20], [11], [12],
[5] built permission mappings of system APIs in Android.
Stowaway [20] pioneered this research by using dynamic test-
ing. It built on the intuitive idea of invoking system APIs and
observing their required permissions. Stowaway ran a testing

app on top of a modified build of Android that logged the per-
missions checked for the testing app. To invoke the APIs and
trigger the permission checks, the app executed unit tests that
were semi-automatically generated by Randoop [2]. Motivated
by the low code coverage of Stowaway’s dynamic approach
and its considerable manual effort, PScout [11] proposed a
static analysis technique using the Soot framework [50] to
build permission mappings. It constructed a call graph of
the application framework, marking all permission checks
(e.g., checkPermission method), and performed backward
reachability analysis starting from those check points to the
APIs that use them. Axplorer [12] revisited the problem but
based on the WALA framework [3]. It highlighted new insights
(e.g., how to identify entry points) and handled new design
patterns (e.g., message passing) that were not covered by
PScout, causing imprecision in the produced mapping. Most
recently, Arcade [5] used static analysis also based on WALA
to add path-sensitivity to the reported mapping (i.e., different
execution paths that are controlled by inputs require different
sets of permissions). Arcade’s mapping considers the relation
between different security checks (e.g., whether enforced in
conjunction or disjunction). It additionally considered more
attributes that influence the access control decision besides
the permissions (e.g., caller’s UID/PID). Closely related to
building permission mappings in Android, Kobold [17] studied
the security policy of APIs that are exposed over IPC to third-
party app developers in iOS. Kobold’s approach is similar to
Stowaway in its design but is currently more limited by the
closed source nature of iOS.

Vulnerability Detection in the Security Policy: Another
line of research that studied Android’s application framework
focused on discovering discrepancies in access control en-
forcement within system services, e.g., two APIs that are
protected by different security conditions but lead to the same
functionality or data sink. The first task to enable such analysis
is to model the security policy of system APIs. Kratos [47],
DiffDroid [6], and AceDroid [4] used a predefined list of au-
thorization checks, e.g., checkPermission and hasUserRestric-
tion, and incrementally but manually complemented this list to
define the security policy of individual APIs. To remove the
dependency on the user-defined list of authorization checks,
ACMiner [28] introduced a semi-automatic and heuristic-
driven approach to build this list. Centaur [41] proposed
symbolic execution in conjunction to static analysis to discover
and verify the inconsistencies. However, Centaur requires
access to the source code and cannot be used for closed-source
OEM images. Other works [59], [30] analyzed parameter-
sensitive APIs that are improperly protected. Exploiting those
APIs would disturb the system’s state or escalate the caller’s
privileges. Closely related to inconsistency detection, ARF [29]
employed static analysis and manual code inspection tech-
niques to discover permission re-delegation within Android
system services where one API calls another protected API
and enforces less restricting permissions compared to the ones
that are enforced when directly calling the target API.

Fuzzing for Vulnerability Detection: One of the early
works applying fuzzing to Android’s application framework is
Buzzer [14], which is a black-box fuzzing tool that focused
on testing input validation of system APIs using manually
crafted inputs. Another similar, but more advanced, work is
BinderCracker [21] that fuzzed the system APIs with faulty
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payloads causing permission leakage or Denial-of-Service. Ex-
Hunter [55] targeted improperly handled exceptions in system
services that crash the system when triggered. ASVHunter [33]
fuzzed the system_server process (i.e., the host process for
the majority of system services) and exploited weaknesses in
its concurrency control mechanism. Chizpurfle [34] introduced
a grey-box fuzzing leveraging runtime code instrumentation to
provide feedback on code coverage and refine input generation.
FANS [38], the most recent work, fuzzed native services for
vulnerability detection. It developed a multi-level discovery
technique to access native services hidden in other services.

Problem Statement and Motivation

Studying the works that investigated the security policy of
Android’s application framework [20], [11], [12], [47], [6],
[4], [28], [5], [59], [30] reveals common features. The most
common one is that they all modeled the security policy and
demonstrated interesting use-cases on top of it, such as vul-
nerability [29], [30] and inconsistency detection [47], [4], [28]
in the policy, privilege escalation detection in apps [20], [5],
studying the evolution of Android’s permission system [11],
and cross-OEM analysis [6], [59]. The second common feature
is that they all, apart from Stowaway [20], relied on static
analysis techniques for their task.

Unfortunately, static analysis tools, although achieving high
code coverage, tend to over-approximate, especially when
applied to massive code-bases like the one of the application
framework. There are a few reasons for that. For instance, static
analysis cannot resolve runtime variables causing uncertainty
on which path to follow, thus either following all paths or
making a hopefully right choice [47], [5]. Additionally, it
requires a good understanding of the code under test and the
used design patterns to be precise [12]. Another reason is that,
depending on the goal of the analysis, static analysis might
become expensive and forces the developers to compromise
precision for performance [8], [47], [28]. In addition to those
fundamental limitations of static analysis, solutions targeting
specifically Android’s application framework also face the
challenges of handling chained IPC between the system ser-
vices and testing services implemented in native C/C++ code.

While dynamic analysis can compensate for the limitations
of static analysis, as has been customary in the software
engineering domain, Stowaway [20], the only dynamic solution
for testing the application framework, is currently outdated,
unavailable, and technically and conceptually limited. Specifi-
cally, when Stowaway is deployed as a permission mapper, it
only detects the first encountered permission ignoring the per-
missions that are enforced in conjunction and disjunction (i.e.,
disregards path-sensitivity), ignores non-permission checks
(e.g., hardcoded UIDs), requires source-code modifications,
entails considerable manual effort in input generation, achieves
low API-coverage, reports false positives as it struggles in
isolating noise in its feedback channel, and ignores native code.
Stowaway is further challenged by the security improvements
added to Android’s access control since its publication (e.g.,
the introduction of runtime permissions in Android 6.0 and
SELinux in Android 5.0). As such, Stowaway is technically
and conceptually limited to properly analyze the security
policy of the application framework. Additionally, although
fuzzing tools in Android exist (e.g., [14], [21], [55], [33],

[34], [38]), they only work as vulnerability scanners in the
framework—a goal that is different from modeling the security
policy. In fact, those fuzzers are designed as highly-privileged
processes that bypass all access control checks protecting the
fuzzed APIs. Identifying the security checks in exploitable
paths is usually done manually as a final step in the analysis
and is not the focus of those works. Thus, they are also
technically and conceptually impractical for our task.

All in all, the results of the prior works that studied
the security policy of the application framework have shaped
our understanding of how the framework works and clearly
advanced the field. However, with the absence of proper
dynamic testing tools, the adopted methodology has been
tipped to a one-sided view (i.e., static analysis) and bound by
its inherent limitations. This raises valid questions, such as:
1) To what extent are the results of this methodology accurate
and complete? 2) Can we systematically and automatically
verify them? 3) After 10 years of studying Android’s security
policy, did we actually fully uncover it? and 4) To what extent
can solutions of static analysis benefit from complementary
dynamic testing. In this work, we revisit the problem of
modeling Android’s security policy by using dynamic testing.
We show that our approach is able to confirm, complete,
and refute results from previous works that studied Android’s
security policy only with static analysis. Thus, we make in this
paper a strong argument for adding dynamic code analysis
tools for Android’s application framework to the arsenal of
security researchers. A synoptical view cannot only help to
improve analysis results but also provide feedback to improve
the analysis techniques.

IV. DESIGN AND IMPLEMENTATION

We introduce in this section the design and implementation
of DYNAMO, our dynamic code analysis tool for Android’s
application framework.

A. Overview

DYNAMO builds on the simple idea of invoking the APIs
of system services from an unprivileged app and detecting
the security checks that protect those APIs. This approach is
similar to that of Stowaway [20], but our solution overcomes
Stowaway’s conceptual and technical limitations and captures
the intricate details of the access control in Android’s appli-
cation framework. For instance, DYNAMO leverages insights
from recent work [5] that highlighted the need for modeling the
security policy with respect to path-sensitivity and maintaining
the relation between different checks. DYNAMO’s design is
further tuned to detect non-permission security checks (e.g.,
abstract checks on the UID/PID of the calling process, cross-
user checks, AppOps permissions, etc) in the Java layer as
well as native code, which is missing in all previous works. To
enable DYNAMO to operate on Android images from Google
and other OEMs, it is designed to exploit runtime instrumen-
tation instead of modifying AOSP’s source code. DYNAMO
also employs techniques from the software testing domain for
automatic input generation based on a short list of predefined
seeds. The testing itself can be tailored to the specifics of each
API (i.e., custom inputs and testing frequency). This feature
makes DYNAMO’s results reproducible and deterministic for
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the same setup. Moreover, DYNAMO has proven to efficiently
work on all Android versions starting from Android 6.

