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Abstract 
Scaling in distribution pipes for secondary alumina is a major issue in aluminium smelters. The scale is formed 
inside the distribution pipes, and gradually reduces the cross section that is available for alumina transport. The 
scale cannot be removed without dismantling the transport pipes and using chemical and/or mechanical 
treatments. This leads to interruptions in normal operation, requires additional labour, and a stock of additional 
pipe sections. To get a better understanding of the scale formation mechanisms, the rate of scale growth was 
monitored by acoustic measurements in a transport pipe section at an aluminium producing plant over a period of 
several months. Correlation between growth rate, and recorded parameters from the associated pots, fume 
treatment system and meteorological data were studied. In addition, samples from the actual scale were 
examined by SEM, TEM and AFM to investigate the microstructure and chemical composition. 

Introduction 
Hard grey scale (HGS) is a material that deposits in secondary alumina distribution systems. It is a major 
maintenance issue in many plants, leading to increased operational costs and process interruptions. In general, 
HGS is observed in the dry-scrubbers and downstream of them: in the delivery pipes transporting secondary 
alumina to the production cells. HGS is not observed in the primary alumina distribution pipes. It can therefore 
be assumed that some of the adsorbed components and/or the handling occurring in the dry-scrubber contributes 
to the scale formation. 

There are very few publications available in the literature addressing scale formation in secondary alumina 
distribution pipes. The most extensive investigation was presented in [1]. They showed that a hard grey scale 
could be synthetized using bath fines, alumina and water which were mixed in a ball mill. All of these 
components had to be present in the right amount, in addition to the energy from the ball mill, for scale to form 
in the study. Investigations of the necessary conditions for scale formation revealed an increase in the 
temperature of about 15-20 °C when scale formed.  

Possible mechanisms for scale formation 
For scale to form, secondary alumina particles must adhere to the pipes and grow into thick layers. This could be 
caused by either pure particle to particle interactions, a binder phase between particles or a recrystallisation of 
particles that enables them to grow into each other by a mechanism like sintering.   

Temperature could be an important parameter for such reactions. Recrystallisation is slowed down or stopped at 
lower temperatures. A binder phase must be ductile or liquid, usually meaning it must be close to its melting 
point. This can explain why scaling tends to occur at high-turbulence areas, as the energy from the impacts can 
give increased local temperature on involved particles. Some proposed contributions to scale formation is 
discussed in more details below. 

Fluoride salts 

Fluoride containing fines originating from bath fumes are present in high amounts in the secondary alumina. 
Fluorides from HF and bath fumes are captured by the alumina as it passes through the gas scrubber. A study 
showed that Na5Al3F14 (chiolite) and Na3AlF6 (cryolite) could be synthesised from AlF3 and NaF at ambient 
temperature using a high energy ball mill [2]. Thus, it was proved that fluoride salts can undergo solid state 



chemical reactions under these conditions. A similar reaction between the fluoride species available in the 
secondary alumina might lead to a recrystallisation of the fluorides which could result in crystal growth and a 
rearrangement of the crystalline structure such that it locks the neighbouring particles in place.  

Na2O and NaOH 

Alumina from refineries have a high content of Na2O, typically around 0.5%. Although co-precipitated with the 
gibbsite during the Bayer process, it was showed in [3] that Na2O emerges to the surface of the alumina grains 
during calcination. Na2O is thermodynamically unstable when exposed to moisture and air and will react to form 
NaOH or Na2CO3 in the presence of H2O or CO2. NaOH, with a melting point of 318 °C, have the potential to 
melt in a high energy impact.   

Alumina recrystallisation 

Reports [1,4,5] show that high amounts of alpha phase alumina can be found in the scale. A possible reason for 
this could be recrystallisation of γ-Al2O3, which again could lead to a sintering / agglomeration taking place 
during the rearrangement of the crystal structure. 

