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ABSTRACT 

Connectivity Granger-causality measures in the frequency domain, such as the 

Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) and their 

variants, constitute a family 𝜙 of measures that stem from the modeling of 

multidimensional time series by multivariate autoregressive (MVAR) models. 𝜙 

measures have become popular for evaluation of causal interactions in neuronal 

networks. Surrogate and asymptotic statistical analysis are the two most frequently used 

methods to quantify the statistical significance of the derived interactions, a critical step 

for validation of the results. Each method has its own pros and cons, with the recently 

published asymptotic methodology being faster. The state-of-the-art asymptotic methods, 

introduced by Baccala et al., run fairly fast on low-dimensional datasets but become 

impractical for high-dimensional datasets due to the involved computational time and 

memory demand; the amount of calculations increases exponentially with the number of 

time series to be analyzed. This is a huge limitation in the application of 𝜙 measures to 

fields that deal with a large number of concurrently acquired time series from probing of 

complex systems such as the human brain. In this study, we optimized the original 

algorithms for fast asymptotic analysis of  𝜙 measures and achieved a reduction of their 

computation speed by at least three orders of magnitude, thus allowing computation of 

connectivity measures and their significance in real-time from a plurality of concurrently 

recorded biological signals. The optimizations were accomplished by a decrease of the 



iv 

dimension of the involved matrices, reduction of the calculation time of complex 

functions (e.g. eigenvalue estimation and Cholesky factorization), and variable 

separation. The superior performance of the proposed optimized algorithms in the 

estimation of the statistical significance and confidence interval of 𝜙 measures of causal 

interactions is shown with simulation examples. 
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CHAPTER 1 

 

INTRODUCTION 
 

Analysis of multivariate (MV) time series collected from dynamical systems is 

widely implemented for the study of systems connectivity. The two main connectivity 

approaches are measuring of coupling, reflecting the presence of interactions, and 

causality, reflecting driver-response relationships between pairs of series in the MV data 

set. Causality is interpreted in the context of directional information transfer, whereas 

coupling evaluates non-directional exchange of information and accounts for the 

existence of both forward and backward interactions [1, 2]. In the context of “brain 

connectivity”, coupling and causality are typically referred to as “functional” and 

“effective” connectivity respectively. Thus, while “functional” connectivity indicates the 

existence of dependencies among brain sites, “effective” connectivity also takes into 

account their directional interdependencies. Measures of functional and effective 

connectivity have been developed using linear and nonlinear methods [1, 3]. 

Formulations of linear connectivity measures derived from multivariate 

autoregressive (MVAR) analysis of multivariate time series have been introduced in 

recent years. The spectral signature of the developed MVAR models is used to provide 

measures of interactions among the time series at specific frequency components [1]. 

These measures are extensively used to analyze physiological systems, especially to 

quantify interactions between specific oscillatory components of the brain’s electrical 
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signals such as electroencephalograms (EEG) and magnetic signals such as 

magnetoencephalograms (MEG) [4, 5]. MVAR analysis of the estimated spectral 

connectivities of a densely interconnected multivariate (MV) system such as the brain 

contributes to the understanding of the neurophysiological mechanisms underlying the 

communication between areas of the brain with oscillatory behavior at particular 

frequencies, and also in assessing the mechanism of impairment of their communication 

in pathological conditions [1]. A few current examples of the applications of this analysis 

to brain disorders include epilepsy (e.g. epileptogenic focus localization), sleep and 

cognition abnormalities, Parkinson’s and Alzheimer’s diseases [2, 6-13]. 

W. J. Granger defined causality by including the following two main criteria in a 

probabilistic formulation of his analysis of time series [14]: “If event X causes event Y, 

then: (i) event Y (i.e. the effect) should occur later than event X, and (ii) the likelihood for 

occurrence of Y given X is greater than the likelihood of Y without occurrence of X”. 

Thus, the time series X Granger-causes time series Y implies that past values of X 

contain information and can be used for prediction of future values of Y [15]. Two main 

groups of connectivity quantifiers derived from MVAR, the Directed Transfer Function 

(𝐷𝑇𝐹) (group ) and Partial Directed Coherence (𝑃𝐷𝐶) (group ) rely on the concept of 

Granger-causality and are herein referred to as the 𝜙 family measures of connectivity 

[16-18]. 

Group  and  measures can provide the direction of connectivities, whether they 

are cascaded (i.e. direct or indirect) in the case of  measures, or only partial (direct) in 

the case of  measures. Modified connectivity measures (generalized  and  measures) 

have been developed to account for the existence of different scaling across time series 
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by proper normalization. Model-free connectivity measures (information  and  

measures)  have also been developed based on information theory ([16, 19, 20]. Details 

about the characteristics of the members of the 𝜙 family measures and their relations are 

provided in chapter two. 

MVAR modeling allows not only the estimation of the strength and direction of 

the interaction but also statistical tests of their significance [18]. Providing statistical tests 

of the estimated connectivity measures is a critical component of network analysis. 

Practical estimation problems, such as random correlation between signals, affect the 

estimation of MVAR coefficients and subsequently the validity of the connectivity 

measures that are derived from them [1, 21, 22]. 

Statistical tests employ the null hypothesis of absence of connectivity and can 

theoretically detect the true interaction between two signals at a specified level 

(threshold) of significance. Parametric (model-based, data allow the use of known 

probability distributions) and nonparametric (not model-based, no need for conditions to 

be satisfied for use of a known distribution) approaches are the two main techniques 

employed to test the null hypothesis based on the sampling distribution of connectivities 

resulting from the use of the connectivity measures [23]. 

Resampling nonparametric methods such as bootstrapping, jackknife, half-

sampling, subsampling, leave-one-out method (LOOM), do not need any prior 

assumption about data distributions. The basic idea is to estimate the standard error and 

distribution of the estimator by drawing sufficiently large number of samples. Having 

mean and standard error of the estimated connectivity measures, several statistical tests, 
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such as t-test under the assumption of Gaussian distribution, can be applied to 

characterize their uncertainty [22, 24-26]. 

Surrogate methods are also nonparametric techniques but construct a large 

number of new datasets from the original datasets that possess all properties of the 

original datasets except the one property under statistical investigation. Then, 

connectivity measures are estimated for the constructed data sets as well as the original 

data set. The statistically significant connectivity measures are then determined in 

comparison with the connectivity measures from the surrogate series by performing 

statistical tests [27]. Such a developed surrogate method, called causal Fourier transform 

shuffling (CFT), has been developed by Faes et al, 2010 [28] for the   family 

connectivity measures. 

Fourier transform (FT) and amplitude adjusted Fourier transform (AAFT) 

techniques are nonparametric surrogate methods that preserve the linear behavior (by 

preserving the power spectrum and autocorrelation of the original datasets) in the 

constructed surrogate datasets while destroying any nonlinear behavior by randomizing 

the phase derived from the FT of the original datasets [27]. These FT-based methods 

were first introduced to test the null hypothesis of linearity of time series, and have also 

been performed for assessment of the coherence, PDC, and DTF in multivariate processes 

[17, 29, 30]. In the multivariate FT surrogates investigating the null hypothesis that the 

data is a realization of a linear multivariate Gaussian process, the cross-spectrum between 

signals should be preserved in addition to the autocorrelation of each signal. The 

computational burden for multivariate surrogate analysis and CFT shuffling increases 

exponentially with the number of datasets (dimension) to be analyzed [21, 27, 28]. 
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While nonparametric statistical approaches are more general, with limited 

assumptions about the nature of the original datasets, they face limited application to 

practical problems compared to ones by parametric approaches due to the computational 

costs involved. Even though the computational cost of sophisticated parametric 

approaches could make them a good choice in real-time applications, where the dataset 

size is small or where it is difficult to derive the asymptotic distribution, estimated 

connectivity measures should be justified by empirical methods[21, 22]. 

The performance of the derived distribution of measures (e.g. connectivity 

measures) depends on signal-to-noise ratio (SNR), length and scale variability of the data, 

as well as the number of constructed shuffled datasets. For example, it has been shown 

that noise in the data leads to an increase in the statistical threshold and thus, a high rate 

of false negatives. In this case, in a connectivity analysis, weak connections are more 

probable to be erroneously discarded. Although increasing the number of datasets 

improves the false negatives by reducing the threshold, it may produce large number of 

false positives [21]. In the case of high scale (amplitude) variations in the data, different 

normalizations of connectivity measures increase the number of false positives of 

significant connectivity by statistical nonparametric approaches. The number of 

constructed surrogate datasets should be large to provide reliable assessments. For 

example, it is recommended that the starting point for the number of surrogates to be at 

least 100, and it should increase based on the spread of surrogate statistics [27]. For all 

the above reasons, the computational cost of the empirical (nonparametric) methods 

limits their applications, especially in the case of high-dimensional datasets, like EEG or 

MEG signals that involve recorded signals from hundreds of brain sites [21].  
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When the exact statistical distribution of an estimator is difficult to obtain, we rely 

on its asymptotic distribution, that is, the distribution approximated based on the 

properties of statistics from large datasets. In parametric statistical approaches, the 

asymptotic properties of a continuous and differentiable function of a random variable 

(e.g. a measure of connectivity) can be obtained by performing the delta method that 

consists of Taylor series expansion and Slutsky’s theorem [31]. The asymptotic 

parametric approach makes all different connectivity formulations independent of applied 

normalization and thus the statistical testing for actual connectivities more robust [21]. It 

has also been shown that asymptotic approaches, based on the analytical estimation of the 

statistical distributions of the estimators, provide almost identical assessments like the 

ones from empirical approaches [21].  

The asymptotic properties of PDC under the null hypothesis were examined by 

Schelter et al. in 2006 [32] and later completed in terms of both null and non-null cases by 

Takahashi et al. in 2007 [33]. In 2013 and 2016, Baccala et al. analytically derived the 

asymptotic behavior of all the different forms of  and  [34, 35]. They demonstrated that 

the squared 𝜙 estimators asymptotically converge to 𝜒2 distribution in the null case and to 

a Gaussian distribution in the non-null case. 

The methods developed by Baccala are the state-of-the-art in this area and are 

currently included in the “unified asymptotic MATLAB toolbox”. They are herein first 

reviewed and then further optimized. A major disadvantage of the current unified 

asymptotic approach is the time required for calculation of the statistics of the estimated 

measures, which increases also exponentially with the dimension of the employed models 
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that fit the data (e.g. number of EEG signals). Nowadays, multichannel EEG is performed 

with 100 to 200 sensors (electrodes), and MEG with 200 to 300 sensors, over hours. 

Therefore, the current algorithms in the unified asymptotic toolbox cannot be practically 

applied to multivariate analysis of such multivariate EEG or MEG recorded signals 

towards an effective brain network analysis  [36].  

In this study, we first review the existing formulation of the unified asymptotic 

statistics (chapter two) and then propose a new, much faster, asymptotic statistical 

analysis, which employs successive decomposition of the time-consuming processes by 

special matrix manipulation techniques and separation of variables methodology. The 

mathematical details related to this novel methodology are provided in chapter three and 

a sequence of appendices (Appendix A1 to A6 and Appendix B1 to B3). These 

optimization procedures result in orders of magnitude of faster algorithms that can deal, 

in close to real-time, with derivations of the asymptotic statistics of the estimated 

connectivity measures from 100+ dimensional data series. 

Validation of the proposed algorithms was accomplished in a reported in the 

literature exemplary simulation system. The results from this validation are presented in 

chapter four, and the derived overall conclusions from this study and suggestions for 

future work in chapter five.
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CHAPTER 2 

 

BACKGROUND  
 

The objective of this chapter is to provide an overview of the Multivariate 

Autoregressive (MVAR) process, and some common connectivity measures we focused 

on in this study. The asymptotic properties of these connectivity quantifiers noted as 𝜙 

measures are reviewed, and the original unified asymptotic algorithm introduced by 

Baccala et al. [34, 35] and its disadvantage are discussed.  

2.1 MVAR Model and its Resultant Connectivity Measures  

One of the most common tools in MV time series analysis is the multivariate 

autoregressive (MVAR) model. Let 𝒚(𝑛) = [𝑦1(𝑛), 𝑦2(𝑛), y(𝑛),… , 𝑦𝐾(𝑛)]𝑇 be a 𝐾-

dimensional vector at time 𝑛 = 𝑡 × 𝑓𝑠, where 𝑓𝑠 is the sampling frequency of the data, 

and with its components being zero mean time series, 𝑦𝑖(𝑛). Then, a 𝐾-dimensional 

autoregressive (MVAR) model of order 𝑝, where each present value 𝒚(𝑛) depends on 𝑝 

past values of the observed time series is constructed as: 

 
𝒚(𝑛) = ∑𝐴(𝜏)𝒚(𝑛 − 𝜏)

𝑝

𝜏=1

+ 𝝐(𝑛) Eq. 2-1 

 𝑝 may be determined using criteria developed in the framework of information 

theory, and 𝐴(𝜏) is the model’s 𝐾 × 𝐾 coefficient matrix (i.e. model parameters) at lag 𝜏 



9 

 

, (𝜏 = 1,… , 𝑝) estimated through minimization of the residual noise 𝝐(𝑛). If the model fits 

the data well, the noise (innovation) vector 𝝐(𝑛) = [ϵ1(n),⋯ , 𝜖𝐾(𝑛)]𝑇 follows an MV 

standard white noise process, assuming that each vector component 𝑦𝑖(𝑛) is at least 

weakly stationary time series.  

Standard white noise is a continuous process having zero mean, with the 

correlation matrix equals to zero for each lag 𝜏 > 0 and equals to nonsingular covariance 

Σe = [

𝜎11 ⋯ 𝜎1𝐾

⋮ ⋱ ⋮
𝜎𝐾1 ⋯ 𝜎𝐾𝐾

] for 𝜏 = 0.  

The spectral representation of Eq. 2-1 is widely used in derivation of connectivity 

measures defined in the next sections: 

 
(𝐼𝐾 − ∑𝐴(𝜏)𝑒−𝑗2𝜋𝑓𝜏

𝑝

𝜏=1

)  𝒚(𝑓) = 𝐸(𝑓) Eq. 2-2 

where 𝐼𝐾 is the 𝐾 × 𝐾 identity matrix, and 𝐸(𝑓) is the residual noise. If 𝐵(𝑓) =  𝐼𝐾 −

∑ 𝐴(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑝
𝜏=1 , then 𝐵(𝑓) essentially results from the Fourier transform of the 

augmented matrix 𝐴 of the coefficients of the model (setting 𝐴(0) = 𝐼𝐾), and for this 

reason, we refer to it as the coefficient matrix 𝐵 in the rest of this study. 