At the heart of DYNAMO is a bi-directional communica-
tion channel that connects DYNAMO with the framework’s
components and that serves two purposes. First, it provides
the means to instrument the framework’s runtime behaviour,
e.g., changes the behaviour of selected methods. Second, it
provides a reliable feedback channel to report the security
checks that are triggered as a direct consequence of testing a
specific API. The feedback includes the execution traces of the
security checks, method-coverage information, and important
contextual information, such as the identity that is used in those
checks, their locations, and their order. The reported coverage
information can be leveraged to enhance the input generation.

B. Research Questions for Dynamic Code Analysis

Several works [14], [21], [34], [38], [55], [33] fuzzed the
application framework for vulnerability detection. While those
works addressed several technical challenges, dynamically
testing the framework for the modeling of the security policy
of system APIs brings additional challenges. Stowaway [20]
highlighted some of them, such as how to trigger, capture, and
report permission checks. Although Stowaway serves as a great
source of inspiration to this work, we believe that the problem
of dynamically analyzing the security policy of Android’s
framework in general, and building permission mapping in
particular, has evolved since the introduction of Stowaway.
We recognize the challenges and formulate them in a series of
derivative research questions that shaped DYNAMO’s design.

(RQ1) How to identify the entry points of system APIs and
invoke them? The APIs are scattered across different system
services and implemented in Java, native code, or both. While
all previous works focused on analyzing Java-based APIs, the
security policy of native APIs remains ambiguous.

(RQ2) How to build valid API inputs? While vulnerabil-
ity scanners invest in generating inputs that trigger bugs or
crashes, modeling the security policy requires building syntac-
tically and semantically valid inputs that trigger all security
checks protecting the tested API. Automatically building such
inputs might unnecessarily exhaust the testing budget if not
complemented with a direct feedback of achieved coverage.

(RQ3) How to measure coverage? We, unfortunately, lack the
well-established tools for measuring code coverage in Android
and best efforts [34] entail a huge overhead. However, measur-
ing coverage is crucial to refine the input generation strategy
and subsequently discover deep-hidden security checks.

(RQ4) How to detect and report different security checks?
While some security checks are centrally managed (e.g., per-
missions) and are straightforward to report (i.e., by placing
necessary hooks into the corresponding checking services),
other checks are inlined (e.g., comparing the caller’s UID with
a predefined privileged UID) and pose a big challenge for
dynamic testing to discover them. Additionally, reporting all
checks requires a reliable feedback channel that isolates the
security checks triggered by testing an API from the noise of
unrelated security checks.

(RQ5) How to construct the feedback channel? The feed-
back channel can be implemented in the middleware via direct
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Fig. 2. Steps of one testing iteration by DYNAMO

modifications to the OS. Apart from the overhead associated
with this approach, it is not scalable to other closed-source
images of different OEMs. Being able to also analyze the se-
curity policy of OEMs is crucial to uncovering and mitigating
possible erroneous changes on AOSP’s default policy.

(RQ6) How to preserve the relation and order of security
checks? Recent works [5], [29] have shown that reporting
permissions as a set over-simplifies the modeling of the intri-
cate access control of system APIs and causes imprecision in
the applications built on top. Instead, different sets of security
checks must be reported for different execution paths where
each path is controlled by the API’s input or system state (path-
sensitivity). Each set must also retain the order of the checks.

C. Implementation of Dynamo

DYNAMO is a grey-box testing solution that consists of
two stages of operation to build the security policy of an
API. The first stage focuses on testing the API by exercising
different input sets with the goal of increasing code coverage.
In the second stage, those results are analyzed based on
predefined association rules to model the security policy of
the target API. Figure 2 depicts an overview of DYNAMO’s
main components and presents the sequential execution steps
of one testing iteration for one API. The Testing Service
(TS) is shipped as an app component that is installed on
the tested device. It is responsible for generating inputs,
invoking the target API, and reporting the invocation result.
The Instrumentation Server (IS) is a daemon process
that is responsible for constructing the feedback channel that
reports missing security checks and coverage information. It
is additionally responsible for modifying methods’ behaviour
at runtime at the request of the Testing Manager (TM). The
current version of DYNAMO uses a dynamic instrumentation
toolkit, called Frida [46] to run the IS. The TM runs on the
tester’s machine and orchestrates the whole process, including
setting the seeds for input generation, defining the tested API,
identifying the hosting service, triggering the instrumentation
of targets, triggering API invocation, collecting the invocation
and instrumentation feedback, and finally analyzing the results.

Detecting and Preparing Target Devices: The TM uses
Android Debugging Bridge (ADB) to discover all connected
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devices (be it hardware or emulated) and considers them as
targets for analysis. As we will explain later, DYNAMO relies
on disabling the anti-reflection mechanism that is deployed in
recent versions of Android and of the SELinux enforcement.
Thus, the target device has to either run a user-debug build of
Android or be rooted (e.g., for devices of other OEMs).

Collecting Public APIs (RQ1): DYNAMO implements a
generic technique for discovering public APIs of target devices.
Specifically, the TS uses Java reflection to retrieve all Binder
handles from Android’s ServiceManager, casts them to their
corresponding proxies where all methods are defined, and
collects all methods’ signatures. The TM pulls and saves this
list for each unique target device. Another relevant information
that is collected at this point is the mapping between services
and hosting processes, identified by Linux PIDs. This is impor-
tant information for instrumenting the APIs, constructing the
feedback channel, and impersonating different calling contexts.

Selecting API for Testing: We designed DYNAMO such that
it allows several devices running the same Android version to
work collaboratively on the same API list to speed up the
analysis. Each device locks and starts processing one API at
a time. Each tested API has a configuration file that describes
the API (e.g., method’s signature and hosting process) and
the testing configuration (e.g., initial seeds, strategies, log of
testing iterations). This file is responsible for the deterministic
behaviour of the tests and the ability to reproduce results.

Generating Input (RQ2): DYNAMO extracts the input types
from the API’s signature and assigns each primitive Java
parameter (e.g., string, int, boolean) a short list of predefined
seed values. The list of seeds is manually created before the
testing begins (see Appendix E for the complete list). For
instance, a parameter of string type is assigned a seed list that
contains null, empty string, the package name of TS, other
package names, and a random permission name. Since not all
seed values might be semantically relevant to the tested API,
this module further leverages static analysis of the source code
(e.g., from AOSP) to refine the seeds by heuristically selecting
relevant seed values based on the parameters’ names of the
API’s signature and excluding others from the predefined seeds
list. For instance, an API that uses a string parameter that is
named packageName or pkg would take a few valid package
names as initial seeds for that parameter instead of testing
non-relevant values. Experiments show that this technique for
refining inputs reduces the testing time by at least a factor of
5 without affecting the modeled policy.

However, there are other non-primitive input types that we
classify in two categories: basic Android types (e.g., Intent and
URI) and complex types (e.g., event listeners and bitmap).
Similar to primitive types, we define fixed seeds for basic
types that are used to instantiate objects of those types at
runtime. For instance, a package name and a class name
are used as seeds for creating an Intent object. For complex
types, the TS uses a recursive algorithm that receives the
qualified class name of the object to be instantiated as an
input, searches its class for a constructor or a method that
receives inputs of primitive types and returns an object of
the desired complex type, and calls that constructor/method
to instantiate the object. However, if the constructor or the
method itself receives objects of complex types, the algorithm
tries to instantiate those objects first, and so on. If the object

Algorithm 1 Building Security Policy of an API
Input Service s, API a, ReachableMethods m
Output modeled security policy
1: procedure BUILDSECURITYPOLICY
2: strategies := getDefinedStratigies()
3: inputs := getInputSeeds(s, a)
4: results := []
5: for strategy of strategies do
6: for input of inputs do
7: privileges := []
8: repeat
9: instrumentReachableMethods(m)

10: instrumentSecurityCheckingMethods()
11: missingPrivileges = invokeAPI(s, a)
12: privileges.insert(missingPrivileges)
13: r := collectTracesAndResult(s, a, privileges)
14: results.insert(r)
15: measureAndReportCoverage()
16: until missingPrivileges is empty
17: modelSecurityPolicy(s, a, results)

is an implementation of a specific interface, the TS uses Java
reflection to build a proxy object that implements that interface.
This input generation technique has proven to be effective,
except for a few special classes that can be instantiated but
not used in IPC due to early sanitization while marshalling
inputs in the proxy. The lists of seeds for API parameters are
then used to create the Cartesian products of seed inputs, where
each product is called an input set. Those input sets are stored
in the configuration file of the API. When the TM selects an
input set to be tested, this set gets encoded in a file that is
pushed to the TS ( 1 ), which uses it to generate API’s input.