Geopolymers 

Geopolymers, or hydraulic cements, is another form of inorganic compounds that bind together directly. Many 
of these suggested geopolymers contain aluminium oxides.  They typically consist of structures made of Si-Al-
O, or Al-P-O. The absence of Si (and P) which is key ingredients in geopolymer structures rules out this option 
as a scale formation mechanism. The initial formation of precursors i.e. the formation of Si-Al-O structure from 
SiO2 and Al2O3, would also require high temperature (typically 1000 °C or higher), although the actual 
solidification of a geopolymer could occur at ambient temperatures [6]. 

Sulphate 

Sulphate can form solid phases with many common cations such as Ca2+, Na+, and sulphur is present in the off-
gas entering the dry scrubber mainly as SO2. SO2 is known to adsorb on alumina. According to [7], SO2 can react 
with sodium doped alumina to form sodium sulphate, also known as gypsum. Gypsum, or any gypsum like 
substances could, given the right moisture conditions, solidify and act as a binder phase.  

Zhang et al. studied the reactions of sulphur dioxide on alumina, and showed that given the right conditions SO2, 
would adsorb non-reversibly to form SO3

2-, and could further react to from SO4
2- [8].  Kogarkoite (Na3(SO4)F) 

has been identified as fumes in the off gas from electrolysis cells [9].  

Humidity 

Alumina will have a moisture uptake and equilibrium affected by calcination, air temperature and relative 
humidity. Changes in moisture in the alumina can result in changed flowability and other physical properties and 
is hence a parameter that could affect the scale formation. In addition, the moisture level has at higher 
temperatures (6-800 °C) shown to affect agglomeration and neck formation of alumina agglomerates [10]. It was 
also found in [1] that without some water additions in the ball mill scale did not form. 

Particle collisions 

Alumina is transported using pressurized air in distribution pipes (pneumatic conveying). HGS growth is 
reported to be larger in high turbulence areas, where collisions between particles and pipe walls as well as high 
energy particle-particle collisions can be expected. These collisions can lead to breakdown of particles, with 
exposure of a highly reactive fracture surface which will reorganize, often reacting with moisture in air in an 
exothermic reaction which also can give rise to significant local heat [1]. Additionally, the kinetic energy itself 
from the collision can theoretically give a temperature increase of dT = 0,5v2/Cp, where v is velocity in m/s and 
Cp is the heat capacity in J/(g*K).  Given a particle impact at 15m/s the theoretic heat increase is 128 °C if all 
the kinetic energy is converted to heat, this additional heat could be what enables the scale forming reactions by 
melting of a binder product that is otherwise solid. 



Methodology 
This paper discusses scale formation based on measurement of scale progression during a five-month long 
monitoring campaign, combined with analysis of process and environmental variables in addition to chemical 
analysis of the scale. 

Measurements of scale growth 
A methodology for measuring scale growth in a pipe was established in previous studies [11,12]. An acoustic 
method was used to monitor the scale growth in a test area along a pneumatic conveying system distributing 
secondary alumina in a Norwegian smelter. Reference measurements to calibrate models from the acoustic 
signals were collected with a laser/camera setup on a weekly basis. The main results from the monitoring 
campaign and development of calibration models of the scale growth is discussed in detail in [13]. 

Multivariate data analysis 
Latent variable methods 

Multivariate data is typically presented in an m*n matrix X and is often colinear as the columns in X are linearly 
dependent of each other to some extent. In such cases, some of the same underlaying factors are described by 
several of the different variables in the dataset. Thus, a smaller set of variables describing the same information 
can be constructed by linear combinations of the variables in X. The new variables are referred to as latent 
variables (LVs) as they contain the main underlaying or hidden structures in the original data. Latent variables 
can be constructed by an iterating process of successive orthogonal projections as described in eq. 1-3 (NIPLAS 
algorithm). 

Each LV is represented by a score vector t and a loading vector p. The score vector is calculated by defining a 
weight vector wa and projecting the rows of the matrix X onto wa as shown in Eq. 1.    