Various forms of frequency-domain connectivity measures, family of 𝜙, were 

derived from Eq. 2-2. 𝜙 family is categorized into two main groups: group 𝛾 extracted 

from coherence, and group 𝜋 extracted from partial coherence. A brief review of 𝜙 family 

is discussed in the following sections. 

2.1.1 Connectivity Measures of Group 𝛾 

MVAR defined in Eq. 2-1 is the common representation of the MV closed-loop 

process for time series analysis. In signal processing framework, 𝒚(𝑛) and  𝝐(𝑛) are 
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respectively the output and input of the linear time-invariant filter with the impulse 

response matrix 𝐻(𝑘): 

 
𝒚(𝑛) =  ∑ 𝐻(𝑘)𝝐(𝑛 − 𝑘)

∞

𝑘=−∞

 Eq. 2-3 

Converting into the frequency domain, 𝒚(𝑓) can be obtained by finding the 

Fourier transform of Eq. 2-3: 

 
𝒚(𝑓) = 𝐻(𝑓) E(𝑓) Eq. 2-4 

where 𝐻(𝑓) is the transfer function matrix. Comparing Eq. 2-4 and Eq. 2-2, we 

can conclude that 𝐻(𝑓) = 𝐵−1(𝑓). The spectral density matrix of the process can be 

factored uniquely as: 

 

𝑆(𝑓) =  𝒚(𝑓)𝒚(𝑓)H =  𝐻(𝑓) E(𝑓) E(𝑓)𝐻 𝐻(𝑓)𝐻 =

𝐻(𝑓)Σ𝑒𝐻
H(𝑓)     

Eq. 2-5 

Under the assumption of strict causality meaning that 𝝐(𝑛) is uncorrelated even at 

𝜏 = 0, the covariance 𝛴𝑒 is diagonal: 

 
𝑆𝑖𝑗(𝑓) = ∑ 𝜎mm𝐻𝑖𝑚(𝑓)𝐾

𝑚=1 𝐻∗
𝑗𝑚(𝑓)          Eq. 2-6 

Considering the definition of ordinary coherence (𝐶𝑜ℎ) which explains the 

simultaneous interaction between signals, and by applying Eq. 2-6, the decomposition of 

𝐶𝑜ℎ equation is:  
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𝐶𝑜ℎ𝑖𝑗(𝑓) =
𝑆𝑖𝑗(𝑓)

√𝑆𝑖𝑖(𝑓)𝑆𝑗𝑗(𝑓)

= ∑
𝜎mm

1
2 𝐻𝑖𝑚(𝑓)

√𝑆𝑖𝑖(𝑓)

𝜎mm

1
2𝐻∗

𝑗𝑚(𝑓)

√𝑆𝑗𝑗(𝑓)

𝐾

𝑚=1

= ∑ 𝛾𝑖𝑚(𝑓)

𝐾

𝑚=1

𝛾𝑗𝑚
∗(𝑓) 

Eq. 2-7 

Where 𝑆𝑖𝑖(𝑓) = ∑ 𝜎mm|𝐻𝑖𝑚(𝑓)|2𝐾
𝑚=1 . Hence, in Eq. 2-7 the normalization was 

performed with respect to the receiver structure. Thus, in the 𝑗 → 𝑖 interaction, 𝛾𝑖𝑗(𝑓) 

emphasizes the effect of the outflow from the source j to the sink 𝑖, and is therefore 

considered a better measure of the effect of the outflow from the source j to the sink 𝑖. 

 𝛾𝑖𝑗(𝑓) stemming as a direct factor from the decomposition of coherence (Eq. 

2-7) is named Generalized directed transfer function (𝑔𝐷𝑇𝐹). The 𝑔𝐷𝑇𝐹 was originally 

introduced by Akaike in 1968 as the noise contribution ratio (NCR) [37]. Then, Saito and 

Harashima in 1981 reformulated it as a bivariate spectral connectivity measure of feed-

forward and feed-backward processes and named it Directed Coherence (𝐷𝐶) [38]. It was 

further developed as an MV connectivity measure using the MVAR model by Baccala in 

1998 [39]. 

For the particular case, where 𝛴𝑒 is assumed to be an identity matrix, 𝜎𝑚𝑚 = 1  

for all 𝑚 = 1,2,… , 𝐾 , 𝛾𝑖𝑗(𝑓) in Eq. 2-7 represents a connectivity measure named 

directed transfer function (𝐷𝑇𝐹) which was proposed by Kaminski and Blinowska [19]. 

To make this assumption, Kaminski rescaled the original data into a data set with zero 

mean and unitary variance. However, it was shown in [40] that in the case of high 

variability of 𝜎𝑚𝑚 , 𝐷𝑇𝐹 may falsely detect the causality. 
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Solving the scale invariance problem by renormalization of innovation covariance 

matrix to a unitary matrix is done in 𝑔𝐷𝑇𝐹, and thus improves the causality estimation. 

Also, to quantify the absolute scale-invariant connectivity strength, information 

𝐷𝑇𝐹 (𝑖𝐷𝑇𝐹) was introduced by Takahashi et al. as the coherence between the time series 

𝒚(𝑛) and partialized innovation process (𝜛(𝑛)), where 𝑖𝐷𝑇𝐹𝑗→𝑖 = 𝐶𝑜ℎ𝑥𝑖𝜛𝑗
(𝑓) [41]. 

Although coherence is a coupling measure, 𝛾𝑖𝑗(𝑓) is a measure of causality 

(according to Eq. 2-7, the existence of any significant path between 𝑦𝑗 and 𝑦𝑖 leads to the 

causality from 𝑦𝑗 to 𝑦𝑖). In other words, 𝛾(𝑓) is an asymmetric factor extracted from the 

symmetric connectivity measures [1]. 

Moreover, 𝐻𝑖𝑗(𝑓) as the inverse of 𝐵(𝑓) includes cascading terms which 

represent many possible alternative paths connecting 𝑗 to 𝑖. As a result, group 𝛾 contains 

both direct and indirect causal effects [1]. 

2.1.2 Connectivity Measures of Group 𝜋 

By analogy with 𝐷𝑇𝐹, 𝑃𝐷𝐶 is derived from the decomposition of partial 

coherence (𝑃𝐶𝑜ℎ). Partial coherence describes the mutual interaction between two time 

series after eliminating the influence of all other simultaneously observed time series. 

Combining the element of inverse spectral matrix (𝑃(𝑓)) with the aim of normalization, 

𝑃𝐶𝑜ℎ is calculated as:  

 
𝑃𝐶𝑜ℎ𝑖𝑗(𝑓) = −

𝑃𝑖𝑗(𝑓)

√𝑃𝑖𝑖(𝑓)𝑃𝑗𝑗(𝑓)
          Eq. 2-8 

The inverse of Eq. 2-5 results in: 

 
𝑃(𝑓) = 𝐻−𝐻(𝑓)Σ𝑒

−1𝐻−1(𝑓) =  𝐵𝐻(𝑓)Σ𝑒
−1B(𝑓)          Eq. 2-9 
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Substituting Eq. 2-9 in Eq. 2-8, 𝑃𝐶𝑜ℎ is decomposed into two directed partial 

coherences. Assuming strict causality: 

 

𝑃𝐶𝑜ℎ𝑖𝑗(𝑓) = −∑
σmm

−
1
2 𝐵𝑚𝑗(𝑓)

√𝑃𝑗𝑗(𝑓)

𝜎m𝑚
−

1
2𝐵∗

𝑚𝑖(𝑓)

√𝑃𝑖𝑖(𝑓)
𝐾
𝑚=1 =

−∑ 𝜋𝑚𝑗(𝑓)𝐾
𝑚=1 𝜋𝑚𝑖

∗(𝑓)          

Eq. 2-10 

Where 𝑃𝑗𝑗(𝑓) = ∑ 𝜎mm
−1|𝐵𝑚𝑗(𝑓)|

2𝐾
𝑚=1 . According to Eq. 2-10, in 𝜋𝑖𝑗(𝑓) the 

normalization was done with respect to sender structure. Hence, it emphasizes the 

receiving side of the 𝑗 → 𝑖 interaction and is therefore considered a better measure of the 

effect of the inflow to the sink 𝑖 from the source 𝑗 in the 𝑗 → 𝑖 interaction. 

 𝜋𝑖𝑗(𝑓) derived in Eq. 2-10 named Generalized partial directed coherence 

(𝑔𝑃𝐷𝐶) and was introduced by Baccala et al. in 2007 [42].  

Similarly, by assuming that 𝛴𝑒 is an identity matrix, 𝜋𝑖𝑗 in Eq. 2-10 reflects 

Partial Directed Coherence (𝑃𝐷𝐶) which was proposed by Baccala and Sameshima in 

2001 [16]. Improvement of the scale invariance problem of 𝑃𝐷𝐶 and 𝑔𝑃𝐷𝐶 was done by 

defining the information 𝑃𝐷𝐶 (𝑖𝑃𝐷𝐶) introduced by Takahashi et al. in 2010. 𝑖𝑃𝐷𝐶 

relates 𝑃𝐷𝐶 to information flows in the MVAR formulation [41]. 

𝑖𝑃𝐷𝐶 is derived from the coherence between innovation noise and mutual 

partialization of the components of the observed signal. Defining 𝜂𝑗 as the partialized 

process associated with 𝑦𝑗,  𝜂𝑗 is the residue of the projection of 𝑦𝑗 onto the remaining 

process.  𝑖𝑃𝐷𝐶𝑗→𝑖 equals to the 𝐶𝑜ℎϵ𝑖𝜂𝑗
(𝑓), with 𝑆𝜂𝑗𝜂𝑗

 indicating a partial spectrum of 𝑦𝑗 

given the remaining process. 𝑆𝜂𝑗𝜂𝑗
 is derived through the partitioned matrix inversion 

formula. According to [41], 𝑆ϵ𝑖𝜂𝑗
= 𝐵𝑖𝑗(𝑓)𝑆𝜂𝑗𝜂𝑗

 , 𝑆ϵ𝑖ϵ𝑖
= σ𝑖𝑖, and 𝑆𝜂𝑗𝜂𝑗

=
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(𝐵:𝑗
𝐻(𝑓)𝛴𝑒

−1
𝐵:𝑗(𝑓))

−1

, where 𝐵:𝑗(𝑓) is a vector containing all the elements of column 𝑗 

of 𝐵(𝑓) [41]. The formula for 𝑖𝑃𝐷𝐶 is provided in Table 2-1. 

In contrast with group 𝛾, the group 𝜋 measures directly depend on the coefficient 

of the model. Therefore, the off-diagonal connectivity pairs in group 𝜋 are significant 

whenever its corresponding element in 𝐴(𝜏) is significant for some 𝜏. This chief property 

develops an estimator that can inherently distinguish between direct and indirect 

connections and makes the connectivity quantifiers in group 𝜋 as a direct causality 

measure.  

Although the directed characteristics of the group 𝜋 establish the superiority over 

the group 𝛾, being a factor of an inverse spectral matrix, they lack clear physical 

explanations (except for 𝑖𝑃𝐷𝐶 which is derived from coherence) [1, 41]. 

The squared modulus of 𝜙 family, |𝜙𝑖𝑗(𝑓)|
2
, is the commonly real-value format 

of connectivity measures which indicates the strength of connection. In the rest of this 

study, the square of connectivity measures was implemented as 𝜙 family. 

Moreover, |𝜙𝑖𝑗(𝑓)|
2
can be separated in terms of numerator (𝜙𝑛(𝑖𝑗)) and 

denominator (𝜙𝑑(𝑖𝑗)) as: 

 
|𝜙𝑖𝑗(𝑓)|

2
=

𝜙𝑛(𝑖𝑗)

𝜙𝑑(𝑖𝑗)
      Eq. 2-11 

The variables 𝜙𝑛(𝑖𝑗) and 𝜙𝑑(𝑖𝑗) for different members of group 𝜋 and group 𝛾 are 

defined in Table 2-1. 
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Table 2-1: Definition of numerator and denominator of 𝜙 family of Eq. 2-11 

𝜸𝒋→𝒊(𝒇) 𝜸
𝒏(𝒊𝒋)

 𝜸
𝒅(𝒊𝒋)

 𝝅𝒋→𝒊(𝒇) 𝝅𝒏(𝒊𝒋) 𝝅𝒅(𝒊𝒋) 

𝐃𝐓𝐅 |𝐻𝑖𝑗(𝑓)|
2
 ∑ |𝐻𝑖𝑚(𝑓)|2

𝐾

𝑚=1
 

𝐏𝐃𝐂 |𝐵𝑖𝑗(𝑓)|
2
 ∑ |𝐵𝑚𝑗(𝑓)|

2
𝐾

𝑚=1
 

𝒈𝑫𝑻𝑭 𝜎𝑗𝑗|𝐻𝑖𝑗(𝑓)|
2
 ∑ 𝜎𝑚𝑚|𝐻𝑖𝑚(𝑓)|2

𝐾

𝑚=1
 

𝒈𝑷𝑫𝑪 𝜎𝑖𝑖
−1|𝐵𝑖𝑗(𝑓)|

2
 ∑ 𝜎𝑚𝑚

−1|𝐵𝑚𝑗(𝑓)|
2𝐾

𝑚=1
 

𝒊𝑫𝑻𝑭 𝜎𝑗𝑗|𝐻𝑖𝑗(𝑓)|
2
 𝐻𝑖:(𝑓)𝛴𝑒𝐻𝑖:

𝐻(𝑓) 𝒊𝑷𝑫𝑪 𝜎𝑖𝑖
−1|𝐵𝑖𝑗(𝑓)|

2
 𝐵:𝑗

𝐻(𝑓)𝛴𝑒
−1𝐵:𝑗(𝑓) 

2.2 Asymptotic Properties of the MVAR Model[43] 

The MVAR model in Eq. 2-1 can be rewritten in the matrix format as: 

 
𝑌 =  𝑨𝑋 + 𝐸      Eq. 2-12 

Where 𝑌 = (𝒚(1), …  𝒚(𝑛𝑠)) with a sample size of 𝑛𝑠 and the dimension of 

(𝐾 × 𝑛𝑠)  , 𝑨 = [𝐴(1),…𝐴(𝑝)] with the dimension of (𝐾 × 𝐾𝑝) which is the lagged 

MVAR(𝑝) coefficient matrix, 𝑋 = (𝑥0, … , 𝑥𝑛𝑠−1) with the dimension of (𝐾𝑝 × 𝑛𝑠), 𝑥𝑛 =