Measuring Coverage (RQ3): As we will discuss later in
this section, one important feature that DYNAMO relies on for
modeling the security policies of APIs and measuring coverage
are the methods’ execution traces that are collected when
invoking an API under test. To achieve this, DYNAMO conducts
reachability analysis with WALA [3] on the target API and
produces a list of qualified method names that are reachable
from the target API. DYNAMO uses this list to instrument the
methods such that they report their stack traces to the TM when
called. This also serves as feedback on achieved coverage for
each testing iteration. Specifically, we measure the coverage by
counting the number of unique traces and comparing it with the
total number of unique methods from the reachability analysis.
As such, DYNAMO uses method-coverage as a proxy for code
coverage. A low method-coverage of an API could suggest a
failing execution due to input sanity checks, an unexpected
new class of security checks, or an early return. As such, the
low method-coverage indicates the need to refine seeds, elevate
input generation techniques, or investigate new security checks.

Clearly, another approach to using WALA is instrumenting
all methods of the framework. Unfortunately, our experiments
show that this technique comes with a huge overhead that
destabilizes and hinders the analysis and therefore was not
technically possible in the current version of DYNAMO. Unfor-
tunately, relying on Chizpurfle’s approach for measuring code-
coverage [34] was also not possible due to technical limitations
in the underlying technique (i.e., Frida’s Stalker [46]), which
does not work on all CPU architectures of tested devices.
Chizpurfle’s approach also entailed high overhead that hin-
dered our analysis as the execution of several threads needed
to be tracked (i.e., from processes of system\_server,
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1 public long addClient(IAccManClient cb, int userId) {
2 final int resolvedUserId =

resolveCallingUserId(userId);
3 {...}
4 }
5 public int resolveCallingUserId(int userId) {
6 int resolvedUserId = resolve(userId);
7 int callingUid = Binder.getCallingUid();
8
9 if ( callingUid == 0 || callingUid == 1000 )

10 return resolvedUserId;
11
12 int callingUserId = UserHandle.getUserId(callingUid);
13 if ( callingUserId == userId )
14 return resolvedUserId;
15
16 if( ! checkPermission(INTERACT_ACROSS_USERS,

callingUid) )
17 throw new SecurityException();
18
19 return resolvedUserId;
20 }

Listing 1. Simplified illustration of the addClient API

CallingUid == 0 || CallingUid == 1000 ||
CallingUid.userId == Parameter#2 ||
CallingUid.hasPermission(INTERACT_ACROSS_USERS)

Listing 2. Modeled security policy of the addClient API

TS, and Target Service). Relying on WALA’s results for
reachability analysis for measuring method-coverage, given
that they might be imprecise, does not affect the precision of
our approach as we filter out stack traces that do not start with
the target API (i.e., are not triggered by invoking the API).

DYNAMO’s Testing Strategies (RQ4): To model the access
control of a specific API, DYNAMO employs several predefined
testing strategies (see Algorithm 1). A strategy is a set of
operations that try to discover one aspect of the security
policy of the target API. For instance, one strategy could
focus on discovering permissions while another detects checks
on caller’s UID and PID. Each strategy starts with a list of
input sets that are generated from predefined seeds. The same
list is exercised in all strategies. For each strategy, DYNAMO
exercises each input set and detects the failing security checks
as they occur. When security checks are reported, they are
fed back in the next iteration for the same input set where
DYNAMO instructs the IS to bypass failing checks to detect
other checks along the same execution path. This process
repeats until no further security checks are reported. After
all strategies are concluded, the TM marks the current API as
complete and moves on to the next API to be tested. With
this feedback-driven testing, DYNAMO explores several caller
contexts (i.e., third-party app, privilege app, etc.) to trigger and
detect security checks.

Example: To understand how DYNAMO’s strategies work
in detail, consider a simplified version of the addClient
API from the AccessibilityManagerService as exam-
pled (see Listing 1). To execute this API, the caller has to
qualify for one of the following conditions: 1) The caller
must run under a UID equal to 0 or 1000 (line 9). 2) The
caller must run in a context whose userId is equal to the
API’s second input parameter (line 13). 3) The caller must

be granted the INTERACT_ACROSS_USERS (ACU) permission
(line 16). In case none of those conditions is satisfied, a
SecurityException is raised (line 25). To simplify the
example, we define only one set of inputs that consists of null
and 10 as first and second parameters, respectively. Choosing
10 for this example is not arbitrary as it corresponds to the
userId of the secondary profile (while 0 is the userId of the
main profile). Invoking the API with this set of inputs from
the main profile and from an unprivileged context would result
in the caller receiving a SecurityException because none
of the above conditions would qualify. In the following, we
explain how DYNAMO detects those conditions.

Since missing permissions is the most common cause for
denying access, DYNAMO’s first strategy aims for discov-
ering and granting the missing permission(s) to the calling
context. DYNAMO leverages the fact that permissions are
centrally checked by the checkUidPermission API of the
PackageManagerService and therefore instruments this API
to report the missing permission(s) to the TM (see steps 2 and
3 in Figure 2). This API receives the permission name and

caller’s identity (i.e., UID and PID) and returns either GRANTED
or MISSING based on whether the caller (identified by its UID
and PID) has been previously granted this permission or not.
After reporting the missing permission to the TM through the
Analyzer Module ( 3 , 6 and 7 ), the permission is used in
the next testing iteration to elevate the privileges of the caller’s
context by again instrumenting the checkUidPermission
API such that it would return a GRANTED response when called
for the same permission and caller’s identity ( 2 and 3 ).
This way, DYNAMO manages to report that ACU permission
is needed for unprivileged callers of the main profile. This
strategy generally detects all method-based checks that are
known from the literature (AppOps permissions, checks on
calling package, or user restriction checks). Notice that this
strategy is orthogonal to all other strategies, for example, to
detect permissions from secondary profiles (see below).

The second strategy tries to infer cross-user permissions.
Thus, the TM instruments the system such that the caller would
impersonate a UID from the secondary profile (which starts at
1000000 [23]). To technically achieve this, the TM instructs
the IS to instrument the Binder.getCallingUid() of the
Binder class on the target service such that it would return the
impersonated instead of the actual UID of the caller ( 2 and
3 ). When calling the API with the same input set used before

while impersonating the new context, the callingUserId
will be resolved to 10 (which corresponds to the userId
of the second profile) and that matches the second parameter
(see lines 13). Therefore, the API will successfully execute
without requiring any permission. Notice that faking the PID
is technically similar to faking the UID (i.e., via instrumenting
the Binder.getCallingPid()). Lastly, DYNAMO tries to
detect security checks based on the caller’s UIDs (see line
9). For that, it harvests all UIDs that are reserved for system
users via the shell interface of the package manager (i.e.,
based on the condition 0 <= UID <= 2000 [23]). Thus, when
invoking the API while the caller is impersonating root (UID
= 0) or system (UID = 1000), the API will successfully
execute. Otherwise, callingUserId would resolve to 0 and
a SecurityException will be raised if the privileged UID
does not have the specified permission.
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Throughout the testing phase, the configuration file of the
API under test serves as a reference to identify the current
strategy and state (e.g., permissions granted or the different
impersonated contexts). For each strategy, the API is executed
until no new changes on the calling context are required (e.g.,
no need to grant a new permission). When that is satisfied,
the API is executed one more time, and the execution of the
strategy is considered successful if the results of the last two
execution iterations match entirely. When all strategies are
exercised, the Analyzer Module concludes the testing phase
for the current API ( 8 ).

Instrumenting Targets (RQ5): In addition to instrumenting
the methods that implement each strategy (as explained above),
the TM further instruments the reachable methods from the
target API (i.e., based on WALA’s reachability analysis) such
that they report their stack traces, inputs, and outputs to the
Analyzer Module. A stack trace is considered relevant only
when it starts with the target API and when the caller’s PID
matches TS’s PID (i.e., triggered by DYNAMO’s testing).

Executing API: To execute one testing iteration, the TM
sends a message to the TS so it would generate API’s inputs
(as described earlier) and invoke the API using Java reflection
( 4 ). The API will then trigger the instrumented security
checks and reachable methods ( 5 ) and they will start reporting
to the Analyzer Module ( 3 , 6 , and 7 ). After a specified
timeout, the TM reverts instrumented methods to their original
implementation and pulls the invocation results from the TS
and feeds it to the Analyzer Module.

