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ABSTRACT

Breast cancer is a leading cause of premature mortality among women in the

United States. Breast cancer screening tests can help with detecting breast cancer in

early stages and thereby reducing the breast cancer mortality risk. However, due to the

imperfect nature of screening tests, there is always some associated overdiagnosis, false

positives, and false negatives risks. Therefore, to improve breast cancer preventive

care, we defined the focus of this dissertation on modeling breast cancer screening

decisions.

Breast cancer overdiagnosis is the first issue that is addressed in this dissertation.

Although overdiagnosis is known to be the major risk inherent in mammography

screening; currently there is no way to distinguish between overdiagnosed cancers

and the ones that would cause problems over a patient’s lifetime. Overdiagnosis risk

significantly depends on a patient’s compliance with screening recommendations. In

Chapter 2, we use a stochastic framework to perform a harm-benefit analysis to compare

the overdiagnosis risk with the benefits that breast cancer screening provides. In

addition, we estimate the lifetime mortality risk of breast cancer while considering the

overdiagnosis risk and the uncertainty in a patient’s adherence behavior. Our results

show that, although overdiagnosis rate is relatively high in breast cancer screening,

the benefits of breast cancer mammography screening outweigh the overdiagnosis risk.
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The second issue that is addressed in this dissertation is false negative results

caused by density of breast tissue. Breast density is known to increase breast cancer

risk and decrease mammography screening sensitivity. Breast density notification laws,

require physicians to inform women with high breast density of these potential risks.

The laws usually require healthcare providers to notify patients of the possibility of

using more sensitive supplemental screening tests (e.g., ultrasound). Since the enact-

ment of the laws, there have been controversial debates over i) their implementations

due to the potential radiologists bias in breast density classification of mammogram

images and ii) the necessity of supplemental screenings for all patients with high breast

density. Breast density is a dynamic risk factor. Therefore, in the third chapter, we

apply a hidden Markov model (HMM) on a sparse unbalanced longitudinal data to

quantify the yearly progression of breast density based on Breast Imaging Reporting

and Data System (BI-RADs) classifications.

In Chapter 4, we use the results from previous chapter to investigate the

effectiveness of supplemental screening and the impact of radiologists’ bias on patients’

outcomes under the breast density notification law. We consider the conditional

probability of eventually detecting breast cancer in early states given that the patient

develops breast cancer in her lifetime and the expected number of supplemental tests

as patient’s outcome. Our results indicate that referring patients to a supplemental

test solely based on their breast density may not necessarily improve their health

outcomes and other risk factors need to be considered when making such referrals.

Additionally, average-skilled radiologists’ performances are shown to be comparable

with the performance of a perfect radiologist.
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CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer is the most common non-cutaneous cancer among women in the

U.S. [1]. It is currently estimated that a woman’s lifetime risk of developing breast

cancer is 1 in 8 [2]. In 2020, an estimated 276,480 new cases of invasive breast cancer,

and 48,530 new cases of non-invasive (in situ) breast cancer will be diagnosed in the

U.S. [1]. Moreover, breast cancer is one of the leading causes of death in women with a

lifetime mortality risk of 1 in 38 [1]. Based on the estimates from the American Cancer

Society (ACS), approximately 42,170 women will die as a result of breast cancer in

2020 [1]. Breast cancer screening tests, the most common of which is mammography,

can help with detecting breast cancer in early stages and thereby reducing the breast

cancer mortality risk by treating patients when they have a higher survival chance.

However, due to the imperfect nature of mammography screening, there is always

some associated overdiagnosis, false positives, and false negatives risks. Overdiagnosis

should not be confused with false-positive results. In a false-positive test result, the

disease is mistakenly believed to be present in the patient’s body based on the initial

test. A more accurate follow-up test (e.g., biopsy), however, falsifies the initial belief.

In overdiagnosis, however, the disease is truly present in the patient’s body, but it

1
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would not cause any harm if remained undetected. False negative rates are especially

higher in women with dense breasts due to the reduced sensitivity of mammography

caused by the masking effect of high density breast tissue. These risks and benefits

of screening tests are functions of each patient’s features such as patient’s adherence,

age, breast density, and family history. Thus, a screening policy which is tailored to

the different features of individuals are desirable.

1.2 Objectives

The fundamental purpose of decision modeling is to provide a methodology

for comparing a set of choices or strategies by calculating the expected value of a

specific outcome resulting from those strategies. One of the main application of

decision analysis is in preventive healthcare modeling which provides a mechanism

for evaluating different preventive strategies using multiple outcome criteria such

as life expectancy, quality of life, and costs. Thus, the purpose of this dissertation

is to evaluate the preventive healthcare decisions for breast cancer which includes

evaluating cancer screening policies in order to diagnosis the disease before its effect on

the patient’s life is irreversible. For this comparison, we consider different factors such

as patient’s adherence, age, breast density, family history, and risk of overdiagnosis.

1.3 Dissertation Organization

A detailed outline of this dissertation is presented below.

Chapter 2 addresses the problem of overdiagnosis in breast cancer screening.

Overdiagnosis risk significantly depends on a patient’s compliance with screening
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recommendations. Specifically, we use two partially observable Markov chains de-

veloped by Molani et al. [3] to perform a harm-benefit analysis in order to compare

the overdiagnosis risk with the benefits that breast cancer screening provides. In

this chapter, we also estimate some other criteria such as the expected number of

cancers detected and overdiagnosed, and the expected number of lives saved through

mammography screening. Additionally, we estimate the breast cancer lifetime mortality

risk and compare the results with the lifetime mortality risk reported by American

Cancer Society(ACS) for some in-practice policies.

In chapter 3, we review and apply some of the hidden Markov model parameter

approximation methods to estimate breast density transition probabilities using

mammography screening data from Louisiana Cancer Prevention and Control Programs

[4]. Breast density is defined as the prevalence of fibroglandular tissue in the breast

and is categorized into four categories. Higher breast density can significantly reduce

the mass detection rate since the normal tissues in dense breasts appear as bright

areas in mammography. Breast density is also associated with increased risk of breast

cancer [5]. In addition, due to the lower sensitivity of screening mammography in

women with dense breasts, the cancer is more likely to remain undetected. Breast

density is a dynamic risk factor and typically decreases as a patient becomes older.

Therefore, in this chapter, we use a frequentest method (Baum-Welch) to quantify

the dynamics of breast density. The results of this chapter will be used in the next

section of dissertation to evaluate breast cancer screening policies considering breast

density as an important breast cancer risk factor.
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Chapter 4 addresses the controversy over breast density notification law and

its potential unintended consequences as well as quality of its implementation. These

laws generally require physicians to inform women with high breast density of their

potential increased risk of breast cancer and the impact of high breast density on

the sensitivity of mammogram test. The laws usually require healthcare providers

to notify patients of the possibility of using more sensitive supplemental screening

tests such as magnetic resonance imaging (MRI) and ultrasound. In this study, we

formulate a finite-horizon, discrete time partially observable Markov chain (POMC)

to investigate the efficacy of supplemental screening and the impact of radiologist’s

behavior and expertise on patients’ outcomes. The patients’ outcome measures include

the conditional probability of eventually detecting breast cancer in early states given

that the patient develops breast cancer in her lifetime and the expected number of

supplemental tests.

Chapter 5 presents some concluding remarks of the research presented in this

dissertation, as well as future work for improving the models presented.



CHAPTER 2

HARM-BENEFIT ANALYSIS OF BREAST CANCER
SCREENING CONSIDERING OVERDIAGNOSIS RISK

AND PATIENT’S ADHERENCE

2.1 Introduction

Although mammography screening reduces breast cancer mortality risk, there

has been increasing concerns that it unintentionally leads to overdiagnosis by identifying

small, indolent, or regressive breast tumors that would not otherwise become clinically

apparent. Overdiagnosis occurs when breast cancer is detected during a routine screen-

ing mammogram, yet the cancer would never have presented clinically in the absence of

screening. Overdiagnosis results from the current inability of physicians to determine

if a patient diagnosed with breast cancer will or will not eventually develop any breast

cancer related complications or symptoms over the course of her lifetime. Therefore,

the standard treatment is administered to all patients whose cancer has been detected.

For the overdiagnosed patients, however, this treatment is unnecessary and results

in patients’ overtreatment. These patients go on to experience unnecessary medical

intervention, financial costs, and psychological stress due to being overdiagnosed. The

impact of overdiagnosis on patients’ well-being and physical health is life-long and

thus, overdiagnosis and its subsequent unnecessary treatment that comes along with

different risks are the most important potential harms of mammogram screening [6].

5
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Overdiagnosis should not be confused with false-positive results. In a false-

positive test result, the disease is mistakenly believed to be present in the patient’s

body based on the initial test. A more accurate follow-up test (e.g., biopsy), however,

falsifies the initial belief. In overdiagnosis, however, the disease is truly present in the

patient’s body, but it would not cause any harm if remained undetected.

Quantifying overdiagnosis risk is very challenging as overdiagnosis cannot be

observed directly. The main reason is the administration of treatment upon cancer

detection which makes it impossible to directly determine the risk. Therefore, there is

a wide variation on the estimation of the extent at which breast cancer overdiagnosis

occurs. Various clinical trials, each with different sets of assumptions, have been

applied to indirectly estimate the overdiagnosis risk. Dominant research methods that

have been used to measure overdiagnosis are cohort, and follow-up of randomized

controlled trials (RCTs) studies [7], which require a long follow-up of the patients for

accurate quantification of overdiagnosis. These studies, however, are prone to bias in

estimation of overdiagnosis due to the limitation in their designs and assumptions.

According to the independent UK panel on breast cancer screening [8], potential bias

(e.g., suboptimal randomization), uncertainty in the relevance of old trials to current

screening programs, and the unavailability of some key information in such trials are

some of the main reasons that make these estimations unreliable. Lee and Etzioni

[9] conclude that for generating reliable estimates for overdiagnosis, one needs to

recognize limitations which include the problems of unknown counter-factual incidence,

insufficient follow-up time, and trial design limitations.
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There are a limited number of studies that use mathematical/statistical

modeling for estimation of overdiagnosis. These studies use modeling frameworks for

estimation of overdiagnosis to overcome the limitations in RCTs and cohort studies.

These studies, however, are limited in their assumptions of patients’ compliance with

a screening policy. Adherence is an important, but often ignored, aspect of disease

screening. The World Health Organization (WHO) defines adherence behavior as

“the extent to which a person’s behavior (e.g., taking medication, following a diet,

executing lifestyle changes) corresponds with agreed recommendations from a health

care provider" [10]. Currently, the WHO estimates the adherence rate of patients to all

health care recommendations at roughly 50% in developed countries [10]. In terms of

mammography screening, adherence behavior refers to a patient’s level of compliance

with a screening policy, i.e. showing up to prescribed mammography tests. A study by

the Centers for Disease Control and Prevention (CDC) shows that in 2010, only 66.5%

of women had a mammogram within the past two years [11]. In another study by the

U.S. Preventive Services Task Force (USPSTF), approximately 66% of women aged 40

years and older have had a screening mammography within the past two years [12]. In

addition, based on the 2018 ACS statistics, 50% of U.S. women 40 years of age and older

reported having had a mammogram within the past year and 64% reported having had

a mammogram in the past two years [13]. Given the current screening guidelines in

the U.S. (i.e., annual or biennial mammogram screenings depending on the patient age

and breast cancer risk), the reported compliance rates are considered relatively low. As

undergoing a screening test is a necessary step in occurrence of overdiagnosis, screening

compliance rate should not be ignored in the quantification of overdiagnosis risk.
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Incorporating adherence behavior provides a more realistic estimation of overdiagnosis

and helps the decision makers to better evaluate and compare screening policies.

Besides overdiagnosis and its subsequent unnecessary treatment, false positives,

unnecessary biopsies, and radiation exposure are other risks associated with screening

mammography. These potential risks have led to much debate regarding mammography

screening recommendations. On the other hand, the impact of mammogram in

detecting cancer in its early stages and subsequently increasing survival rates makes

the judgment about the necessity and frequency of mammogram screening challenging.

There are multiple health agencies in the U.S. including the American Cancer Society

(ACS), the United States Preventive Services Task Force (USPSTF), and the American

College of Radiology (ACR), which recommend different breast cancer screening

guidelines. Currently, there is not even an established consensus regarding the starting

age, the stopping age, or the interval between two consecutive mammography screenings

due to the uncertainty regarding the balance in benefits and harms associated with

mammography screening.

In this chapter, we use a stochastic modeling framework developed by Molani

et al. [3] to perform a harm-benefit analysis for overdiagnosis risk and estimate the

ratio of detected cancers that are overdiagnosed, the ratio of lives saved per each

overdiagnosed case, and other measures of interest for several screening policies.

Molani et al. [3] quantified the overdiagnosis risk associated with different breast

cancer screening policies while incorporating the uncertainty in women’s adherence

behaviors. Often, calculation of overdiagnosis is based on the excess incidence (EI) in a
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screened population compared to an unscreened reference population during the screen-

ing period. Overdiagnosis is usually reported as the proportion of screen-detected can-

cers which do not cause harm if left undetected. In this study, they introduced different

measures of overdiagnosis risk. In addition to the previously commonly used measure,

i.e., the ratio of number of overdiagnosed cases to the number of screen-detected

cancers, they estimated the lifetime overdiagnosis risk. The lifetime overdiagnosis risk

measures the risk of overdiagnosis imposed on patients if they follow a screening policy

over their lifetime. Additionally, they estimated breast cancer stage-specific and age-

specific risk of overdiagnosis, that gives the conditional risk of overdiagnosis given that

a patient is diagnosed at a specific age and/or a specific cancer stage. Unlike cohort and

RCT studies which are prone to different biases (as discussed above) and are limited

to assess the overdiagnosis risk for only one policy that is applied to the screened arm,

the proposed framework can assess different overdiagnosis risks for any given policy.

In addition, the proposed model takes into consideration the uncertainty in patients’

compliance to provide a realistic estimation of the risk. In this study, two partially

observable Markov chain models are developed to estimate overdiagnosis measures

of interest. The first partially observable Markov chain model represents women’s

adherence behaviors, and the second one represents natural history of breast cancer.

The remainder of this chapter is as follows. In Section 2.2, we present our

proposed model for estimation of breast cancer mortality risk and a harm-benefit

analysis framework. Section 2.3 presents the parameter estimations, and the design

of our numerical studies. In Section 2.4, we present the results. We summarize and

conclude in Section 4.6.



10

2.2 Model Formulation

In this section, we review the partially observable Markov chains developed

by Molani et al. [3] to model patients’ adherence behaviors and breast cancer natural

history. The modeling of adherence behavior, which is detailed in Section 2.2.1,

provides a framework to calculate age-specific probabilities of patients’ compliance

with a prescribed mammogram screening. Using the adherence model and the breast

cancer natural history model, we formulate a framework to estimate the breast cancer

mortality risk considering overdiagnosis and a harm-benefit framework to analyze the

harm-benefit trade-off under different breast cancer screening policies.

2.2.1 Adherence Behavior

To model the uncertainty in adherence behavior, patients are classified into

two distinct groups based on the CISNET definition: regular screeners and irregular

screeners. A regular screener is a patient whose mean time between two consecutive

screenings is less than or equal to 2 years. An irregular screener is a patient whose

mean time between two consecutive screenings is greater than 2 years. However, a

patient’s classification is not static as adherence behavior can change over time. It has

been shown that a patient’s age, past screening behavior, education level, income level,

and perceived risk are all influential factors in mammography screening adherence

[14]. Therefore, a patient’s adherence behavior is subject to change as these influential

factors change.

A discrete-time partially observable Markov chain was developed to model

a patient’s adherence behavior. Figure 2.1 shows the state transition diagram of
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the proposed Markov chain modeling a patient’s adherence behavior. A partially

observable model is used due to the uncertainty in characterizing a patient’s compliance

with a screening recommendation. From this model, we can determine the probability

that a patient complies with a policy prescribed screening at any age. The probability

of compliance with a policy’s prescribed mammography is then used in Section 2.2.2 to

calculate adherence-adjusted overdiagnosis risks. The following is the list of notations

used in the model.

 Regular Irregular 

Figure 2.1: State transition diagram of the underlying adherence behavior Markov
model

• t: Time period, t = 0, 1, · · · , T . We model a patient’s adherence behavior

starting at age 40 (t = 0). We account for possible behavioral changes every six

months, and the modeling ends at age 100 (t = T = 120).

• sb: Core adherence behavior state, sb ∈ Sb = {R, I}. The two adherence core

states correspond to the two types of screeners: regular (R) and irregular (I).

The states are partially observable as the decision maker does not have full

information about a patient’s adherence behavior.

• Tt(s′b|sb): Core adherence behavior state transition probabilities, that is, the

probability of a patient being in state s′b at time t+ 1 given that she was in state

sb at time t.
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• at: Prescribed action at time t, at ∈ A = {M,W}, where M and W represent

action mammogram and wait, respectively.

• Oat : Observation space, which includes observations seen upon taking action

at at time t. If at = M , the observation at time t is ot ∈ OM = {c, c̄}, where

c represents compliance with the prescribed mammography, and c̄ represents

failure to comply. If at = W , then no observation will be received and OW = ∅.

• Qt(ot|at, sb): Observation probabilities, which represent the probability of

receiving observation ot given that the patient is in state sb and action at

is taken at time t.

• ht: Screening attendance history up to time t, ht = (a1, o1, a2, o2, . . . , at−1, ot−1) ∈

Ht, where Ht is the set of all possible screening attendance sample paths.

• κht : History dependent adherence behavior belief state, κht = [ κht(R), κht(I)] ,

where κht(R) and κht(I) represent the probability of being in core adherence state

R and I, respectively, given the patient history of compliance to recommended

screenings is ht.

• βt: Expected adherence behavior belief state at time t, βt = [ βt(R), βt(I)],

where βt(R) and βt(I) represent the probability of being in core adherence state

R and I, respectively.

A patient’s adherence behavior belief is updated based on the observations re-

ceived at the time epochs where the prescribed action is to undergo a mammogram and

a patient screening history. If the screening policy does not prescribe a mammogram,
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the adherence behavior belief state is updated based on the core adherence state tran-

sition probabilities to account for adherence behavior dynamics. Given the adherence

behavior belief state distribution associated with sample path ht at time t is κht , Equa-

tion (2.1) calculates the updated adherence behavior belief state when the prescribed

action is at and observation ot is received. More specifically, κht+1(s′b|κht , at, ot) gives

the probability that the patient is in adherence state s′b at time t+1, given her adherence

belief up to time t is κht , action at is taken and observation ot is received at time t.

κht+1(s′b|κht , at, ot) =



∑
sb=R,I

κht (sb)·Qt(ot|M,sb)·Tt(s′b|sb)∑
sb=R,I

κht (sb)·Qt(ot|M,sb)
, at = M, ot ∈ OM ,

∑
sb=R,I

κht(sb) · Tt(s′b|sb) , at = W.

(2.1)

The first line in Equation (2.1) represents the case when the recommended

action is a mammogram test. In such case, we use Bayes rule to update the belief about

the patient being a regular or irregular screener based on the received observation ot

at time t. The second line in Equation (2.1) represents the case when the prescribed

action is to wait, in which case the dynamics of adherence behavior is used to update

the adherence behavior belief states.

Let P (ht) denote the probability associated with the screening attendance

sample path ht. The probability of sample path ht can be calculated recursively as

follows:

P (ht) = P (ht−1) ·Qt(ot|at), (2.2)
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where P (h0) = 1 since there is no uncertainty associated with a sample path when no

action is taken, yet. In addition, Qt(ot|at) = ∑
sb=R,I κht(sb) ·Qt(ot|at, sb).

The expected adherence behavior belief state (the average over all possible

screening attendance sample paths) at time t and the probability that a patient

complies with a policy prescribed screening at time t can be calculated according to

Equations (2.3) and (2.4), respectively.