[𝒚(𝑛),… , 𝒚(𝑛 − 𝑝 + 1)]𝑇 with the dimension of (𝐾𝑝 × 1) , and 𝐸 = (𝝐(1),⋯ , 𝝐(𝑛𝑠)) is 

the (𝐾 × 𝑛𝑠) innovation matrix. Also, the vectorization of Eq. 2-12 can be done as: 

 
𝑣𝑒𝑐(𝑌) =  𝑣𝑒𝑐(𝑨𝑋) + 𝑣𝑒𝑐(𝐸) =  (𝑋𝑇⨂𝐼𝐾)𝒂 + 𝑣𝑒𝑐(𝐸)      Eq. 2-13 

Where 𝒂 = 𝑣𝑒𝑐(𝑨), ⨂ is the Kronecker product operator, and 𝑣𝑒𝑐 is column 

stacking operator. The estimation of  𝒂 is found through the minimalization of the 

residual noise. Therefore, by applying the multivariate least square (LS) estimation, as 

the covariance matrix of 𝐸 is (𝐼𝑛𝑠
⨂Σ𝑒), �̂�, the estimator of 𝒂 can be obtained by 

minimizing Eq. 2-13: 
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𝑆(𝒂) =  𝑣𝑒𝑐(𝐸)𝑇(𝐼𝑛𝑠
⨂Σ𝑒)

−1
𝑣𝑒𝑐(𝐸) = 

[𝑣𝑒𝑐(𝑌) − (𝑋𝑇⨂𝐼𝐾)𝒂]𝑇 ((𝐼𝑛𝑠
⨂Σ𝑒

−1)) [𝑣𝑒𝑐(𝑌) − (𝑋𝑇⨂𝐼𝐾)𝒂]           

Eq. 2-14 

Applying the Kronecker product properties, 𝑆(𝒂) can be rewritten as: 

 

𝑆(𝒂) =  𝑣𝑒𝑐(𝑌)𝑇(𝐼𝑛𝑠
⨂Σ𝑒

−1)𝑣𝑒𝑐(𝑌) +

𝒂𝑇(𝑋𝑋𝑇⨂Σ𝑒
−1)𝒂 − 2𝒂𝑇(𝑋⨂Σ𝑒

−1)𝑣𝑒𝑐(𝑌)      

Eq. 2-15 

Therefore, the LS estimator �̂�, can be achieved by finding the root of the 

derivative of Eq. 2-15 with respect to 𝒂: 

 
𝜕𝑆(𝒂)

𝜕𝒂
= 2(𝑋𝑋𝑇⨂Σ𝑒

−1)𝒂 − 2(𝑋⨂Σ𝑒
−1)𝑣𝑒𝑐(𝑌) = 0              

Eq. 2-16 

Thus, �̂� = 𝑌𝑋𝑇(𝑋𝑋𝑇)−1. Also, finding the Hessian of 𝑆(𝒂) confirms that �̂� is the 

minimum vector. By substituting Eq. 2-12: 

 
�̂� = (𝑨𝑋 + 𝐸)𝑋𝑇(𝑋𝑋𝑇)−1 = 𝑨 + 𝐸𝑋𝑇(𝑋𝑋𝑇)−1      Eq. 2-18 

It is proven in [43] that for 𝒚(𝑛) generated by stationary, stable MVAR(𝑝) 

process, and MV standard white noise residuals 𝝐(𝑡), the followings hold: 

 

𝛤𝑦 = 𝑙𝑖𝑚
𝑛𝑠→∞

𝑋𝑋𝑇

𝑛𝑠
 exists and it is nonsingular 

 
1

√𝑛𝑠
 (𝐸𝑋𝑇) =

1

√𝑛𝑠
(𝑋⨂𝐼𝐾)𝐸

𝑑
→ 𝒩(0, 𝛤𝑦⨂Σ𝒆 )                     

Eq. 2-19 

The consistency of �̂� is found by proving that 𝑙𝑖𝑚
𝑛𝑠→∞

(�̂� − 𝑨) = 0. Hence, by 

applying Eq. 2-18 and Eq. 2-19: 

 

�̂� = ((𝑋𝑋𝑇)−1⨂Σ𝑒)(𝑋⨂Σ𝑒
−1)𝑣𝑒𝑐(𝑌) =

((𝑋𝑋𝑇)−1𝑋⨂IK)𝑣𝑒𝑐(𝑌) = 𝑣𝑒𝑐(𝑌𝑋𝑇(𝑋𝑋𝑇)−1)       

Eq. 2-17 
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𝑙𝑖𝑚
𝑛𝑠→∞

(�̂� − 𝑨) = 𝑙𝑖𝑚
𝑛𝑠→∞

 𝑬𝑋𝑇(𝑋𝑋𝑇)−1 =

𝑙𝑖𝑚
𝑛𝑠→∞

(
𝑬𝑋𝑇

𝑛𝑠
) 𝑙𝑖𝑚

𝑛𝑠→∞
(
𝑋𝑋𝑇

𝑛𝑠
)
−1

= 0            

Eq. 2-20 

Furthermore, the asymptotic behavior of �̂� is established using the vector format 

of Eq. 2-18 as: 

 

√𝑛𝑠𝑣𝑒𝑐(�̂� − 𝑨) = √𝑛𝑠(�̂� − 𝒂) =

√𝑛𝑠((𝑋𝑋𝑇)−1𝑋⨂𝐼𝐾)𝐸 = {(
𝑋𝑋𝑇

𝑛𝑠
)
−1

⨂𝐼𝐾} {
1

√𝑛𝑠
(𝑋⨂𝐼𝐾)𝐸} = 

{𝛤𝑦
−1⨂𝐼𝐾} {

1

√𝑛𝑠
(𝑋⨂𝐼𝐾)𝐸}                                                           

Eq. 2-21 

Substituting Eq. 2-19 in Eq. 2-21, and applying delta method (discussed in the 

next section), the covariance matrix is: 

 
(𝛤𝑦

−1⨂𝐼𝐾)
𝑇
(𝛤𝑦⨂Σ𝒆)(𝛤𝑦

−1⨂𝐼𝐾) = 𝛤𝑦
−1⨂Σ𝒆      Eq. 2-22 

Therefore, the asymptotic distribution of �̂� can be summarized as: 

 

√𝑛𝑠𝑣𝑒𝑐(�̂� − 𝑨) = √𝑛𝑠(�̂� − 𝒂)
𝑑
→ 𝒩(0, 𝛺𝒂) 

𝛺𝒂 = 𝛤𝑦
−1⨂Σ𝒆           

Eq. 2-23 

Also, it was shown in [43] that the asymptotic properties of the maximum 

likelihood estimator are equivalent to the LS estimator. 

2.3 Asymptotic Properties of  𝚺𝒆: 

As it was proven in reference [43], by defining 𝝈 ≜ 𝑣𝑒𝑐(Σ𝑒), the asymptotic 

distribution of 𝝈 is: 
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√𝑛𝑠(�̂� − 𝝈)
𝑑
→ 𝒩(0, Ω𝝈)  

Ω𝝈 = 2𝐷𝐾𝐷𝐾
+(Σ𝑒⨂Σ𝑒)𝐷𝐾

+𝑇𝐷𝐾
𝑇  

      

Eq. 2-24 

where 𝐷𝐾
+ is the Moore-Penrose pseudo-inverse of the standard duplication matrix. 

2.4 Delta Method  

Let the distribution of 𝒖𝑛 = (𝑢1, 𝑢2, … , 𝑢𝐾)𝑇 from 𝑛 observation converges to:  

 √𝑛(𝒖𝑛 − 𝝁)
𝑑
→ 𝒩(0, Σ𝑢)      Eq. 2-25 

Suppose 𝑔(𝒖) is a real-valued, continuously differentiable function at the neighbor 

of  𝝁 , vanishing up to order 𝑚 about point 𝝁 in Taylor expansion and non-vanishing in the 

𝑚𝑡ℎ term 

 

(√𝑛)
𝑚

(�̂�(𝑢𝑛) − 𝑔(𝜇))

𝑑
→

1

𝑚!
∑ …𝑘

𝑖1=1 ∑
𝜕𝑚𝑔

𝜕𝑢𝑖1…𝜕𝑢𝑖𝑚

|
𝝁

∏ 𝑿𝑖𝑗
𝑚
𝑗=1

𝑘
𝑖𝑚=1       

Eq. 2-26 

with 

 
𝑿 = (𝑋1, … , 𝑋𝑘)

𝑇~𝒩(0, Σ𝑢)      Eq. 2-27 

For large 𝑛 and non-zero first-order derivatives, the following corollary is 

presumed [31]. 

Corollary 3.1 for a real differentiable function 𝑔(𝒖), the first delta method 

approximation is: 

 √𝑛(�̂�(𝒖𝑛) − 𝑔(𝝁))
𝑑
→ 𝒩(0, 𝛻𝑔𝑇Σ𝑢 𝛻𝑔)      Eq. 2-28 

where 𝛻𝑔 is the gradient of 𝑔(𝑢) evaluated at 𝝁.  
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2.5 Asymptotic Properties of Connectivity Measures 

Baccala et al. derived a unified asymptotic property for three major formulations of 

group 𝜋, 𝑃𝐷𝐶, 𝑔𝑃𝐷𝐶, and 𝑖𝑃𝐷𝐶 [34]. Later, they found the asymptotic statistical 

characteristics of corresponding connectivity measures in group 𝛾 including 𝐷𝑇𝐹, 𝑔𝐷𝑇𝐹, 

and 𝑖𝐷𝑇𝐹 [35]. 

In both studies, the square of 𝜙 family was examined under the null hypothesis of: 

 
𝐻0 ∶ |𝜙𝑖𝑗(𝑓)|

2
= 0          ∀ 𝑖, 𝑗 ∈  {1, … , 𝐾}      Eq. 2-29 

Eq. 2-29 explains the absence of connectivity at specific frequency 𝑓 between the 

two sites 𝑖 and 𝑗.  

For the functions of group 𝜋, they concluded that |𝜋𝑖𝑗(𝑓)|
2
 is a function of 

variable 𝜃 = [𝑏
𝑇
, 𝝈𝑇]

𝑇

, where 𝑏 was defined as a function of 𝒂 : 

 
𝑏 = [

𝑣𝑒𝑐(𝐼𝐾2)

𝑣𝑒𝑐(0𝐾2)
] − (𝒞⨂I𝐾2)𝒂      Eq. 2-30 

with, 

 
𝒞 = [

  cos(2𝜋𝑓) … cos(2π𝑓𝑝)

−sin(2𝜋𝑓)  … −sin(2π𝑓𝑝)
]
2×𝑝

      Eq. 2-31 

The estimator 𝜃 asymptotically converges to a normal distribution with the 

covariance of Ω𝜃: 

 
Ω𝜃 = [

Ω𝑏 02𝐾2

0𝐾2 Ω𝝈
]      Eq. 2-32 
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where 0𝑛 is a (𝑛 × 𝑛) matrix with all zero entries. By applying the delta method, the 

asymptotic distribution of the estimator 𝑏
̂
 was obtained as a normal distribution with the 

covariance Ω𝑏 : 

 
Ω𝑏 = (𝒞⨂I𝐾2) [

Ω𝒂 Ω𝒂

Ω𝒂 Ω𝒂
] (𝒞𝑇⨂I𝐾2)      Eq. 2-33 

Since |𝜋𝑖𝑗(𝑓)|
2
 is a real-value function of 𝜃 with continuous partial derivatives,  

the covariance of |�̂�𝑖j(𝑓)|
2
 represented by Ω𝜋 for large 𝑛𝑠 is: 

 

Ω𝜋 = (𝛻|𝜋𝑖𝑗(𝑓)|
2
)Ω𝜃 (𝛻|𝜋𝑖𝑗(𝑓)|

2
)
𝑇

=

[
𝜕|𝜋𝑖𝑗(𝑓)|

2

𝜕𝑏
𝑇

𝜕|𝜋𝑖𝑗(𝑓)|
2

𝜕𝝈𝑇
] [

Ω𝑏 02𝐾2

0𝐾2 Ω𝝈
]

[
 
 
 
 (

𝜕|𝜋𝑖𝑗(𝑓)|
2

𝜕𝑏
𝑇 )

𝑇

(
𝜕|𝜋𝑖𝑗(𝑓)|

2

𝜕𝝈𝑇 )

𝑇

]
 
 
 
 

=

(𝛻𝑏|𝜋𝑖𝑗(𝑓)|
2
)Ω𝑏 (𝛻𝑏|𝜋𝑖𝑗(𝑓)|

2
)
𝑻

+

(𝛻𝝈|𝜋𝑖𝑗(𝑓)|
2
)Ω𝝈 (𝛻𝝈|𝜋𝑖𝑗(𝑓)|

2
)
𝑻

=  Ω𝜋
𝑏
+  Ω𝜋𝝈

      

Eq. 2-34 

Where 𝛻𝑥𝑔  denotes the partial derivative of 𝑔 with respect to 𝑥. The fraction 

form of |𝜋𝑖𝑗(𝑓)|
2
 is provided in the reference [34] and with a minor difference, it is 

similar to what defined in Table 3-1 and Table 3-2 of chapter three. The equations 

of 𝛻𝑏|𝜋𝑖𝑗(𝑓)|
2
 and 𝛻𝝈|𝜋𝑖𝑗(𝑓)|

2
 proved in reference [34] are summarized in Table 2-2. 

In the same fashion, for the members of group 𝛾, 𝜃 = [ℎ
𝑇
, 𝝈𝑇]

𝑇

, where ℎ is the 

vector format of 𝐻(𝑓) which is decomposed in terms of real and imaginary parts. 

According to [35], ℎ
̂
 has a normal distribution with the covariance Ωℎ as: 
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  𝛺ℎ =  ℋ 𝛺𝑏 ℋ
𝑇      Eq. 2-35 

where, 

 
ℋ = −[

𝑅𝑒𝑎𝑙(𝐻𝑇(𝑓)⨂𝐻(𝑓)) −𝐼𝑚𝑎𝑔(𝐻𝑇(𝑓)⨂𝐻(𝑓))

𝐼𝑚𝑎𝑔(𝐻𝑇(𝑓)⨂𝐻(𝑓)) 𝑅𝑒𝑎𝑙(𝐻𝑇(𝑓)⨂𝐻(𝑓))
]      Eq. 2-36 

Applying the delta method, the asymptotic distribution of |𝛾𝑖𝑗(𝑓)|
2
 was obtained 

in [35]. According to [35], |𝛾𝑖𝑗(𝑓)|
2
 asymptotically converges to normal distribution 

whose covariance, Ω𝛾 can be obtained by replacing 𝑏 with ℎ in Eq. 2-34, and its variables 

are defined in Table 2-2. 