Modeling of Permission Mapping (RQ6): While some
security checks are easily inferred (e.g., permissions and
AppOps), others require multiple invocations of the API under
different contexts to be inferred. Take the cross-user security
checks from Listing 1 as an example (line 13). We can infer
the presence of a multi-user check only after looking at the
results of invoking the API from the secondary profile and
the results from the main profile while no permissions are
assigned to the caller. The call from the main profile failed
with a security exception, while the call from the second profile
succeeded. This suggests the presence of a cross-user check
but is not definite in describing this check because it could be
based on input or whitelisting the calls from secondary profiles
(e.g., were callingUserId checked to equal 0 instead of
userId). To differentiate, we observe the API’s result when
its second parameter changes. When the second parameter
is 0, the outcome of invoking the API from the main and
secondary profile is flipped (i.e., allowing a call from the main
profile and requiring permission from the secondary profile).
However, when it is neither 0 nor 10, both calls start asking
for the ACU permission. At this point, we know that the API’s
second parameter has an influence on access control and report
it accordingly. We apply a similar mechanism for detecting
whitelisted UIDs. Specifically, we observe the API’s behaviour
and traces when invoking the API while impersonating the
root and system UIDs to find that resolveCallingUserId
returns without raising an exception, suggesting the presence
of disjunct checks on those UIDs. Based on that, the Policy
Builder summarizes the results in a first-order formula that
models addClient’s security policy as shown in Listing 2.

Although not covered in the example, we also detect further
security checks along the execution paths and report those

checks in conjunction with others. We handle the special case
where any of the multiple permissions is needed. For that,
we leverage that all permissions would be checked before
throwing a SecurityException when the last permission
check fails. This means multiple permissions are reported.
Thus, the TM exercises those permissions in disjunction to
observe the relation between them. When the traces include
security checks, but our rules fail to model the policy, we
manually look at the traces and try to enhance our rules.
Despite that, with a few predefined association rules between
API calls and traces, we can model the security policy of the
majority of APIs (see Section V). Of course, we realize that
this modeling can be incomplete, as we discuss in Section VI.

V. COMPARISON WITH PRIOR RESULTS

We built DYNAMO to complement the methodology for
studying the security policy of Android’s application frame-
work and evaluate the results of prior works of this domain.
Thus, we evaluate our tool in four prominent use cases
from the literature. We start by comparing the state-of-the-art
permission mapping from Arcade [5] with the mapping built by
DYNAMO (Section V-A). Second, we reproduce and evaluate
the permission re-delegation vulnerabilities, as reported by
ARF [29] (Section V-B). The first two evaluations show
that DYNAMO can confirm the majority of prior results but
can also be used to extend and refute (or at least question)
several others. Third, inspired by Kratos [47], we conduct
a lightweight analysis for detecting access control inconsis-
tencies between APIs of system services (Section V-C). We
were able to discover several unprotected and misconfigured
APIs. Fourth, we use DYNAMO’s permission mapping for the
latest Android release (v10) to assess the completeness and
correctness of APIs’ permission information in the developer’s
documentation of Android (Section V-D). We found several
cases where the official documentation is incomplete or inac-
curate, affecting third-party app developers.

Evaluation environment: We tested DYNAMO on different
Android versions (6, 8.1, 10, and 11) of vanilla Android and
other vendor images. We used a combination of hardware
devices (Pixel 4, Nexus 5, and One+) and emulators (Cuttle-
fish [1] and Android Studio emulators) running different CPU
architectures (x86, x86 64, arm, and arm64). DYNAMO, was
fully functional under all of those settings.

A. Evaluating Previous Permission Mappings

Static analysis has been shown to be capable of building
good approximations of permission mappings [11], [12], [5].
However, since there is no systematic approach for verifying
those mappings at scale, we cannot easily describe their accu-
racy and completeness. Using DYNAMO, we are finally able
to systematically evaluate previous mappings using dynamic
testing. The most up-to-date mappings are from Axplorer and
Arcade. Since all but 20 protected APIs reported by Axplorer
are also covered in Arcade, we only focus on the state-of-the-
art mapping from Arcade.

Overview. As shown in Figure 3, DYNAMO is able to
verify the permission mapping for 76.1% of 951 APIs also
reported by Arcade and to extend the mapping by 10.6%
with newly discovered security checks which we consider as
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Fig. 3. Breakdown of results from evaluating 951 common APIs from Arcade.

False Negatives (FNs) for Arcade. Manual code analysis of the
13.2% discrepant APIs identified 30 FPs in Arcade’s mapping
and 73 FNs in DYNAMO. DYNAMO was also able to report
security checks for 343 APIs that are missing in Arcade’s
mapping (FNs in Arcade) but also missed 247 APIs reported
in Arcade (FNs in DYNAMO). We shared our findings with
the authors of Arcade, and we incorporate their feedback in
our root-cause analysis for the discovered discrepancies. As
mentioned earlier, we shared our findings with the authors of
Arcade who reacted to our discussion and updated their tool
to increase API-coverage and fix some erroneous reports to
their old permission mapping. As such, the updated permission
mapping from Arcade reports new access control information
for 217 APIs. We discuss those changes separately at the end
of this section.

Setup. To avoid wrong reporting due version mismatch, we
fixed DYNAMO to analyze Android-6.0.1 r10 (v.23), the same
build used for Arcade’s mapping. We used two Nexus 5 devices
and four x86 emulators to run the analysis (using Cuttlefish
was infeasible as it requires Android API level ≥28). The
analysis took about four weeks to conclude for this test setup.

Scope of Analysis. Table II describes the permission map-
pings in this evaluation. DYNAMO analyzed 2,057 public APIs
and reported security checks for 1,294 (62.9%) of them while
Arcade analyzed 4,189 APIs and reported similar security
checks for 1,198 (28.5%) of them. DYNAMO and Arcade
reported 2,064 and 2,164 execution paths, accordingly. As
expected, permissions are the most common security checks
with 160 unique permissions enforced in 84.3% of the pro-
tected APIs found by DYNAMO. While missing in all previous
permission mappings, DYNAMO found AppOps checks (e.g.,
package validation) in 16.3% of the protected APIs it covers.
Both permissions mappings that are used in this evaluation
are included in the file android-6.0.1\_r10.json under
the results folder in DYNAMO’s project repository [16].

There are 951 APIs that are shared between both mappings.
This means that DYNAMO and Arcade exclusively reported 343
and 247 unique APIs, respectively. We found three reasons
why DYNAMO missed mappings for 247 APIs that exist in
Arcade’s mapping: First, DYNAMO considers APIs whose
services are deployed on the target device and can be directly
retrieved from the ServiceManager. However, some services
are wrapped inside other services and require a multi-step
approach to retrieve them [38]. We only discovered this after
the testing was concluded and, therefore, DYNAMO missed
131 APIs. Additionally, the low code coverage and missing
calling dependencies led to missing another 113 APIs. Finally,
DYNAMO did not report any security checks for 3 other APIs in
comparison to Arcade. Manual code inspection revealed that

1 public List<?> getScanResults() {
2 int callingUid = Binder.getCallingUid();
3 long ident = Binder.clearCallingIdentity();
4 enforcePermission(ACCESS_FINE_LOCATION, callingUid);
5 Binder.restoreCallingIdentity(ident);
6 }

Listing 3. Enforcing permission after clearing the caller’s identity

those APIs are actually unprotected and Arcade’s reporting
is inaccurate (i.e., FPs). Since Arcade’s source code was not
available to us, we could not investigate the causes of this
wrong reporting. Similarly, we investigated the reasons why
Arcade missed 343 APIs reported by DYNAMO. First, Arcade
did not report mappings for some services, such as WiFi and
Telecom, which account for 65.3% of the missed APIs. Ar-
cade’s authors acknowledged this shortcoming and attributed
it to not including the corresponding binary files for all services
in the analysis. However, the remaining missed APIs from
Arcade belong to services whose corresponding binary files
were considered. This suggests other technical limitations of
Arcade, such as early termination of the analysis, inability to
identify entry points to APIs, and improper bridging of IPC,
which we discuss later in the results in this section.

Comparison. For the 951 common APIs, we defined strict
criteria that classify an API into one of three categories based
on how DYNAMO’s mapping compares with Arcade’s mapping
for that API (see also Figure 3). Those categories are 1) exactly
matching if both mappings have the same number of paths and
enforce the same security checks on each path, 2) APIs with
new security checks if DYNAMO reports more paths or security
checks than the ones reported by Arcade, and 3) discrepant
security checks if DYNAMO’s mapping has different or less
checks. This third category is further classified into three
subcategories: a) FPs from Arcade, b) FNs from DYNAMO,
and c) APIs that we could not classify as any of the other
subcategories because the APIs’ logic was too complex to be
manually analyzed to search for checks reported by Arcade.