βt =
∑
ht∈Ht

κht · P (ht), (2.3)

Ct =
∑

sb=R,I
Qt(c|at, sb) · βt(sb), (2.4)

where βt is calculated by taking into consideration all possible screening attendance

sample paths up to time t, and Ct is calculated based on the prescribed action at time

t using the total probability rule.

2.2.2 Overdiagnosis Risk Estimation

A discrete-time partially observable Markov chain model was developed to

characterize the natural history of breast cancer. A partially observable model is

developed because mammography screening is imperfect and provides only partial

information about the core health state of a patient. In this model, three breast

cancer health states are included: early stage, advanced stage, and symptomatic breast

cancer. This Markov model was proposed by Maillart et al. [15], which is based on

the American Joint Committee on Cancer (AJCC) classification, with some minor

changes to develop our POMC model. We consider early stage breast cancer to be

the grouping of stage 0, stage I, and stage II without lymph node involvement. We
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consolidate stage II with lymph node involvement, stage III, and stage IV breast

cancer into the single health state of advanced breast cancer. Further, we assume

that the manifestation of symptoms is only possible from the advanced stage of the

disease. Based on this model, cancers take at least one year from their onset to grow

to a symptomatic size (given the time interval between two epochs is six months).

This is in line with previous studies and reports since even the cancer with the highest

progression rates cannot grow from a cell to a symptomatic size in six months [16].

 

Healthy 

(1) 

Early Breast 

Cancer  

(2) 

Advanced 

Breast Cancer  

(3) 

Symptomatic 

Breast Cancer  

(4) 

Death from 

Other Causes 

(6) 

Death from 

Breast Cancer 

(5) 

Figure 2.2: State transition of the underlying health Markov model representing the
natural history of breast cancer

The following is the list of the notations used in this section. Note that notation

t and at are defined previously in Section 2.2.1 and will be used here.

• sh: Core health state, sh ∈ Sh = {1, 2, · · · , 6}, where the state space Sh is

composed of six states: healthy (1), early breast cancer (2), advanced breast

cancer (3), symptomatic breast cancer (4), death from breast cancer (5), and

death from other causes (6). Due to the imperfect nature of mammography
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screening, states 1, 2, and 3 are partially observable. All other states are fully

observable.

• Pt(s′h|sh): Core health state transition probability, which represents the proba-

bility that a patient is in state s′h at time t+ 1 given she was in state sh at time

t.

• Θat : Observation space when the prescribed action is at. At each time period, an

action dependent observation will be received. If at = M , then the observation

at time t will be θt ∈ ΘM = {M+,M−}, where M+ and M− represent positive

and negative mammogram result, respectively. If at = W , then no observation

will be received, and ΘW = ∅.

• Kt(θt|at, sh): Observation probabilities which represent the probability of re-

ceiving observation θt given action at is taken, and the patient is in state sh at

time t. Note that Kt(M+|M, sh) is the sensitivity of mammography screening

for early stage (sh = 2) and advanced stage (sh = 3) breast cancer at time t.

Further, Kt(M−|M, sh = 1) is the specificity of mammography test at time t.

• χt: History of screening results up to time t, χt = (a1, θ1, . . . , at−1, θt−1) ∈ Xt,

where Xt is the set of all possible screening results’ sample paths.

• ηχt : History dependent health belief state, which represents the probability

distribution of a patient being in the partially observable core health states given

the screening results history χt, i.e., ηχt = [ηχt(1), ηχt(2), ηχt(3)] . Note that

ηχt(sh) represents the probability of being in health state sh given the screening

results history χt.
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• πt: Expected health belief state, πt = [πt(1), πt(2), πt(3)] , where πt(sh) represents

the probability of being in the core health state sh at time t.

At each time epoch t, one of the two possible actions of screening mammogram

or wait is prescribed by a policy. When the prescribed action is a mammogram,

patients may follow the prescribed mammogram or skip it (i.e., wait). We assume

actions are taken at the beginning of each period. Regardless of the action taken, we

account for possible incidence and progression of breast cancer. If a patient undergoes

a mammogram and receives a positive result, we assume a biopsy will be performed

to confirm the presence of cancer. Upon cancer detection, the patient will not receive

screening any longer. We assume no treatment is administered upon cancer detection

to estimate overdiagnosis. However, we follow up the patient up to time T to determine

if the patient dies from breast cancer or other causes to calculate the overdiagnosis risk.

The health belief state of a patient at each time epoch t is updated based on

the action taken and the observation received. Let τ [ηχt , at, θt] denote the updated

health belief state for sample path χt+1 given that at time t the health belief state

is ηχt , action at is taken and observation θt is received. We have

ηχt+1(s′h) = τ [ηχt , at, θt](s′h) =

1
Lt

3∑
sh=1

ηχt (sh)·Kt(M−|M,sh)·Pt(s′h|sh)

3∑
sh=1

ηχt (sh)·Kt(M−|M,sh)
, at = M, θt = M− ,

1
Lt
Pt(s′h|sh = 1), at = M, θt = M+, sh = 1,

1
Lt

3∑
sh=1

ηχt(sh) · Pt(s′h|sh) , at = W,

(2.5)
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where Lt is a normalizing factor and represents the probability that the patient survives

time t. The first line in Equation (2.5) represents the case when the patient undergoes

a prescribed mammogram and receives a negative result. In such case, we use Bayes

rule to update the patient’s health belief state based on the received result. The

second case represents the situations in which the patient receives a false positive

mammogram result (that is, the patient receives a negative biopsy after receiving a

positive mammogram result). In this case, the patient’s belief state is updated by

considering possible cancer development from the cancer-free state at time t (i.e.,

sh = 1 at time t). When the prescribed action is to wait, we use the dynamics of

breast cancer natural history to update our belief about the patient’s health status.

This is represented in the third case of Equation (2.5).

Similar to the adherence behavior model, the probability of each sample path

can be calculated as P (χt+1) = P (χt) ·K(θt|at), where K(θt|at) = ∑3
sh=1Kt(θt|at, sh) ·

ηχt(sh). Therefore, the expected health belief state can be calculated as follows.

πt =
∑
χt∈Xt

ηχt · P (χt). (2.6)

For an overdiagnosis to happen, a cancer needs to be detected first. This

requires that (i) the patient is in one of the cancer states, (ii) the patient shows

up to a prescribed mammogram screening, and (iii) the screening mammography

detects the cancer. The probabilities of events (i) and (iii) depend on the patient’s

cancer stage. The probability of event (ii), however, is independent of the cancer

stage as the patient has no information about the presence of cancer in her body and

decides independently about attending a prescribed screening. Let Dt(sh, at) denote
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the probability of detecting a cancer in state sh, (sh = 2, 3) at time t when action at

is taken. Equation (2.7) calculates this probability.

Dt(sh, at) =


πt(sh) · Ct ·Kt(M+|M, sh), at = M,

0, at = W.

(2.7)

Moreover, let ωt(sh) denote the conditional probability that a patient with a

breast cancer in state sh (sh = 2, 3) at time t eventually dies from other causes without

developing symptomatic breast cancer. Equation (2.8) calculates this probability for

early stage breast cancer and comes from the following logic. Given that the patient

has early breast cancer at time t, she can die from other causes in time period t, or

she can survive time t and eventually die from other causes. Note that if the patient

survives time t, she either stays in early breast cancer or progresses to advanced breast

cancer at time t+ 1.

ωt(2) = Pt(6|2) +
∑

sh=2,3
Pt(sh|2) · ωt+1(sh). (2.8)

Following the same logic, Equation (2.9) calculates the probability that a

patient who is in advanced breast cancer at time t eventually dies from other causes

without developing symptomatic breast cancer.

ωt(3) = Pt(6|3) + Pt(3|3) · ωt+1(3). (2.9)

At the final age, we assume a patient eventually dies from other causes with

certainty due to age-related diseases and co-morbidities. Therefore, ωT (2) = ωT (3) = 1.

Note that we assume T = 120, which represents the age of 100.
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Next, we estimate age-specific and stage-specific overdiagnosis risk, Ωt(sh),

which calculates the probability of overdiagnosis if a patient is diagnosed with breast

cancer in stage sh at time t. This includes the probability of both detecting breast

cancer at time t and the probability of eventually dying from other causes before

developing symptomatic breast cancer; that is

Ωt(sh) = Dt(sh, at) · ωt(sh). (2.10)

To compute age-specific overdiagnosis risk, we note that detection of early

breast cancer and detection of advanced breast cancer are mutually exclusive events.

Thus the probability that a patient, who is diagnosed with breast cancer at time t is

overdiagnosed can be calculated as follows:

Ωt =
3∑

sh=2
Ωt(sh) . (2.11)

Over her lifetime, a patient’s breast cancer can be diagnosed at any age.

However, screening stops once breast cancer has been detected. Therefore, a patient

cannot be diagnosed at two distinct ages. Hence, the lifetime overdiagnosis risk of a

screening policy can be obtained as follows:

Ω =
T∑
t=0

Ωt. (2.12)

2.2.3 Harm-Benefit Analysis

A harm-benefit analysis framework is presented to quantify the harms’ and ben-

efits’ trade-off for different screening policies. More specifically, we investigate the asso-

ciated harms and benefits of applying a screening policy to the U.S. female population
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and measure the expected number of cancers detected and overdiagnosed, as well as the

expected number of lives saved through mammography screening. Let nαt denote the

U.S. female population size at age αt, αt = 40, 40.5, . . . , 100. Note that patient age and

time period t are related through αt = 0.5t+40, (t = 0, . . . , 120). The expected number

of screen-detected cancers and the expected number of detected cancers that lead to

overdiagnosis are calculated as ∑120
t=0 nαt ·

∑
sh=2,3Dt(sh, at) and ∑120

t=0 nαt · Ωt, respec-

tively. The expected number of screen-detected cases who survive breast cancer is cal-

culated as ∑120
t=0 nαt ·SRαt , where SRαt is the probability of detecting a cancer through

screening at age αt that will be cured with treatment and is calculated as follows:

SRαt =
∑

sh=2,3
Dt(sh,M) · γαt(sh), (2.13)

where γαt(sh) is the probability that a patient diagnosed with cancer stage sh at age αt

survives breast cancer and eventually dies of a competing cause given that treatment

is administered upon cancer detection.

2.2.4 Lifetime Breast Cancer Mortality Risk

In this section, we present a framework to estimate the breast cancer lifetime

mortality risk derived from the proposed model. Let ψat (ηχt) denote the probability

that a patient with a screening history χt and expected health belief state ηχt eventually

dies from breast cancer when action at is taken at time t. If the recommended action

at time t is to wait (W ), the patient risk of eventually dying from breast cancer is

calculated as follows:

ψWt (ηχt) = ηχt(3)·Pt(4|3)·rt+1(4)+
[
1−

3∑
sh=1

ηχt(sh)·Pt(6|sh)
]
·ψat+1(τ [ηχt ,W, .]), (2.14)
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where rt+1(4) is the probability that a patient diagnosed with symptomatic cancer

(sh = 4) at time t+ 1 eventually dies of breast cancer. The logic of Equation (2.14)

is as follows. If the patient is in advanced cancer state at time t, she may proceed to

symptomatic cancer within period t with probability Pt(4|3) and eventually die from

breast cancer with probability rt+1(4), or she may survive to the next period in which

case her belief state for time t+ 1 is updated and her probability of eventually dying

from breast cancer is calculated recursively. The updated expected health belief state,

ηχt+1 , can be calculated based on the third case in Equation (2.5).

If the prescribed action at time t is a mammogram screening, the probability

that the patient eventually dies of breast cancer is

ψMt (ηχt) = ηχt(1) ·K(M+|M, sh = 1) · (1− Pt(6|1)) · ψat+1(τ [ηχt ,M,M+])

+
∑

sh=2,3
ηχt(sh) ·K(M+|M, sh) · rt(sh)

+ ηχt(3) ·K(M−|M, sh = 3) · Pt(4|3) · rt+1(4)

+
[ ∑
sh=1,2

ηχt(sh) ·K(M−|M, sh) · (1− Pt(6|sh))

+ ηχt(3) ·K(M−|M, sh = 3) · Pt(3|3)
]
· ψat+1(τ [ηχt ,M,M−]). (2.15)

The logic of Equation (2.15) is as follows. Assume that the mammography

result is positive. Two cases are possible: (i) The true health state of the patient

is cancer-free (sh = 1), in which case the follow-up biopsy reveals that the initial

mammogram positive result was inaccurate. In this case, the patient survives period t

with probability (1− Pt(6|1)), her health belief is updated using the second case in

Equation (2.5), and her risk of dying from breast cancer in the future is calculated
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recursively. (ii) The patient is in one of the cancer states, in which case the patient

starts treatment upon receiving a positive result, and her risk of eventually dying

from breast cancer would be rt(sh) depending on the cancer status (sh = 2, 3). Note

that we do not model the treatment explicitly. We assume that the patient leaves

the model when cancer is detected. If the mammogram screening result is negative,

two cases are possible: (i) the patient develops some symptoms when in advanced

breast cancer state (sh = 3), in which case she proceeds to treatment and her risk of

eventually dying from breast cancer would be rt+1(4). (ii) She survives time epoch t

with probability (1− Pt(6|sh)) when in states sh = 1, 2 and with probability Pt(3|3)

when in advanced breast cancer (sh = 3). In such case, the patient health belief is

updated based on Equation (2.5), and her mortality risk is calculated recursively to

account for the future risk of dying from breast cancer.

2.3 Numerical Analysis

2.3.1 Model Input

The data sources that are used in the model parameters’ estimation are listed

in Table 2.1. Estimation of the core health state transition probabilities is the most

challenging due to the lack of a single data source that includes all the age-specific

dynamics of untreated, unscreened natural history of breast cancer. We, therefore,

use several sources to estimate the breast cancer dynamics parameters [15, 17, 18].

Our primary source for the core health transition probabilities estimations is Maillart

et al. [15]. However, since the breast cancer natural history model presented here is

more detailed and includes symptomatic cancer, we use some additional sources for
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parameters’ estimation. The age-specific non-breast cancer induced death probabilities,

that is Pt(6|sh) for sh ∈ Sh \ {5, 6}, are calculated based on the 2010 report on

annual mortality rate from all causes of death by the CDC [19]. We use the same

approach proposed by Maillart et al. [15] to estimate these probabilities. The transition

probabilities for the healthy state, Pt(sh|1) for sh = 1, 2, are also adopted from Maillart

et al. [15]. The probability that an untreated early breast cancer remains in the early

breast cancer state in six months is calculated based on a study by Wu et al. [17], which

reports the likelihood that untreated pre-clinical local breast cancer (PL) remains

pre-clinical local breast cancer over the course of one year, i.e.,
√
PL = Pt(2|2). The

probability of progression of untreated breast cancer from early stage to advanced stage,

Pt(3|2), is obtained using the normalizing condition, i.e., Pt(3|2) = 1−Pt(2|2)−Pt(6|2).

The six-month transition probability from advanced breast cancer to symptomatic

breast cancer, Pt(4|3), is obtained from Bloom et al. [18]. Similarly, the survival

probability of symptomatic breast cancer in six months is estimated based on the

five-year survival probabilities from the onset of symptoms (SF) reported by Bloom

et al. [18], i.e., 10
√
SF = Pt(4|4). Although outdated, the Bloom et al. [18] study is

a unique source for late stage breast cancer progression modeling. The probability

that an untreated advanced breast cancer remains in advanced breast cancer in six

months, Pt(3|3), and the probability of dying from breast cancer in six month when

in symptomatic breast cancer state, Pt(5|4), are calculated based on normalizing

conditions, i.e., Pt(3|3) = 1− Pt(4|3)− Pt(6|3), and Pt(5|4) = 1− Pt(4|4)− Pt(6|4),

respectively.
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Table 2.1 Input data sources for parameters estimation

Model Parameter Parameter Values Source
Adherence state transition probabilities Table A.1 National Health Interview Survey [20]
Adherence rates Table A.2 HINTS [21], and Madadi et al. [22]
Initial adherence belief Table A.3 National Health Interview Survey [20]
Health state transition probabilities Table A.4 Maillart et al. [15], Wu et al. [17], and Bloom et al. [18]
Mammography sensitivity Table A.5 Maillart et al. [15]
Mammography specificity 0.89300 Ayer et al. [23]
Initial health belief Table A.6 Gail risk model [24]
Survival rate for screen-detected breast cancer by state Table A.7 Maillart et al. [15]
Survival rate for symptomatic breast cancer 0.84427 Allgood et al. [25]
U.S. age composition Table A.8 U.S. Census Bureau [26]
Breast cancer treatment costs Table A.9 Mariotto et al. [27], and Ong and Mandl [28]

The transition probabilities of the adherence behavior model, Tt(s′b|sb), are

estimated using the CDC 2015 National Health Interview Survey (NHIS) data. NHIS

dataset includes mammogram participation report of 10, 245 cases over six years.

Adherence to mammography recommendations is shown to be correlated with age

[29, 30]. To calculate the age-specific estimates of adherence transition probabilities,

the survey participants are first filtered by age into one of three age groups: [40− 50),

[50−65), or 65+. These age groups are adopted from previous studies [29, 30]. We use

the first four years of NHIS data to classify survey participants as regular or irregular

screeners based on the screening mammography history. Our analysis shows that

52%, 69%, and 63% of cases in age groups [40− 50), [50− 65), and 65+ are regular

screeners, respectively. We then calculate the proportion of subjects who maintain

their classification (stay a regular (irregular) screener if first identified as a regular

(irregular) screener) based on the remaining data from the last two years. Let FR

and FI denote the proportion of patients who maintained their classifications as a

regular screener and irregular screener in the last two years, respectively. FR and FI

can be interpreted as the two-year transition probabilities from regular to regular

and irregular to irregular screener, respectively. To estimate the six-month transition



26

probabilities, we account for all possible sample paths a patient can take. Equations

(2.16) and (2.17) represent all possible six-month transitions sample paths and their

relations to FR and FI . Using Equations (2.16) and (2.17) along with the normalizing

conditions T (R|R) + T (I|R) = 1, and T (R|I) + T (I|I) = 1, we can calculate all the

four transition probabilities. Note that we assume that patients in each age group

have similar adherence behavior dynamics. Therefore, we drop the time subscripts for

the transition probabilities for the sake of notational simplicity.

FR = T (R|R)4 + 3 · T (R|R)2 · T (I|R) · T (R|I)

+ 2 · T (R|R) · T (I|I) · T (I|R) · T (R|I)

+ T (I|I)2 · T (I|R) · T (R|I) + T (I|R)2 · T (R|I)2.

(2.16)

FI = T (I|I)4 + 3 · T (I|I)2 · T (R|I) · T (I|R)

+ 2 · T (I|I) · T (R|R) · T (R|I) · T (I|R)

+ T (R|R)2 · T (R|I) · T (I|R) + T (R|I)2 · T (I|R)2.

(2.17)

We estimate FR for the age groups [40-50), [50,65), and 65+ as 0.9361, 0.9169,

and 0.9121, respectively. In addition, we estimate FI for these age groups to be

0.4340, 0.6063, and 0.7644, respectively. The age-specific observation probabilities

for the breast cancer model, Kt(θt|at, sh), are calculated based on the mammography

test sensitivity and specificity reported in previous studies [15, 23]. The age-specific

observation probabilities for the adherence behavior model, Qt(ot|at, sb), are adopted

from Madadi et al. [29]. Initial health belief state (risks of early and invasive cancers)

for women aged 40 are estimated using the Gail model [24]. For women at an older
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age, we use Bayesian updating to estimate the health belief state. Initial adherence

belief state at age 40 is estimated using the NHIS data [20]. For the harm-benefit

analysis, we use the U.S. Census Bureau population composition data to calculate

the expected number of cancers detected and the expected number of overdiagnosis

for each age group if screening policies applied to the U.S. female population. The

associated breast cancer treatment costs are also adopted from the literature [27, 28]

to estimate the extent of overdiagnosis and unnecessary overtreatment costs.