Having the asymptotic distribution of 𝜙 family, the confidence interval of the 

estimated connectivity measures has been acquired in the case of rejection of the null 

hypothesis. However, it is shown in [34, 35] that Gaussianity breaks down when there are 

no significant connections, in which case the next term in the delta method provides the 

asymptotic distribution for those connections that can be used to construct a rigorous 

hypothesis test of connectivity.  

In the group 𝜋, the second-order derivative terms in the right-hand side of the 

delta method are zero except for 𝛻𝑏,𝑏|𝜋𝑖𝑗(𝑓)|
2
 which is 𝑋𝑇𝐼𝑖𝑗

𝑐
(𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗

𝑐 𝑋 𝜋𝑑(𝑖𝑗)⁄  where 

𝑋~𝒩(0,  Ω𝜋
𝑏
). Introducing standard normal random variable 𝑍 where = 𝐿𝑏𝑍 , and 𝐿𝑏 is a 

Cholesky factor of  Ω𝜋
𝑏
: 

 
𝑋𝑇𝐼𝑖𝑗

𝑐 (𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗
𝑐 𝑋 = 𝑍𝑇𝐿𝑏

𝑇𝐼𝑖𝑗
𝑐 (𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗

𝑐 𝐿𝑏𝑍 = 𝑍𝑇𝑫𝜋 𝑍      Eq. 2-37 

As 𝑫𝜋  is Hermitian matrix, spectral decomposition of  𝑫𝜋 leads to: 
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𝑍𝑇𝑫𝜋 𝑍 =  ∑ 𝜆𝑘𝑍

𝑇𝑣𝑘𝑣𝑘
𝑇𝑍

𝑞

𝑘=1

 

      

Eq. 2-38 

where 𝑣𝑘 is the 𝑘𝑡ℎ eigenvector of 𝑫𝜋  associated with 𝜆𝑘. Defining 𝜉𝑘 = 𝑣𝑘
𝑇𝑍 (𝜉𝑘 has 

standard normal distribution), 𝑍𝑇𝑫𝜋  𝑍 =  ∑ 𝜆𝑘𝜉𝑘
2𝑞

𝑘=1 . Similar relationships were 

obtained for group 𝛾 in [35]. Thus, under the null condition, 𝜙 quantifier represents a 

linear combination of 𝜒1
2 distribution whose multiplier was elicited from 𝜙𝑛(𝑖𝑗)(𝑓).  

The computational steps for justifying the connectivity measures |𝜙𝑖𝑗(𝑓)|
2
, for pair 

(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ {1, … , 𝐾} and at specific frequency 𝑓 are summarized below. These steps 

consist of finding the threshold in the null case and confidence interval in the non-null 

case.  

1. Calculating a (2𝐾2 × 2𝐾2) matrix, Ω𝑏 (or Ωℎ ) using Eq. 2-33 (or Eq. 2-35)  

2. Estimating the Cholesky factor of  Ω𝑏 ( or Ωℎ ) 

3. Creating 𝑫𝜋 ( or 𝑫𝛾) using Eq. 2-37 and estimating its eigenvalues  

4. Finding the statistically significant threshold at specific 𝛼 level, by knowing the 

asymptotic distribution of the estimator of  |𝜙𝑖𝑗(𝑓)|
2
 

5. If the null hypothesis is rejected, the variance and confidence interval of estimated 

connectivity measure should be calculated by finding the Ω𝜋 (or Ω𝛾 ), which is a 

scalar requiring multiplication of huge matrices discussed in Table 2-2, and their 

dimensions are provided in Table 2-3. 

6. If there is not enough evidence to reject the null hypothesis, we can conclude that 

there is no significant connection between pair 𝑖, 𝑗 at frequency. 

7. Repeating steps 1-6 for all frequencies and all possible pairs. 
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Regarding the expensive computational cost of analytical verification of the 

estimated connectivity measures, as well as even more costly empirical procedure (shown 

in [21]), the modification of the algorithm is necessary to make it practicable for high-

dimensional biological signals such as EEG. In the following chapter the development of 

the modified algorithm will be presented. 

 

Table 2-2: The terms of the covariance of 𝜙 family, as explained in Eq. 2-34. * 

𝛻𝑏|𝜋𝑖𝑗(𝑓)|
2
 

2(
𝑏

𝑇
𝐼𝑖𝑗
𝑐 (𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗

𝑐

𝑏
𝑇
𝐼𝑗
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑗

𝑐𝑏
−

𝑏
𝑇
𝐼𝑖𝑗
𝑐 (𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗

𝑐 𝑏

(𝑏
𝑇
𝐼𝑗
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑗

𝑐𝑏)
2 𝑏

𝑇
𝐼𝑗
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑗

𝑐) 

𝛻𝜎|𝜋𝑖𝑗(𝑓)|
2
 [(𝐼𝑖𝑗

𝑐 𝑏)
𝑇
⨂(𝑏

𝑇
𝐼𝑖𝑗
𝑐 )] Θ𝐾𝜚𝑛

𝑏
𝑇
𝐼𝑗
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑗

𝑐𝑏
−

𝑏
𝑇
𝐼𝑖𝑗
𝑐 (𝐼2𝐾⨂𝑆𝑛)𝐼𝑖𝑗

𝑐 𝑏

(𝑏
𝑇
𝐼𝑗
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑗

𝑐𝑏)
2 [(𝐼𝑗

𝑐𝑏)
𝑇
⨂(𝑏

𝑇
𝐼𝑗
𝑐)] Θ𝐾𝜚𝑑 

𝛻ℎ|𝛾𝑖𝑗(𝑓)|
2
 

2(
ℎ

𝑇
𝐼𝑖𝑗
𝑐 (𝐼2⨂𝑆𝑛⨂𝐼𝐾)𝐼𝑖𝑗

𝑐

ℎ
𝑇
𝐼𝑖
𝑐(𝐼2⨂𝑆𝑑⨂𝐼𝐾)𝐼𝑖

𝑐ℎ
−

ℎ
𝑇
𝐼𝑖𝑗
𝑐 (𝐼2⨂𝑆𝑛⨂𝐼𝐾)𝐼𝑖𝑗

𝑐 ℎ

(ℎ
𝑇
𝐼𝑖
𝑐(𝐼2⨂𝑆𝑑⨂𝐼𝐾)𝐼𝑖

𝑐ℎ)
2 ℎ

𝑇
𝐼𝑖
𝑐(𝐼2𝐾⨂𝑆𝑑)𝐼𝑖

𝑐) 

𝛻𝜎|𝛾ij(𝑓)|
2
 [(𝐼𝑖𝑗

𝑐 ℎ)
𝑇
⨂ (ℎ

𝑇
𝐼𝑖𝑗
𝑐 )] Θ𝐾𝜚𝑛

ℎ
𝑇
𝐼𝑖
𝑐(𝐼2⨂𝑆𝑑⨂𝐼𝐾)𝐼𝑖

𝑐ℎ
−

ℎ
𝑇
𝐼𝑖𝑗
𝑐 (𝐼2⨂𝑆𝑛⨂𝐼𝐾)𝐼𝑖𝑗

𝑐 ℎ

(ℎ
𝑇
𝐼𝑖
𝑐(𝐼2⨂𝑆𝑑⨂𝐼𝐾)𝐼𝑖

𝑐ℎ)
2 [(𝐼𝑖

𝑐ℎ)
𝑇
⨂(ℎ

𝑇
𝐼𝑖
𝑐)] Θ𝐾𝜚𝑑 

*𝐼𝑖𝑗 is a matrix whose elements are zero except for the element corresponding to 𝑖, 𝑗 whose 

value equals 1. 𝐼𝑗 is a matrix made by zeros except 𝐾 unit value elements located diagonally 

for the entries (𝑙,𝑚): (𝑗 − 1)𝐾 + 1 ≤ 𝑙 = 𝑚 ≤ 𝑗𝐾. Also, 𝐼𝑗
𝑐=𝐼2⨂𝐼𝑗 and 𝐼𝑖𝑗

𝑐 =𝐼2⨂𝐼𝑖𝑗.Θ𝐾 is a 

function of commutation matrix, 𝑇𝐾,𝐾, whose dimension is 𝐾2 × 𝐾2. 𝜚𝑛, 𝜚𝑑 and Θ𝐾 for 

group 𝜋  and group 𝛾 are introduced in [34]and [35]. 

 



24 

 

Table 2-3: Dimensions of the variables defined in Table 2-2 

VARIABLES 𝒃 𝑰𝒊𝒋
𝒄  |𝑰𝒋

𝒄 𝑰𝟐𝑲⨂𝑺𝒏|𝒅 𝚯𝑲 𝝔𝒏|𝒅 

DIMENSIONS 2𝐾2 × 1 2𝐾2 × 2𝐾2 2𝐾2 × 2𝐾2 4𝐾4 × K2 𝐾2 × 𝐾2 
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CHAPTER 3 

 

FAST ASYMPTOTIC ALGORITHM 
 

The objective of this chapter is to provide the mathematical proofs involved in our 

optimization of the current state-of-the-art asymptotic algorithms for  and  connectivity 

measures. It should be noted that the relationships developed in this chapter are 

simplified by skipping the dependency of variables on frequency. 

3.1 Statistical Properties of the Variables 

Since  and  measures are continuous functions of 𝐻 and 𝐵 respectively and of 

Σ𝑒, the asymptotic distributions for each of these measures is first needed to be derived 

separately. The stepping stone in formulating the respective distributions is to define the 

statistical properties of the MVAR process and exploit the delta method theorem [31]. 

The asymptotic distribution of the estimators of 𝑨, Σ𝑒, ℎ and 𝑏 are derived in [34, 

35, 43] and were reviewed in chapter two (Eq. 2-23, Eq. 2-24, Eq. 2-35, and Eq. 2-33). 

To optimize the original asymptotic algorithm, we slightly changed the statistical 

properties of the input variables of the connectivity measures, including Σ𝑒, ℎ and 𝑏. 

These prerequisite modifications impressively influence the speed of the purposed 

algorithm. 
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3.1.1 Statistical Properties of 𝑨 

In our proposed algorithm the two terms of the Ω𝒂 in Eq. 2-23, Γ𝑦
−1and Σ𝑒, were 

initially decomposed so that Γ𝑦
−1 = 𝐿Γ𝐿Γ

𝑇, and Σ𝑒 = 𝐿𝑒𝐿𝑒
𝑇. As mentioned, Γ𝑦

−1and Σ𝑒 

are symmetric positive definite matrices, so the Cholesky factorization can be applied so 

that 𝐿Γ and 𝐿𝑒 are Cholesky factors of Γ𝑦
−1and Σ𝑒 respectively. Then, Eq. 2-23 can be 

written as: 

 
𝛺𝒂 = 𝐿Γ𝐿Γ

𝑇⨂𝐿𝑒𝐿𝑒
𝑇 = (𝐿Γ⨂𝐿𝑒)(𝐿Γ⨂𝐿𝑒)

𝑇 Eq. 3-1 

Therefore, 𝐿𝒂 = (𝐿Γ⨂𝐿𝑒) is the Cholesky factor of Ω𝒂. 

3.1.2 Statistical Properties of 𝐵  

To find the asymptotic distribution of 𝐵, Eq. 2-30 can be rewritten as:  

 
𝐵 = [𝐼𝐾 , 0𝐾] − 𝑨(𝒞𝑇⨂𝐼𝐾) Eq. 3-2 

where the (𝐾 × 2𝐾) matrix 𝐵 contains real and imaginary parts of 𝐵. If 𝑏 ≜ 𝑣𝑒𝑐(𝐵), the 

asymptotic distribution properties of the estimator of 𝑏 were obtained by applying the 

delta method: 

 √𝑛𝑠 (𝑏
̂

− 𝑏)
𝑑
→ 𝒩(0,  𝛺𝑏 ) Eq. 3-3 

  𝛺𝑏 = (
𝜕𝑣𝑒𝑐(𝐵)

𝜕𝒂𝑇
)Ω𝑎 (

𝜕𝑣𝑒𝑐(𝐵)

𝜕𝒂𝑇
)

𝑇

= (𝒞⨂𝐼𝑘2)Ω𝒂(𝒞
𝑇⨂𝐼𝑘2) Eq. 3-4 

Furthermore, the decomposition of Eq. 3-4 in the form of  Ω𝑏 ≜ 𝐿𝑏𝐿𝑏
𝑇 was done 

by substituting Eq. 3-1 in Eq. 3-4: 

 
𝐿𝑏 = (𝒞⨂𝐼𝐾2)(𝐿Γ⨂𝐿𝑒) Eq. 3-5 
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3.1.3 Statistical Properties of 𝐻 

Similarly, to find the asymptotic distribution of 𝐻 that is 𝐻  in terms of real and 

imaginary parts obtained in [35], 𝐻 was converted into matrix format. This format is very 

useful in reducing the time complexity of the algorithm as will be shown in the following 

sections. According to [35], for large values of 𝑛𝑠, ℎ ≜ 𝑣𝑒𝑐(𝐻)  asymptotically 

converges to the normal distribution with the covariance Ωℎ  shown in Eq. 2-35. We 

defined ℋ as the summation of two conjugate terms:  

 
ℋ = 𝐹1⨂𝐻𝑇⨂𝐻 + 𝐹2⨂𝐻𝐻⨂𝐻∗ Eq. 3-6 

where 𝐹1 =
1

2
[
1 𝑗
−𝑗 1

], 𝐹2 =
1

2
[
1 −𝑗
𝑗 1

], and the superscript * represents the complex 

conjugate operator. 

If we define Ωℎ ≜ 𝐿ℎ𝐿ℎ
𝑇, by substituting Eq. 3-5 and Eq. 3-6 in Eq. 2-35: 

 
𝐿ℎ = ({(𝐹1𝒞⨂𝐻𝑇)𝐿Γ}⨂𝐻𝐿𝑒) + ({(𝐹2𝒞⨂𝐻𝐻)𝐿Γ}⨂𝐻∗𝐿𝑒) Eq. 3-7 

𝐿ℎ is frequency dependent. The following sections explain how Eq. 3-7 and Eq. 