𝐭𝐭𝑎𝑎 = 𝐗𝐗𝑎𝑎𝐰𝐰𝑎𝑎  
  

(1) 

Subsequently, the loading vector pa is found by projecting the variables in X onto the ta vector as described in 
Eq. 2.  

𝐩𝐩𝑎𝑎 = 𝐭𝐭𝑎𝑎T𝐗𝐗𝑎𝑎
�𝐭𝐭𝑎𝑎T𝐗𝐗𝑎𝑎‖

        

 

(2) 

Finally, the variation described by LVa is removed from X as defined in Eq. 3. In Eq. 1-3, a = 1, 2, …, A and X1 

= X. 

𝐗𝐗𝑎𝑎 = 𝐗𝐗𝑎𝑎−1 − 𝐭𝐭𝑎𝑎−1𝐩𝐩𝑎𝑎−1T  
  

(3) 

A maximum of A = rank (X) LVs can be calculated by this procedure. However, normally the main variations in 
X can be described by only a few latent variables. Thus, the important information in X is summarized in a few 
components, significantly reducing the dimension of the dataset and simplifying the interpretation of the data. By 
calculating LVs, the X matrix is decomposed into an information part (LVs) and a noise part (the residual matrix 
E) as shown in Eq. 4.  

𝐗𝐗 = 𝐭𝐭1𝐩𝐩1T + 𝐭𝐭2𝐩𝐩2T + ⋯+ 𝐭𝐭𝑎𝑎𝐩𝐩𝑎𝑎T + 𝐄𝐄  
 

(4) 

Several different types of latent variable methods exist, Eq. 1-4 are common for all. The methods differ in the 
choice of weights wa and thus the properties of the LVs [14].  

Before conducting the latent variable matrix decomposition, the data in X is normally pre-processed by various 
techniques to adapt and prepare it for the data analysis. A common pre-processing technique called autoscaling 
involves mean centring and scaling the columns in X to unit length [15].  

Partial least squares regression 

Partial least squares regression (PLS-R) is a latent variable method used to find linear correlation models 
between a set of predictor variables (X) and response variables (a single variable y in PLS1, the version of PLS-
R discussed in this paper). PLS-R is the most commonly used regression method for multivariate data as it can 



handle datasets containing noisy and colinear variables. The method solves the calibration equation in Eq. 5 by 
finding a set of regression coefficients β that relates X to y and minimizes the residual vector 𝛜𝛜.  

𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝛜𝛜  
  

(5) 

In PLS-R, the weight variable used in Eq. 1 is defined as shown in Eq. 6.  

𝐰𝐰𝑎𝑎 = 𝐲𝐲𝑎𝑎T𝐗𝐗𝑎𝑎
�𝐲𝐲𝑎𝑎T𝐗𝐗𝑎𝑎�

  

 

(6) 

The choice of wa results in LVs being calculated according to a criterium of maximum covariance between X 
and y. Thus, in PLS-R the information that is most relevant to describe the relation between X and y is extracted. 
More detailed descriptions of PLS-R can be found in [15,16].  

Variable selection by variable importance in projection 

When calibrating PLS-R models, it is often found that many of the variables in X are not contributing 
significantly in modelling y. Variable selection methods can be used to evaluate which variables seems 
important and which variables seems insignificant. Removing unimportant variables from X can often lead to 
improved model performance due to noise reduction and will also simplify the model interpretation. Numerous 
different variable selection techniques exist, and the best choice of method will depend of the properties of the 
investigated dataset. Variable importance in projection (VIP) is a variable selection method which gives an 
evaluation of the contribution of each variable in a dataset to describe X and y. The VIP value for a variable j in 
X (j = 1, 2, …, n) can be calculated as described in Eq. 7. 

VIPj = �∑
𝐰𝐰ja
2 ∗𝛃𝛃a2taTta
𝛃𝛃2𝐓𝐓T𝐓𝐓

A
a=1   

(7) 

In Eq. 7, T refers to a score matrix containing the score vectors for all the LVs included in the PLS-R model. As 
a rule of thumb, VIP-values lower than one are regarded as insignificant [17].  