2.3.2 Experimental Design

In our numerical studies, we consider 203 distinct screening policies, including

the in-practice policies in the United States as well as some alternative policies with

different starting age, stopping age, and screening intervals. The in-practice policies

include those recommended by the ACS, USPSTF, and ACR. Based on the ACS

guideline, women are recommended to undergo annual screening between the ages

of 45 and 55. After age 55 it is up to the patient to continue the annual screening

or switch to biennial screening. The ACR guideline recommends women undergo

annual mammography screening starting at age 40. The ACS and ACR guidelines do

not specify a stopping age and recommend women undergo mammography screening

as long as they are in good health. Therefore, in this study, we consider different

stopping ages ranging from 70 to 100 with 5-year increments for the ACS and ACR

policies. The USPSTF recommends biennial screening for women aged 50 to 74.

We consider two types of policies in our numerical analysis: static and dynamic

policies. A static policy has a fixed screening interval over the patients’ lifetime and
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is represented as (ab, i1, ae), where ab, i1, and ae are screening starting age, screening

interval length, and screening stopping age, respectively. For example, the USPSTF

policy, which is a static policy, is represented as (50,2,74). In a dynamic policy,

however, the screening interval length changes over the patient’s lifetime to account

for change in the dynamics of breast cancer. A dynamic policy is represented as

(ab, i1, as, i2, ae), where as, i1, and i2 are the switching age, first and second screening

interval length, respectively, and ab and ae are similar to that of the static policies. For

example, (45,1,55,2,70) is a version of the ACS guideline, which recommends annual

screening between the ages of 45 and 55 and biennial screening between ages of 55

and 70. Table 2.2 shows different screening parameters considered in this study.

Table 2.2 Screening policies considered in the numerical analysis

Policy Start age 1st interval Switching age 2nd interval Stopping age
Static 40-60 1,2 - - 70-100 (5 year increments)
Dynamic 40-60 1,2 45-65 1,2 70-100

2.4 Results

In this section, we present the harm-benefit analysis results and lifetime breast

cancer mortality risk for in-practice and some alternative policies.

2.4.1 Harm-Benefit Analysis Results

In this section, the results of the harm-benefit analysis are presented for some

in-practice policies. Specifically, we analyze the harms and benefits associated with

different variations of the ACS, ACR and USPSTF policies. We consider the cohort of

U.S. women aged 40 to 100 and assume that women are screened under each policy. The

expected number of cancers detected, the expected number of overdiagnosed cases, the
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expected number of screen-detected patients who survive breast cancer, and the ratio

of the number of lives saved per each overdiagnosed case are calculated for each policy.

We also analyze the results in terms of the associated unnecessary costs that could be

avoided if patients were identified to be overdiagnosed. The overtreatment cost consid-

ered here includes the initial treatment costs spent in the first year of treatment upon

cancer detection. We compare the estimated overtreatment costs with the reported U.S.

annual breast cancer care cost. The proportion of annual breast cancer care cost spent

on overtreatment is reported for each policy. The annual cost of breast cancer care in

2010 was estimated to be $16.50 billion [28]. Note that although we report the results for

one year of screening, we assume patients undergo each policy over their entire lifetime;

that is the overdiagnosis and survival rates are calculated over the patients’ lifetimes.

Tables 2.3 and 2.4 present the harm-benefit analysis results for the adherence-

adjusted and perfect adherence case, respectively. Based on the results, about 10%

to 22% of screen-detected cancers for both imperfect and perfect adherence cases are

overdiagnosed which is in-line with the ratios reported by [28]. For both adherence-

adjusted and perfect adherence case, the ratio of overdiagnosed cancers to screen-

detected cancers increases as the screening policy becomes more invasive at older ages,

with the ACS policy with changing screening intervals and stopping age of 70 having

the lowest and the ACR policy with stopping age of 100 having the highest rate of

overdiagnosed cancers to screen-detected cases. In addition, the variation of the ACS

and ACR policies with stopping age of 70 have the highest numbers of lives saved per

overdiagnosed cases. In general, the results support the implementation of screening

for breast cancer preventive care since the expected numbers of lives saved are larger
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than the number of overdiagnosed cases for all the policies considered here. The results

also show that the benefits of screening decrease significantly as the patients become

older. Therefore, organized screening programs are more effective when applied to

women younger than 70 since this group of women has a higher life expectancy and

thus lower risk of being overdiagnosed. The ratios of total annual cost disbursed on

overtreatment are estimated for both annual estimated cost of $16.50 billion reported

in the literature [28] and the expected annual breast cancer care calculated by the

model, which includes both screening and treatment costs. In terms of the associated

overtreatment costs, the ACS and ACR policies with stopping age of 70 and 100 have

the lowest and the highest ratios of overtreatment cost to the total breast cancer care

costs, respectively, which supports stopping screening at the age of 70.

Moreover, comparing the results for the perfect adherence and adherence-

adjusted case shows an increase in the expected number of screen-detected breast

cancers and consequently an increase in the expected number of overdiagnosed cases

when assuming perfect adherence. However, for policies with lower stopping age (70

and 74), this increase in the expected number of screen-detected breast cancers mostly

contributes to the number of cases that are not overdiagnosed. Thus, for these policies

when assuming perfect adherence, we have a lower ratio of overdiagnosed cases to

the expected number of detected cancers as well as a higher ratio of lives saved per

overdiagnosed cases, which imply encouraging women to comply with the prescribed

screening policies at younger ages. However, when the policy recommends stopping

screening at an older age, perfect adherence case yields higher ratios of overdiagnosed

cases to screen-detected cases as well as lower expected numbers of lives saved per
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overdiagnosis when compared to the adherence-adjusted case. This happens as the

probability of overdiagnosis in older women is higher. This implies the negative

effects of intense mammography screening at older ages. Moreover, the increase in the

expected number of overdiagnosed cases causes an increase in the overall overtreatment

costs in the perfect adherence case compared to the adherence-adjusted case.
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2.4.2 Lifetime Breast Cancer Mortality Risk Results

Due to the wide variation in the overdiagnosis risk estimations in the literature,

we choose to use a different measure of interest, rather than overdiagnosis, to validate

our model and make sure that the proposed model represents the breast cancer natural

history in the U.S. female population. To do so, we estimate the breast cancer lifetime

mortality risk derived from the proposed model and compare the results with the

lifetime mortality risk reported by ACS for some in-practice policies. We also compare

our results with the estimates provided by two other studies in the literature [15, 22].

The ACS reports a lifetime mortality risk of 1 in 39 (2.57%) [31], which

is calculated based on the mortality data adopted from the U.S. National Cancer

Institute’s Surveillance Epidemiology and End Results (SEER) database from 2010

through 2012. We estimate the lifetime mortality risks for ACR and different variations

of the ACS policies. Table 2.5 shows the results. Note that the screening policy

recommended by the ACS prior to 2015 was similar to the ACR policy (that is,

annual screening starting at age 40). Our estimated lifetime breast cancer mortality

risk for this policy is 3.23%, which is comparable to the ACS report. The 0.54%

difference with the ACS report can be attributed to the fact that our model does not

include other forms of cancer detection such as clinical breast exam (CBE) and breast

self-examination (BSE). Please note that incorporation of CBE and BSE does not

affect the mammography-induced overdiagnosis risk estimation, which is the focus of

this study. This estimate is also comparable with 3.57% estimate reported by Maillart

et al. [15], and 2.56% reported by Madadi et al. [22].
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Table 2.5 Lifetime breast cancer mortality risk for some in-practice policies

Policy Lifetime breast cancer mortality risk
ACR: (40,1,100) 0.0323
ACS: (45,1,80) 0.0359
ACS: (45,1,90) 0.0349
ACS: (45,1,100) 0.0342
ACS: (45,1,55,2,80) 0.0417
ACS: (45,1,55,2,90) 0.0413
ACS: (45,1,55,2,100) 0.0407

2.5 Conclusion

In this study, we estimate different measures of overdiagnosis risk of mammogra-

phy screening while incorporating uncertainty in patients’ adherence behaviors. Given

the low rate of compliance with in-practice mammography screening recommendation,

adherence behavior is a necessary factor to include. The measures of overdiagnosis risk

investigated in this study include the common measure of estimation previously

reported in other studies; that is, the proportion of detected cancers that are

overdiagnosed in a screened population, mortality risk considering overdiagnosis,

and overtreatment costs.

We analyze the harm-benefit trade-off of some in-practice policies by measuring

the number of lives that are saved per each overdiagnosed case. We also estimate

the associated proportion of overtreatment cost to breast cancer care cost for each

policy. Our results suggest that policies with stopping age of 70 have higher numbers

of lives saved per overdiagnosed cases. In addition, policies with stopping age 70

have a lower ratio of overtreatment costs to the total breast cancer care cost, which

supports stopping of mammography screening at age 70.
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There are several directions for future work. Given the disparity in incidence

and mortality among different races, future work will include calibrating the models

to determine race-specific overdiagnosis risk. Previous studies on optimal breast

cancer screening did not incorporate the possibility of overdiagnosis. A possible future

direction could be developing an optimization model to derive optimal screening policy

that controls the risk of overdiagnosis.



CHAPTER 3

ESTIMATING TRANSITION PROBABILITY MATRIX
IN A SPARSE UNBALANCED MARKOV CHAIN

3.1 Introduction

Multi-state Markov chain models have been receiving increasing attention in

medical and public health research where health status, responses to treatment, or

dynamic characteristics of a patient are represented by several states. The longitudinal

data collected on patients over time can be modeled as a stochastic process. In

medical longitudinal studies, it is inevitable to encounter missing data because of

patient’s missed scheduled visits, different testing times, and long time interval between

observations. The missingness in longitudinal data could be categorized into two types:

dropouts, where the patient doesn’t show up for a scheduled visit and intermittent

missingness, where patients usually show up only at intermittent visits [32].

The process that governs the likelihood of missingness is called the missing data

mechanism. There are three mechanisms causing missing data: missing completely at

random (MCAR), missing at random (MAR), and missing not at random (MNAR).

In a typical longitudinal data with several individuals, each individual should have the

same number of observations and we record the ηth patient’s observation in a T × 1

vector, where T denotes the number of scheduled observations. Let Y = (Yobs;Ymiss)

37
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denote a T × Γ matrix of T observations for Γ number of patients, where Yobs is

observed values and Ymiss is missing observations. In addition, let R denote a T × Γ

matrix indicating whether the tth observation of patient η is missing (rt,η = 1) and 0

otherwise. Assume Υ is a vector of parameters describing the relationship between

missingness, R and the dataset, Y. Based on the definition presented in Laird [33]

and Rubin [34], if the probability of an observation being missing is independent of

the responses, then the data are said to be missing completely at random (MCAR),

P (R|Yobs,Ymiss,Υ) = P (R|Υ). (3.1)

If the probability of missing data only depends on the observed data, then the

missing mechanism is missing at random,

P (R|Yobs,Ymiss,Υ) = P (R|Yobs,Υ). (3.2)

Finally, if the probability of missingness depends on both the missing and

observed values, the mechanism is missing not at random (MNAR),

P (R|Yobs,Ymiss,Υ) = P (R|Yobs,Ymiss,Υ). (3.3)

One important concept in analyzing the mechanisms of missing data is ignora-

bility. Ignorability refers to the effect of missingness to the validity of the statistical

inferences. In the MAR and MCAR mechanisms, we do not need to model the

missing data mechanism as a part of the estimation process. On the other hand,

non-ignorable MNAR missingness requires modeling the missing data mechanism to

get good estimates of the parameters [35].
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Missing observations and their effects on estimation of parameters have been

well-studied using two general model-based approaches: Maximum Likelihood and

Bayesian Inference. Maximum likelihood estimation (MLE) which is frequently used

in the literature, obtains parameter estimates by maximizing the likelihood function of

the incomplete data. On the other side, Bayesian inferences on parameters are based

on the posterior distribution of the parameters. To derive a posterior distribution,

prior distributions must initially be assumed for the parameters by sampling the

missing variables through a sampler [36].

Expectation-Maximization (EM) algorithm is a general-purpose approach

to calculate maximum likelihood estimates from incomplete data and has been

proposed by Dempster et al. [37]. This method has been used for different missingness

mechanisms. For example, for ignorable missing mechanism, Sherlaw-Johnson et al.

[38] described expectation-maximization technique for finding the maximum likelihood

estimates for a transition matrix when a system is observed at irregular time intervals.

Craig and Sendi [39] summarized the maximum likelihood estimate of the transition

matrix when the observation intervals have varying length or do not coincide with the

cycle length. They used bootstrap in order to assess the uncertainty of the maximum

likelihood estimate and to construct confidence interval for the transition matrix. Yeh

et al. [32] considered a complete-case analysis using the observed one-step transitions,

a non data-augmentation method (NL) by solving nonlinear equations, and a data-

augmentation method (EM algorithm) for modeling a discrete-time Markov chain

transition probabilities when multiple successive observations are missing at random

between two observed outcomes.
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For the non-ignorable missing mechanism, Troxel et al. [40] proposed a likelihood

method to analyze continuous longitudinal data. They applied the method to a breast

cancer dataset to confirm the non-ignorable missingness mechanism in this dataset.

Albert [41] developed a transitional model for longitudinal binary data and proposed an

EM algorithm for parameter estimation. Chen et al. [42] analyzed the incomplete data

from progressive multi-state disease processes in which individuals are scheduled to be

seen at periodic pre-scheduled assessment times using Maximum likelihood estimation

via an EM algorithm. On the other paper, Chen and Zhou [43] developed methods

for non-homogeneous Markov processes through time scale transformation when

observation times are pre-planned with some observations missing. They have used

Maximum likelihood estimation via the EM algorithm to derive parameter estimates.

Van Den Hout and Matthews [44] formulated a continuous time three-state model

with time-dependent transition intensities to describe transitions between healthy and

unhealthy states before death. To deal with possible non-ignorable missing states, a

maximum-likelihood model is proposed for the joint distribution of both the state and

whether or not the state is observed. Yeh et al. [45], conducted a simulation study to

examine the impact of ignorable and non-ignorable intermittent missing observations

on the parameter estimates of HMM.

The other method that has been used in the literature to estimate Markov

model parameters is Bayesian inference. Assoudou et al. [46] described a Bayesian

estimation of the transition probabilities of a binary Markov chain observed from

heterogeneous individuals. Pasanisi et al. [47] focused on Monte Carlo Markov Chain

(MCMC) algorithms to perform Bayesian inference and evaluate posterior distributions
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of the transition probabilities with missing-data framework. Efthimiou et al. [48]

adopted a Bayesian framework in order to use a multi-state Markov model for the

analysis of incomplete individual patient data for a dichotomous outcome reported

over a period of time. The model accounts for patients dropping out of the study and

also for patients relapsing.

Some paper chose to review both methods to analyze the incomplete data.

Ghahramani and Jordan [49] reviewed the problem of learning from incomplete data

from two statistical perspectives: the likelihood-based and the Bayesian. They have

described a set of algorithms, derived from the likelihood-based framework, that

handle clustering, classification, and function approximation from incomplete data.

These algorithms are based on mixture modeling and make two distinct appeals to the

expectation-maximization principle, both for the estimation of mixture components

and for coping with the missing data. Deltour et al. [50] described two algorithms for

estimating Markov chain models in the case of intermittent missing data in longitudinal

studies, a stochastic EM algorithm and the Gibbs sampler, which is used for a full

Bayesian inference. Ma et al. [51] focused on analyzing data with missing at random

values within discrete-time Markov chain models. The naive method, nonlinear (NL)

method, Expectation-Maximization (EM) algorithm, and a Bayesian framework, using

an adjusted rejection algorithm to sample the posterior distribution, and estimating

the transition probabilities with a Monte Carlo algorithm are discussed in this paper.

In this chapter, we review and apply some of the hidden Markov model

parameter approximation methods to estimate breast density transition probabilities

using mammography screening data from Louisiana Cancer Prevention and Control
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Programs [4]. The results of this chapter will be used in the next section of dissertation

to evaluate the breast cancer screening policies considering breast density as an

important breast cancer risk factor.

The remainder of this chapter is as follows. In Section 3.2, we review some

of the well-known methods for estimating parameters of Markov models from an

incomplete data with ignorable missingness mechanism. In Section 3.3, we talk

about the computational analysis of a simulated data using described methods and

a description of our main dataset and the results of the parameter estimation. We

summarize and conclude in Section 3.4.

3.2 A Review of the Methodologies in the Literature

In this section, we review different methods for estimating Markov model

parameters for an incomplete longitudinal set of data, where different characteristics

of a group of patients are scheduled to be observed at equal time intervals. We

discuss methods for an ignorable mechanism of missing values. Generally, there are

three categories of methods for handling incomplete data with ignorable missingness

mechanism: deletion, imputation, and augmentation. Data deletion is the most

simple and common method. However it causes bias in parameter estimation. Data

imputation and data augmentation methods are comparatively similar methods,

however, in data imputation methods missing observations substitute with imputed

values but in data augmentation, parameter estimation is augmented by the information

gained from assuming certain probability models from observed data [52]. Data

augmentation procedures included maximum likelihood (ML) and Bayesian Inference.
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In this section, we discuss each of these methods separately. The following is the list

of notations used in these models.

• t: Time periods, t = 0, 1, · · · , T , where T denotes the number of scheduled

observations for each patient.

• Γ: Number of patients, Note that we use subscript η ∈ {1, ...,Γ} in order to

represent ηth patient.

• S: Patient’s core state space, where st ∈ S represents patient’s state at time t.

Core state space will be defined based on the type of the data. For example in

analyzing breast density, we assume S = {dI , dII , dIII , dIV }, which is the set of

partially observable breast density states including almost entirely fatty tissue,

scattered fibroglandular densities, heterogeneously dense class, and extremely

dense class.

• Sη: State sequence of patient η, where Sη = sη,1, sη,2, ..., sη,T represents the

actual states of patient η at each time point.

• Y : Observation space, where yt ∈ Y represents the observation that the patient

gets at time t. In hidden Markov models, the state of patient is not directly

observable and it would be determine through the imperfect interpretation of

screening results.

• Yη: Observation sequence for patient η, where Yη = {yη,1, yη,2, ..., yη,T} represents

the observation for patient η at time t. Note that we assume the data is

not complete and some of observations are missing. In other words, we have

Yη = {Yobsη ,Ymissη }.

• m: Number of missing values between two observed values.
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• nij: Number of one-step transitions between state i and state j among all Γ

patients when the data is complete.

• ni(m)j : Number of transitions from state i to state j with m missing observations

between these two observations among all Γ patients.

• πst : Expected patient belief state at time t that represents the occupancy

distribution over core states.

• A: State transition probability matrix, where aij ∈ A represents the probability

that a patient will be in state j at time t + 1, given that s/he is in state i at

time t.

• a
[m]
ij : m-step transition probability from state i to state j. Note that a[1]

ij = aij.

• B: Observation probability matrix, where bst(yt) ∈ B represents the probability

of receiving observation yt given that patient is in state st at time t.

• λ: Vector of model parameters, where λ = (π,A,B).

3.2.1 Data Deletion Method

Listwise Deletion

The most common approach to handle the missing data is to exclude the cases

with missing values and analyze the remaining data. Listwise method can produce

unbiased estimates, if the sample is large enough and the missingness mechanism is

MCAR.

Pairwise Deletion

Despite the listwise method that omits the whole case if it has a missing value,

pairwise method excludes only the variable of the case with missing value. Note that
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pairwise method still uses the case when analyzing other variables with non-missing

values. This method has the best use of data and hence is more preferable compared

to listwise deletion. However, this method use different number of cases for each

analyze and it causes an overestimation or underestimation of standard errors [53].

3.2.2 Data Imputation Methods

In this section, we review some of the well-known single and multiple imputation

methods for handling missing values.

LOCF/NOCB Methods

One of the well-known single imputation methods for longitudinal data is

Last Observation Carried Forward (LOCF). This imputation method carries the last

observed non-missing value to fill in missing values at a later point. Therefore, the

response remains constant at the last observed value. A similar approach named

Next Observation Carried Backward (NOCB) works in the opposite direction by

taking the first observation after the missing value and carrying it backward. These

methods can introduce a positive or negative bias and because all the missing values

for an individual are replaced with the same numbers, the within-subject variability is

reduced [53].