3-5  applied for optimization of the algorithm. 

• Proof of Eq. 3-6: 

According to [35]:  

 
ℋ = (𝜌⨂𝐼𝑘2) [

(𝐻𝑇⨂𝐻) 0

0 (𝐻𝑇⨂𝐻)∗] (𝜌−1⨂𝐼𝑘2) Eq. 3-8 

where 𝜌 =
1

2
[
1 1
−𝑗 𝑗

]. Substituting 𝜌 in Eq. 3-8, we further decompose the elements of 

ℋ into sums of two conjugate terms: 

 
ℋ =

1

2
× [

(𝐻𝑇⨂𝐻) + (𝐻𝑇⨂𝐻)∗ j(𝐻𝑇⨂𝐻)−j(𝐻𝑇⨂𝐻)∗

−j(𝐻𝑇⨂𝐻) + j(𝐻𝑇⨂𝐻)∗ (𝐻𝑇⨂𝐻) + (𝐻𝑇⨂𝐻)∗] Eq. 3-9 
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Which is equivalent to: 

 

ℋ =
1

2
 [

1 j
−j 1

]⨂𝐻𝑇⨂𝐻 +
1

2
 [
1 −j
j 1

]⨂𝐻𝐻⨂𝐻∗

= 𝐹1⨂𝐻𝑇⨂𝐻 + 𝐹2⨂𝐻𝐻⨂𝐻∗ 

Eq. 3-10 

It is also worth to mention that F1F2=0, and F1F1=F1=F1H= F2T . ∎ 

3.1.4 Statistical Properties of Σ𝑒 

Defining 𝝈 ≜ 𝑣𝑒𝑐(Σ𝑒), it is shown in [43] that the estimator of 𝝈 has an 

asymptotic normal distribution with the covariance, 𝛺𝝈=2𝐷𝐾𝐷𝐾
+(Σ𝑒⨂Σ𝑒)𝐷𝐾

+𝑇𝐷𝐾
𝑇, where 

𝐷𝐾
+ is the Moore-Penrose pseudo-inverse of the standard duplication matrix. In this study, 

by substituting 𝐷𝐾𝐷𝐾
+ by ½ (𝐼𝐾2 + 𝑇𝐾,𝐾), where 𝑇𝐾,𝐾is the commutation matrix with 

dimension of (𝐾2 × 𝐾2), a more convenient form of Ω𝝈 is introduced: 

 
𝛺𝝈 = (Σ𝑒⨂Σ𝑒)(𝐼𝐾2 + 𝑇𝐾,𝐾) Eq. 3-11 

According to the definition of the commutation matrix (Appendix A.2), 𝑇𝐾,𝐾 

behaves like 𝐼𝐾2 when multiplied by the 𝑣𝑒𝑐 of a symmetric matrix [44]. This condition 

holds for 𝛺𝝈 in all equations of this study and leads to simplification of Eq. 3-11 to 

2 (Σ𝑒⨂Σ𝑒). 

3.2 Statistical Properties of Connectivity Measures 

As it was mentioned in chapter two, the existence of a significant connectivity 

𝜙𝑖𝑗  at specific frequency 𝑓 between two sites 𝑖 and 𝑗 is tested according to the following 

hypothesis: 

 
𝐻0 ∶ |𝜙𝑖𝑗|

2
= 0          ∀ 𝑖, 𝑗 ∈  {1, … , 𝐾} Eq. 3-12 

Rejecting the 𝐻0 at 𝛼 statistical significance level provides a strong conclusion for 

the existence of a significant connectivity. The confidence intervals for the statistically 
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significant connections are then estimated by determining the asymptotic distribution of 

the estimator of |𝜙𝑖𝑗|
2 measures.  

3.2.1 Asymptotic Distribution in Non-Null Case  

To approximate the distribution of the real differentiable function |𝜙𝑖𝑗|
2
, the delta 

method was implemented. According to [34] and [35], the distribution of √𝑛𝑠 (|�̂�𝑖𝑗|
2
−

 |𝜙𝑖𝑗|
2
) asymptotically converges to normal distribution with zero mean and covariance 

𝛺𝜙 for large 𝑛𝑠 . It was shown in Eq. 2-34 that since |𝜙𝑖𝑗|
2
 is a function of 𝝈 and either 𝑏 

or ℎ, Ω𝜙 can be estimated as the summation of the covariance |𝜙𝑖𝑗|
2
with respect to its 

variables.  

Decomposing the 𝜙 connectivity measures as in Eq. 2-11, the fraction derivative 

formula can be applied to estimate the terms in the right-hand side of Eq. 2-34 as: 

 
𝛻𝜓𝜙2 =

𝜕|𝜙𝑖𝑗|
2

𝜕𝜓𝑇
=

1

𝜙𝑑
 ( 

𝜕𝜙𝑛

𝜕𝜓𝑇
+ |𝜙𝑖𝑗|

2
 
𝜕𝜙𝑑

𝜕𝜓𝑇
) Eq. 3-13 

where 𝜓 can be either 𝝈 or ℎ(𝑓) or  𝑏(𝑓) in group 𝛾 and group 𝜋, respectively. 

By implementing the properties of 𝑣𝑒𝑐 operation provided in Appendix A.1, 

separating the equations in terms of the variables 𝑖 , 𝑗 , and 𝑓, and using Eq. 3-2, Eq. 3-6 

and Eq. 3-11, we decreased the dimension of the covariance matrices in Eq. 2-34 and 

therefore the complexity of the algorithm. 

Statistical properties of group 𝛾 

By defining |𝛾𝑖𝑗|
2

≜ γ𝑛 γ𝑑⁄ , as Ω𝛾 = Ω𝛾
ℎ
+ Ω𝛾𝝈

, Ω𝛾
ℎ
 and Ω𝛾𝝈

was obtained by 

applying the delta method and Eq. 3-13.  

1. Estimation of Ω𝛾
ℎ
 : |𝛾𝑖𝑗|

2
 is defined as: 
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|𝛾𝑖𝑗|

2
=

𝛾𝑛

𝛾𝑑
=

ℎ
𝑇
𝑇𝑛ℎ

ℎ
𝑇
𝑇𝑑ℎ

 Eq. 3-14 

where 𝑇𝑛 and 𝑇𝑑 are defined in Table 3-1 and Table 3-2. ∇ℎ𝛾2 can be estimated 

when 𝜙 and 𝜓 are replaced by 𝛾 and ℎ in Eq. 3-13, respectively. According to (Eq. A-4), 

𝜕𝛾𝑛 𝜕ℎ
𝑇

⁄ = 2 ℎ
𝑇
𝑇𝑛, and 𝜕𝛾𝑑 𝜕ℎ

𝑇
⁄ = 2 ℎ

𝑇
𝑇𝑑, then: 

 
𝛻ℎ𝛾2 =

2

𝛾𝑑
 ( ℎ

𝑇
𝑇𝑛 − |𝛾𝑖𝑗|

2 ℎ
𝑇
𝑇𝑑) Eq. 3-15 

According to Table 3-1, Table 3-2 and using the 𝑣𝑒𝑐 properties in (Appendix A.1): 

 ℎ
𝑇
𝑇𝑛 = 𝑣𝑒𝑐(𝐻)

𝑇
{𝐼2⨂𝐸𝑗 𝑆𝑛⨂𝐸𝑖} = 𝑣𝑒𝑐{𝐸𝑖 𝐻 (𝐼2⨂𝐸𝑗𝑆𝑛)}

𝑇
 Eq. 3-16 

where 𝐸𝑗 is a matrix with dimension 𝐾 × 𝐾 whose 𝑗𝑡ℎentries in the main diagonal are 1 

and the rest of the entries are zero. Applying the same properties for the denominator: 

 ℎ
𝑇
𝑇𝑑 = 𝑣𝑒𝑐(𝐻)

𝑇
{𝐼2⨂𝑆𝑑⨂𝐸𝑖} = 𝑣𝑒𝑐{𝐸𝑖 𝐻 (𝐼2⨂𝑆𝑑)}

𝑇
 Eq. 3-17 

Substituting Eq. 3-16 and Eq. 3-17 in Eq. 3-15 : 

 
𝛻ℎ𝛾2 = 

2

𝛾𝑑
𝑣𝑒𝑐(𝐸𝑖  𝐻 {𝐼2⨂(𝐸𝑗𝑆𝑛 − |𝛾𝑖𝑗|

2𝑆𝑑)})
𝑇
 Eq. 3-18 

So, ∇ℎ𝛾
2 can be written as 2 𝛾𝑑⁄ 𝑣𝑒𝑐(𝑊𝐻)

𝑇
. Ω𝛾

ℎ
 can be estimated using Eq. 3-18 

and Eq. 2-34. By introducing 𝑞 ≜ 𝑣𝑒𝑐(𝑊𝐻)
𝑇
ℋ(𝒞⨂𝐼𝑘2), assuming 𝑞 = 𝑣𝑒𝑐(𝑄), and 

applying (Eq. A-7), Ω𝛾
ℎ
 is: 

 
 Ω𝛾

ℎ
=

4

𝛾𝑑
2
𝑡𝑟𝑎𝑐𝑒 (Σ𝑒𝑄Γ𝑦

−1𝑄
𝑇
) Eq. 3-19 

where 𝑄 can be estimated as:  
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𝑞 = 𝑣𝑒𝑐(𝑊𝐻)
𝑇
(𝐹1𝒞⨂𝐻𝑇⨂𝐻 + 𝐹2𝒞⨂𝐻𝐻⨂𝐻∗)

= 𝑣𝑒𝑐{𝐻𝑇𝑊𝐻(𝐹1𝒞⨂𝐻𝑇) + 𝐻𝐻𝑊𝐻(𝐹2𝒞⨂𝐻𝐻)}
𝑇
 

Eq. 3-20 

Substituting Eq. 3-20 in Eq. 3-19: 

 Ω𝛾
ℎ

=
8

𝛾𝑑
2
𝑅𝑒𝑎𝑙{𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐻

𝑇𝑊𝐻(𝐹1𝐶⨂𝐻𝑇)Γ𝑦
−1(𝐶𝑇𝐹2⨂𝐻)𝑊𝐻

𝑇𝐻)

+ 𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐻
𝑇𝑊𝐻(𝐹1𝐶⨂𝐻𝑇)Γ𝑦

−1(𝐶𝑇𝐹1⨂𝐻∗)𝑊𝐻
𝑇𝐻∗)} 

Eq. 3-21 

By replacing 𝑊𝐻 in Eq. 3-21, Ω𝛾
ℎ
 is converted into the summation of eight terms 

which can be summarized as: 

 
 Ω𝛾

ℎ
=

8

𝛾𝑑
2
(𝑆𝑛,𝑗𝑗

2𝑇1(𝑖, 𝑗) + |𝛾𝑖𝑗|
4
𝑇2(𝑖) − 2𝑆𝑛,𝑗𝑗|𝛾𝑖𝑗|

2
𝑇3(𝑖, 𝑗)) Eq. 3-22 

where 𝑆𝑛,𝑗𝑗 is the 𝑗𝑡ℎ element of the main diagonal of 𝑆𝑛: 

      𝑇1(𝑖, 𝑗) = 𝑅𝑒𝑎𝑙 {𝜇𝛾1,𝑖 (𝐻𝑖𝑗𝑔𝑝𝛾𝑔𝑝𝛾
𝑇𝐻

𝑇

𝑖𝑗)

+ 𝜇𝛾2,𝑖 (𝐻𝑖𝑗𝑔𝑝𝛾𝑔𝑝𝛾
𝐻𝐻

𝑇

𝑖𝑗)} 

Eq. 3-23 

𝑇2(𝑖) =  𝑅𝑒𝑎𝑙 {𝜇𝛾1,𝑖𝑒𝑖
𝑇𝐻(𝐹1𝐶⨂𝑆𝑑𝐻𝑇)Γ𝑦

−1(𝐶𝑇𝐹2⨂𝐻𝑆𝑑)𝐻
𝑇
𝑒𝑖

+ 𝜇𝛾2,𝑖𝑒𝑖
𝑇𝐻(𝐹1𝐶⨂𝑆𝑑𝐻𝑇)Γ𝑦

−1(𝐶𝑇𝐹1⨂𝐻∗𝑆𝑑)𝐻
𝑇
𝑒𝑖} 

Eq. 3-24 

𝑇3(𝑖, 𝑗) = 𝑅𝑒𝑎𝑙 {𝜇𝛾1,𝑖𝐻𝑖𝑗𝑔𝑝𝛾𝐿Γ
𝑇(𝐶𝑇𝐹2⨂𝐻𝑆𝑑)𝐻

𝑇
𝑒𝑖

+ 𝜇𝛾2,𝑖𝐻𝑖𝑗𝑔𝑝𝛾𝐿Γ
𝑇(𝐶𝑇𝐹1⨂𝐻∗𝑆𝑑)𝐻

𝑇
𝑒𝑖} 

Eq. 3-25 

where 𝜇𝛾1,𝑖 and 𝜇𝛾2,𝑖 are the 𝑖𝑡ℎ element of the main diagonal of 𝐻Σ𝑒𝐻
𝑇 and 𝐻Σ𝑒𝐻

𝐻, 

respectively, 𝐻𝑖𝑗 is a (1 × 2) matrix containing the real and imaginary part of 𝐻𝑖𝑗, 𝑒𝑖 is a 

𝐾-dimensional vector with 𝑖𝑡ℎ element equals one while remaining elements are zero, 
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and 𝑔𝑝𝛾 = 𝐹1𝐶(𝐼𝑝⨂𝑒𝑗
𝑇𝐻𝑇)𝐿Γ. Considering Eq. 3-22 to Eq. 3-25 and Appendix B.1, the 

complexity for computing 𝑇1 , 𝑇2, 𝑇3, and subsequently Ω𝛾
ℎ
 is 𝑂(𝐾3𝑝2). 

2. Estimation of Ω𝛾𝝈
:  Ω𝛾𝝈

 was estimated by finding the derivative of the 

group 𝛾 functions provided in Table 2-1. Since these equations implicitly separated the 

variable 𝝈, their partial derivatives have a convenient format. 