Experimental 

Multivariate data analysis of a dataset containing multiple variables was conducted to reveal any correlation 
between the variables and scale formation. Several parameters were evaluated, including meteorological 
parameters such as dewpoint, air temperature and amount of rainfall (weather forecast from Yr, delivered by the 
Norwegian Meteorological Institute and NRK) as well as process data from the aluminium production pots and 
the gas treatment centre (GTC) connected to the pipeline where the measurement campaign was performed. The 
aluminium production data consisted of average values for all pots in the potline in the relevant area of the plant. 
The data was arranged in a matrix in which the rows each represent a day in the test campaign and the columns 
corresponds to the process and environmental variables. The data was auto scaled prior to the analysis.  

PLS-R modelling, with the investigated parameters as predictors and a pre-processed scale growth curve 
obtained from the measurement campaign as the response, was carried out. A combination of the VIP variable 
selection method applied to the resulting PLS-R model and a correlation analysis of the variables in X was used 
to determine the main influential parameters for scale growth. A T-test was applied to check if the calculated 
correlation coefficients were significantly different from zero. The data analysis was conducted using Sirius [18].  

Analysis of scale samples 
The analysis of scale was done using a combination of SEM and TEM to get high resolution combined with 
chemical analysis. AFM analysis was used to evaluate the physical properties.  The instruments used was a FEI 
Helios G4 dual-beam focused ion beam – scanning electron microscope (FIB-SEM) and a double Cs corrected 
coldFEG JEOL ARM 200F, operated at 200 kV and equipped with a large solid angle Centurio (0.98 sr solid 
angle) detector for X-ray Energy Dispersive Spectroscopy (EDS) and a Quantum ER GIF for electron energy loss 
spectroscopy (EELS). The FIB-SEM was used both for standard SEM characterization and to make samples for 
TEM. Samples for SEM were cut with a diamond impregnated cutting blade and further polished with SiC paper 
and diamond coated plastic lapping films (finishing with a diamond grain size of 0.5 µm) prior to FIB-SEM 
characterization. The TEM samples were made by standard lift-out and transfer of the TEM lamella to a dedicated 



Omniprobe TEM grid. Coarse thinning was performed at 30 kV ion beam acceleration voltage. Final thinning was 
done at 5 and 2 kV to minimize the surface damage on either side of the TEM lamella. 

The AFM instrument used was a Veeco diMultimode V in PeakForce QNM (Quantiative Nanomechanical 
Mapping) operation mode. In QNM mode, topography is acquired together with additional information on 
modulus, adhesion deformation and dissipation. The QNM information is a result of the deformation vs force 
analysis provided by the NanoScope8.15 software. The AFM tip was a Bruker Scanasyst-air silicon tip with a 
nominal tip radius 2nm and spring constant 0.4N/m.  

Results 
The methodology proved successful in monitoring scale progression and provided detailed information of scale 
growth during the test campaign. A curve showing the scale growth in this period, which was generally steadily 
increasing, is plotted in Figure 1. There are some fluctuations and periods of time where the growth seems to 
stop or reverse. The latter could be caused by abrasion by alumina on the scale in timeframes where the growth 
is low or by chip-off of scale pieces resulting from mechanical influence. The curve was detrended and 
smoothed (Figure 1) to emphasize the main changes in scaling rate throughout the test campaign. The pre-
processed curve was used as the response variable in the data analysis in order to focus on the sub trends with 
increasing and decreasing scaling rate. If the original scale growth curve had been used in the analysis, the 
results would be dominated by variables with a general increasing trend that may not have any relation to scale 
growth.  

Figure 1: Scale growth as a function of time (black curve) and a pre-processed version of the curve highlighting sub trends 
of increasing and decreasing scale growth rate (grey curve). 
 