Mean/Mode Substitution

Mean substitution method is another single imputation procedure where the

missing value of a variable can be replaced with the average of known values for that

variable. For categorical data, mode of the previous data can be used as substitute

value for imputation. This method’s estimation may lead to inconsistent bias, if the
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missing values are not random or the number of missing values for different variables

is not equal [53].

Regression Imputation

This approach estimates and imputes the missing data using a regression model

and other relevant variables in the dataset. Therefore, it maintains all the cases and

does not change the standard deviation or the shape of the distribution. However, in

this method other variables in the dataset are used to impute missing observations

without adding any new information. This causes an increase in sample size and

consequently a decrease in the standard error [54].

K-Nearest Neighbors Imputation Method (KNN)

The KNN algorithm stores all the training cases and when it encounters a

new input vector, it performs a prediction by considering its K closest training cases

according to a given distance metric. A well-known distance function is the Euclidean

distance which is used to identify the k nearest neighbors of each case with two inputs,

YA and YB,

d(YA,YB) =
√∑

ϑ

dϑ(YAϑ,YBϑ)2, (3.4)

where dϑ(YAϑ,YBϑ) is the distance between the two cases on its ϑth attribute and it

can be calculated as follow,
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dϑ(YAϑ,YBϑ) =



1, if Yϑ is missing in YA or YB,

ED, if data is continuous,

1, if data is categorical and YAϑ 6= YBϑ,

0, if data is categorical and YAϑ = YBϑ,

(3.5)

where ED is the normalized Euclidean distance and can be calculated as follow,

ED = | YAϑ − YBϑ |
max(Yϑ)−min(Yϑ) . (3.6)

Given an incomplete vector of dataset, for each missing value in Y , the KNN

imputation method finds the corresponding set of k closest training cases with observed

values in the incomplete feature to be imputed. Then, the unknown value Yϑ can be

estimated by the mean or mode of k nearest neighbors [55] and the parameter can be

estimated using the imputed complete dataset.

3.2.3 Data Augmentation Methods

In this section, we talk about methods that use maximum likelihood and Bayes

theorem as a basic for calculation of the parameters. In order to show the calculation

burden of the maximum likelihood methods that do not use data augmentation, first

we talk about a nonlinear method introduced by Yeh et al. [32] and then we talk

about expectation-maximization and Viterbi algorithms that use data augmentation

to decrease the complexity of calculations. Later in this section, we will talk about

Bayesian inference assumptions and algorithm.
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Nonlinear Maximum Likelihood Method

Nonlinear method uses all the one and multi-step transitions to compute the

parameters. For example, the (m+ 1)-step transition probability from state i to state

j can be computed by summing over all possible routes,

a
[m+1]
ij =

S∑
l1=1

ail1a
[m]
l1j =

S∑
l1=1

S∑
l2=1

ail1al1l2a
[m−1]
l2j =

S∑
l1=1

S∑
l2=1

...
S∑

lm=1
ail1al1l2 ...alm−1lmalmj.

(3.7)

The log likelihood function for this equation can be expressed as,

L(λ|Y ) =
Γ∑
η=1

S∑
i=1

S∑
j=1

T−2∑
m=0

ni(m)j log(a[m+1]
ij ). (3.8)

The MLE of the transition probabilities can be computed by solving ∆L(λ|Y )
∆λ = 0.

This MLE function is nonlinear due to the summation inside the logarithm and should

be solved with nonlinear procedures.

Expectation-Maximization Algorithm

Expectation-Maximization(EM) algorithm is an iterative approach for a broad

range of Markov model parameter estimation. On each iteration of EM algorithm there

is an expectation step and a maximization step. In the expectation step (E-Step), a

log-likelihood function is evaluated using the current estimate for the parameters. The

second step (the M-step) of the EM algorithm is to maximize the expectation function

we computed in the E-step. To define the maximum-likelihood function, we assume

that data Yobs is observed and is generated by some distribution. We assume that a

complete dataset exists, Y = (Yobs;Ymiss) and also assume a joint density function as,

P (Y|λ) = P (Yobs,Ymiss|λ) = P (Ymiss|Yobs, λ)P (Yobs|λ). (3.9)
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In the first step, EM algorithm finds the expected value of the complete data

log-likelihood with respect to the unknown data Ymiss given the observed data Yobs

and the current parameter estimates,

Q(λ, λν−1) = E[logP (Yobs,Ymiss|λ)|Yobs, λν−1], (3.10)

where λν−1 is the set of current parameters estimates that we use to evaluate the

expectation function and λ is the set of new parameters that we optimize to increase

Q . The second step (M-step) of the EM algorithm is to maximize the expectation

function we computed in the first step. That is,

λν = arg max
λ

Q(λ, λν−1). (3.11)

These two steps are repeated until convergence. Each iteration is guaranteed

to increase the log-likelihood and the algorithm is guaranteed to converge to a local

maximum of the likelihood function.

If the Markov model is fully observable, Equation (3.10) can be written as,

Q(λ, λν−1) = E[logP (Yobs,Ymiss|λ)|Yobs, λν−1] =
S∑
i=1

S∑
j=1

nνij log(aij), (3.12)

where nνij = ni(0)j +mν
ij is the νth iterate of the expected number of transitions from

state i to state j for the whole data. Note that ni(0)j is the number of one-step

transitions and mν
ij is the number of multi-step transitions from state i to state j at

νth iteration.
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In each iteration, M-step maximizes the Q function in Equation (3.12). The

(ν + 1)th iteration of the estimates of transition from state i to state j is,

âν+1
ij =

nνij
nνi+

, where nνi+ =
S∑
ι=1

nνiι. (3.13)

The estimated transition probabilities aν+1
ij are substituted into the Q function,

and the steps E and M were repeated until the Q function converges.

In order to learn the parameters of an HMM model, the EM algorithm has been

derived for finding the maximum-likelihood estimate of the parameters of a hidden

Markov model given a set of observed feature vectors. This algorithm is known as

the Baum-Welch algorithm. There are three basic problems that EM algorithm tries

to solve in each iteration and finally estimate the parameters: evaluation problem,

finding optimal state sequence problem, and optimization problem [56, 57]. Here we

will talk about each problem and the required steps for Baum-Welch algorithm.

In Evaluation problem, we compute the probability of the observation sequence

Yη = yη,1, yη,2, ..., yη,T for patient η given the parameters of a model, λ = (A,B, π).

One way to calculate this probability is through enumerating every possible state

sequence of length T . Consider fixed state sequence of Sη = sη,1, sη,2, ..., sη,T . The

probability of observation sequence of Yη for Sη state sequence is,

P (Yη|Sη, λ) =
T∏
t=1

P (yη,t|Sη, λ) = bsη,1(yη,1)bsη,2(yη,2)...bsη,T (yη,T ). (3.14)

In addition, the probability of state sequence Sη can be written,

P (Sη|λ) = πsη,1asη,1,sη,2asη,2,sη,3 ...asη,T−1,sη,T . (3.15)
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The probability of Yη given the model parameters can be obtained by summing

the joint probability over all possible state sequences:

P (Yη|λ) =
∑
Sη

P (Yη|Sη, λ)P (Sη|λ)

=
∑
Sη

πsη,1bsη,1(yη,1)asη,1,sη,2bsη,2(yη,2)...asη,T−1,sη,T bsη,T (yη,T ). (3.16)

The logic of this equation is as follow. Let’s assume patient η is in state sη,1

with probability πsη,1 and observes observation yη,1 with probability of bsη,1(yη,1) at

time 1. Then, the patient makes a transition from state sη,1 to state sη,2 at time 2 with

probability asη,1,sη,2 and observe observation yη,2 with probability bsη,2(yη,2) until s/he

gets to time T . An efficient procedure named forward-backward can be used to solve

this problem. The forward-backward algorithm computes the marginal probability of

a given state at a time point. In this procedure, the forward variable, α, is defined as

the probability of seeing the partial sequence (yη,1, ..., yη,t) for patient η and ending

up in state i at time t given the model parameters.

αη,t(i) =

P (Yη,1 = yη,1, ...,Yη,t = yη,t, sη,t = i|λ), t = 1, 2, ..., T, η = 1, 2, ..,Γ. (3.17)

where,

αη,1(i) = πibi(yη,1), (3.18)

αη,t+1(j) =
[ S∑
i=1

αη,t(i)ai,j
]
bj(yη,t+1), (3.19)

P (Yη|λ) =
S∑
i=1

αη,T (i). (3.20)
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Similarly, we can calculate backward variable βt(i) defined as,

βη,t(i) =

P (Yη,t+1 = yη,t+1, ...Yη,T = yη,T |sη,t = i, λ), t = 1, 2, ..., T − 1, η = 1, 2, ...,Γ.

(3.21)

Backward variable is the probability of ending sequence (yη,t+1, ..., yη,T ) for

patient η, given that we started at state i at time t and the model parameters. Note

that backward variable will be used in solution for optimization problem. We can

solve Equation (3.21) using two steps:

βη,T (i) = 1 1 ≤ i ≤ S, (3.22)

βη,t(i) =
S∑
j=1

ai,jbj(yη,t+1)βη,t+1(j). (3.23)

In the second problem, we try to compute the probability of a state se-

quence Sη = sη,1, sη,2, ..., sη,T for patient η given the observation sequence, Yη =

yη,1, yη,2, ..., yη,T and the parameters of a hidden Markov model, λ = (π,A,B) to find

the optimal state sequence. The optimality criteria that has been used for this section

is expected to maximize the expected number of correct individual states. For this

purpose we define,

γη,t(i) = P (sη,t = i|Yη, λ) = P (sη,t = i,Yη|λ)
P (Yη|λ) = αη,t(i)βη,t(i)∑S

j=1 αη,T (j)
, (3.24)

where γη,t(i) is the probability that patient η is in state i at time t, given the observation

sequence of Yη and the model parameters of λ. Using γt(i), we can find the most
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likely sequence of states for an observation sequence,

sη,t = arg max
1≤i≤S

[γη,t(i)]. (3.25)

In optimization problem, we implement an iterative procedure to estimate the

parameters of the model. In this procedure, HMM parameters will be updated and

improved iteratively. For this purpose, first we define ξη,t(i, j) as the probability of

patient η being in state i at time t and in state j at time t+ 1, given the parameters

of the model and observation sequence.

ξη,t(i, j) = P (sη,t = i, sη,t+1 = j|Yη, λ) = P (sη,t = i, sη,t+1 = j,Yη|λ)
P (Yη|λ)

= αη,t(i)aijbj(yη,t+1)βη,t+1(j)∑S
i=1 αη,T (i)

. (3.26)

Note that based on our definition for γη,t(i) as the probability of patient η

being in state i at time t, given the observation sequence and the model, we can relate

γη,t(i) to ξη,t(i, j) by summing over j, giving,

γη,t(i) =
S∑
j=1

ξη,t(i, j). (3.27)

In addition, summing γη,t(i) over t, we get the expected number of transitions

from state i. Similarly, summation of ξη,t(i, j) over t can be interpreted as the expected

number of transitions from state i to state j.

Using the above formulas, we can estimate HMM parameters in each iteration.

πνi : Expected probability of being in state i at time 1

=
∑Γ
η=1 γ

ν
η,1(i)∑Γ

η=1
∑S
i=1 γ

ν
η,1(i)

, (3.28)
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aνij : Expected number of transitions from state i to j
Expected number of transitions from state i

=
∑Γ
η=1

∑T−1
t=1 ξ

ν
η,t(i, j)∑Γ

η=1
∑T−1
t=1 γ

ν
η,t(i)

, (3.29)

bi(j)ν : Expected number of times in state i and observing j
Expected number of times in state i

=
∑Γ
η=1

∑T
t=1 γ

ν
η,t(i)δ(yη,t = j)∑Γ

η=1
∑T
t=1 γ

ν
η,t(i)δ(yη,t 6= .)

, (3.30)

where δ(yη,t = j) is the index function that equals 1 if the ηth patient at time t is

observed to be in state j, and zero otherwise.

Viterbi Algorithm

The Viterbi algorithm estimates the state sequence of a discrete-time finite-

state Markov process by recursively taking the most probable path that could lead to

each cell. Based on Rabiner [57] to implement this algorithm first we define,

ζη,t(j) = max
sη,1,sη,2,sη,t−1

P (yη,1, yη,2, ..., yη,t, sη,1, sη,2, ..., sη,t−1, sη,t = j|λ). (3.31)

Note that ζη,t represents the most probable path by taking the maximum

over all possible previous state sequences given that we had already computed the

probability of being in every state at time t− 1. For a given state sj at time t and for

patient η, the value ζη,t(j) can also be computed as,

ζη,t(j) = Smax
i=1

ζη,t−1(i)aijbj(yη,t). (3.32)

The actual state sequence is retrieved by tracking the transitions that maximize

the ζη,t(j) scores for each patient, time point t and state j using ψη,t(j).
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Modified Viterbi algorithm can be used when the dataset contains some missing

values [58]. The steps required for this algorithm is

1. Detect the most probable path at each time over all possible previous state

sequences.

If t = 1,

ζη,1(i) =


πi, yη,1 is missing,

πibi(yη,1), otherwise,
(3.33)

ψη,1(i) = 0.

If t = 2, · · · , T ,

ζη,t(j) =


max1≤j≤S[ζη,t−1(i)aij], yη,1is missing,

max1≤j≤S[ζη,t−1(i)aijbj(yη,t)], otherwise,
(3.34)

ψη,t(j) = arg max
1≤i≤S

[ζη,t−1(i)aij].

2. Update the terminal state,

sT = arg max
1≤i≤S

[ζη,T (i)]. (3.35)

3. State sequence backtracking

sη,t = ψη,t+1(sη,t+1). (3.36)

In each iteration, the algorithm generates a new set of parameters based on

the most probable state sequence and previous estimation of parameters. The Viterbi

algorithm is expensive, both in terms of memory and compute time [59].
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Bayesian Inference (MCMC)

In this section, we review Gibbs sampler method derived from Vidotto et al.

[60] and investigate the performance of mixture hidden models for missing categorical

longitudinal data. This model is implemented using Bayesian inference method which

requires defining the prior distribution of the model parameters in order to obtain the

posterior distribution of the model’s unknown parameters given the observed data

(Yobs). In this method, the V sets of imputations are obtained from the posterior

predictive distribution of the missing data. To implement this method, first, we

sample parameter values, λν(ν = 1, ..., V ), from P (λ|Yobs) and then the imputations

are drawn from P (Ymis|λν).

To estimate the parameters of hidden Markov model, a Multinomial distribution

is defined for each of the categorical variables as follow,

• (sη,1) ∝ Multinomial(π), where π = (π1, ..., πS) is the initial state probabilities

vector.

• (sη,t+1|sη,t = i) ∝ Multinomial(ai),∀t, where ai is the transition probability

vector starting from state i.

• (yη,t|sη,t = i) ∝ Multinomial(bi), where bi = (bi(1), ..., bi(Y )) is the observation

probability vector given we are in state i.

The core of Bayesian inference is to combine two different likelihood and prior

distributions into one posterior distribution to estimate the parameters. Since the

variables are categorical and we have multinomial distribution as likelihood distribution,

if we choose a conjugate prior distribution, instead of multiplying the likelihood with

the prior distribution, the posterior distribution can be updated easily using the
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prior parameters. In view of the fact that Dirichlet distribution is the conjugate of

multinomial distribution, we define the prior distribution of parameters as follow,

• π ∼ Dirichlet(ω) with ω = (ω1, ..., ωS), ωs > 0, ∀s.

• ai ∼ Dirichlet(θ), with θ = (θ1, ..., θS), θs > 0, ∀s.

• bi ∼ Dirichlet(ϕi), with ϕi = (ϕi(1), ..., ϕi(Y )), ϕi > 0, ∀i.

To choose the model parameters for each these Dirichlet distribution, if we

have no previous knowledge about the imputation of model parameters, a symmetric

Dirichlet priors can be chosen (Dirichlet(c1, c2, ..., cs) where c1 = c2 = ... = cs).

The Gibbs sampler has been used in this section for model estimation and

imputation. The algorithm steps are as follow,

1. Sample hidden states for each patient η = 1, ...,Γ and for all time points

t = 1, ..., T from a conditional categorical distribution defined by the following

probabilities.

P (sνη,t|λν−1, yη,t).

At t = 1, for all patients η = 1, ...,Γ, and for all states j = 1, ..., S,

P (sνη,1 = j|λν−1, yη,1) =
πν−1
j bj(yη,1)ν−1∑
c πν−1

c bc(yη,1)ν−1 . (3.37)

For t = 2, ..., T and for patients η = 1, ...,Γ we have,

P (sνη,t = j|λν−1, yη,t) =
∑
i P (sνη,t−1 = i|λν−1, yη,t−1)aν−1

ij bj(yη,t)ν−1∑
c P (sνη,t = c|λν−1, yη,t−1)bc(yη,t)ν−1 . (3.38)
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2. Update each parameter values as follow,

For initial state probabilities (t = 1) ∀η,

πν |sνη,1 ∼

Dirichlet(ω1 +
∑
η

Iη,1(sνη,1 = 1), ..., ωS +
∑
η

Iη,1(sνη,1 = S)), (3.39)

where Iη,t(sνη,t = s) = 1 if for patient η, sνη,t = s and 0 otherwise.

For transition probabilities and for i = 1, ..., S and ∀η,t≥1,

aνi |sνη,t, sνη,t+1 ∼

Dirichlet(θ1 +
∑

η,sνη,t=i
Iη,t+1(sνη,t+1 = 1), ..., θS +

∑
η,sνη,t=i

Iη,t+1(sνη,t+1 = S)).

(3.40)

For the emission probabilities and for j = 1, ..., S and ∀η,t,

bνj |sνη,t, Y obs ∼

Dirichlet(ϕj(1) +
∑

η,sνη,t=j
Iη,t(yη,t = 1), ..., ϕj(Y ) +

∑
η,sνη,t=j

Iη,t(yη,t = Y ),

(3.41)

where Iη,t(yη,t) = 1 if yη,t = y and yη,t ∈ Y obs and 0 otherwise.

3.3 Computational Analysis

In this section, first, we conduct a simulation to study the accuracy of the

Markov model parameter estimates obtained from Baum-Welch and Bayesian Inference

algorithms. The simulated data will have the same number of states, patients, and

missing mechanism as our main dataset. In addition, we present the estimated Markov
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parameters and the bootstrapping standard errors for breast density longitudinal

dataset in Section 3.3.2.

3.3.1 Monte Carlo Simulation

In order to understand the impact of missing values and their uncertainty in

estimating model parameters, we construct a Mont Carlo simulation. The objective

of this simulation is to approximate the sampling distribution of an estimator by

generating large number of random independent datasets from a known values of the

parameters and computing the estimator for each dataset using different algorithms.

The sample mean of the estimates over all datasets is an estimate of the mean of the

sampling distribution of the estimator and the standard deviation of the estimates

over all datasets is an estimate of the standard deviation of the sampling distribution.

The following are the basics of this simulation model,

• Generate D datasets from true statistical parameters with true value of λ.

• For each dataset, estimate λ using each of the algorithms.

• Obtain bias, mean square error, and standard error for λ.

Let λ̂ be the estimator of true value of parameters and λ̂∫ be the estimate

obtained from the ∫ th dataset, where ∫ = 1, ...,D. We would want to calculate an

unbiased estimator for the parameters. Thus, we would hope that the mean of the

sampling distribution is close to the true value of λ with only small bias. To assess

this difference of values, we calculate the Monte Carlo bias for estimator λ̂ from the

sampling distribution as follow,

Bias = 1
D

D∑
∫=1

λ̂∫ − λ. (3.42)
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To compare the precision of two estimators based on the D estimates of each,

we could compare the Monte Carlo mean square error (MSE) for each estimator. The

estimated MSE based on the D estimates λ̂∫ is defined as,

MSE = 1
D

D∑
∫=1

(λ̂∫ − λ)2 = 1
D

D∑
∫=1

(λ̂∫ − λ̄)2 + (λ̄− λ)2, (3.43)

where λ̄ = 1
D
∑D
∫=1 λ̂∫ . Note that second part of Equation (3.43) includes square values

of the bias and standard error of estimator based on D observations.