Applying Eq. 3-13 leads to ∇σ2 = 0 for 𝐷𝑇𝐹. In the cases of 𝑔𝐷𝑇𝐹 and 𝑖𝐷𝑇𝐹, 

𝜎𝑚𝑚 was replaced by 𝑒𝑚
𝑇𝑆𝑛𝑒𝑚 in the numerator. Using chain rule:  

 

𝜕𝛾𝑛

𝜕𝝈𝑇
= (|𝐻𝑖𝑗|)

2 𝜕𝑒𝑗
𝑇𝑆𝑛𝑒𝑗

𝜕𝝈𝑇
= (|𝐻𝑖𝑗|)

2
(𝑒𝑗

𝑇⨂𝑒𝑗
𝑇)

𝜕𝑣𝑒𝑐(𝑆𝑛)

𝜕𝝈𝑇
 Eq. 3-26 

According to Eq. A-6, for 𝑔𝐷𝑇𝐹 and 𝑖𝐷𝑇𝐹, 𝜕𝑣𝑒𝑐(𝑆𝑛) 𝜕𝛔𝑇⁄ = 𝑑𝑖𝑎𝑔(𝑣𝑒𝑐(𝐼𝐾)), where 

𝑑𝑖𝑎𝑔(𝑥) is a diagonal matrix whose main diagonal entries are vector x. Furthermore, 

𝑒𝑗
𝑇⨂ 𝑒𝑗

𝑇 is the equivalent of 𝑣𝑒𝑐(𝐸𝑗)
𝑇. Hence, for 𝑔𝐷𝑇𝐹 and 𝑖𝐷𝑇𝐹 we can write: 

 

𝜕𝛾𝑛

∂𝛔𝑇
= |𝐻𝑖𝑗|

2
𝑣𝑒𝑐(𝐸𝑗)

𝑇
𝑑𝑖𝑎𝑔(𝑣𝑒𝑐(𝐼𝐾)) = |𝐻𝑖𝑗|

2
𝑣𝑒𝑐(𝐸𝑗⨀𝐼𝐾)

𝑇

= 𝑣𝑒𝑐 (|𝐻𝑖𝑗|
2
𝐸𝑗)

𝑇

 

Eq. 3-27 

where ⨀ is the Hadamard operator or element-wise product. The derivative of the 

denominator which is a function of 𝑖, was obtained by finding the summation of the 

derivatives of the numerator over all values of 𝑗. Hence, for 𝑔𝐷𝑇𝐹: 

 

𝜕𝛾𝑑

𝜕𝝈𝑇
= ∑

𝜕𝛾𝑛

𝜕𝝈𝑇
 |𝑗=𝑚 

𝐾

𝑚=1

= ∑ 𝑣𝑒𝑐(|𝐻𝑖𝑚|2𝐸𝑚)  𝑇
𝐾

𝑚=1

= 𝑣𝑒𝑐{𝑑𝑖𝑎𝑔(|𝑒𝑖
𝑇𝐻|2)}𝑇 

Eq. 3-28 

If we substitute the denominator of 𝑖𝐷𝑇𝐹 introduced in Table 2-1 with 

∑ (𝑅𝑒𝑎𝑙(𝐻𝑖𝑚𝑒𝑖
𝑇𝐻)𝑆𝑑𝑒𝑚),𝐾

𝑚=1  the derivative formula for 𝑖𝐷𝑇𝐹 can be written as: 
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𝜕𝛾𝑑

𝜕𝝈𝑇
= ∑ 𝑅𝑒𝑎𝑙(𝐻𝑖𝑚𝑒𝑖

𝑇𝐻)
𝜕𝑆𝑑𝑒𝑚

𝜕𝝈𝑇
  

𝐾

𝑚=1

= 𝑅𝑒𝑎𝑙 (∑(𝐻𝑖𝑚𝑒𝑖
𝑇𝐻)(𝑒𝑚

𝑇 ⨂𝐼𝑘)
𝜕𝑆𝑑

𝜕𝝈𝑇
  

𝐾

𝑚=1

) 

Eq. 3-29 

where 𝜕𝑣𝑒𝑐(𝑆𝑑) 𝜕𝛔𝑇⁄ = 𝐼𝑘2  . According to the vectorization properties in Appendix 

A.1: 

 

𝜕𝛾𝑑

𝜕𝝈𝑇
= 𝑅𝑒𝑎𝑙 (𝑣𝑒𝑐 ∑(𝐻𝑖𝑚𝑒𝑚𝑒𝑖

𝑇𝐻)𝑇 

𝐾

𝑚=1

) Eq. 3-30 

where: 

 
∑(𝐻𝑖𝑚𝑒𝑚𝑒𝑖

𝑇𝐻)

𝐾

𝑚=1

= (∑(𝐻𝑖𝑚𝑒𝑚)

𝐾

𝑚=1

)𝑒𝑖
𝑇𝐻 = 𝐻𝐻𝑒𝑖𝑒𝑖

𝑇𝐻 Eq. 3-31 

By plugging Eq. 3-31 into Eq. 3-30: 

 

𝜕𝛾𝑑

𝜕𝝈𝑇
= 𝑅𝑒𝑎𝑙 (𝑣𝑒𝑐(𝐻𝐻𝐸𝑖𝐻)𝑇)   Eq. 3-32 

Finally, we can find ∇𝝈𝛾, for gDTF by replacing Eq. 3-27 and Eq. 3-28 into Eq. 3-13: 

 
𝛻𝝈𝛾

2 =
1

𝛾𝑑
𝑣𝑒𝑐 {|𝐻𝑖𝑗|

2
𝐸𝑗 − |𝛾𝑖𝑗|

2𝑑𝑖𝑎𝑔(|𝑒𝑖
𝑇𝐻|2)}

𝑇

 Eq. 3-33 

And, for 𝑖𝐷𝑇𝐹, by replacing Eq. 3-27 and Eq. 3-32 into Eq. 3-13: 

 
𝛻𝝈𝛾

2 =
1

𝛾𝑑
𝑣𝑒𝑐 {|𝐻𝑖𝑗|

2
𝐸𝑗 − |𝛾𝑖𝑗|

2𝑅𝑒𝑎𝑙(𝐻𝐻𝐸𝑖𝐻)}
𝑇

 Eq. 3-34 

Therefore, ∇𝝈𝛾
2 can be summarized in the format of 1 𝛾𝑑⁄ 𝑣𝑒𝑐(𝑊𝝈)

𝑇. Substituting  

Eq. 3-11, and applying the properties of 𝑣𝑒𝑐 operator,  Ω𝛾𝝈
 can be rewritten as: 

 
 𝛺𝛾𝝈

=
1

𝛾𝑑
2
  𝑣𝑒𝑐(𝛴𝑒𝑊𝝈𝛴𝑒)(𝐼𝐾2 + 𝑇𝐾,𝐾)𝑣𝑒𝑐(𝑊𝝈)   Eq. 3-35 

Since Σ𝑒𝑊𝜎Σ𝑒 is symmetric, 𝑣𝑒𝑐(Σ𝑒𝑊𝛔Σ𝑒)𝑇𝐾,𝐾 = 𝑣𝑒𝑐(Σ𝑒𝑊𝛔Σ𝑒). Rewriting Eq. 3-35: 
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 𝛺𝛾𝝈

=
2

𝛾𝑑
2
𝑣𝑒𝑐(𝛴𝑒𝑊𝝈𝛴𝑒)𝑣𝑒𝑐(𝑊𝝈) =

2

𝛾𝑑
2
 𝑡𝑟𝑎𝑐𝑒(𝛴𝑒𝑊𝝈𝛴𝑒𝑊𝝈) Eq. 3-36 

By replacing 𝑊𝛔 in Eq. 3-36, 𝛺𝛾𝝈
can be summarized as: 

 
 𝛺𝛾𝝈

=
2

𝛾𝑑
2 (|𝐻𝑖𝑗|

4𝑇1(𝑗) + |𝛾𝑖𝑗|
4
𝑇2(𝑖) − 2|𝐻𝑖𝑗|

2|𝛾𝑖𝑗|
2
𝑇3(𝑖, 𝑗)) Eq. 3-37 

where 𝑇1, 𝑇2, and 𝑇3 are provided in Table 3-4. According to Table 3-4 and Appendix 

B.1, 𝑇1, 𝑇2, 𝑇3, and subsequently 𝛺𝛾𝝈
can be solved in 𝑂(𝐾3) operations. 

• Proof of Eq. 3-37 and parameters in Table 3-4: 

By replacing 𝑊𝝈 in Eq. 3-36, for 𝑔𝐷𝑇𝐹: 

 

Ω𝛾𝝈 =
2

𝛾𝑑
2 (|𝐻𝑖𝑗|

4𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐸𝑗Σ𝑒𝐸𝑗)

+ |𝛾𝑖𝑗|
4
𝑡𝑟𝑎𝑐𝑒 (Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖

𝑇𝐻|2)Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖
𝑇𝐻|2))

− 2|𝐻𝑖𝑗|
2|𝛾𝑖𝑗|

2
𝑡𝑟𝑎𝑐𝑒 (Σ𝑒𝐸𝑗Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖

𝑇𝐻|2))) 

Eq. 3-38 

Then: 

 
𝑇1(𝑗) = 𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐸𝑗Σ𝑒𝐸𝑗) = 𝑒𝑗

𝑇(𝛴𝑒⨀𝛴𝑒)𝑒𝑗 = 𝝈𝑗𝑗
2  Eq. 3-39 

 

𝑇2(𝑖) = 𝑡𝑟𝑎𝑐𝑒 (Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖
𝑇𝐻|2)Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖

𝑇𝐻|2))

= 𝑒𝑖
𝑇(𝐻⨀𝐻∗)𝑇(𝛴𝑒⨀𝛴𝑒)(𝐻⨀𝐻∗)𝑒𝑖 

Eq. 3-40 

 
𝑇3(𝑖, 𝑗) = 𝑡𝑟𝑎𝑐𝑒 (Σ𝑒𝐸𝑗Σ𝑒𝑑𝑖𝑎𝑔(|𝑒𝑖

𝑇𝐻|2)) = 𝑒𝑖
𝑇(𝐻⨀𝐻∗)𝑇(𝛴𝑒⨀𝛴𝑒)𝑒𝑗 Eq. 3-41 

 For 𝑖𝐷𝑇𝐹, substituting 𝑅𝑒𝑎𝑙(𝐻𝐻𝐸𝑖𝐻) with (𝐻𝐻𝐸𝑖𝐻 + 𝐻𝑇𝐸𝑖𝐻
∗) 2⁄ , results in: 
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Ω𝛾𝝈 =
2

𝛾𝑑
2 {|𝐻𝑖𝑗|

4𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐸𝑗Σ𝑒𝐸𝑗)

+
|𝛾𝑖𝑗|

4

4
𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐻

𝐻𝐸𝑖𝐻Σ𝑒𝐻
𝐻𝐸𝑖𝐻

+ Σ𝑒𝐻
𝑇𝐸𝑖𝐻

∗Σ𝑒𝐻
𝑇𝐸𝑖𝐻

∗ + 2Σ𝑒𝐻
𝐻𝐸𝑖𝐻Σ𝑒𝐻

𝑇𝐸𝑖𝐻
∗)

− |𝐻𝑖𝑗|
2|𝛾𝑖𝑗|

2
𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐸𝑗Σ𝑒𝐻

𝐻𝐸𝑖𝐻 + Σ𝑒𝐸𝑗Σ𝑒𝐻
𝑇𝐸𝑖𝐻

∗)} 

Eq. 3-42 

 𝑇1(𝑖) is the same as that of 𝑔𝐷𝑇𝐹. The first two terms of 𝑇2(𝑗) are equivalent: 

 

𝑇2(𝑖) =
1

2
𝑡𝑟𝑎𝑐𝑒(Σ𝑒𝐻

𝐻𝐸𝑖𝐻Σ𝑒𝐻
𝐻𝐸𝑖𝐻 + Σ𝑒𝐻

𝐻𝐸𝑖𝐻Σ𝑒𝐻
𝑇𝐸𝑖𝐻

∗)

=
1

2
(𝑒𝑖

𝑇(𝐻Σ𝑒𝐻
𝐻)𝑒𝑖 𝑒𝑖

𝑇(𝐻Σ𝑒𝐻
𝐻)𝑒𝑖

+ 𝑒𝑖
𝑇(𝐻Σ𝑒𝐻

𝑇)𝐻𝑒𝑖 𝑒𝑖
𝑇(𝐻Σ𝑒𝐻

𝑇)𝑒𝑖) =

=
1

2
( |𝜇𝛾1,𝑖|

2
+ |𝜇𝛾2,𝑖|

2
) 

Eq. 3-43 

𝑇3(𝑖, 𝑗) is the summation of two equal terms, so: 

 
𝑇3(𝑖, 𝑗) = 𝑡𝑟𝑎𝑐𝑒(𝐻Σ𝑒𝐸𝑗Σ𝑒𝐻

𝐻𝐸𝑖) = 𝑒𝑖
𝑇(𝐻Σ𝑒⨀𝐻∗Σ𝑒)𝑒𝑗                      Eq. 3-44 

Table 3-1: Variables 𝑇𝑛 and 𝑇𝑑 for groups of connectivity 

VARIABLES GROUP   GROUP   

𝑻𝒏(𝒊, 𝒋, 𝝈) 𝐼2⨂𝐸𝑗𝑆𝑛⨂𝐸𝑖 𝐼2⨂𝐸𝑗⨂𝐸𝑖𝑆𝑛 

𝑻𝒅(𝒊, 𝒋, 𝝈) 𝐼2⨂𝑆𝑑⨂𝐸𝑖 𝐼2⨂𝐸𝑗⨂𝑆𝑑 

 

Table 3-2: Variables 𝑆𝑛 and 𝑆𝑑 for connectivity measures 
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 𝑫𝑻𝑭 𝒈𝑫𝑻𝑭 𝒊𝑫𝑻𝑭 𝑷𝑫𝑪 𝒈𝑷𝑫𝑪 𝒊𝑷𝑫𝑪 

𝑺𝒏 𝐼𝑘 
(Σ𝑒⨀𝐼𝑘) (Σ𝑒⨀𝐼𝑘) 𝐼𝑘 (Σ𝑒⨀𝐼𝑘)

−1 (Σ𝑒⨀𝐼𝑘)
−1 

𝑺𝒅 𝐼𝑘 
(Σ𝑒⨀𝐼𝑘) Σ𝑒 𝐼𝑘 (Σ𝑒⨀𝐼𝑘)

−1 Σ𝑒
−1

 
 

 

Statistical properties of group 𝜋 

By defining |𝜋𝑖𝑗|
2

≜ 𝜋𝑛 𝜋𝑑⁄ , as Ω𝜋 = Ω𝜋
𝑏
+ Ω𝜋𝝈

, Ω𝜋
𝑏
 and Ω𝜋𝝈

was obtained by 

applying the delta method. 