Multivariate data analysis to detect variables correlated to scale formation 
Investigating correlations between scale growth and other parameters have been a challenging task for several 
reasons. Process data from aluminium production is known to be temporally correlated [19], and complex co-
dependencies probably exist between the variables, complicating the analysis. Furthermore, the dataset 
investigated in this study was relatively small, representing a few months of production only. The calibrated 
model's ability to represent the scale growth is restricted by the availability of reference measurements, and 
relatively few such measurements could be carried out in the test campaign [13]. Also, the variables were scaled 
to unit variance, which can lead to unimportant variables mainly containing noise getting an artificially high 
influence on the calibrated models [15]. Finally, key variables influencing scaling may not have been present in 
the dataset and if so, could not be detected by the analysis.  

Nevertheless, several groups of variables which seems to be correlated to scale formation, presented in Table 1, 
were found in the data analysis. These variables were considered carefully to investigate whether there could be 
any connection to scaling as correlation does not necessarily mean there is a cause-effect relationship between 
variables. Many of the variables in Table 1 are mutually correlated and it is likely that they are all related to 
some common underlaying factors which are influencing scaling and making the variables stand out in the 



analysis. Most of the variables in Table 1 have a connection to cell emissions, cell temperature and/or gas 
temperature, these could be the main parameters that are affecting the scale formation. 

 

Table 1: Overview of variables found to be correlated with scale formation  

Group  Variable  VIP r 
1  Anode effects in cells  1.27 0.327 
2  Measured resistance  1.22 0.332 

Cell to cell voltage  1.21 0.327 
Series voltage  1.19 0.225 

3  Bath height  1.17 0.325 
Liquid height  1.15 0.324 

4 Na2CO3 addition to bath  1.18 0.318 
5 Max outdoors air temperature  1.07 0.271 

Gas temperature in and out of GTC  1.07 0.260 
6 Iron in produced metal  1.05 0.242 

 

Although the correlation coefficients in Table 1 are relatively low, they are all statistically significant (α = 0.05) 
due to the high number of samples in the dataset. The VIP values are all above 1, thus the variables are 
considered important according to the VIP test criterium.   

Normally consisting mostly of CO2, the off-gas composition shifts towards higher contents of CO, CF4, and 
some C2F6 during anode effects. Furthermore, anode effects involve rapid rise in cell voltages and resistance, 
temperature rise in the cells, higher emission rates and higher gas temperatures. Accordingly, the variables in 
group 2 are correlated to group 1. Additionally, the group 2 variables are connected to general temperature 
changes in the pots, which is one of the main factors affecting the total fluoride emission from the cells [21]. The 
variable describing cell temperature itself did not stand out in the data analysis, this is believed to be a 
consequence of the usage of average values for all pots in the analysis. As the change in vapor pressure is not 
linearly correlated to the temperature changes, smaller changes in process temperature in individual cells, which 
are not detectable in the calculated mean value of all cell temperatures, could have a significant impact on the 
total fluoride emission. 

The effect of the variables in group 3 could possibly be explained by a relation to changes in anode to cathode 
distance and thereby to group 2 variables. However, as cell operation strives to keep the inter-polar distance at a 
constant level, such variations may be too minor to have a significant effect on the cell conditions. Another 
possibility is that higher bath and liquid heights could lead to higher cell emissions.  

Several long episodes of anode effects resulting from the start-up of two new production pots were registered 
during the test campaign, in mid-May and early June. Interestingly, it can be seen from Figure 1 that the scaling 
rate increased drastically during these periods. Major changes in the variable in group 4 was found for the same 
periods, probably caused by significant additions of Na2CO3 to the start-up cells. Thus, the variable in group 4 is 
related to anode effects and consequently it is indirectly correlated to the main factors mentioned above.  

The influence of the group 6 variables is harder to determine. It is possible that the correlation is indirect and that 
the underlaying factor affecting scaling is the fines content in secondary alumina, as iron, vanadium and 
manganese as well as other contaminants has been found to accumulate in the finer fractions of alumina [22].  