For our purpose, we generated simulated datasets with the same number of

states, patients, missing mechanism, and missing value percentage as our main dataset

which will be discussed in Section 3.3.2. The simulation was repeated 1000 runs

for each method under each scenario. We estimated the transition parameters and

compared the estimates to the true parameter values in terms of bias, standard errors,

and mean square errors (MSE). Based on simulation results, when the model is fully

observable both algorithms estimate parameters with high accuracy. However, for

a hidden state sequence of observations, Baum-Welch algorithm has lower bias and

lower required calculation time.

3.3.2 Main Data Description and Bootstrapping

This section describes a longitudinal dataset that is used to quantify the

dynamics of breast density which will be used in our last chapter for evaluation of

breast screening policies considering patients’ breast density. This longitudinal data

has been gathered from 436 patients since 2016 at Louisiana Cancer Prevention and

Control Center [4]. The records of patients give us information about the patient’s date

of birth, date of screening, BI-RADS health and density states, future recommendation,
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and radiologist name. This dataset contains missing values which comes from the

missed scheduled visits of patients for evaluation of their health and breast density

status. We assume the missingness mechanism in this dataset is ignorable since the

probability of a patient shows up for breast screening mostly depends on their previous

screening results rather than current observation. This comes from the fact that the

symptomatic breast cancer usually happens at the very advanced stage of a cancer,

which means that patients who show up for screening are mostly because of previous

suspicious results or to follow-up the screening policy recommendation. Furthermore,

we divided observations based on the age of patients into two groups (40− 55/55+)

in order to consider the age and menopause effect on breast density dynamics in our

analysis. The summary counts for observed breast density status and transitions for

each group are shown in Table 3.1.

Table 3.1 Transition counts between different states in breast density dataset

40+ 40-55 55+
dI

1 dII
2 dIII

3 dIV
4 dI dII dIII dIV dI dII dIII dIV

one-step

dI 41 8 0 0 11 5 0 0 26 2 0 0
dII 11 200 10 0 4 61 4 0 7 136 6 0
dIII 0 29 126 2 0 13 61 2 0 15 60 0
dIV 0 0 3 2 0 0 1 1 0 0 1 1

two-step

dI 8 1 0 0 4 0 0 0 5 1 0 0
dII 5 52 3 0 2 16 1 0 1 27 2 0
dIII 0 12 33 0 0 3 17 0 0 8 15 0
dIV 0 0 2 2 0 0 1 1 0 0 1 1

1 Almost entirely fatty
2 Scattered fibroglandular densities
3 Heterogeneously dens
4 Extremely dense

Due to small sample size for each age group and in order to assess the uncertainty

of estimation, we also conduct a bootstrap that can be described as follow; we generate
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a bootstrap set, by randomly sampling nB patients with replacement from the main

dataset. Based on Efron’s recommended bootstrap ([61]), the sample size is assumed

to be the same as the original sample size and the sampling distribution is uniform,

which means that each of the patients in dataset has the same probability of being

selected. We repeat this sampling τ times to generate τ bootstrap sets, B1, B2,. . . ,

Bτ . Finally, we construct a sampling distribution with these τ bootstrap statistics.

The initial values for the baseline distribution with starting ages 40 and 55

were chosen based on population distribution in Mandelblatt et al. [62] as:

π(40) =
[
0.046 0.338 0.472 0.144

]

π(55) =
[
0.098 0.471 0.373 0.058

]

We also chose the initial information matrix arbitrarily as,

B =



0.85 0.12 0.02 0.01

0.07 0.75 0.15 0.03

0.02 0.1 0.8 0.08

0.01 0.04 0.15 0.8


For the initial transition probabilities, we used the normalized one-step ob-

servation counts in each dataset. Table 3.2 shows the parameter estimator values,

standard error and bootstrapping 95% confidence interval. Based on the estimates for

yearly transitions, the successive observations are more likely to recur, which means

that the amount of fibroglandular tissue in a patient’s breast is most likely to stay
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similar as the previous year for all four classes. However, the results show a higher

probability of decline and lower probability of increased breast density per year as

the patient’s age increases. In addition, higher breast tissue density shows a higher

decline each year. For example there is 28.6% probability of transitioning from state

4 to state 3 compared to 12.9% and 3.4% probability of transitioning from state 3

to state 2 and from state 2 to state 1, respectively. Based on the results for all age

groups, the probability of transitioning between two nonconsecutive states is almost

impossible. This means that if the state of patient’s breast density is 3, the probability

of changing state to 1 in one year is zero.
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Table 3.2 HMM estimates, standard errors, and 95% confidence intervals for breast
density dataset

Transition to
Age Groups Transition from dI dII dIII dIV

40+

dI
0.947 (0.030)
(0.874,0.995)

0.053 (0.030)
(0.005,0.126)

0 (0)
(0,0)

0 (0)
(0,0)

dII
0.034 (0.012)
(0.012,0.06)

0.960 (0.013)
(0.934,0.983)

0.006 (0.004)
(0.001,0.016)

0 (0)
(0,0)

dIII
0 (0)
(0,0)

0.129 (0.026)
(0.08,0.179)

0.869 (0.026)
(0.819,0.918)

0.002 (0.001)
(0,0.005)

dIV
0 (0)
(0,0)

0 (0)
(0,0)

0.286 (0.109)
(0.093,0.518)

0.714 (0.109)
(0.482,0.907)

40-55

dI
0.900 (0.075)
(0.722,0.999)

0.100 (0.075)
(0.001,0.278)

0 (0)
(0,0)

0 (0)
(0,0)

dII
0.032 (0.021)
(0.001,0.081)

0.960 (0.021)
(0.911,0.993)

0.009 (0.007)
(0,0.027)

0 (0)
(0,0)

dIII
0 (0)
(0,0)

0.107 (0.033)
(0.047,0.174)

0.885 (0.034)
(0.817,0.946)

0.008 (0.006)
(0.002,0.024)

dIV
0 (0)
(0,0)

0 (0)
(0,0)

0.232 (0.102)
(0.068,0.468)

0.768 (0.102)
(0.532,0.932)

55 +

dI
0.979 (0.015)
(0.942,0.999)

0.021 (0.015 )
(0.001,0.058)

0 (0)
(0,0)

0 (0)
(0,0)

dII
0.026 (0.011)
(0.008,0.052)

0.962 (0.012)
(0.938,0.984)

0.012 (0.005)
(0.003,0.024)

0 (0)
(0,0)

dIII
0 (0)
(0,0)

0.139 (0.036)
(0.079,0.221)

0.861 (0.036)
(0.779,0.921)

0 (0)
(0,0)

dIV
0 (0)
(0,0)

0 (0)
(0,0)

0.338 (0.1)
(0.162,0.436)

0.662 (0.1)
(0.564,0.838)
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3.4 Conclusion

In this section, we reviewed several methods to estimate Markov model

parameters using a set of data with intermittent missing values. We discussed three

categories of methods for datasets with ignorable missingness mechanism including

deletion, imputation, and augmentation. Moreover, we executed these methods on

several simulated data to measure the bias of the results from each algorithm. Based

on the simulation results, algorithms tend to have a very small bias if the Markov

model is fully observable. However, the uncertainty in the accuracy of the observations

adds bias to these estimates. Finally we implemented Baum-Welch algorithm on a set

of incomplete dataset consist of hidden observations for breast density of a group of

patients at Louisiana Cancer Prevention and Control center. Due to the small size of

dataset, we used the bootstrapping method to reduce the bias of estimations. Based

on our results, estimated breast density transition matrices specify a relatively high

probability that successive observations recur. This implies that future outcome has

a high dependency on the current outcome. The results of breast density transition

probability estimations will be used as the basic parameters in section 4 to evaluate

the efficacy of supplemental screening tests for high breast density patients.

One of the limitation of this study is the small number of longitudinal

observations for each patient. One possible direction for future study could be

defined as implementing these methods on a larger dataset with more number of

observations for each patient.



CHAPTER 4

INVESTIGATING THE EFFECTIVENESS OF BREAST
DENSITY NOTIFICATION LAW CONSIDERING

RADIOLOGISTS BIAS

4.1 Introduction

Breast density is defined as the prevalence of fibroglandular tissue in the breast.

The Breast Imaging Reporting and Data System (BI-RADS) classification system

classifies breast tissue density into four categories: almost entirely fatty which includes

less than 25 percent glandular tissue (type 1), scattered fibroglandular densities

which includes approximately 25-50 percent glandular tissue (type 2), heterogeneously

dense class which includes approximately 51-75 percent glandular tissue (type 3), and

extremely dense class which includes more than 75 percent glandular tissue (type

4) [63]. Higher breast density can significantly reduce the mass detection rate since

the normal tissues in dense breasts appear as bright areas in mammography. Breast

density is also associated with increased risk of breast cancer [5]. It is well-established

that tumors in dense breasts may progress more rapidly than those in fatty breasts

[5]. In addition, due to the lower sensitivity of screening mammography in women

with dense breasts, the cancer is more likely to remain undetected. Keefer [64] showed

that the relative risk associated with breast density is substantially higher than other

relative risks such as a family history of breast cancer, and menstrual and reproductive

66
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risk factors. The reported odds ratio for developing breast cancer for the most dense

compared with the least dense breast tissue categories ranges from 1.46 [65] to 6.0 [66].

Breast density is a dynamic risk factor and typically decreases as a patient

becomes older [67, 68, 69]. Younger women (especially those in premenopausal status)

are more likely to have dense breasts [70]. According to Mandelblatt et al. [62], 58.8%

of women aged 40-49 have highly dense breasts, while this percentage decreases to

42.7% and 31.1% for women aged 50-64 and 65-74, respectively.

Breast density notification laws have been enacted in 38 states in the U.S. (as

of August 2020) to mitigate the increased breast cancer risk in women with high breast

density which is partially caused by the masking effect of dense breast in screening

mammography. These laws generally require physicians to notify patients with high

breast density of their increased risk of breast cancer compared to low breast density

women [63]. Moreover, in some states, the breast density notification law requires

physicians to inform women with high breast density that adjunctive screening tests

such as breast ultrasonography (US) and magnetic resonance imaging (MRI) may

benefit them. Breast ultrasound uses high frequency sound waves to make an image of

breast tissues and as a result has higher sensitivity than mammography in women with

dense breasts. MRI uses intravenous contrast solution injection in order to produce

3-dimensional images of breast tissue.

Since the emergence of breast density notification laws, there have been

a lot of controversy on its potential unintended consequences as well as quality

of its implementation. It is believed that supplemental screening may result in

an increased number of unnecessary biopsies and patients’ overdiagnosis (that is,
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detection of a cancer that would not have become clinically apparent over the patient’s

lifetime if left undetected). In addition, inter and intra-variabilities in breast density

classification by radiologists raised some concerns since it results in patients’ breast

density misclassification (e.g., classification of a patient to a breast density category

different from her true BI-RADS breast density class) [71]. According to Bahl et al.

[72], the percentage of mammogram images reported as dense decreased after the

enactment of breast density notification law. This reduction happens as radiologists

may downgrade their assessment of density to avoid reporting requirements. On

the other hand, there have been controversies that radiologists may upgrade their

assessments so that supplemental screening can be ordered and their liability is

minimized [72].

Currently, there is not a consensus among different health agencies in the U.S.

regarding the necessity of supplemental screening in early breast cancer detection for

women with high breast density. The American College of Radiology (ACR) advocates

the use of ultrasound as an adjunctive screening test in women with dense breast tissues

[73]. However, according to the ACS report, there is not enough evidence to make a

recommendation for or against supplemental screening in addition to mammograms for

women with dense breasts [74]. The U.S. Preventive Services Task Force (USPSTF)

and the American College of Physicians (ACP) state that the current evidence is not

sufficient to support recommendation of supplemental screenings [75, 76].
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4.2 Relevant literature

In breast cancer related studies, Markov models have been previously used to

evaluate/optimize breast cancer screening and treatment strategies. Nohdurft et al.

[77] formulated a Markov decision process (MDP) model to derive optimal surgery

decisions for women with breast cancer. Chhatwal et al. [78] developed a finite-

horizon discrete-time MDP to provide patient-specific recommendations for breast

biopsy based on the patient’s mammographic features. Alagoz et al. [79] formulated

a finite-horizon discrete-time MDP to optimize the post-mammography diagnostic

decisions (choosing between biopsy or short-interval follow up mammogram) based on

mammogram test findings. Ayvaci et al. [80] developed an MDP model to optimize

the risk-sensitive diagnostic decisions after a mammography exam. In their study, the

radiologist can select from biopsy, short-term follow-up, and routine mammography

while considering the patient’s preferences to maximize the quality-adjusted survival

duration. In another study, Ayvaci et al. [81] investigated the impact of budgetary

restrictions on breast biopsy decisions by developing a finite-horizon discrete-time

constrained MDP. Çağlayan et al. [82] developed a Markov model to capture the

breast cancer progression in women with certain risk factors such as gene mutations

and family history of breast and ovarian cancer. They identified the optimal and most

cost-effective population screening strategies.

As mammography is not perfect and may not reflect the true health status of a

patient, some studies used partially observable Markov models in assessing/optimizing

breast cancer screening policies. Maillart et al. [15] formulated a partially observable

Markov chain (POMC) model to compare different policies in terms of lifetime breast
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cancer mortality risk and the expected number of mammograms a woman should un-

dergo under each screening policy. Ayer et al. [83] formulated a finite-horizon, partially

observable Markov decision process (POMDP) to determine optimal personalized

mammography screening policies based on patients’ different risk characteristics. In an-

other study, Ayer et al. [23] developed a POMDP framework to analyze the importance

of heterogeneity in women’s adherence to mammography screening policies. Madadi

et al. [22] developed a discrete-time POMC model to evaluate mammography screening

policies in terms of the expected QALYs and lifetime breast cancer mortality risk

while incorporating the uncertainty in women’s adherence behaviors. Molani et al. [3]

developed two POMCs to quantify the age and stage-specific overdiagnosis risks while

considering the uncertainty in a patient’s adherence behavior. Cevik et al. [84] proposed

a POMDP model to maximize the total expected QALYs of a patient when there is a

constraint on the number of mammograms the patient can undergo. Sandikci et al. [85]

formulated a POMDP model to determine the optimal breast cancer screening policies

considering patients’ breast density as risk factor. Otten et al. [86] formulated a finite

horizon discrete-time POMDP to optimize and personalize breast cancer follow-up.

In this chapter, we develop a POMC model to investigate the impact of the

radiologist bias on patients’ health outcomes under the breast density notification law.

The patients’ outcomes include probability of detecting breast cancer in early and

advanced cancer states and the expected number of supplemental screening a patient

undergoes in her lifetime. To the best of our knowledge, Sandikci et al. [85] work, is

the only study that investigate breast density notification law and explicitly considers

breast density as a risk factor. Our study, however, is different from Sandikci et al.’s
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work from several aspects: 1) We consider the conditional probability of detecting

breast cancer in early and advanced states given the patient develops cancer in her

lifetime as the main patient’s outcome. This is the first study in the literature to

consider these probabilities as patients’ outcomes. Note that the main purpose of

cancer screening is to detect the cancer in early states where it is more likely to be

cured. 2) We investigate the impact of radiologists’ bias in density classification of

mammogram images on patients’ outcomes. This is done by modeling breast density

as a partially observable variable. In Sandikci et al.’s work, however, breast density is

assumed to be fully observable (i.e., radiologist’s evaluation of breast density perfectly

correlates with the patient’s actual density). 3) In this study, we use sequential

mammography screening data of 436 patients from Louisiana Cancer Prevention and

Control Programs [4] to estimate the dynamics of breast density to better capture the

breast cancer risk dynamic caused by change in breast density.

The remainder of this chapter is as follows. In Section 4.3, we present our

proposed POMC model and calculate the probability of detecting cancer in early and

advanced states and the expected number of screening tests a patient undergoes in her

lifetime under a screening strategy. Section 4.4 presents parameter estimations and

model validation. Numerical results and sensitivity analyses are presented in Section

4.5. We summarize and conclude in Section 4.6.

4.3 Model formulation

A discrete-time finite-horizon partially observable Markov chain (POMC) is

developed to model the breast cancer natural history and breast density dynamics.
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A POMC is used as the imperfect nature of mammography tests (i.e., possibility of

receiving false positives and false negatives) as well as the possibility of breast density

misclassification by radiologists prevent the patient’s true state to be fully observable

to the decision maker.

The patients’ outcome measures include the lifetime conditional probability of

detecting cancer in early and advanced states. That is, we focus on the population of

patients who would eventually develop breast cancer at some point in their lifetimes

and their cancer eventually becomes symptomatic if not detected through screening

tests. The latter assumption is made to rule out the over-diagnosed cases as for these

cases, detection of cancer is not favourable. Note that early detection of cancers which

will eventually become problematic is the main incentive of screening programs.

Obviously, the more aggressive a screening strategy is (more frequent and

multiple screening modalities), the higher is the chance of detecting the cancer in early

state when it is more likely to be treated. However, there are disutilities associated

with screening tests which adversely impacts patient quality of life. Therefore,

there is a trade-off between detecting a cancer in early state and the discomfort

of undergoing aggressive frequent screening. As such, we consider the expected

number of supplemental screening tests a patient would undergo in her lifetime as

another patients’ outcome to investigate the trade-ff.

We estimate the probability of eventually detecting breast cancer in early and

advanced state in Section 4.3.1 and the expected number of supplemental screening

tests a patient may undergo in her lifetime in Section 4.3.2. The following is the list
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of notation used in the proposed model. Note that vectors and matrices notations are

in bold.

• t: Time periods, t = 0, 1, 2 · · · , T .

• s: Patient’s core state; Specifically, s = (h, d) ∈ Ω = H D represents the

patient’s underlying state where h ∈ H and d ∈ D denote the patient’s core

health and breast density states, respectively. The health state set H includes

three partially observable states of cancer free (state 0), early breast cancer

(state 1), and advanced breast cancer (state 2) and one fully observable state of

death due to breast cancer of other causes (state 3). Specifically, we refer to the

partially and fully observable health state sets as H1, and H2, respectively, i.e.,

H = H1 ∪H2. We denote the subsets of patient’s core states for which h ∈ H1

and h ∈ H2 by Ω1 and Ω2, respectively. Moreover, set D includes four BI-RADS

density classes as discussed in Section 4.1, i.e., D = {1, 2, 3, 4}.

• βt: A vector of length |Ω1| representing the patient’s belief state at the beginning

of period t. Specifically, βt(s) denotes the probability that the patient is in

partially observable state s = (h, d), h ∈ H1 at the beginning of period t.

• Pt: Underlying transition probability matrix capturing the natural history of

breast cancer and breast density dynamics. That is, Pt(s′|s) represents the

probability that a patient will be in state s′ = (h′, d′) at time t+ 1, given that

she is in state s = (h, d) at time t.

• at: Prescribed action at time t, where possible actions include wait and mammog-

raphy, denoted by W and M , respectively. A patient classified as high density

may undergo a supplemental screening following a negative mammogram, for
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which case the action is denoted by B. Let A denote set of all possible actions;

we have at ∈ A = {W,M,B}

• ot: Observation received at time t which includes both breast density classification

by the radiologist and screening result. Specifically, ot = (θ, δ), where θ ∈ Θ = D

and δ ∈ ∆a respectively denote the assigned breast density class and screening

result. For notation brevity, we define density observation subsets Θ = {1, 2}

and Θ̄ = {3, 4}. Clearly, we have Θ = Θ ∪ Θ̄. Observations are received only if

the prescribed action is to undergo a mammogram. Specifically, when patient

undergoes only amammography, the possible test results are negative and positive

mammogram denoted by M− and M+, respectively. That is, ∆M = {M−,M+}.