Results. As shown in Figure 3, this automatic comparison
reported 724 APIs (76.1%) with exactly matching security
checks. We consider those APIs as confirmed mappings given
that dynamic results are sound. Zooming onto this number
reveals that 89.6% of the confirmed mappings contain one or
two paths with one path being dominant. The confirmed APIs
also enforce a combination of 117 unique permissions. The
comparison also showed that DYNAMO was able to extract
more security checks than Arcade for 101 APIs, which was
surprising given that static analysis is known for achieving
high coverage. In total, 51 new paths were discovered by
DYNAMO as well as 23 new unique permissions. After man-
ual code inspection and a discussion with Arcade’s authors,
we can attribute this particular discrepancy to three issues:
1) Arcade relies on a simplified and incomplete mechanism
for bridging IPC [11], [47] and subsequently misses some
permissions enforced in APIs invoked via IPC from within
the analyzed API. 2) Arcade relies on heuristics to identify
the endpoints of the analysis and avoid noise in the results
to retain its approach’s practicality. For example, they stop
the analysis immediately before the caller’s identity is cleared
with Binder.clearCallingIdentity. However, this leads
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TABLE I. SUMMARY OF PERMISSION MAPPINGS BUILT BY ARCADE AND DYNAMO.

Tool Android Version # Covered APIs # Protected APIs # Paths # Permissions # APIs Enforcing *

Permissions UID/PID AppOps Others **

DYNAMO Android-6.0.1 r10 2,057 1,294 2,164 160 1,092 302 212 108
(62.9%) (84.3%) (23.3%) (16.3%) (8.3%)

Arcade Android-6.0.1 r10 4,189 1,198*** 2,064 170 1074 281 1 34
(28.5%) (89.6%) (14.9%) (0%) (2.8%)

DYNAMO Android-10.0.0 r27 3,579 2,537 3,877 257 1,953 392 489 370
(70.8%) (76.9%) (10.9%) (19.2%) (14.5%)

* Different checks can be used for the same API; ** Checks if caller is isolated or in same app, user restrictions, and unhandled security exceptions.
*** Arcade reports 1,519 protected APIs in the paper, however, the published mapping used in this evaluation includes only information for 1,198 APIs.
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Fig. 4. Breakdown of results from evaluating 182 common APIs between
DYNAMO and the added APIs in Arcade’s updated permission mapping.

to missing security checks performed after the identity is
cleared. For example, in Listing 3, the caller’s UID is saved in
line 2 before it is cleared in line 3. The original UID stored in
variable callingUid is then used to check for the permission
in line 4. Consequently, this permission is not detected by
Arcade. 3) Arcade reduces the Control Flow Graph (CFG) of
an API to an abstract CFG that only contains security checks.
This design decision of Arcade is error-prone as Arcade might
not be able to infer the security relevance of a check on API’s
access control—either due to limiting the analysis or inability
to resolve runtime values—and therefore truncates it.

For the remaining 126 APIs, the two mappings report
different security checks and require manual inspection to
uncover the reason for this discrepancy. Of those, we confirmed
with clear evidence 30 APIs as FPs by Arcade (Appendix A),
confirmed 73 APIs as FNs by DYNAMO (see Appendix B for
examples), and for 22 APIs we could not classify them as
either of those previous cases despite the high manual effort.
Among the confirmed FPs from Arcade, 13 APIs were mapped
with permissions that are actually not enforced by the APIs and
17 APIs actually enforced different permissions than reported
by Arcade. We shared a representative sample of FP cases with
Arcade’s authors who confirmed them. As for the APIs that
report different permissions, Arcade’s authors attribute those
cases to mistakes in string resolution of the permission name.
Since we do not have access to Arcade’s tool, we cannot
further investigate the reasons behind reporting non-existing
permissions. But, we speculate that the permission mapping of
some of those APIs has been mistakenly mixed with other APIs
that enforce the same permissions. Out of the 30 FPs from
Arcade, we found that 12 APIs are protected by permissions
that can be requested by third-party app developers. For
those APIs, Arcade’s mapping suggests the need for more
permissions than actually needed. Clearly, this aggravates the
problem of over-privileged apps instead of mitigating it and
entails negative consequences that we discuss in Section VI.

Updated Mapping From Aracde. As a result of sharing

our findings with Arcade’s authors, the authors released fixes to
the Arcade tool and updated their published permission map-
ping. The update focused on increasing the API-coverage and
fixing erroneous mappings. As such, the updated permission
mapping from Arcade lists new access control information for
217 APIs. Of those APIs, we found 182 APIs that also exist
in the mapping from DYNAMO. The remaining 35 APIs are
missing from DYNAMO for the same reasons discussed earlier
(e.g., low code coverage, failing to invoke the API due to
unsatisfied conditions, etc). We applied the same methodology
discussed earlier for evaluating the 182 common APIs between
both mappings (i.e., automatic comparison and then manual
code inspection). A summary of this evaluation is presented in
Figure 4. As shown in the figure, 118 of the 182 common APIs
are completely matched between both permission mappings
(i.e., confirmed), 21 APIs are extended by DYNAMO (i.e., FNs
in Arcade), while 43 APIs exhibit discrepancies between the
reported permission mappings. After manually inspecting the
discrepant APIs, we found 6 FPs in Arcade that report wrong
association between permissions (e.g., required permissions are
reported in conjunction to each other instead of disjunction).
We also found 21 FNs in DYNAMO and 16 APIs that we
could not fully analyze due to time constraints. It is worth
noting that we could not identify new root-causes for the
discrepant APIs in addition to those identified earlier. Overall,
the updated permission mapping from Arcade added 171
APIs with manually verified permission mappings (i.e., 118
confirmed, 21 FNs in DYNAMO, and 32 missing APIs from
DYNAMO)

B. Verifying Permission Re-Delegation Vulnerabilities

System APIs in Android are highly interconnected and rely
on each other. Since there is no specification for the security
policy of those APIs, discrepancies in their access control
can arise. For example, one API (deputy) might expose the
functionality of another protected API (target), creating a less-
restrictive path to execute that functionality as opposed to
the path that directly leads to the target API. This problem
is known as permission re-delegation. ARF [29] analyzed
Android’s framework for permission re-delegation vulnerabil-
ities. It used static analysis and manual code inspection to
discover vulnerable paths in Android-8.1.0 r1. The authors
reported 88 APIs (out of 170 discovered) that are potentially
vulnerable. The authors were transparent in their reporting,
stressing that they have not created proofs of concept attacks
based on those vulnerabilities. We saw this as an opportunity
to showcase DYNAMO’s ability in verifying the vulnerabilities
using dynamic testing.
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We used DYNAMO to analyze 33 of the 88 APIs reported
by ARF. We chose those APIs because, according to their
vulnerability description, they have the highest impact on user
privacy and experience. We compared the observed runtime
behaviour with the vulnerability description, and we were
able to discover discrepancies in 5 APIs. Based on corre-
spondence with ARF’s authors and on manual code inspection
of those APIs, we uncovered two reasons that lead to mis-
takenly reporting those APIs as vulnerable. First, ARF was
not able to correctly resolve the identity used in permission
checks. Second, even manual analysis is limited and cannot
cover all aspects of access control. While the first reason
is indeed an inherent limitation of static analysis, authors’
assumptions that were incorporated in the vulnerability anal-
ysis (i.e., how caller’s identity is resolved and propagated)
aggravated the problem and lead to this imprecise reporting.
For example, one API (whitelistAppTemporarily) that
acts as a deputy is mistakenly assumed to escalate caller’s
privileges to those of the system by overwriting the caller’s
UID with the system’s UID before invoking the target pro-
tected API (addPowerSaveTempWhitelistApp). However,
dynamic testing showed that both APIs enforce the same
permission and the caller’s identity was not overwritten.

The more complicated task was confirming the remaining
vulnerabilities. Our strategy was as follows: we translated the
described vulnerability into different sets of parameters, which,
when tested, would trigger the vulnerability. For example, if
the API exposes information across different profiles without
protection, we craft inputs and fake the calling context to
mimic a call from the same and a different profile. Using
DYNAMO, those different test settings were easily configured
and set up. We compared the results (i.e., returned values and
traces) of different testing iterations and considered the vul-
nerability confirmed if both calls from the same and different
profile would yield the same output. For APIs that do not
return values, we made a decision based on the collected traces
and GUI feedback. This simplified verification strategy enabled
us to confirm 10 vulnerabilities with minimal manual effort.
According to the authors, four of those vulnerabilities received
CVEs from Google. Unfortunately, we could not make a
decision on the remaining 16 APIs because the collected traces
and GUI feedback of those APIs were inadequate.