Surprisingly, no correlation was found between scale growth and humidity. However, due to the challenges of 
the data analysis as explained in the start of this paragraph, a connection between humidity and scaling cannot be 
ruled out based on the results in this study.     

To summarize, the multivariate analysis indicates that cell emissions, gas temperature, production temperature in 
individual cells and possibly the content of fines in the alumina is affecting scale growth, although no strict 
conclusions can be drawn at this stage. To validate the results, a new, similar study needs to be conducted and 
data analysis needs to be performed to check whether the main influential variables found in the new study agree 
with Table 1.  



SEM and TEM analysis of scale samples 
When the test pipe from which measurements had been obtained was due to be replaced, it was collected as a 
sample and conserved to analyse the scale while it was attached to the pipe wall. Additional samples of scale 
from the pipes were also obtained and conserved in sealed plastic bags. Examinations using SEM, TEM and 
AFM were carried out. 

From the SEM analysis it was possible to observe the interface between the steel pipe and the actual scale. This 
can be seen in Figure 2. The plan was originally to take TEM samples of the pipe-scale interface to look for 
clues on how the scale binds to the steel pipe, but interestingly, on all 3 samples that were analysed at the 
interface, there seemed to be a corrosion layer of the pipe between the scale and the metal. This made it 
impossible to extract a sample from this area. It could not be determined if the corrosion was a result of chemical 
reactions with the scale, or if the scale preferentially grows on a corroded surface. 

 
Figure 2: SEM image and EDS element maps of the pipe-scale interface.  Also marked is the location of the TEM sample. 
The high concentration of F in the top part of the image that contain pure steel, is an artefact due to overlap between the F 
K- and the Fe L-peaks in the EDS spectra. 

 

 

 

 

 

 



 

 
Figure 3: High angle annular dark field scanning transmission electron microscopy (HAADF STEM) image of the scale, with 
element mapping for the most interesting elements. 

In Figure 3, a high angle annular dark field scanning transmission electron microscopy (HAADF STEM) image 
of the scale is shown.  As TEM is a transmission technique, a 2D-image of the x-y plane will be seen, while 
differences along the z-direction (the direction of the electron beam) is lost due to averaging along this direction. 
This gives the effect that particles might seem closer together than they are since they might be offset in the z-
dimension of the sample.  

There is a lot of interesting information that can be found in this TEM image, and the associated EDS mappings. 
The grain size in this section was around 0.2-1 µm. The element distribution indicates that carbon and sodium is 
exclusively located at grain boundaries, while sulphur is present on the alumina grains. Likewise, aluminium and 
oxygen are mainly found in the alumina grains, smaller amounts could also be identified between the grains 
since the contrast is adjusted individually for each element. Fluorine is seen in high concentrations at some few 
of the larger alumina grains but most of the smaller alumina grains have little fluorine on them. 

Using electron diffraction on the TEM made it possible to identify the crystalline structure of the grains in the 
sample.  The main part of the alumina in the scale were identified as α-Al2O3, while some few γ-Al2O3 grains 
were found. γ- Al2O3 tended to be larger particles above 1 µm, although some smaller γ-Al2O3 were observed as 
well. The grains showing high contrast for fluorine were γ- Al2O3.  

Between the Al2O3 grains, sodium, carbon and fluorine was identified by EDS. Since sodium carbide is not a 
likely phase to be found here, carbon could either be in the form of dust, or be present as Na2CO3 which could be 



a reaction product formed from the Na2O at the surface reacting with CO2. Similar reactions with water could 
also give some NaOH. NaF would be the expected fluorine containing phase here, while NaAlF4 or some other 
Na-Al-F phase could also be present depending on secondary reactions. 

AFM measurements 
Atomic force microscopy measurements give topology information in addition to information of the general 
physical properties of a surface, such as softness and adhesion. The analysis of the scale samples shows that 
there is a softer phase between the alumina grains, and that this soft phase has a significantly higher adhesion to 
the AFM probe than the alumina grains.  