When a mammogram is accompanied with a supplemental test (i.e., at = B),

possible observations are M−&S− and M−&S+ which respectively represent a

negative and a positive supplemental test followed by a negative mammogram,

i.e., ∆B = {M−&S−,M−&S+}. If the action is wait, no observations will be

received.

• QM
t : Breast density information matrix, where QM

t (θ|d) denotes the probability

of a patient with true density d be classified in density class θ upon action

at = M .

• Ka
t : Health information matrix, where Ka

t (δ|s) represents the probability of

observation δ ∈ ∆a when action a ∈ {M,B} is taken and the patient’s true

state is s = (h, d) at time t. Note that health observation probability matrix for

the case that the action is a mammogram, is a function of breast density due to

the masking effect of high breast density on mammogram sensitivity.



75

• ηt: A vector of length |Ω1| representing the probabilities of a patient showing

symptoms in period t. Specifically, ηt(s) is the probability of showing symptoms

in state s at time t.

The one-period sample path for the breast cancer detection process under the

notification law is presented in Figure 4.1. At each period, depending on the prescribed

action and possible subsequent observations, patient takes a different path. We assume

that after receiving a positive screening result (either a mammogram or a supplemental

test), the patient undergoes a biopsy test. Biopsy is assumed to be perfect as its true

positives rate is very close to 1 [87]. According to the U.S. Department of Health &

Human Services report, surgical biopsy could be considered a test without measurement

error [88]. We assume that probability of both developing cancer and showing

symptoms in one period (one year) is zero. That is, cancers can only show symptoms in

a period when the patient is in a cancer state at the beginning of that period. Moreover,

we assume that breast cancer cannot spontaneously (without treatment) regress [89].
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Figure 4.1: One-period sample path of the breast cancer detection process when
supplemental screening is administered. Note that under action wait, symptoms can
happen when the patient is in a cancer state

At each period, the patient’s belief state is updated based on the action and

possible observations received. Under action at, observation ot and assuming that the

patient belief at the beginning of period t is βt, Equation (4.1) calculates the patient’s

updated belief state (ν) at time t+ 1:
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ν[βt, at, ot](z) =

∑
s∈Ω1

βt(s)QMt (θ|d)KM
t (M−|s)Pt(z|s)∑

s′∈Ω1

∑
s∈Ω1

βt(s)QMt (θ|d)KM
t (M−|s)Pt(s′|s) , if at = M, ot = (θ,M−), θ ∈ Θ,∑

s∈Ω1
βt(s)QMt (θ|d)KB

t (M−&S−|s)Pt(z|s)∑
s′∈Ω1

∑
s∈Ω1

βt(s)QMt (θ|d)KB
t (M−&S−|s)Pt(s′|s) , if at = B, ot = (θ,M−&S−), θ ∈ Θ̄,

Pt(z|s)
1−
∑

s′∈Ω2
Pt(s′|s) , if s = (0, d), at = M, ot = (θ, δ),

δ ∈ {M+,M−&S+},∑
s∈Ω1

βt(s)Pt(z|s)∑
s∈Ω1

βt(s)
(
1−
∑

s′∈Ω2
Pt(s′|s)

) , if at = W.

(4.1)

The first and second case in Equation (4.1) represents the case when the patient

undergoes a prescribed mammogram, receives a negative result and is classified into

the low and high density class by the radiologist, respectively. In the latter case,

the patient undergoes a supplemental screening test and receives a negative result.

We use Bayes rule to update the patient’s belief state in these two cases. In the

second case where the patient undergoes both mammography and supplemental tests,

the joint information from both tests is used to update the patient’s belief state.

The third case represents a false positive and consists two different situations: 1) a

false positive mammogram result, and 2) a negative mammogram followed by a false

positive supplemental test. In these cases, the patient’s belief is updated by accounting

for possible cancer development from the cancer-free state (s = (0, d)). The fourth

case represent the situation where the action is wait. In this case, no observation is

received and the dynamics of breast cancer natural history and breast density is used

to update the patient’s belief state. The term 1−∑s=(h′,d′),h′∈H2 Pt(s′|s) in the third

and fourth cases represents the probability that a patient in state s survives period t.
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4.3.1 Probability of detecting cancer in early and advanced states

Let Eat (βt) and Aat (βt) denote the probability of eventually detecting a cancer

in early and advanced cancer states when the patient belief state in period t is βt

and action a is taken, respectively. Note that we only consider the cancer population

for which the cancer will eventually show symptom. That is, we exclude the over-

diagnosed cases whose cancer may never show symptoms or cause any problem in the

patient’s lifetime. Equations (4.2) and (4.3) calculate these probabilities for the case

when the prescribed action in epoch t is wait:

EWt (βt) =
∑

s=(0,d)
βt(s)

[
0 + ρ0

t (s)Eat+1
(
ν[βt,W, ·]

)
+
(
1− ρ0

t (s)
)
· 0
]

+
∑

s=(1,d)
βt(s)

[
ηt(s) + (1− ηt(s))

(
ρ1
t (s)Eat+1

(
ν[βt,W, ·]

)
+
(
1− ρ1

t (s)
)
· 0
)]

+
∑

s=(2,d)
βt(s) · 0, (4.2)

where ρ0
t (s) =

∑
z=(h′,d′):h′∈{0,1} Pt(z|s)
1−
∑

s′∈Ω2
Pt(s′|s)

is the probability of remaining in the healthy

states or transitioning to early cancer states in period t given that the patient is

healthy (i.e., s = (0, d)) at the beginning of period t and survives the current period.

Additionally, ρ1
t (s) =

∑
z=(1,d′) Pt(z|s)

1−
∑

s′∈Ω2
Pt(s′|s)

is the probability of remaining in early cancer

state (i.e., s = (1, d)) in period t given that the patient survives the current period.

The logic of Equation (4.2) is as follows: If the patient is in a healthy state

at time t, the probability of cancer detection in the current period is zero. The

future probability of eventually detecting cancer in early state is conditioned on

patient’s surviving the current period. In addition, the patient should stay healthy

or if developed cancer, she has to be in an early cancer state in order to be possible to
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detect the cancer in an early stage as we assume that cancers cannot spontaneously

regress. The probability of such event is ρ0
t (s) and in such a case, the future probability

of cancer detection in early state is Eat+1

(
ν[βt,W, ·]

)
. Note that ν[βt,W, ·] is the patient

updated belief under action wait and is calculated using Equation (4.1). If the patient

transitions to an advanced cancer state (with probability 1− ρ0
t (s)), the probability

that the cancer is eventually be detected in an early state is zero. If the patient is

in an early cancer state at the beginning of period t, the cancer may show symptoms

with probability ηt(s). In this case, the follow-up tests will reveal the cancer and

the patient leaves the model. If the cancer remains undetected in the current period

(which happens with probability 1− ηt(s), s = (1, d)) and the patient remains in early

cancer state (which happens with probability ρ1
t (s)), the cancer might be eventually

detected in an early state with probability Eat+1

(
ν[βt,W, ·]

)
. If the patient is in an

advanced cancer state at the beginning of period t, the cancer can never be detected

in an early state since we assume that no cancer regression can occur.

AWt (βt) =
∑

s=(0,d)
βt(s)

[
0 + ρ0

t (s)Aat+1
(
ν[βt,W, ·]

)
+
(
1− ρ0

t (s)
)
· 1
]

+
∑

s=(1,d)
βt(s)

[
0 + (1− ηt(s))

(
ρ1
t (s)Aat+1

(
ν[βt,W, ·]

)
+
(
1− ρ1

t (s)
)
· 1
)]

+
∑

s=(2,d)
βt(s) · 1. (4.3)

The logic of Equation (4.3) is as follows: If the patient is in a healthy state

at the beginning of period t, the immediate probability of detecting cancer in an

advanced state is zero. If the patient stays in a healthy or transitions to an early

cancer state conditioning that she has survived the current period (which occurs with
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probability ρ0
t (s)), she might eventually be detected in an advanced cancer state with

probability Aat+1

(
ν[βt,W, ·]

)
. However, if she transitions to an advanced cancer state,

with certainty she will eventually be detected in an advanced cancer state. If the

patient is in an early cancer state at the beginning of period t, her cancer needs to

remain undetected in the current period (which happens with probability 1− ηt(s))

in order to be detected later in an advanced state. In such a case, if she remains in

the early cancer state, the future probability of detecting cancer in an advanced state

is Aat+1

(
ν[βt,W, ·]

)
, and if she transitions to an advanced state, the corresponding

probability is one. Finally, if the patient is in an advanced cancer state, she will

eventually be detected in an advanced state with certainty.

Equations (4.4) and (4.5) respectively present the probability of eventually

detecting cancer in early and advanced cancer states starting from belief state βt at

the beginning of period t when the prescribed action is a screening mammogram with

a possible subsequent supplemental test. Note that in compliance with the breast

density notification laws, when the prescribed action is a mammogram, the patient

may take different paths depending on their observed breast density class.
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EMt (βt) =
∑

s=(0,d)

∑
θ∈Θ

βt(s)QM
t (θ|d)

[
0 +KM

t (M−|s)
(
ρ0
t (s)Eat+1

(
ν[βt,M, (θ,M−)]

)
+
(
1− ρ0

t (s)
)
· 0
)

+KM
t (M+|s)

(
ρ0
t (s)Eat+1

(
ν[βt,M, (θ,M+)]

)
+
(
1− ρ0

t (s)
)
· 0
)]

+
∑

s=(0,d)

∑
θ∈Θ̄

βt(s)QM
t (θ|d)

[
0 +KB

t (M−&S−|s)
(
ρ0
t (s)Eat+1

(
ν[βt,M, (θ,M−&S−)]

)
+
(
1− ρ0

t (s)
)
· 0
)

+KB
t (M−&S+|s)

(
ρ0
t (s)Eat+1

(
ν[βt,M, (θ,M−&S+)]

)
+
(
1− ρ0

t (s)
)
· 0
)

+KM
t (M+|s)

(
ρ0
t (s)Eat+1

(
ν[βt,M, (θ,M+)]

)
+
(
1− ρ0

t (s)
)
· 0
)]

+
∑

s=(1,d)

∑
θ∈Θ

βt(s)QM
t (θ|d)

[
KM
t (M+|s)

+KM
t (M−|s)

(
ρ1
t (s)Eat+1

(
ν[βt,M, (θ,M−)]

)
+
(
1− ρ1

t (s)
)
· 0
)]

+
∑

s=(1,d)

∑
θ∈Θ̄

βt(s)QM
t (θ|d)

[(
KM
t (M+|s) +KB

t (M−&S+|s)
)

+KB
t (M−&S−|s)

(
ρ1
t (s)Eat+1

(
ν[βt,M, (θ,M−&S−)]

)
+
(
1− ρ1

t (s)
)
· 0
)]

+
∑

s=(2,d)
βt(s) · 0.

(4.4)

Equation (4.4) emerges from the following logic: If the patient is healthy, the

immediate probability of cancer detection is zero. If she is classified in the low density

class, which occurs with probability ∑θ∈Θ Q
M
t (θ|d), she only receives a mammogram

test. The mammogram test result might be a true negative or a false positive with corre-

sponding probabilities of KM
t (M−|s) and KM

t (M+|s), s = (0, d). In either case, if the
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patient remains in the healthy state or proceeds to early cancer state, her belief state is

updated and the future probability of cancer being detected in early state is calculated.

Note that we assume in case of a false positive, further examination (i.e, biopsy) reveals

that the patient is healthy. If the patient transitions to an advanced cancer state, her

future probability of being detected in an early cancer state is zero. When the patient

is classified into a high breast density class (with probability ∑θ∈Θ̄Q
M
t (θ|d)), she may

undergo a supplemental screening if the mammogram result is negative. Possible

outcomes in such case are negative mammogram followed by a negative supplemental

test (true negative with probability KM
t (M−&S−|s)), negative mammogram followed

by a positive supplemental test (false positive with probability KM
t (M−&S+|s)), or

a positive mammogram (false positive with probability KM
t (M+|s)). In any of these

cases, if the patient does not proceed to advanced cancer state, her belief state is

updated based on the received observations and her future probability of being detected

in early state is calculated. However, if the patient proceeds to advanced cancer state,

the cancer will never be detected in early state. If the patient is in an early cancer

states at the beginning of period t, her cancer may be detected in the current period

through screening tests. Specifically, if the patient is classified as a low and high breast

density patient, the cancer may be detected in the current period with probability

KM
t (M+|s) and KM

t (M+|s) +KM
t (M−&S+|s), s = (1, d), respectively, in which case

the patient leaves the model. However, if the screening does not reveal the cancer,

which occurs with probabilities KM
t (M−|s) and KM

t (M−&S−|s), s = (1, d) when the

patient is classified as low and high density class, respectively, the patient belief is

updated based on the sensitivity of screening test(s) that the patient has undergone

and the future probability of the cancer being detected in early state is calculated.
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Finally, if the patient is in an advanced cancer state at the beginning of period t, the

probability that she eventually be detected in an early cancer state is zero.

AMt (βt) =
∑

s=(0,d)

∑
θ∈Θ

βt(s)QM
t (θ|d)

[
0 +KM

t (M−|s)
(
ρ0
t (s)Aat+1

(
ν[βt,M, (θ,M−)]

)
+
(
1− ρ0

t (s)
)
· 1
)

+KM
t (M+|s)

(
ρ0
t (s)Aat+1

(
ν[βt,M, (θ,M+)]

)
+
(
1− ρ0

t (s)
)
· 1
)]

+
∑

s=(0,d)

∑
θ∈Θ̄

βt(s)QM
t (θ|d)

[
0 +KB

t (M−&S−|s)
(
ρ0
t (s)Aat+1

(
ν[βt,M, (θ,M−&S−)]

)
+
(
1− ρ0

t (s)
)
· 1
)

+KB
t (M−&S+)

(
ρ0
t (s)Aat+1

(
ν[βt,M, (θ,M−&S+)]

)
+
(
1− ρ0

t (s)
)
· 1
)

+KM
t (M+|s)

(
ρ0
t (s)Aat+1

(
ν[βt,M, (θ,M+)]

)
+
(
1− ρ0

t (s)
)
· 1
)]

+
∑

s=(1,d)

∑
θ∈Θ

βt(s)QM
t (θ|d)

[
0 +KM

t (M−|s)
(
ρ1
t (s)Aat+1

(
ν[βt,M, (θ,M−)]

)
+
(
1− ρ1

t (s)
)
· 1
)]

+
∑

s=(1,d)

∑
θ∈Θ̄

βt(s)QM
t (θ|d)

[
0 +KB

t (M−&S−|s)
(
ρ1
t (s)Aat+1

(
ν[βt,M, (θ,M−&S−)]

)
+
(
1− ρ1

t (s)
)
· 1
)]

+
∑

s=(2,d)
βt(s) · 1.

(4.5)

Equation (4.5) follows a logic similar to that of Equations (4.3) and (4.4) and

thus is omitted for brevity.

For the boundary conditions, a healthy patient or a patient in early cancer

states can be eventually detected in either early or advanced states. The probability
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of such events are estimated using cancer progression rates and probability of showing

symptoms after period T . For a patient in advanced cancer states at time T , the cancer

will eventually be detected in the advanced states. Let γE(s) and γA(s) respectively

denote the probability of eventually detecting cancer in early and advanced states for

a patient in state s at time T . We have

γE
(
s = (0, d)

)
> γE

(
s = (1, d)

)
, γE

(
s = (2, d)

)
= 0, d ∈ D. (4.6)

The probabilities γA(s) are calculated using the fact that γE(s) and γA(s) are

complementary in order to exclude overdiagnosed cases.

4.3.2 Expected number of supplemental screenings

Let Vat (βt) denote the expected number of supplemental screenings a patient

undergoes in her remaining life years when she is in belief state βt and the prescribed

action in epoch t is a. Equations (4.7) and (4.8) calculate Vat (βt) for actions wait

and mammogram, respectively. When the prescribed action is wait, the patient may

undergo a supplemental screening when the cancer shows symptoms. Specifically, when

the patient is in state s = (h, d) ∈ Ω1, she may develop symptoms with probability

ηt(s). In the follow-up mammogram if she is classified as a high density and receives

a negative result, she will undergo supplement test. However, if she does not show

any symptoms (with probability 1 − ηt(s)), she proceeds to the next period with

probability ∑z∈Ω1 Pt(z|s) and the expected number of screening is VWt+1(ν[βt,W, .]).

VWt (βt) =
∑
s∈Ω1

∑
θ∈Θ̄

βt(s)
[
ηt(s)QM

t (θ|d)KM
t (M−|s) · 1

+ (1− ηt(s))
∑
z∈Ω1

Pt(z|s)VWt+1(ν[βt,W, .])
]
. (4.7)
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When the prescribed action is a mammogram, the patient receives a supple-

mental screening only if she is classified as a high density patient in the mammogram

screening and the mammogram result is negative. In such cases, she receives an

immediate cost of 1. If the supplemental test result returns positive and the patient is

actually in a cancer state, she leaves the model. In any other cases, the patient belief

state is updated based on the screening test(s) and corresponding observation she has

received and her future cost-to-go is calculated.

VMt (βt) =
∑
s∈Ω1

∑
θ∈Θ

βt(s)QM
t (θ|d)KM

t (M−|s)

[
0 +

∑
z∈Ω1

Pt(z|s)Vat+1
(
ν[βt,M, (θ,M−)]

)]

+
∑
s∈Ω1

∑
θ∈Θ̄

βt(s)QM
t (θ|d)KM

t (M−&S−|s)

[
1 +

∑
z∈Ω1

Pt(z|s)Vat+1
(
ν[βt,M, (θ,M−&S−)]

)]

+
∑

s=(h,d)
h=0

∑
θ∈Θ̄

βt(s)QM
t (θ|d)KM

t (M−&S+|s)

[
1 +

∑
z=(2,d)∈Ω1

Pt(z|s)Vat+1
(
ν[βt,M, (θ,M−&S+)]

)]

+
∑

s=(h,d)
h=0

∑
θ∈Θ

βt(s)QM
t (θ|d)KM

t (M+|s)

[
0 +

∑
z∈Ω1

Pt(z|s)Vat+1
(
ν[βt,M, (θ,M+)]

)]

+
∑

s=(h,d)
h∈{1,2}

βt(s)QM
t (θ̄|d)KM

t (M−&S+|s) · 1. (4.8)
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4.4 Parameters estimation and model validation

The data sources used to estimate the parameters of the proposed model are

presented in Table 4.1. Following the recommended screening policies in the U.S., we

use age 45 and 75 (corresponding to t = 0 and t = T = 30) as the earliest and latest

ages that a patient undergoes a breast cancer screening test. The start age of 45 is

considered based on the new ACS policy recommendation and the fact that the risk

of developing breast cancer is very small in women younger than 45 [74]. Moreover,

we assume no screening is administered after age 75 since the risks associated with

breast cancer screening outweigh its benefits in women older than 75 [90].