C. Inconsistency Analysis of APIs’ Access Control

Inspired by Kratos’s [47] approach, we used the permission
mappings, APIs’ traces, and contextual information produced
by DYNAMO for Android 6 and 10 to conduct a lightweight
inconsistency analysis. Our strategy is simple but effective as
it discovered 5 sensitive APIs that are unprotected and 65
APIs with permission misconfigurations. We used the traces
collected for all APIs of the same Android version to detect
execution paths from different APIs that lead to the same
sink but enforce different security checks. Since identifying
the exact sink is challenging and a problem in its own [12],
we heuristically created a list of sinks for each API. We then
search for different APIs that share sinks and compare their
permission information as reported by DYNAMO, including the
identity for which the permission is enforced. Unfortunately,
this simplified mechanism creates a lot of noise, which we
circumvent by creating a threshold of matching sinks to decide
if two APIs are sharing the same sinks. When the comparison

of permissions of two APIs produces a mismatch, we flag the
APIs for manual code inspection to see if both mappings are
different but practically enforcing the same level of access
control (i.e., no vulnerability) or if one is less restrictive than
the other (i.e., possible vulnerability).

As a result, we found one case in the latest
Android release (Android 10) between the getBoolean
(GB) and isTrustUsuallyManaged (ITM) APIs of
LockSettingsService and TrustManagerService,
respectively. The ITM API queries an internal storage
using a key to check if a specific profile has enabled
and configured trust agents [25]. This API is protected
by system-level permission. On the other hand, the GB
API accepts an arbitrary string and uses it as a key to
retrieve the corresponding value from the same storage
used by ITM. When the GB API is used with the same key
from the ITM API, the call to GB successfully retrieves
the protected value without enforcing any security checks.
This inconsistency was confirmed and fixed by Google. We
detected four more cases in Android 6; however, those cases
were already fixed in later Android releases and apparently are
known to Google. Those APIs are getDeviceIdForPhone,
getLine1NumberForSubscriber, getLine1Number,
and getDeviceId of the PhoneInterfaceManager.
Additionally, we discovered 65 APIs from the
ActivityService in Android 6 where the permissions
are enforced against the identity of the app running on the
main profile while the call can originate from a secondary
profile. In other words, given that an app can exist in main and
a secondary profile where each instance can have a different
set of permissions, the app from the second profile—which
maybe unprivileged—can still call those affected APIs if the
app on the main profile is granted those permissions. Those
cases illustrate the intricacies when multiple policies need to
be stacked (here, permissions and profiles).

D. Evaluating Android’s Developer Documentation

Android’s developer documentation has been shown by
prior works [20], [51] to be imprecise and incomplete. Since
the documentation has evolved since these prior works, we
reassess the current documentation for the latest Android
release Android-10.0.0 r27 (API level 29). Our evaluation
shows that the permission mapping from the documentation
is incomplete for 66 APIs and contains errors for 9 APIs
out of 439 automatically tested APIs. On the other hand, we
found that the permission information extracted with DYNAMO
matches the documentation for 40.5% of those tested APIs.

To build our permission mapping for the targeted Android
version, we used special virtual devices from Google, called
Cuttlefish [1], which allowed us to scale up the analysis by
creating 20 VM instances on Google’s Compute Engine with
one Cuttlefish emulator per VM. Each instance is equipped
with 4 vCPUs and 15GB of RAM. The analysis took two
weeks and we were eventually able to analyze 3,579 different
APIs from 121 system services and produce permission map-
ping information for 2,537 APIs. Table II includes the mapping
results for this Android version (row Android-10.0.0 r27).

To collect the permissions documented by Google, we
leverage the fact that the online documentation is automati-
cally derived from the source code and, therefore, extract the
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mapping from the source code directly. We search for APIs
that are well annotated with required permissions through the
@RequiresPermission (@RP) tag. Those APIs can then be
automatically collected using static code analysis. This has
the benefit of analyzing a structured target using very simple
static analysis techniques as opposed to text-analysis when
working directly on the developer documentation. However,
since the developer’s documentation only lists the APIs of
the manager classes (e.g., WifiManager) which then call
to remote services (e.g., WifiServiceImpl) but DYNAMO
builds the mapping for the service APIs, we need to map
the APIs from the manager classes to the APIs from the
services. We used Soot [50] to extract the methods with the
Java annotation @RP from manager classes. For each extracted
method, we first collect the required permissions and their
relation. Then, we connect the IBinder calls from within
the manager class to matching remote APIs of the services,
which were extracted at runtime from all services. We were
able to collect 301 APIs and their annotated permissions and
map them to their remote service APIs. However, evaluating
the documentation also requires detecting cases where the
documentation is incomplete or missing a permission. In
contrast to collecting annotations, this would require sophisti-
cated text processing to automatically determine the absence
of permission documentation. Thus, for this evaluation, we
limit our assessment of missing documentation to three ran-
domly picked big services as case studies, for which we
manually analyze the documentation to detect the absence of
documented permissions. Those services are WifiService,
ConnectivityService, and AudioService. We manually
analyzed the corresponding manager classes and collected 138
methods that call remote services but were not annotated with
@RP nor have a description of required permissions.

Out of the 301 APIs that were automatically collected,
we found 178 APIs (59.1%) whose permission mapping by
DYNAMO matches the mapping from the source code annota-
tion. Those APIs collectively enforce 64 unique permissions.
It is worth noting that DYNAMO managed to extract more
permissions than those annotated in the source code for 9 of
those APIs. This is because the managers’ APIs are annotated
with a subset of permissions that are required for one chosen
execution path depending on the input (i.e, parameter-sensitive
enforcement), while DYNAMO extracted permission mappings
for other execution paths as it bypasses the managers’ APIs
and directly tests the corresponding service APIs. However,
we found that DYNAMO failed to construct the permission
mapping for 50 APIs due to either low code coverage or failing
to invoke the API because of a missing dependency. The re-
maining 44 APIs revealed three error patterns in the annotated
permissions in the source code: First, the source code defines
required permissions that are not actually enforced (9 APIs).
Second, the source code defines the permissions required for
only some execution paths, while the user-controlled input
can trigger all execution paths (29 APIs). Third, the source
code only partially describes the API’s required permissions
in the @RP, causing the matching process to fail. However, after
manually checking the source code, we find complementary in-
formation about the needed permissions (6 APIs). Surprisingly,
after analyzing the 138 APIs from the three manager classes
that do not have any sort of information regarding the required
permissions, we found 31 APIs with missing information that,

in fact, require a permission from the caller. We reported all
of our findings to Google and they are in the process of
taking corrective actions for their developer documentation.
Appendix D details our results.

The root cause analysis on why those inconsistencies and
incomplete annotations exist in the documentation are three-
fold. First, the documentation is best human effort. Second,
while the services evolve to more or new required permissions,
the manager APIs fall behind and are overlooked, especially
for the APIs that are hidden from third-party app develop-
ers. Third, the annotations are too inflexible to convey the
parameter sensitivity. As a result, they are used to reflect the
permissions required for one execution path only and further
conditions are, sometimes, mentioned in natural language only.

VI. DISCUSSION

We discuss our evaluation and try to provide lessons
learned for analyzing Android’s application framework.

Security Impact. While DYNAMO’s improvements to the doc-
umentation (Section V-D) and the discovery of unprotected and
misconfigured interfaces (Section V-C) were acknowledged by
Google as direct results of this work, we see another long-
term security impact from the permission mapping that we
generate with DYNAMO. Accurate and complete permission
mappings are essential in various security applications in
Android, such as detecting over-privileged apps [44], [40],
detecting malware [9], [18], [27], [36], [48], [57], finding
inconsistencies within the application framework [4], [6], [28],
[29], [47], [56], or others [13], [35], [43], [51]. For instance,
developers without complete and accurate mappings tend to
request more permissions than necessary for their apps. This
is not only a nuisance for developers, but has been shown to
frustrate the user [39], [49] and cause a feeling of erosion
of privacy [37], [31]. Google recently even started nudging
developers of over-privileged apps into rethinking their apps’
behavior [45], [44]. Moreover, malware detection depends
on accurate permission mappings to identify dangerous calls
in apps as part of the feature sets of their classifiers [9],
[27], [36], [57]. Without complete mappings, malicious apps
might be missed (e.g., by not detecting usage of sensitive
protected APIs) while imprecise mappings can lead to erro-
neously flagging benign apps as malicious (e.g., confusion
about what would be the right set of permissions for a benign
app). Lastly, considering DYNAMO’s approach to dynamically
test the application framework API, we envision extending
DYNAMO into a tool for systematically testing the application
framework’s internals for inconsistencies (Section V-C) and for
verification (Sections V-A and V-B) in the future.