  
Figure 4: AFM showing surface hardness on the left, brighter is harder, and surface adhesion on the right, brigther is more 
adhersion. 

Discussion 
The main constituent of the scale is smaller (1um>) α-Al2O3 particles, while a few larger γ-Al2O3 particles is 
scattered around. The scale is enriched in sulphur (and possibly fluorine) compared to the secondary Al2O3 
average contents.  

There is no evidence of direct alumina-alumina bonding and no signs that could support the theory of 
geopolymer/hydraulic cement formation were found in this analysis. The individual alumina particles seem to be 
separated from each other, and no indication of neck formation was visible in any of the SEM or TEM pictures. 
In addition, the AFM measurements confirms that the fine fraction that fills the space between the alumina 
grains have a significant adhesion, and hence likely acts as a glue or binder between the alumina grains. 

Despite the general enrichment of sulphur, a binder phase of sulphur or gypsum is unlikely in this case, as 
sulphur is not identified at the interface between the grains in the EDS mappings. Sulphur seems to be located on 
the actual alumina grains, and there is no obvious way sulphur could contribute to the scale formation based on 
the TEM images obtained.  

The fluoride content is the factor that changes the most as the alumina passes through the dry scrubber, and it is 
shown that fluorides are present between the grains in the scale. Hence the fluorides are an obvious binder 
candidate. Through mechanisms similar to the solid state NaF-AlF3 reactions proposed in [2], fluorides could 
possibly react further to form a solid binding phase around the fine alumina particles. This formation mechanism 
is supported by the results from the multivariate data analysis, where a correlation between increases in fluoride 
emissions and scaling rate was found.  

NaOH or Na2CO3 are other candidates to form a binder phase, both could be formed in the dry scrubber as a 
reaction between Na2O and H2O or CO2. Na2CO3 is unlikely to alone form any strong bonding phase, but NaOH 
has a low enough melting point that it could melt from the collision energy of the alumina in high turbulence 
zones and then solidify to act as a glue between the particles.   



The gas temperature in and out of the GTCs, the outdoors temperature and the gas temperature from the cells 
were found to be correlated with scale growth, supporting the assumption that such temperatures are influencing 
the scale growth and indicating that temperature dependent chemical reactions could be a part of the scale 
formation mechanism.  

It is unknown whether the high α phase content is a result of the fact that the alumina fines are often enriched in 
alpha [4], or if α-Al2O3 preferentially is trapped in the scale during formations. The presence of α-Al2O3 could be 
explained either by gamma reacting to α-Al2O3 or by the fact that α-Al2O3 is overrepresented in the particle 
distribution that is trapped in the scale. Findings in the multivariate data analysis indicated that the fines content 
in secondary alumina could be connected to scale growth.  

The corrosion on the interface between the scale and the pipe was unexpected. It could be caused by a secondary 
reaction between moisture contained in the scale and the steel pipe. There are several corrosive elements such as 
HF present in the alumina that, when exposed to the steel for a prolonged time, could lead to corrosion.   

Conclusions 
Multivariate analysis of process and weather data obtained during a scale monitoring campaign indicated that the 
amount of emissions from the cells, cell temperature and/or gas temperature are important factors influencing 
scale formation. The fines contents in the alumina could also be an important factor. However, further studies are 
needed to validate these findings.  

The examined scale samples were found to consist of mainly α-Al2O3 particles of sizes between 0.2 μm to 1 μm. 
Sodium, fluorine and carbon were mostly found between the grains, while oxygen and aluminium were found 
both between the grains and in the α-Al2O3. Sulphur was only found on the α-Al2O3 grains. Fluorine was 
observed at some of the grains, and these grains were later identified as γ-Al2O3. 

A solid amount of work has been put into monitoring the HGS growth and studying its chemical composition. A 
significantly better understanding of the scale has been achieved, and although it has not been possible to 
conclude on any formation mechanism, sulphur, geopolymers and recrystallisation of alumina as has been ruled 
out as potential mechanisms. 
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