Table 4.1 Source of model inputs and parameters estimation

Model Parameter Parameter Values Source
Breast density state transition probabilities Table 3.2 Molani [91]
Breast density observation probability matrix Table B.1 Østerås et al. [92]
Age-specific health state transition probabilities Table A.4 Maillart et al. [15], Duffy et al. [65]
Age and density-specific mammography specificity Table B.2 Stout et al. [93]
Age-specific mammography sensitivity Table B.3 von Euler-Chelpin et al. [94]
Joint Mammogram/ultrasound sensitivity 0.885 Devolli-Disha et al. [95]
Joint Mammogram/MRI specificity 0.77 Group et al. [96]
Joint Mammogram/MRI sensitivity 0.95 Çağlayan et al. [82]
Initial density belief state Table B.4 Mandelblatt et al. [62]
Initial health belief state Table B.5 BCSC model[97]

4.4.1 Transition probabilities

As discussed earlier, previous studies have shown that mammographic breast

density is associated with increased breast cancer risk. We estimate the age-specific

and density-specific core transition probabilities of the breast cancer natural history

model by adjusting previously estimated transition probabilities by Maillart et al. [15]

using different odds ratios. In our baseline analysis, we use odds ratio of 3.73 which

is the midpoint of the odds ratio interval, reported in the literature ([65], [66]). We
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will perform a sensitivity analysis to investigate the impact of odds ratio on results

in Section 4.5.1. To calculate the density-specific health transition probabilities, we

adjust disease development and progression probabilities using the odds ratios of breast

cancer risk comparing high and low breast density patients and the proportion of

women in low and high breast density class. Let pαt be the proportion of women in low

breast density at age αt associated with time period t. Let It denote the general breast

cancer incidence probability (i.e., probability of going from cancer-free state to early

breast cancer state) at time t. Moreover, let Idt represent the incidence probability for

patients in breast density class d at time t. We calculate the incidence probability for

low and high breast density at time t, denoted by Idt and I d̄t respectively, using the

following set of equations.

It = pαtI
d
t + (1− pαt)I d̄t , (4.9a)

odds ratio =
I d̄t

1−I d̄t
I
d
t

1−Idt

. (4.9b)

Therefore, the core transition probability Pt
(
s′ = (1, d′)|s = (0, d)

)
is calcu-

lated as Pr(transition from density state d to d′) · Idt , where breast density transition

probabilities are adopted from previous chapter of this dissertation. The cancer

progression probabilities is calculated using a similar approach.

We estimate breast density transition probabilities using mammography screen-

ing data from Louisiana Cancer Prevention and Control Programs [4]. Patients in the

dataset are grouped into two different age categories of 40-54 and 55+ to capture the

impact of age and menopausal status on breast density. Previous studies have shown
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a significant dependency between the menopausal status and breast tissue density [98].

The dataset contains 436 patients with longitudinal breast density assessments between

2016 and 2020. Assuming that breast density is partially observable and missing

observations are ignorable, we estimated the transition probabilities using the Baum-

Welch method. Note that in the ignorable missingness mechanism, the probability

of missingness depends only on the observed values and not the missing values [34].

4.4.2 Observations probabilities

We estimate breast density information matrix for an average-skilled radiologist

using a previous study by Østerås et al. [92]. In their study, a number of radiologists

interpreted 537 mammogram images and reported their density classifications. The

radiologists classification results were then compared with the volumetric breast density

obtained from a commercially available software (Quantra). They reported that in

87% of the cases the clinical interpretation agreed with radiologist reports. We also

considered information matrices reflecting a perfect radiologist, and radiologists who

always downgrade and upgrade density classifications.

The health information matrix for each screening test are estimated using their

associated sensitivity and specificity. Specificity is defined as the probability of receiving

a negative result when the patient is in cancer free stage (i.e., true negative), and

sensitivity is the probability of receiving a positive result when the patient is in a cancer

state (i.e., true positive). Specifically, let senst(a|s = (h, d)) denote the sensitivity of

action a (a ∈ {M,B}) when the patient is in a cancer state (i.e., h ∈ {1, 2}) and density
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class d, and spect(a|d) denote the specificity of action a when the patient is in breast

density class d at time t. The health information matrix can be calculated as follows.

Ka
t

(
a−|s = (h = 0, d)

)
= spect(a|d),

Ka
t

(
a+|s = (h, d)

)
= senst(a|s = (h, d)), h = 1, 2,

Ka
t

(
a+|s = (h = 0, d)

)
= 1− spect(a|d),

Ka
t

(
a−|s = (h, d)

)
= 1− senst(a|s = (h, d)), h = 1, 2,

We use the cancer stage and density specific sensitivity and specificity of mam-

mography provided in von Euler-Chelpin et al. [94] and Stout et al. [93], respectively.

The sensitivity of joint mammogram/ultrasound and mammogram/MRI are adopted

from Devolli-Disha et al. [95] and Çağlayan et al. [82], respectively. We use the

specificity of joint mammogram/MRI from Group et al. [96].

4.4.3 Initial belief state

Initial health belief state is estimated using the Breast Cancer Surveillance

Consortium (BCSC) risk model [97]. which estimates advanced breast cancer risk

based on age, ethnicity, family history of breast cancer, history of a breast biopsy,

and BI-RADS breast density [97]. To estimate the early breast cancer risk, we

use the breast cancer stage distribution by race reported by the ACS [13], and the

race distribution in the U.S. [99]. The ratio of early to advanced breast cancer

cases among women in the U.S. is estimated as 1.78. The initial breast density

distribution for the general population are adopted from Mandelblatt et al. [62]. We

combine health and density initial belief to calculate the patient’s initial belief state,

β0(s) = P(Health state h | Density state d)· P(Density state d).
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4.4.4 Model validation

To validate the estimated health transition probabilities, we calculate i) lifetime

risk of developing breast cancer, ii) five-year and ten-year risks of developing breast

cancer from the proposed model, and iii) lifetime mortality risk of breast cancer with

some adjustments to the model proposed by Molani et al. [3]. The derived lifetime risk

of developing breast cancer and mortality risk of breast cancer are compared with the

corresponding risks reported by the ACS. The derived five-year and ten-year breast

cancer risks are compared with the associated risks obtained from the BCSC risk

assessment tool. Our estimation of the lifetime breast cancer risk (12.37% for general

population) is close to the reported ACS risk of 1 to 8 women (12.5%). More specifically,

we estimate the lifetime risk of developing breast cancer as 7.56% , 17.18%, and 12.37%

for women with low and high breast density, and the general population, respectively.

The estimated five-year risk of breast cancer using the BCSC risk assessment tool at age

60 and 70 are 1.68% and 2.00%, which are comparable with our estimations of 1.59%

and 2.37%. Moreover, the ten-year breast cancer risk estimated using the BCSC risk

tool are 2.51%, 3.45%, and 3.80% at age 50, 60 and 70. These are comparable with our

corresponding estimated risks of 2.17%, 3.76%, and 4.03%, respectively. In addition, we

estimate the lifetime breast cancer mortality risk under several screening policies (see

Table 4.2) for the general population (average-risk). The average of lifetime mortality

risks across all policy equals 2.88% which is comparable with the reported ACS risk of

1 to 38 women (2.63%) [100]. Note that we report the average lifetime breast cancer

mortality risk across different policies (screening frequencies) to implicitly account

for the variation in the breast cancer screening frequencies for women in the U.S.
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4.5 Numerical analyses

In this section, we evaluate the efficacy of supplemental screening and the

impact of radiologists bias on patients outcomes for some of the in-practice screening

policies. Table 4.2 presents the policies, denoted by P1 through P7, evaluated in this

study. The screening policies recommended by the two major U.S. health agencies, the

ACS and USPSTF, along with some screening guidelines in the European countries

are evaluated. These policies differ in terms of recommended screening starting and

stopping ages and the screening interval. Biennial and triennial screening with starting

and stopping age of 45 and 75, respectively, are also assessed. Additionally, we consider

do nothing (DN) policy with no recommended screening test in a patient lifetime.

Table 4.2 Screening policies considered in the numerical analysis

Policy ID Institution/Policy Start age End age Screening Interval
40-44 45-49 50-54 55+

P1 The annual option of the ACS policy (2015) 45 75 NA 1 1 1
P2 The ACS policy with switching interval (2015) 45 75 NA 1 1 2
P3 Biennial screening between age 45 and 75 45 75 NA 2 2 2
P4 Triennial screening between age 45 and 75 45 75 NA 3 3 3
P5 USPSTF (2016), AAFP (2016), France and Nether-

lands
50 74 NA NA 2 2

P6 Belgium, Denmark, Finland, Germany, Ireland,
Poland and Spain

50 69 NA NA 2 2

P7 United Kingdom 50 70 NA NA 3 3

In our numerical analyses, patients are classified into two classes of low and

high density where the former includes BI-RADs density classification of almost

entirely fatty and scattered fibroglandular and the latter includes heterogeneously

dense and extremely dense classes. This is because per the breast density notification

law, patients follow the same guideline weather they are in breast density class 3

or 4. Classifying patients into two density groups also reduces the computational

complexity, especially for policies with high number of prescribed screenings.
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We consider 4 different radiologist types: radiologist with minimizing reporting

requirement behavior (type 1), average-skilled radiologist (type 2), perfect radiologist

(type 3), and radiologist with minimizing liability behavior (type 4). Radiologists type

1 and 4, always downgrad and upgrade patients breast density categories, respectively.

Note that under radiologist type 1, the patient never undergoes a supplemental

test while under radiologist type 4, all screening mammograms are followed by a

supplemental test. Radiologist type 3 (perfect radiologist) classifies breast density

with 100% accuracy and radiologist type 2 (average-skilled) has 13% missclasisfication

probability [92], as discussed in Section 4.4.2.

Four patient cases differing in breast cancer risk characteristics including race,

breast density, breast cancer family history, and biopsy history are considered. The

initial belief for these patients are calculated using the BCSC risk model, described

in Section 4.4.3. These cases are as follows:

Case 1 : A 45-year-old white woman with no breast cancer family history or prior

biopsy. It is assumed that this case is in density class 1 at age 45. This patient is

considered to be a low risk case with initial (at age 45) estimated early and advanced

breast cancer risks of 0.28% and 0.16% .

Case 2 : All risk factors for this case are similar to Case 1, except for the initial

breast density which is assumed extremely dense. This patient’s risks of being in

early and advanced breast cancer states at age 45 are estimated as 1.19% and 0.67%,

respectively.
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Case 3 : A 45-year-old white woman with a family history of breast cancer and

prior biopsy and breast density class of 4. The patient’s estimated risks of early and

advanced breast cancer at age 45 are estimated as 16.38% and 9.2%, respectively.

Case 4 : This case represents the general population. The estimated risks of early

and advanced breast cancer for average-risk population at age 45 are 1.67% and 0.94%,

respectively [101]. Using the breast density distribution of the women population in

the U.S. provided by [62], we estimate the initial belief state for this case.

Figures 4.2 and 4.3 present the probability of detecting cancer in early and

advanced states and the expected number of supplemental screening tests for different

radiologist types when ultrasound and MRI are used as supplemental screening tests,

respectively. Note that under radiologists with minimizing reporting requirement be-

havior, patients undergo only mammogram tests. Obviously, more aggressive screening

strategies are more likely to detect the cancer in early states, where there is a higher

chance of survival. That is, 1) the ACS policy with fixed screening intervals has the

highest probability of detecting cancer in early states for all four cases and all radiologist

types. 2) Under radiologist type 4 where patients always undergo supplemental screen-

ings, patients receive the highest probability of being detected in early cancer state.
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   Probability of Detecting Cancer in Advanced State
   Probability of Detecting Cancer in Early State
    Expected Number of Supplemental Tests

Figure 4.2: Lifetime probabilities of detecting cancer in early and advanced states and
expected number of supplemental tests under different radiologist types–supplemental
test: ultrasound
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   Probability of Detecting Cancer in Advanced State
   Probability of Detecting Cancer in Early State
    Expected Number of Supplemental Tests

Figure 4.3: Lifetime probabilities of detecting cancer in early and advanced states and
expected number of supplemental tests under different radiologist types–supplemental
test: MRI
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Moreover, the results suggest that in terms of the probability of detecting

cancer in early states, the difference in performance of perfect and average-skilled

radiologists is very small. In fact, the performances of perfect and average-skilled

radiologists are very close to the performance of radiologist type 4. However, note

that the radiologist type 4 impose a significantly higher number of supplemental

screening tests on patients. For example, for Case 1, who would not really benefit

from supplemental screening since she most likely remains in low breast density in her

lifetime, the expected number of supplemental tests that she undergoes are 23.85 and

16.97 under the two ACS policies. Under the perfect radiologists, the expected number

of supplemental screening tests are 0.41 and 0.36. Note that this implies that the

patient undergoes 23.44 and 16.61 unnecessary supplemental tests under radiologist

type 4 which adversely affect her quality of life. Under the average-skilled radiologist,

the expected number of supplemental tests are 3.41 and 2.48 for the two ACS policies,

which suggests that the unnecessary number of supplemental tests are 3.00 and 2.12,

respectively. The expected number of unnecessary supplemental tests are smaller

under the other screening policies as they are less aggressive. This implies that average-

skilled radiologists performance is very close to perfect radiologists performance when

comparing the probability of detecting cancer in early state. However, in terms of the

expected number of supplemental tests, the difference might be significant (depending

on the aggressiveness of screening polices).

The differences in the performance of radiologists become more evident as the

patient’s risk increases. That is, for Case 1 and Case 3 the differences are at their

lowest and highest level, respectively. Specifically, for Case 1 and under ultrasound as
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the supplemental test, the probability of detecting the cancer in early state increases

by only 0.63%, 1.11% for the ACS policies (P1 and P2) when going from radiologist

type 1 to type 4. For Case 3, under radiologist type 4, the probability of detecting

breast cancer in early states for the two ACS policies are 84.95% and 83.83%, as

compared with 73.91% and 72.30% corresponding to radiologist type 1 (a difference of

11.04% and 11.52%, respectively). Case 2 and 4 fall in between Case 1 and 3, with a

slightly higher increase in probability of detecting cancer in early state when going

from radiologist type 1 to type 4 (i.e., an increase between 1.83% and 3.15%).

This also implies that the efficacy of supplemental screening highly depend on

the patients’ overall breast cancer risk and not only their breast density. For patients

with a lower risk (e.g., Case 1 ), the benefits of undergoing supplemental screening is

minimal, as discussed above. For Case 2 with all risk factors similar to Case 1 but

breast density, we observe an increase in early state probability detection when she

undergoes supplemental test. For instance, under mammogram only policy (radiologist

type 1), the early detection probability is 92.75% for policy P1 and this probability

increases to 94.89% and 95.00% under radiologist type 2 and 3 who recommend patient

undergo ultrasound test as needed, per breast density notification law. For Case 3,

however, undergoing ultrasound screening provide a significantly higher benefit, as

discussed above.

Comparing MRI and ultrasound, we observe that MRI always results in a

higher probability of detection in early state as it is more sensitive than ultrasound.

The difference, although, is negligible, especially for low risk cases. The highest

difference in performance of MRI and ultrasound occurs for Case 3. For this case,
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under the average-killed radiologist and biennial and triennial screening policies, using

MRI results in corresponding early detection probabilities of 81.85% and 78.56%,

as compared with 78.76% and 74.61% when undergoing ultrasound. On the other

hand, MRI imposes slightly lower expected number of supplemental test compared

to ultrasound. Note that MRI is a more aggressive test and therefore it might be

beneficial to be used only for the cases with higher risk such as Case 3.

The results show that in general, policies that recommend starting screening at

age 45 outperform those with starting age of 50. That is because breast cancer is more

aggressive at younger ages. The impact of starting age in particular and screening

policy in general on detecting cancer in early states is specifically very evident for

Case 3. This implies that the probability of detecting cancer in early states is more

impacted by the policy type and patient risk than the radiologist type.

All in all, the results show that 1) breast density is not a sufficient factor when

administering supplemental screening as the increases in probabilities of detecting

cancer in early states in all cases expect for Case 3 are very negligible among different

radiologist types for any given policy. Other risk factors must be taken into account

when recommending a supplemental screening (as shown in Case 3 ). 2) Average and

perfect radiologists performance are very similar and comparable to the performance

of radiologist type 4. Additionally, if the patient is not a high risk case, radiologist

type 1 performance is also comparable to the other radiologist types. This implies

that radiologist type impact is not as significant as other factors such as the patient

risk factors and screening frequency.
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4.5.1 Sensitivity analyses

In this section, we conduct sensitivity analyses on 1) odds ratio (OR) of

breast cancer risk comparing women in different density classes and 2) sensitivity and

specificity of supplemental screening and probability of cancer showing symptoms.

These parameters are selected due to the variability in their reported values in the

literature. We consider 4 different ORs, excluding the baseline OR. In the second

part of sensitivity analyses, we consider 18 different combinations for sensitivity and

specificity of the supplemental test and the probability of the cancer showing symptoms.

In total, for each patient case, we evaluate the outcomes under 832 settings.

Odds ratios

Based on the previous studies, the odds ratio for developing breast cancer for

the most dense compared with the least dense breast tissue categories ranges from

1.46 to 6.0 [65, 66]. We use the midpoint value (OR=3.73) in our baseline analyses,

presented in Figures 4.2 and 4.3. Here, we consider OR values of 1.46, 2.595, 4.865,

and 6. These ORs are selected to include minimum and maximum values reported

in the literature, as well as the midpoints values of the intervals formed by these

values and the baseline OR. Note that as the OR increases, the breast cancer risk gap

between women with high and low breast density increases.

Figure 4.4 presents the change in the early detection probability caused by

a change in OR values, when compared to the baseline. Note that negative and

positive changes present a decreased and an increased probability of early detection,

respectively.
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 OR = 1.46  OR = 2.595  OR = 4.865  OR = 6

Figure 4.4: Results of sensitivity analyses on odds ratio of breast cancer comparing
fatty and extremely dense classes. Note that negative/positive values imply
decreased/increased probability of detecting cancer in early states compared with the
baseline (OR = 3.73)
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Under the maximum OR value (OR = 6), we observe an average absolute

change of 1.08% across all cases, radiologist types and policies, with a maximum of 4.5%

(under Case 1, radiologist type 1, and do nothing policy). Under increased OR, patients

with low breast density (e.g., Case 1 at age 45) carry lower breast cancer incidence

and progression rates compared to the baseline. On the other hand, patients with high

breast density (e.g., Case 2 at age 45) carry higher breast cancer risk. Interestingly, the

results suggest that for both of these cases, the probability of early detection increases

(except for Case 2 under do nothing policy.) This is expected for Case 1 as this case

starts and most likely remains in density class 1 in her lifetime. For Case 2, the increase

in detection probability seems counter-intuitive since this case has an increased breast

cancer risk due to occupying density class 4. However, note that the increase in early

detection probability is very negligible and due to probable transition of this patient

to a low density class over the course of few epochs. Note that, based on our data and

previous studies, breast density stochastically decreases over time [67, 68, 69]. For

the other two cases, the changes are very negligible, especially for Case 3. Obviously,

under OR value of 4.865, the changes are smaller but follow similar patterns.

With a decreased OR, we observe a higher changes in probability of early

detection. Specifically, under OR value of 1.46, we observe a maximum change of

12.72% (for Case 1 under do nothing policy). In general, we observe a decrease in

probability of early detection for Case 1, 2, and 4 (except for do nothing policy for

Case 2 ). Note that with a decreased OR, patients with lower breast density carry

higher risk compared with the baseline which results in a decrease in probability of

early detection. Under do nothing policy for Case 2, we observe a very negligible
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change in early detection probability. Note that the small change in this case is mainly

contributed by the patient’s belief of being in cancer state. The patient’s cancer belief

under this policy is generally higher due to lack of screening tests and consequent less

informative risk adjustments of the patient. This is also true for Case 3 whose change

in early detection probability is very negligible for do nothing policy and screening

policies starting at age 50.

Generally, with increased/decreased OR we observe an increase/decrease in

early detection probability. The magnitude of changes, however, vary across different

patients and screening policies. The results, in general, are consistent and prompt

comparable conclusions with those derived under the baseline OR.

Supplemental test accuracy and probability of cancer symptoms

We consider 3 different levels of sensitivity and 3 different levels of specificity

for supplemental screening test. We also consider 2 different levels for the probability

of showing symptoms. Using a full factorial design, we have 18 different combinations

for these parameters. We consider 1) joint sensitivity of mammogram and ultrasound

decreased by 5%, 2) joint sensitivity of mammogram and MRI increased by 5%, and

3) the midpoint of the interval formed by the joint mammogram/ultrasound and

mammogram/MRI sensitivity values in the baseline. Similarly, we calculate three

levels for supplemental screening specificity. We consider 5% increase and decrease in

the baseline probability of showing symptoms.