Soundness and Completeness of DYNAMO’s Results. The
results of dynamic analysis are sound for the executed paths
but can be incomplete for some parameter-sensitive APIs. In
our results, we find that some security checks were overlooked
because we only rely on our observations (e.g., outputs, traces,
and reported checks) that we encode as association rules to
automatically decide on the security exception. For example,
some APIs would throw a security exception that requires
a human interpretation to identify the check that causes the
exception and, therefore, cannot be automatically detected.
A more reliable approach would be looking at those traces
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manually, which is not scalable, or to devise better automatic
classification of traces (e.g., using learning techniques).

Benefits of Combined Approaches. One thing that our results
show is that neither static nor dynamic analysis alone can
uncover the intricate details of the framework and that—in
alignment with other software testing domains—a combined
approach is needed. Take the problem of building permission
mapping as an example. The common assumption so far is
that the compromises made by static analysis—e.g., limiting
the analysis to cater for performance—can still yield better
results than dynamic testing that suffers from poor code
coverage. However, we have demonstrated that even simple
techniques for achieving high coverage in dynamic testing can
outperform static analysis for some cases. When considering
our comparison with Arcade, DYNAMO was able to comple-
ment the permission mapping for 444 APIs that are missing
or incompletely modeled by Arcade in comparison to 320
APIs that are missing or incompletely modeled by DYNAMO
(becomes 283 and 373 APIs, respectively, when comparing
with the updated permission mapping from Arcade).

The limitations and strengths of both approaches that
complement each other serve as an indication that moving for a
hybrid approach is the next natural step in improving analysis,
and we find concrete evidence in our results: (1) Arcade limits
the scope of analysis to preserve their practicality by only con-
sidering checks before the identity is cleared (see Listing 3),
thus missing subsequent security checks. DYNAMO reports all
security checks for the selected execution path and helped to
find this shortcoming, which now can be improved for future
static analyses. (2) Dynamic analysis fails in detecting complex
access control logic and inferring the relation between the input
and corresponding execution paths. This, on the other hand,
is possible via static analysis with minimal overhead. (3) By
design, existing static analysis works cannot analyze native
APIs because they rely on Java-only static analysis framework
(i.e., [3], [50]). In contrast, dynamic testing uses IPC primitives
that do not differentiate between the implementation language
of the target API. (4) Static analysis thrives on assumptions
based on observations that are mainly collected from manual
code analysis. This can lead to wrong results, as we have
demonstrated for some of ARF’s results. Feeding back our
observations, future static analysis can be improved with this
new expert knowledge.

Verifiability of Static Analysis Results. Being able to verify
the permission mappings from static analysis solutions is
crucial to the development of their approaches, for example,
by having direct feedback that confirms the results and avoids
huge manual efforts for result verification. As an example,
PScout [11] followed this general advice, but their verification
was based on only a heuristic evaluation that was generally
imprecise. A tool like DYNAMO that leverages advances in
dynamic testing and runtime instrumentation can fill this gap.
This is exemplified by 76.1% automatically confirmed cases
by DYNAMO and the extended and new APIs that have been
previously overlooked and whose root cause analysis yielded
valuable insights for static analysis.

Further, being able to identify the location of the security
checks, the order of checks, the paths that lead to them, and
the resolved variables used in them is crucial to properly
analyze and understand the framework. This information is

easily collected by DYNAMO for the executed paths but poses
a huge challenge for static analysis. For instance, one of the
wrong assumptions that lead to false positives in ARF (i.e.,
whitelistAppTemporarily) stems from not being able to
resolve the caller’s identity that is used to enforce a permission.
The imprecision started with the authors assuming that the call
from the deputy API to the target API is done over Binder IPC,
which would cause the permission check in the target API to be
done against the deputy’s identity, while the runtime behaviour
showed that the permission is still enforced against the app’s
identity (i.e., no permission re-delegation). Inspection of the
code showed that although the call from the deputy to the
target followed the general IPC pattern, it is actually handled
locally as both deputy and target share the same process.

Complexity of Access Control in Android. Existing works,
including DYNAMO, have focused on permissions and other
security checks in the middleware, and we have seen how
different checks interact with each other, e.g., in our analysis of
inconsistencies in access control (see Section V-C). However,
access control on Android also extends to the kernel using
Linux DAC and SELinux MAC. For instance, although a
service might seemingly be unprotected in the application
framework, SELinux might prevent calls to this service from
unprivileged processes. First approaches based on static anal-
ysis to model a holistic view of the access control on Android
exist [32], but considering the complexity of such holistic
models and the inherent limitations of the analyses from which
they retrieve their data, we argue that adding dynamic analysis
helps in refining such models of Android’s access control.

We also observed that not all reported permissions are
required for accessing an API. For example, some APIs check
for permissions that are only used to select an execution path
or to populate the result with more data. We identify those
permission checks when no security exception is fired, and we
found three patterns of how they are used: (1) The scope of the
result is changed or reduced. (2) A mock or a default value is
returned. (3) The execution aborts silently if the invoked API
has a void return type. Those patterns complicate both static
and dynamic analysis since the effect of permissions can only
be judged from side-effects and path constraints.

Improving Static Analysis. Similar to how our design of
DYNAMO profited from prior experience of static analysis
(e.g., path sensitivity or security checks beyond permissions),
our results can profit future static analysis. First, we found that
the order of checks and their placement in the method is useful
information to our inconsistency analysis. For example, we
were able to easily exclude candidate paths leading to the same
sink when two paths enforced similar checks before calling
the sink. Without the location and order of the checks, we
would have to manually inspect the code to see if one path is
enforcing the check after calling the sink (i.e., differs in access
control for the sink). In fact, not being able to argue about the
order of the checks was a limitation of ARF [29]. Second,
resolving the identity that is used in checks is generally a
limitation of static solutions. In our permission mapping, we
annotated each check with the identity used in it, including
permissions enforced after clearing the caller’s identity. This
gives insights into which functionality of a service is guarded
by the caller’s privileges and which functionality is executed as
deputy on the caller’s behalf. Lack of such information (e.g.,
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lack of data flow analysis) can create a faulty understanding
of how system services interact with each other. Third, com-
promises for following IPC calls, such as limiting the analysis
to first entry point [28] or improperly connecting calls [12],
[5], reduced the completeness of the results. Despite current
efforts [10], bridging IPC is still one of the unsolved challenges
in static analysis of the application framework.

Alternative Approaches. Modeling the security policy of the
application framework is a non-trivial task. The difficulty stems
from the sheer size of the framework (aggravated by the
closed-source modifications by OEMs), the different protection
mechanisms that need to be combined in a comprehensive
model (e.g., permissions, cross-user checks, etc.), and layers
(Java and native code). Modeling this policy via manual
reverse-engineering is not scalable and shown to be error-
prone even for experienced security analysts (Section V-B).
Approaches for automatic placement of authorization hooks, as
known for the Linux kernel [54], [53], [60], [19], are also not
feasible as they require a clear knowledge of what constitutes
a protected resource, which is not available in Android’s
application framework despite prior efforts [12], [47]. As such,
we argue that static and dynamic analysis are currently the best
candidates of the available approaches to study the framework.
Nevertheless, we advise symbolic execution [41] as a possible
addition to address use-cases that are challenging to dynamic
analysis, such as analyzing event-driven security checks that
cannot be triggered dynamically because of unsatisfied state.

Code Coverage. We found the inherent code coverage problem
of dynamic analysis not to pose a blocker for building permis-
sion mappings that are as complete as mappings built using
static analysis. This is attributed to the fact that security checks
take precedent to sanity checks and logic, and hence do not
necessitate high code coverage. However, for future use-cases
that need higher code coverage, our prototypical implemen-
tation has great potential to be extended, e.g., guidance from
static analysis or symbolic execution results.