1. Estimation of Ω𝜋
𝑏
: Similar to Ω𝜋

ℎ
, for group π, we can write: 

 
|𝜋𝑖𝑗|

2 =
𝜋𝑛

𝜋𝑑
=

𝑏
𝑇
𝑇𝑛𝑏

𝑏
𝑇
𝑇𝑑𝑏

 Eq. 3-45 

where 𝑇𝑛 and 𝑇𝑑 are defined in Table 3-1 and Table 3-2. Substituting  𝜕𝜋𝑛 𝜕𝑏
𝑇

⁄ =

2 𝑏
𝑇
𝑇𝑛, and 𝜕𝜋𝑑 𝜕𝑏

𝑇
⁄ = 2 𝑏

𝑇
𝑇𝑑 into Eq. 3-13, where 𝜙 and 𝜓 are replaced by 𝜋 and 𝑏: 

 
𝛻𝑏𝜋

2 =
2

𝜋𝑑
 ( 𝑏

𝑇
𝑇𝑛 − |𝜋𝑖𝑗|

2 𝑏
𝑇
𝑇𝑑) Eq. 3-46 

According to Table 3-1 and Table 3-2 and using the 𝑣𝑒𝑐 properties: 

 𝑏
𝑇
𝑇𝑛 = 𝑣𝑒𝑐(𝐵)𝑇{𝐼2⨂𝐸𝑗  ⨂𝐸𝑖𝑆𝑛} = 𝑣𝑒𝑐{𝑆𝑛𝐸𝑖 𝐵 (𝐼2⨂𝐸𝑗)}

𝑇
 Eq. 3-47 

 𝑏
𝑇
𝑇𝑑 = 𝑣𝑒𝑐(𝐵)𝑇{𝐼2⨂𝐸𝑗⨂𝑆𝑑} = 𝑣𝑒𝑐{𝑆𝑑

𝑇 𝐵 (𝐼2⨂𝐸𝑗)}
𝑇
 Eq. 3-48 

Substituting Eq. 3-47 and Eq. 3-48 in Eq. 3-46: 

 
𝛻𝑏𝜋

2 =
2

𝜋𝑑
𝑣𝑒𝑐{(𝑆𝑛𝐸𝑖 − |𝜋𝑖𝑗|

2𝑆𝑑
𝑇)𝐵 (𝐼2⨂𝐸𝑗)}

𝑇
 Eq. 3-49 

∇𝑏𝜋
2 can be replaced by 2 𝜋𝑑⁄ 𝑣𝑒𝑐(𝑊𝑏)

𝑇
. According to the delta method, 

Ω𝜋
𝑏
  equals (𝛻𝑏𝜋

2)Ω𝑏 (𝛻𝑏𝜋
2)

𝑇
. Replacing Eq. 3-4, and using the 𝑣𝑒𝑐 properties results:  
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 Ω𝜋

𝑏
 =

4

𝜋𝑑
2
𝑣𝑒𝑐{𝑊𝑏(𝒞⨂𝐼𝐾)}

𝑇
Ω𝒂 𝑣𝑒𝑐{𝑊𝑏(𝒞⨂𝐼𝐾)} Eq. 3-50 

Substituting 𝐼2⨂𝐸𝑗 by (𝐼2⨂𝑒𝑗)(𝐼2⨂𝑒𝑗
𝑇)  in Eq. 3-49, since (𝐼2⨂𝑒𝑗

𝑇)(𝒞⨂𝐼𝐾) =

𝒞(𝐼𝑃⨂𝑒𝑗
𝑇)), 𝑄 can be defined as: 

 
𝑄 = [(𝑆𝑛𝐸𝑖 − |𝜋𝑖𝑗|

2𝑆𝑑
𝑇)𝐵 (𝐼2⨂𝑒𝑗)]𝐾×2

 Eq. 3-51 

The (𝐾 × 2) matrix 𝑄 is the multiplier of the real and imaginary values of 𝐵 in 

column 𝑗𝑡ℎ. Ω𝜋
𝑏
 can be written as: 

 
 𝛺𝜋

𝑏
 =

4

𝜋𝑑
2
𝑡𝑟𝑎𝑐𝑒(𝛴𝑒𝑄𝐺𝑝𝑄𝑇) Eq. 3-52 

where 𝐺𝑝(𝑗, 𝑓) = [𝒞]2×𝑝[(𝐼𝑃⨂𝑒𝑗
𝑇) Γ𝑦

−1(𝐼𝑃⨂𝑒𝑗) ]𝑃×𝑃
[𝒞𝑇]𝑝×2 is a (2 × 2) matrix whose 

middle term is a subset of Γ𝑦
−1. Substituting Eq. 3-51 in Eq. 3-52: 

Ω𝜋𝑏 =
4

𝜋𝑑
2 𝑡𝑟𝑎𝑐𝑒 ((𝑆𝑛𝐸𝑖 − |𝜋𝑖𝑗|

2
𝑆𝑑) Σ𝑒 (𝑆𝑛𝐸𝑖

− |𝜋𝑖𝑗|
2
𝑆𝑑)𝐵(𝐼2⨂𝑒𝑗)𝐺𝑝(𝐼2⨂𝑒𝑗

𝑇)𝐵
𝑇
) 

Eq. 3-53 

Finally, Eq. 3-53 can be summarized as: 

 
Ω𝜋𝑏 =

4

𝜋𝑑
2 (𝑆𝑛,𝑖𝑖

2𝑇1(𝑖, 𝑗) + |𝜋𝑖𝑗|
4
𝑇2(𝑗) − 2𝑆𝑛,𝑖𝑖|𝜋𝑖𝑗|

2
𝑇3(𝑖, 𝑗)) Eq. 3-54 

where 𝑇1, 𝑇2, and 𝑇3 can be found in Table 3-3. In Table 3-3, 𝐽𝐾 is 𝐾-dimensional vector 

with entries of one, 𝐵𝑖𝑗 is a (1 × 2) matrix containing the real and imaginary part of 𝐵𝑖𝑗, 

𝐵(𝐼2⨂𝑒𝑗)𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇
is a (𝐾 × 𝐾) matrix obtained by multiplying three matrices of 

dimensions (𝐾 × 2), (2 × 2), and (2 × 𝐾). According to Table 3-3 and Appendix B.1, 

computation of 𝑇1 , 𝑇2, 𝑇3, and subsequently Ω𝜋
b
 involves 𝑂(𝐾3 + 𝐾𝑝2) operations. 
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 Table 3-3: Defining  variables 𝑇1, 𝑇2, and 𝑇3 in Eq. 3-54 

 𝑷𝑫𝑪 𝒈𝑷𝑫𝑪 𝒊𝑷𝑫𝑪 

𝑻𝟏 𝜎𝑖𝑖𝐵𝑖𝑗𝐺𝑝𝐵
𝑇

𝑖𝑗 

𝑻𝟐 𝐽𝐾
𝑇 (

Σ𝑒⨀𝐵(𝐼2⨂𝑒𝑗)

𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇) 𝐽𝐾 𝐽𝐾
𝑇𝑆𝑛 (

Σ𝑒⨀𝐵(𝐼2⨂𝑒𝑗)

𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇)𝑆𝑛𝐽𝐾 𝐽𝐾
𝑇 (

Σ𝑒
−1⨀𝐵(𝐼2⨂𝑒𝑗)

𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇 ) 𝐽𝐾 

𝑻𝟑 𝑒𝑖
𝑇 (

Σ𝑒⨀𝐵(𝐼2⨂𝑒𝑗)

𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇) 𝐽𝐾 𝑒𝑖
𝑇 (

Σ𝑒⨀𝐵(𝐼2⨂𝑒𝑗)

𝐺𝑝(𝐼2⨂𝑒𝑗
𝑇)𝐵

𝑇)𝑆𝑛𝐽𝐾 𝐵𝑖𝑗𝐺𝑝𝐵
𝑇

𝑖𝑗 

 

2. Estimation of Ω𝜋𝝈
: Deriving Ω𝜋𝝈

 follows the same steps used for Ω𝛾𝝈
.  

While for 𝐷𝐶 ∇𝛔𝜋 = 0, for 𝑔𝑃𝐷𝐶 and 𝑖𝑃𝐷𝐶 we can write: 

 

𝜕𝜋𝑛

𝜕𝝈𝑇
= |𝐵𝑖𝑗|

2
𝜕(𝑒𝑖

𝑇𝑆𝑛𝑒𝑖)

𝜕𝝈𝑇
= |𝐵𝑖𝑗|

2(𝑒𝑖
𝑇⨂ 𝑒𝑖

𝑇)
𝜕𝑣𝑒𝑐(𝑆𝑛)

𝜕𝝈𝑇
 Eq. 3-55 

According to Eq. A-5 and Eq. A-6, 𝜕𝑣𝑒𝑐(𝑆𝑛) 𝜕𝝈𝑇⁄ = (−𝑆𝑛
𝑇⨂𝑆𝑛)𝑑𝑖𝑎𝑔(𝑣𝑒𝑐(𝐼𝐾)), 

and 𝑆𝑛  is diagonal. So, Eq. 3-55 is simplified as: 

 

𝜕𝜋𝑛

𝜕𝝈𝑇
= |𝐵𝑖𝑗|

2
𝑣𝑒𝑐(−𝑆𝑛𝐸𝑖𝑆𝑛)𝑇𝑑𝑖𝑎𝑔(𝑣𝑒𝑐(𝐼𝐾))

= |𝐵𝑖𝑗|
2
𝑣𝑒𝑐(−𝑆𝑛𝐸𝑖𝑆𝑛⨀𝐼𝐾)𝑇 = 𝑣𝑒𝑐 (−|𝐵𝑖𝑗|

2
𝐸𝑖𝑆𝑛

2)
𝑇

 

Eq. 3-56 

For 𝑔𝑃𝐷𝐶, 𝜕𝜋𝑑 𝜕𝝈𝑇⁄  can be written as the summation of derivatives: 

 

𝜕𝜋𝑑

𝜕𝝈𝑇
= ∑

𝜕𝜋𝑛

𝜕𝝈𝑇
 |𝑖=𝑚 

𝐾

𝑚=1

= ∑ 𝑣𝑒𝑐 (|𝐵𝑚𝑗|
2
𝐸𝑚𝑆𝑛

2) 𝑇 

𝐾

𝑚=1

= 𝑣𝑒𝑐 {−𝑑𝑖𝑎𝑔 (|𝐵𝑒𝑗|
2
) 𝑆𝑛

2}
𝑇

 

Eq. 3-57 

By substituting the denominator of 𝑖𝑃𝐷𝐶 defined in Table 2-1 with 

∑ 𝑅𝑒𝑎𝑙(𝐵𝑚𝑗𝑒𝑗
𝑇𝐵𝐻)𝑆𝑑 𝑒𝑚

𝐾
𝑚=1 : 
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𝜕𝜋𝑑

𝜕𝝈𝑇
= ∑ 𝑅𝑒𝑎𝑙(𝐵𝑚𝑗𝑒𝑗

𝑇𝐵𝐻)
𝜕𝑆𝑑𝑒𝑚

𝜕𝝈𝑇
  

𝐾

𝑚=1

= 𝑅𝑒𝑎𝑙 (∑(𝐵𝑚𝑗𝑒𝑗
𝑇𝐵𝐻)(𝑒𝑚

𝑇 ⨂𝐼𝑘)
𝜕𝑆𝑑

𝜕𝝈𝑇
  

𝐾

𝑚=1

) 

Eq. 3-58 

where 𝜕𝑣𝑒𝑐(𝑆𝑑) 𝜕𝝈𝑇⁄ = (−𝑆𝑑
𝑇⨂𝑆𝑑).  

Applying 𝑣𝑒𝑐 properties (Appendix A.1): 

 

𝜕𝜋𝑑

𝜕𝝈𝑇
= 𝑅𝑒𝑎𝑙 {∑ 𝑣𝑒𝑐(𝑒𝑚𝐵𝑚𝑗𝑒𝑗

𝑇𝐵𝐻)
𝑇
 

𝐾

𝑚=1

(−𝑆𝑑
𝑇⨂𝑆𝑑)}  

= 𝑅𝑒𝑎𝑙 {𝑣𝑒𝑐 ({∑(𝑒𝑚𝐵𝑚𝑗) 

𝐾

𝑚=1

} 𝑒𝑗
𝑇𝐵𝐻)

𝑇

(−𝑆𝑑
𝑇⨂𝑆𝑑)}

= 𝑅𝑒𝑎𝑙 {𝑣𝑒𝑐(𝐵𝑒𝑗𝑒𝑗
𝑇𝐵𝐻)

𝑇
} (−𝑆𝑑

𝑇⨂𝑆𝑑)

= 𝑅𝑒𝑎𝑙{𝑣𝑒𝑐(𝐵𝐸𝑗𝐵
𝐻) 𝑇(−𝑆𝑑

𝑇⨂𝑆𝑑)} 

Eq. 3-59 

 

𝜕𝜋𝑑

𝜕𝝈𝑇
= −𝑅𝑒𝑎𝑙 (𝑣𝑒𝑐(𝑆𝑑

𝑇𝐵𝐸𝑗𝐵
𝐻𝑆𝑑

𝑇)
𝑇
) Eq. 3-60 

Finally, ∇𝝈𝜋
2 can be obtained by substituting 𝜙 and 𝜓 with 𝜋 and 𝛔 in Eq. 3-13 

respectively. For 𝑔𝑃𝐷𝐶: 

 
𝛻𝝈𝜋2 =

1

𝜋𝑑
𝑣𝑒𝑐 {−|𝐵𝑖𝑗|

2
𝐸𝑖𝑆𝑛

2 + |𝜋𝑖𝑗|
2𝑑𝑖𝑎𝑔 (|𝐵 𝑒𝑗|

2
) 𝑆𝑛

2}
𝑇

 Eq. 3-61 

For 𝑖𝑃𝐷𝐶: 

 
𝛻𝝈𝜋

2 =
1

𝜋𝑑
𝑣𝑒𝑐 {−|𝐵𝑖𝑗|

2
𝐸𝑖𝑆𝑛

2 + |𝜋𝑖𝑗|
2𝑅𝑒𝑎𝑙(𝑆𝑑

𝑇𝐵𝐸𝑗𝐵
𝐻𝑆𝑑

𝑇)}
𝑇

 Eq. 3-62 

Therefore, ∇𝝈𝜋
2 can be summarized in the format of 1 𝜋𝑑⁄ 𝑣𝑒𝑐(𝑊𝝈)

𝑇, and Ω𝜋𝝈
 

has the same relation as that obtained for group 𝛾 in Eq. 3-36. Finally, Ω𝜋𝝈
 can be 

rewritten as: 
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 Ω𝜋𝝈

=
2

𝜋𝑑
2 (|𝐵𝑖𝑗|

4𝑇1(𝑖) + |𝜋𝑖𝑗|
4
𝑇2(𝑗) − |𝐵𝑖𝑗|

2|𝜋𝑖𝑗|
2
𝑇3(𝑖, 𝑗)) Eq. 3-63 

where 𝑇1, 𝑇2, and 𝑇3 are provided in Table 3-4. We skipped the proof of Eq. 3-63 since it 

is similar to the proof of Eq. 3-37 which was explained in the previous section. In Table 

3-4, 𝜇𝜋1,𝑗 and 𝜇𝜋2,𝑗 are the 𝑗𝑡ℎ element of the main diagonal of 𝐵𝑇Σ𝑒
−1𝐵 (the inverse of 

𝐻Σ𝑒𝐻
𝑇) and 𝐵𝐻Σ𝑒

−1𝐵 (the inverse of 𝐻Σ𝑒𝐻
𝐻), respectively. According to Table 3-4 and 

Appendix B.1, calculation of 𝑇1 , 𝑇2, 𝑇3, and subsequently Ω𝜋𝝈
requires 

𝑂(𝐾3) operations. 