Figure 4.5 presents the change in the probability of detecting cancer in early

state for Case 3 under average-skilled radiologist. We present the results only for
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Case 3 for brevity; however, note that in general, sensitivities to parameters changes

are smaller for the other cases. For example, the maximum change in the probability

of detecting cancer in early states for Case 1 is only 1.57% when compared with the

baseline. The maximum change for Case 3 is 8.44%.

Obviously, the changes in sensitivity of testing has the highest impact on the

probabilities of early detection. As the test sensitivity increases, the probability of

detecting cancer in early state increases. The increase in early detection probability is

smaller for policies with more frequent screening policies as more frequent screenings

compensate for possible false negatives. The increase is at the highest for policy P4,

due to the longer intervals between subsequent recommended screening tests (3 years).

Note that for policy P7, although following the same screening frequency, the change

is very small due to the delayed screening start age. That is, it is very likely that the

cancer remains undetected and grows to advanced state between age 45 and 50 which

consequently decreases the chance of detecting the cancer in early states. Recall that

Case 3 is a high risk case and has an aggressive breast cancer.

Similarly, increasing the probability of showing symptoms results in an increase

in the probability of detecting cancer in early states. The highest impact is associated

with less aggressive policies. For instance, for Case 3 and under do nothing policy, we

observe an increase of 3.86% in the probability of early detection when increasing the

probability of showing symptoms. On the other hand, for the ACS policy with fixed

screening interval (P1), we observe the lowest sensitivity to the probability of showing

symptoms, with an average increase of 1.43% across different sensitivity analyses

combinations considered here.
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Specificity of screening tests has an opposite impact on the probability of

detecting cancer in early states. That is, increased joint specificity causes a decrease

in the probability of early detection. This happens as with increased joint specificity,

the number of false positive observations, resulting in consequent biopsies, decreases.

Recall that biopsies are perfect and determine with certainty that the patient is cancer

free. This causes an overall decrease in the belief that the patient is in cancer states

and the probability of detecting cancer in early state.

In summary, the sensitivity of joint mammogram and supplemental test has

the largest and the specificity of joint mammogram and supplemental test has the

smallest impact on the probability of early detection. The conclusions in the baseline

analyses still hold. That is, as long as a supplemental test is administered for a patient

(radiologist types 2–4), a bias in radiologist’s classification has a negligible impact on

the probability of detecting cancer in early states. That is, under the same policy, the

difference in the probabilities of early detection across radiologists type 2 through 4

is minimal. Moreover, breast density should not be the sole determining factor as

whether a patient should be referred to supplemental screening tests. Other breast

cancer risk factors and frequency of screening tests should be considered when making

such referrals.
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Figure 4.5: Results of sensitivity analyses on joint mammogram and supplemental
test sensitivity and specificity and the probability of showing symptoms: Case 3 and
average-skilled radiologist
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4.6 Conclusion

Breast density is associated with increased breast cancer risk and decreased

mammography screening sensitivity. To promote early breast cancer detection in

women with high breast density, breast density notification laws have been enacted

in 38 states. The laws, however, have caused controversial debates on 1) whether

supplemental screening improves patients’ outcomes and 2) the impact of radiologists

bias in breast density classification on patient’s outcomes.

In this study, we develop a POMC model, incorporating both patients’ health

and breast density dynamics, to investigate the impact of supplemental screening tests

and role of radiologists’ bias on a patients’ health outcomes. Specifically, we consider

the conditional probability of detecting breast cancer in early and advanced states

given the patient develops cancer in her lifetime. We consider the expected number

of supplemental tests a patient undergoes in her lifetime as another outcome.

Our results indicate that 1) breast density should not be the only risk factor

when referring a patient to supplemental screening and 2) the radiologist’s bias may

affect the efficacy of supplemental screening. Specifically, patient outcomes may be

significantly affected under radiologists who consistently upgrade or downgrad patient’s

breast density. However, the bias introduced by an average-skilled radiologist may

not significantly affect the patients’ outcomes.

Given that screening technologies are continuously advancing, a possible future

research direction would be to analyze the impact of emerging technologies (e.g.,

tomosynthesis) on the necessity of supplemental screening tests for women with high

breast density. Moreover, patients’ adherence is a very influential factor on the
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effectiveness of a screening policy and patients’ outcomes that is not considered in

this study. A possible future work is to incorporate this factor.



CHAPTER 5

CONCLUSIONS

This dissertation proposed and investigated the use of stochastic decision

models in breast cancer preventive care. We addressed several controversial issues in

breast cancer screening programs, including overdiagnosis risk and the implications of

use of supplemental screening test in breast ccancer preventive care.

In chapter 2, we use two stochastic frameworks for the patient’s adherence and

the breast cancer natural history to estimate different measures of overdiagnosis risk

of mammography screening while incorporating uncertainty in patients’ adherence

behaviors. The measures of overdiagnosis risk investigated in this study include

the proportion of detected cancers that are overdiagnosed in a screened population,

mortality risk considering overdiagnosis, and overtreatment costs. We analyze the

harm-benefit trade-off of some in-practice policies by measuring the number of lives

that are saved per each overdiagnosed case. We also estimate the associated proportion

of overtreatment cost to breast cancer care cost for each policy. Our results show that,

although overdiagnosis rate is relatively high in breast cancer screening, the benefits

of breast cancer mammography screening outweigh the overdiagnosis risk.

In chapter 3, we reviewed several methods to estimate Markov model pa-

rameters using a set of data with intermittent missing values. We discussed three

108
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categories of methods for datasets with ignorable missingness mechanism including

deletion, imputation, and augmentation. Moreover, we executed a frequentist setting

(Expectation-Maximization algorithm) and a Bayesian framework (Gibbs Sampler)

on several simulated data to measure the bias of the results from each algorithm.

Finally, we used Baum-Welch algorithm on a set of sparse unbalanced data consist of

hidden observations for breast density states of a group of patients at Louisiana Cancer

Prevention and Control center. Estimated breast density transition matrices specify a

relatively high probability that successive observations recur. This implies that future

outcome has a high dependency on the current outcome. The results of this chapter

were used in chapter 4 where we developed a POMC model to investigate the impact

of the radiologists’ expertise level and behavior on the implementation of the breast

density notification law and their implications on patients’ health outcomes. The

efficacy of ultrasound and MRI as supplemental screening methods are also studied

under implementation of the density notification laws. The patients’ outcome measures

investigated in this chapter include the lifetime probability of detecting cancer in early

and advanced cancer states in the population of patients who would eventually develop

cancer at some point in their lifetime and expected number of required supplemental

screening for each policy under radiologists with different level of expertise and different

supplemental screening. Based on our results, referring patients to a supplemental test

solely based on their breast density may not significantly improve patient’s outcomes

and other risk factor might be considered when making such decision. Additionally,

average-skilled radiologists performance are comparable with a perfect radiologist



110

performance. However, significant bias (i.e., consistent upgrading and downgrading of

breast density classes) can negatively impact a patient health outcomes.

Some possible future works include:

• Development of models to determine race-specific overdiagnosis risk given the

disparity in incidence and mortality among different races.

• Development of an optimization model to derive optimal screening policy that

controls the risk of overdiagnosis.

• Implementation of Markov model parameter estimation methods on a larger

breast density dataset with more number of observations for each patient to

reduce the bias of these estimations.

• Analyzing the impact of emerging technologies (e.g., tomosynthesis) on the

necessity of supplemental screening tests for women with high breast density.

• Considering patients’ adherence as an influential factor on the effectiveness of a

screening policy and patients’ outcomes in analyzing the effectiveness of breast

density notification law.



APPENDIX A

PARAMETER VALUES FOR CHAPTER 2

Table A.1 Adherence state transition probabilities

Time t+1

40-49 years 50-64 years 65+ years

Time t Regular Irregular Regular Irregular Regular Irregular

Regular 0.7627 0.2372 0.7299 0.2700 0.7429 0.2570

Irregular 0.3837 0.6162 0.2356 0.7643 0.1440 0.8559

Table A.2 Adherence rates

40-49 years 50-84 years 85-100 years

Regular screening 0.9014 0.9551 0.8924

Irregular screening 0.2914 0.2619 0.0603

Table A.3 Initial adherence belief

Regular screening Irregular screening

Initial adherence belief 0.2309 0.7691
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Table A.4 Health state transition probabilities

Time t+ 1
s1 s2 s3 s4 s5 s6

Time t 40-44 years
s1 0.99784 0.000975 0 0 0 0.00118
s2 0 0.7309 0.26792 0 0 0.00118
s3 0 0 0.928548 0.070272 0 0.00118
s4 0 0 0 0.8442 0.15462 0.00118
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

45-49 years
s1 0.99703 0.001281 0 0 0 0.001691
s2 0 0.7309 0.267409 0 0 0.001691
s3 0 0 0.928037 0.070272 0 0.001691
s4 0 0 0 0.8442 0.154109 0.001691
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

50-54 years
s1 0.99563 0.001682 0 0 0 0.00269
s2 0 0.7309 0.26641 0 0 0.00269
s3 0 0 0.927038 0.070272 0 0.00269
s4 0 0 0 0.8442 0.15311 0.00269
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

55-59 years
s1 0.99371 0.00198 0 0 0 0.004314
s2 0 0.7309 0.264786 0 0 0.004314
s3 0 0 0.925414 0.070272 0 0.004314
s4 0 0 0 0.8442 0.151486 0.004314
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

60-64 years
s1 0.99086 0.002214 0 0 0 0.006927
s2 0 0.7309 0.262173 0 0 0.006927
s3 0 0 0.922801 0.070272 0 0.006927
s4 0 0 0 0.8442 0.148873 0.006927
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

Continued on next page
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Table A.4 Health state transition probabilities - Countinued . . .

s1 s2 s3 s4 s5 s6
65-69 years

s1 0.98656 0.002377 0 0 0 0.011064
s2 0 0.7309 0.258036 0 0 0.011064
s3 0 0 0.918664 0.070272 0 0.011064
s4 0 0 0 0.8442 0.144736 0.011064
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

70-74 years
s1 0.97945 0.002509 0 0 0 0.018045
s2 0 0.7309 0.251055 0 0 0.018045
s3 0 0 0.911683 0.070272 0 0.018045
s4 0 0 0 0.8442 0.137755 0.018045
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

75-79 years
s1 0.96702 0.0024 0 0 0 0.030581
s2 0 0.7309 0.238519 0 0 0.030581
s3 0 0 0.899147 0.070272 0 0.030581
s4 0 0 0 0.8442 0.125219 0.030581
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

80-84years
s1 0.92519 0.002075 0 0 0 0.07274
s2 0 0.7309 0.19636 0 0 0.07274
s3 0 0 0.856988 0.070272 0 0.07274
s4 0 0 0 0.8442 0.08306 0.07274
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

85-90 years
s1 0.92519 0.002075 0 0 0 0.07274
s2 0 0.7309 0.19636 0 0 0.07274
s3 0 0 0.856988 0.070272 0 0.07274
s4 0 0 0 0.8442 0.08306 0.07274
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

Continued on next page
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Table A.4 Health state transition probabilities - Countinued . . .

s1 s2 s3 s4 s5 s6
90-94

s1 0.92519 0.002075 0 0 0 0.07274
s2 0 0.7309 0.19636 0 0 0.07274
s3 0 0 0.856988 0.070272 0 0.07274
s4 0 0 0 0.8442 0.08306 0.07274
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

95-100
s1 0.92519 0.002075 0 0 0 0.07274
s2 0 0.7309 0.19636 0 0 0.07274
s3 0 0 0.856988 0.070272 0 0.07274
s4 0 0 0 0.8442 0.08306 0.07274
s5 0 0 0 0 1 0
s6 0 0 0 0 0 1

Table A.5 Mammography sensitivity

Early breast cancer Advance breast cancer

40-49 50+ 40-49 50+

Mammography sensitivity 0.75033 0.85449 0.81860 0.93224

Table A.6 Initial health belief

Healthy Early breast cancer Advance breast cancer

0.997 0.0006 0.0024
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Table A.7 Survival rate for screen-detected breast cancer by state

State Survival probabilities

Healthy to Healthy 0.99

Healthy to Early 0.004

Early to Early 0.7309

Early to Advanced 0.263

Advanced to Symptomatic 0.0703

Advanced to Advanced 0.923

Table A.8 U.S. age composition

Age groups Population by age Age groups Population by age

40-44 years 10,496,987 70-74 years 5,034,194

45-49 years 11,499,506 75-79 years 4,135,407

50-54 years 11,364,851 80-84 years 3,448,953

55-59 years 10,141,157 85-89 years 2,346,592

60-64 years 8,740,424 90-94 years 1,023,979

65-69 years 6,582,716 95-99 years 288,981

Table A.9 Breast cancer treatment costs

Cost

Early breast cancer treatment $ 32103

Advance breast cancer treatment $ 51837

Screening $ 102



APPENDIX B

PARAMETER VALUES FOR CHAPTER 4

Table B.1 Breast density observation probability matrices

Observed state

Low density High density

True state Radiologist with Min. Reporting Requirement

Low density 1 0

High density 1 0

Average-Skilled Radiologist

Low density 0.87 0.13

High density 0.13 0.87

Perfect-skilled Radiologist

Low density 1 0

High density 0 1

Radiologist with Min. Liability

Low density 0 1

High density 0 1
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Table B.2 Age and density-specific mammography specificity

Age groups

Breast density 45-49 50-54 55-60 60-64 65-69 70-74 75-79

Low density 0.901563 0.916036 0.916889 0.917585 0.917988 0.918083 0.918201

High density 0.866351 0.889283 0.888364 0.887937 0.887579 0.88737 0.887407

Table B.3 Density-specific mammography sensitivity

Low breast density High breast density

Mammography sensitivity 0.765 0.58

Table B.4 Initial density belief state

Age groups

Breast density 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

dI 0.046 0.055 0.075 0.098 0.117 0.13 0.136 0.139

dII 0.338 0.364 0.422 0.471 0.5 0.521 0.537 0.539

dIII 0.472 0.458 0.416 0.373 0.338 0.313 0.296 0.291

dIV 0.144 0.123 0.086 0.058 0.045 0.036 0.031 0.031

Table B.5 Initial health belief state

Health state

Patient Cancer free Early breast cancer Advance breast cancer

Case 1 0.995552 0.002848 0.0016

Case 2 0.981374 0.011926 0.0067

Case 3 0.74424 0.16376 0.092

Case 4 0.973868 0.016732 0.0094



APPENDIX C

DATA PRE-PROCESSING

In Chapter 3, we applied several hidden Markov model parameter approximation

methods to estimate breast density transition probabilities using mammography

screening data from Louisiana Cancer Prevention and Control Programs [4]. This

longitudinal data has been gathered from 436 patients since 2016 and sent as the

physical reports. These reports contained information such as the age of the patient,

BI-RADS health and breast density state of the patient, date of screening, radiologist

name, and the future recommendation for the patient. The first data preprocessing

step was to convert these text files to excel worksheets manually.

In addition, the dataset contains missing values which comes from the missed

scheduled visits of patients for evaluation of their health and breast density status. We

assume the missingness mechanism in this dataset is ignorable since the probability of

a patient shows up for breast screening mostly depends on their previous screening

results rather than current observation. This comes from the fact that the symptomatic

breast cancer usually happens at the very advanced stage of a cancer, which means

that patients who show up for screening are mostly because of previous suspicious

results or to follow-up the screening policy recommendation. In the next step, we

divided observations based on the age of patients into two groups (40− 55/55+) in
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order to consider the age and menopause effects on breast density dynamics in our

analysis. A small section of this dataset is presented below.

Table C.1 A sample of dataset for estimation of breast density dynamics

ID Date of birth Date of screening Age Density state Health state Future recommendation Radiologist

332398 11/27/1953 04/05/2016 62 dII 2 Screening in 1 year MBM

332398 11/27/1953 11/06/2017 64 dII 2 Screening in 1 year MBM

424266 10/23/1956 01/22/2016 59 dI 1 Screening in 1 year MBM

424266 10/23/1956 11/07/2017 61 dI 1 Screening in 1 year MBM

415831 08/08/1951 01/20/2015 63 dIII 2 Screening in 1 year MBM

415831 08/08/1951 06/19/2015 64 dIII 2 Screening in 1 year LFSR

415831 08/08/1951 08/26/2016 65 dIII 2 Screening in 1 year BLM

415831 08/08/1951 11/07/2017 66 dII 2 Screening in 1 year MJM

624400 06/28/1970 11/01/2016 46 dIII 2 Screening in 1 year BLM

624400 06/28/1970 11/07/2017 47 dIII 2 Screening in 1 year MJM

298288 11/23/1950 10/12/2016 66 dII 2 Screening in 1 year BLM

298288 11/23/1950 11/08/2017 67 dI 2 Screening in 1 year MJM

390921 08/12/1960 11/04/2016 56 dII 1 Screening in 1 year BLM

390921 08/12/1960 11/08/2017 57 dII 1 Screening in 1 year MJM



APPENDIX D

PSEUDO-CODES

D.1 Codes for Chapter 2

Algorithm 1: Calculate patient’s adherence-health belief state
t← 0;
while t <= T do

t← t+ 1;
if at == W then

κht+1(s′b)← κ[κht ,W, ·](s′b);
ηχt+1(s′h)← τ [ηχt ,W, ·](s′h);

else
κht+1(s′b)← κ[κht ,M, ot](s′b);
ηχt+1(s′h)← τ [ηχt ,M, θt](s′h);

end
end

Algorithm 2: Calculate patient’s outcomes in Chapter 2
t← T ;
while t => 0 do

t← t− 1;
if at == W then

Calculate ψWt (ηχt) using Equation 2.14 recursively;
else

Calculate ψMt (ηχt) using Equation 2.15 recursively;
end

end
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D.2 Codes for Chapter 3

Algorithm 3: Baum-Welch Algorithm
Initialize;
for ν = 0 do

Select λ(0) = (π(0), B(0), A(0));
end
Iterative calculation ;
for ν = 1, 2, · · · do

πνi ←
∑Γ

η=1 γ
ν
η,1(i)∑Γ

η=1

∑S

i=1 γ
ν
η,1(i)

;

aνij ←
∑Γ

η=1

∑T−1
t=1 ξνη,t(i,j)∑Γ

η=1

∑T−1
t=1 γνη,t(i)

;

bi(j)ν ←
∑Γ

η=1

∑T

t=1 γ
ν
η,t(i)δ(yη,t=j)∑Γ

η=1

∑T

t=1 γ
ν
η,t(i)δ(yη,t 6=.)

;

where,
αη,t(i)← P (Yη,1 = yη,1, ...,Yη,t = yη,t, sη,t = i|λ)
βη,t(i)← P (Yη,t+1 = yη,t+1, ...Yη,T = yη,T |sη,t = i, λ)

γη,t(i)← αη,t(i)βη,t(i)∑S

j=1 αη,T (j)

ξη,t(i, j)← αη,t(i)aijbj(yη,t+1)βη,t+1(j)∑S

i=1 αη,T (i)

end
Termination;
Obtain λν+1 = (πν+1, Bν+1, Aν+1)
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D.3 Codes for Chapter 4

Algorithm 4: Calculate patient’s density-health belief state
t← 0;
while t <= T do

t← t+ 1;
if at == W then
βt+1 ← ν[βt,W, ·](z);

else
βt+1 ← ν[βt,M, ot](z);

end
end

Algorithm 5: Calculate patient’s outcomes in Chapter 4
t← T ;
while t => 0 do

t← t− 1;
if t == T then

Calculate γE(s) and γA(s) using cancer progression rates and
probability of showing symptoms after period T

else
if at == W then

Calculate EWt (βt) using Equation 4.2 recursively;
Calculate AWt (βt) using Equation 4.3 recursively;
Calculate VWt (βt) using Equation 4.7 recursively;

else
Calculate EMt (βt) using Equation 4.4 recursively;
Calculate AMt (βt) using Equation 4.5 recursively;
Calculate VMt (βt) using Equation 4.8 recursively;

end
end

end
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