Limitations. Only after we conducted our evaluation, we
found that more APIs could have been discovered by re-
solving multi-level services [38]. Moreover, deriving the se-
curity policy from the invocation results is incomplete. We
manually verified over 300 APIs out of 1,292 reported APIs
for Android 6 and found some APIs with security checks
that were overlooked by the association rules encoded in the
Policy Builder. Since manual verification of all APIs is out
of scope, the exact FN rate is currently unclear. Moreover,
dynamic testing is generally time-consuming, and DYNAMO is
not different (e.g., building permission mappings took multiple
weeks on our setup). Lastly, DYNAMO requires the tested
device to be rooted or Android being built in debugging mode.

VII. CONCLUSIONS

We presented DYNAMO, our tool for analyzing the security
policy of Android’s application framework. It is based on
well-known dynamic testing techniques for Java and native
system APIs, considering path-sensitivity, order as well as
the location of security checks, and additional key contextual
information (e.g., the subject’s identity). We applied DYNAMO
to four prominent use-cases from the literature and by taking
a synoptical view on the results, we were able to confirm,

complement, and refute previous results. Root cause analysis
of the discrepancies between prior and our results provided
insights and new expert knowledge to improve both static and
dynamic analysis in the future. We see further potential to ap-
ply dynamic analysis to Android’s middleware, such as testing
compliance of OEM images or scanning for vulnerabilities.
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APPENDIX A
FALSE POSITIVES OF ARCADE

TABLE II. LIST OF AND REASONS FOR FALSELY POSITIVE APIS IN
ARCADE’S [5] PERMISSION MAPPING

Over-Approximation

input method.setImeWindowStatus
input method.startInput
input method.windowGainedFocus
iphonesubinfo.getDeviceId *
iphonesubinfo.getDeviceIdForPhone *
iphonesubinfo.getLine1Number *
iphonesubinfo.getLine1NumberForSubscriber *
phone.factoryReset
phone.getLine1NumberForDisplay *
textservices.getCurrentSpellChecker
textservices.getEnabledSpellCheckers
textservices.getSpellCheckerService
textservices.isSpellCheckerEnabled

Wrong Permission Enforcement (Name Resolution)

alarm.setTime
content.getIsSyncable *
content.getIsSyncableAsUser *
content.getMasterSyncAutomatically *
content.getMasterSyncAutomaticallyAsUser *
content.getSyncAutomatically *
content.getSyncAutomaticallyAsUser *
deviceidle.addPowerSaveTempWhitelistApp
deviceidle.addPowerSaveTempWhitelistAppForMms
deviceidle.addPowerSaveTempWhitelistAppForSms
input.registerTabletModeChangedListener
input.setTouchCalibrationForInputDevice
input.tryPointerSpeed
package.movePrimaryStorage
wallpaper.setWallpaperComponentChecked *
window.requestAssistScreenshot
window.screenshotApplications

Wrong Reporting of Relation Between Checks

package.movePrimaryStorage

(*) APIs that are accessible to third-party app developers.
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APPENDIX B
FALSE NEGATIVES OF DYNAMO

TABLE III. EXAMPLES OF FALSE NEGATIVE APIS IN DYNAMO’S
PERMISSION MAPPING

Over-Approximation

sip.close
power.updateWakeLockWorkSource
network management.setUidCleartextNetworkPolicy
network score.clearScores
account.copyAccountToUser
audio.disableSafeMediaVolume
netstats.getDataLayerSnapshotForUid
package.clearPackagePreferredActivities
media session.setRemoteVolumeController
isms.sendDataForSubscriber
phone.getAllCellInfo
phone.getNeighboringCellInfo
appops.checkAudioOperation
bluetooth manager.disable
connectivity.requestNetwork
input method.setInputMethod
location.getLastLocation
vibrator.vibratePattern
account.addAccountAsUser
activity.moveTaskBackwards
device policy.getRemoveWarning
fingerprint.getEnrolledFingerprints
package.addCrossProfileIntentFilter
window.disableKeyguard
notification.isSystemConditionProviderEnabled

APPENDIX C
RESULTS OF ARF

TABLE IV. CONFIRMED AND REFUTED VULNERABILITIES REPORTED
BY ARF [29]

Confirmed Vulnerability

areNotificationsEnabledForPackage
cancelToast
dismissKeyguard
enqueueToast
getAuthenticatorId
getEnrolledFingerprints
getFreeBytes
getPermittedAccessibilityServicesForUser
hasNamedWallpaper
isDeviceSecure
isPackageDeviceAdminOnAnyUser
isSeparateProfileChallengeAllowed

False Positives

whitelistAppTemporarily
switchUser
startBluetoothSco
stopBluetoothSco
startBluetoothScoVirtualCall

APPENDIX D
RESULTS OF EVALUATING THE DEVELOPER’S

DOCUMENTATION [24]

TABLE V. EXTENDED AND REFUTED PERMISSION ANNOTATIONS IN
GOOGLE’S DEVELOPER DOCUMENTATION FOR MANAGER APIS [24]

APIs With Extended Permissions

activity.getCurrentUser
activity.switchUser
audio.registerAudioPolicy
color display.setSaturationLevel
color display.setSaturationLevel
connectivity.getCaptivePortalServerUrl
connectivity.setAirplaneMode
connectivity.shouldAvoidBadWifi
connectivity.startCaptivePortalApp
contexthub.disableNanoApp
contexthub.enableNanoApp
contexthub.queryNanoApps
incidentcompanion.deleteIncidentReports
incidentcompanion.getIncidentReport
incidentcompanion.getIncidentReportList
location.flushGnssBatch
location.getGnssBatchSize
location.registerGnssBatchedLocationCallback
network score.setActiveScorer
phone.setRttCapabilitySetting
role.addOnRoleHoldersChangedListenerAsUser
telecom.getCurrentTtyMode
user.removeUser
wallpaper.clearWallpaper
wallpaper.setWallpaperComponent
wifi.getPrivilegedConfiguredNetworks
wifi.getWifiApConfiguration
wifi.setWifiApConfiguration
wifi.startScan

Incomplete Permission Reporting Complemented in Natural Language

role.addRoleHolderAsUser
role.clearRoleHoldersAsUser
role.getRoleHoldersAsUser
role.removeOnRoleHoldersChangedListenerAsUser
role.removeRoleHolderAsUser
usagestats.whitelistAppTemporarily

Wrong Permission Reporting

audio.getAudioVolumeGroups
overlay.getOverlayInfosForTarget
overlay.setEnabled
overlay.setEnabledExclusiveInCategory
phone.getSupportedRadioAccessFamily
phone.requestCellInfoUpdate
telecom.getPhoneAccountsSupportingScheme
telecom.isRinging
user.isRestrictedProfile
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TABLE VI. MISSING PERMISSION ANNOTATIONS IN GOOGLE’S
DEVELOPER DOCUMENTATION FOR MANAGER APIS [24]

Missing Permission From Online Documentation

audio.adjustStreamVolume
audio.getActivePlaybackConfigurations
audio.registerAudioRecordingCallback
audio.setBluetoothScoOn
audio.setMicrophoneMute
audio.setMode
audio.setRingerMode
audio.setSpeakerphoneOn
audio.setStreamVolume
connectivity.getRestrictBackgroundStatus
connectivity.reportBadNetwork
connectivity.reportNetworkConnectivity
connectivity.requestBandwidthUpdate
wifi.addOrUpdatePasspointConfiguration
wifi.createMulticastLock
wifi.createWifiLock
wifi.getConnectionInfo
wifi.getDhcpInfo
wifi.getScanResults
wifi.getWifiState
wifi.is5GHzBandSupported
wifi.isEasyConnectSupported
wifi.isEnhancedOpenSupported
wifi.isEnhancedPowerReportingSupported
wifi.isP2pSupported
wifi.isPreferredNetworkOffloadSupported
wifi.isTdlsSupported
wifi.isWifiEnabled
wifi.isWpa3SaeSupported
wifi.isWpa3SuiteBSupported
wifi.updateNetwork

APPENDIX E
PREDEFINED SEEDS IN DYNAMO

TABLE VII. THE LIST OF PREDEFINED SEEDS USED FOR INPUT
GENERATION IN DYNAMO

Strings

null
<EMPTY_STRING>
<package name of TS>
com.android.systemui
content://user dictionary/words
android.permission.MANAGER USERS

Integers

-1, 0, 1, 10
<INT_MAX>
<UID of TS>
<PID of TS>
<UID of TS from the second profile>
<UID of com.android.systemui>
<PID of com.android.systemui>

Byte, Character, Double, Float, Short

1 *

Boolean

true, false

android.content.[ComponentName/Intent]

Package: <package name of TS>
Class: <class name of TS’s service>

android.net.Uri

content:://user dictionary/words

(*) Accordingly casted to the corresponding type
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