Table 3-4: Defining variables 𝑇1, 𝑇2, and 𝑇3 for estimating  Ω𝜙𝝈
in Eq. 3-37 and Eq. 3-63 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 

𝑫𝑻𝑭(𝑷𝑫𝑪) 0 

𝒈𝑫𝑻𝑭 

𝑆𝑛,𝑗𝑗
2

= 𝝈𝑗𝑗
2  

𝑒𝑖
𝑇(𝐻⨀𝐻∗)(Σ𝑒⨀Σ𝑒)(𝐻⨀𝐻∗)𝑇𝑒𝑖 𝑒𝑖

𝑇(𝐻⨀𝐻∗)(Σ𝑒⨀Σ𝑒)𝑒𝑗 

𝒊𝑫𝑻𝑭 

 
𝑒𝑖

𝑇

2
(𝐻Σ𝑒𝐻

𝑇⨀𝐻∗Σ𝑒𝐻
𝐻

+ 𝐻Σ𝑒𝐻
𝐻⨀𝐻∗Σ𝑒𝐻

𝑇)𝑒𝑖

=
1

2
( |𝜇𝛾1,𝑖|

2
+ |𝜇𝛾2,𝑖|

2
) 

𝑒𝑖
𝑇(𝐻Σ𝑒⨀𝐻∗Σ𝑒)𝑒𝑗 

𝒈𝑷𝑫𝑪 

𝑆𝑛,𝑖𝑖
2

= 𝝈𝑖𝑖
−2 

𝑒𝑗
𝑇(𝐵⨀𝐵∗)𝑇𝑆𝑛

2(𝛴𝑒⨀𝛴𝑒)𝑆𝑛
2(𝐵⨀𝐵∗)𝑒𝑗 𝝈𝑖𝑖

−2𝑒𝑖
𝑇(𝛴𝑒⨀𝛴𝑒)𝑆𝑛

2(𝐵⨀𝐵∗)𝑒𝑗 

𝒊𝑷𝑫𝑪 

𝑒𝑗
𝑇

2
(𝐵𝐻Σ𝑒

−1𝐵⨀𝐵𝑇Σ𝑒
−1𝐵∗

+ 𝐵𝐻Σ𝑒
−1𝐵∗⨀𝐵𝑇Σ𝑒

−1𝐵)𝑒𝑗

=
1

2
( |𝜇𝜋1,𝑗|

2
+ |𝜇𝜋2,𝑗|

2
) 

𝝈𝑖𝑖
−2𝑒𝑖

𝑇(𝐵⨀𝐵∗)𝑒𝑗

= 𝝈𝑖𝑖
−2|𝐵𝑖𝑗|

2 

 

Confidence interval 

         Having the distribution of connectivity measures, the (1-)% confidence interval is: 

 
|�̂�𝑖𝑗|

2 − 𝑧𝛼
2⁄
√

 𝛺𝜙

𝑛𝑠
≤ |𝜙𝑖𝑗|

2
≤ |�̂�𝑖𝑗|

2
+ 𝑧𝛼

2⁄
√

 𝛺𝜙

𝑛𝑠
 Eq. 3-64 
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Confidence intervals of |𝛾𝑖𝑗|
2 and |𝜋𝑖𝑗|

2
are obtained by inserting them in Eq. 

3-64 in the place of |𝜙𝑖𝑗|
2. 

3.2.2 Asymptotic Distribution in Null Case 

As mentioned in chapter three, according to [34] and [35], if H0 holds, (|𝜋𝑖𝑗|
2 = 0 

or |𝛾𝑖𝑗|
2 = 0), the next term in the Taylor series in the delta method is important. They 

concluded that for large 𝑛𝑠, the distribution of 𝑛𝑠 (|�̂�𝑖𝑗|
2
− |𝜙𝑖𝑗|

2
) asymptotically 

converges to  𝑍𝑇𝑫 𝑍, where 𝑍~𝒩(0,1) with 𝑫 being defined separately for the γ and π 

groups. Since 𝑫 is a Hermitian matrix, it is diagonalizable: 𝑍𝑇𝑫 𝑍 =  ∑ 𝜆𝑘𝑍
𝑇𝑣𝑘𝑣𝑘

𝐻𝑍𝑞
𝑘=1 , 

where 𝑣𝑘 is the 𝑘𝑡ℎ eigenvector of 𝑫 associated with 𝜆𝑘. Defining 𝜉𝑘 ≜ 𝑣𝑘
𝐻𝑍 and since 

we know that 𝜉𝑘~𝒩(0,1), 𝑍𝑇𝑫 𝑍 =  ∑ 𝜆𝑘𝜉𝑘
2𝑞

𝑘=1 , which means that the distribution of 

𝑛𝑠 (|�̂�𝑖𝑗|
2
− |𝜙𝑖𝑗|

2
) asymptotically converges to the linear combination of 𝜒1

2.  

According to Patnaik approximation, the linear combination of the uncorrelated 

𝜒1
2 random variables can be approximated by 𝑐χ𝑣

2, where c = ∑ 𝑙𝑘
2𝑞

𝑘=1 ∑ 𝑙𝑘
𝑞
𝑘=1⁄ , 𝑣 =

(∑ 𝑙𝑘
𝑞
𝑘=1 )

2
∑ 𝑙𝑘

2𝑞
𝑘=1⁄ , and 𝑙𝑘s  are multipliers [45]. By applying Patnaik approximation, 

they concluded: 

 
𝑛𝑠𝜙𝑑𝑖𝑗

(|�̂�𝑖𝑗|
2
− |𝜙𝑖𝑗|

2
)

𝑑
→ 𝑐𝜒𝑣

2 Eq. 3-65 

where the multiplier c and the degree of freedom 𝑣 are functions of the eigenvalues of 𝑫. 

In the following sections, by explaining 𝑫𝜋 and 𝑫𝛾 as a function of 𝐿𝑏, 𝐿ℎ, and 

estimating their dominant eigenvalues, c and v are found for both connectivity groups. 

Statistical properties of group 𝛾 

For group γ, we obtained: 



42 

 

 
𝑐 = 𝜆(1 + |𝑅|2) Eq. 3-66 

 
𝑣 =

2

1 + |𝑅|2
 Eq. 3-67 

where 𝜆 is the product of the eigenvalues of 𝐷𝛾,Γ(𝑗) and 𝐷𝛾,𝑒(𝑖): 

 
𝐷γ,Γ(𝑗) = 𝜎𝑗𝑗{𝐿𝛤

𝑇(𝐶𝑇⨂𝐻∗)(𝐼2⨂𝑒𝑗)𝐹1(𝐼2⨂𝑒𝑗
𝑇)(𝐶⨂𝐻𝑇)𝐿𝛤} Eq. 3-68 

 
𝐷𝛾,𝑒(𝑖) = (𝐻𝐿𝑒(𝑖))

𝐻
𝐻𝐿𝑒(𝑖) Eq. 3-69 

𝐻𝐿𝑒(𝑖) is the 𝑖𝑡ℎ row of the 𝐻𝐿𝑒, and 𝑅 is the expected value of 𝑣Γ
𝑇𝑣Γ 𝑣𝑒

𝑇𝑣𝑒 , 

where 𝑣Γ and 𝑣𝑒 are eigenvectors of 𝐷γ,Γ(𝑗) and  𝐷𝛾,𝑒(𝑖), respectively. 

Therefore, 𝐷𝛾,𝑒(𝑖) can be constructed in 𝑂(𝐾3) operations and 𝐷γ,Γ(𝑗) can be 

solved in 𝑂(𝐾3𝑝2) operations including the multiplication of (𝐾𝑝 × 2)(2 × 2)(2 × 𝐾𝑝) 

inside the 𝑗 loop, and building of the (𝐾𝑝 × 𝐾𝑝) matrix 𝐿𝛤
𝑇 (𝐶𝑇⨂𝐻∗) outside the 𝑗 loop. 

According to Appendix B.3, finding 𝑣Γ, 𝑣𝑒, 𝜆 requires 𝑂(𝐾3𝑝2) operations which leads 

to overall 𝑂(𝐾3𝑝2) calculations for estimating 𝑐 and 𝑣. 

• Proof of Eq. 3-66 to Eq. 3-69: 

Applying the second term of Taylor series in delta method results that for large 

 𝑛𝑠, 𝑛𝑠(|�̂�𝑖𝑗|
2 − |𝛾𝑖𝑗|

2) converges to 𝑋𝑇𝑇𝑛  𝑋 𝛾𝑑⁄  , where 𝑋~𝒩(0, Ωℎ). If  𝑋 = 𝐿ℎ𝑍, 

then Z is a standard normal random variable, which yields  𝑫𝛾 = 𝐿ℎ
𝑇(𝑇𝑛)𝐿ℎ [35].  

By substituting 𝑇𝑛  from Table 3-1 and Table 3-2, and 𝐿ℎ from Eq. 3-7,  𝑫𝛾 

(2𝐾2 × 2𝐾2matrix) can be rewritten as: 
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𝑫𝛾 = {{𝐿𝛤
𝑇(𝒞𝑇𝐹1⨂𝐻∗)}⨂𝐿𝑒

𝑇𝐻𝐻

+ {𝐿𝛤
𝑇(𝒞𝑇𝐹2⨂𝐻)}⨂𝐿𝑒

𝑇𝐻𝑇} (𝐼2⨂𝐸𝑗𝑆𝑛⨂𝐸𝑖) 

{{(𝐹1𝒞⨂𝐻𝑇)𝐿𝛤}⨂𝐻𝐿𝑒 + {(𝐹2𝒞⨂𝐻𝐻)𝐿𝛤}⨂𝐻∗𝐿𝑒} 

Eq. 3-70 

So,  𝑫𝛾 is the summation of four terms, two of them are zero and the other 

nonzero terms are conjugate of each other: 

 

𝑫𝛾 = {𝐿Γ
𝑇(𝒞𝑇𝐹1𝒞⨂𝐻∗𝐸𝑗𝑆𝑛𝐻𝑇)𝐿Γ}⨂{𝐿𝑒

𝑇𝐻𝐻𝐸𝑖𝐻𝐿𝑒}

+ {𝐿Γ
𝑇(𝒞𝑇𝐹2𝒞⨂𝐻𝐸𝑗𝑆𝑛𝐻𝐻)𝐿Γ}⨂{𝐿𝑒

𝑇𝐻𝑇𝐸𝑖𝐻
∗𝐿𝑒} 

Eq. 3-71 

If  𝑫𝛾 ≜ 𝐷 + 𝐷∗, where 𝐷 = 𝐷𝛾,Γ(𝑗)⨂𝐷𝛾,𝑒(𝑖), 𝐷𝛾,𝑒(𝑖) = 𝐿𝑒
𝑇𝐻𝐻𝑒𝑖𝑒𝑖

𝑇𝐻𝐿𝑒 and 

𝐷𝛾,Γ(𝑗) = 𝜎𝑗𝑗{𝐿Γ
𝑇(𝒞𝑇𝐹1𝒞⨂𝐻∗𝑒𝑗𝑒𝑗

𝑇𝐻𝑇)𝐿Γ}. It is easy to show that the rank of D is one, 

and therefore, 𝑟𝑎𝑛𝑘(𝑫𝛾) ≤ 2 𝑟𝑎𝑛𝑘(𝐷) = 2. Furthermore, 𝐷 is a Hermitian, semi-

positive definite matrix which has only one nonzero eigenvalue 𝜆. Thus,  𝑫𝛾 can be 

rewritten as:  

 
𝑫𝛾 = 𝜆( 𝑣1𝑣1

𝐻 + 𝑣2𝑣2
𝐻) Eq. 3-72 

 𝑣1 and  𝑣2 are respectively the eigenvectors of 𝐷 and 𝐷∗ associated with 𝜆, and  

𝑣2 = 𝑣1
∗ . Introducing 𝜉1 ≜ 𝑣1

𝐻𝑍 and 𝜉2 ≜ 𝑣2
𝐻𝑍 (we know that 𝜉2 ≜ 𝜉1

∗
), then 𝑍𝑇𝑫𝛾𝑍 =

𝜆(𝜉1
2 + 𝜉2

2). 𝜉1and 𝜉2 are correlated and have asymptotic standard normal distribution. 

Defining the vector 𝜉 = [𝜉1, 𝜉2]
𝑇, the covariance of 𝜉 is: 

 
𝑐𝑜𝑣(𝜉) = [

1 𝑐𝑜𝑣(𝜉1, 𝜉2)

𝑐𝑜𝑣(𝜉2, 𝜉1) 1
]                Eq. 3-73 

where 𝑐𝑜𝑣(𝜉1, 𝜉2) is defined: 
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𝑐𝑜𝑣(𝜉1, 𝜉2) = 𝛦(𝜉1𝜉2
𝐻) − 𝛦(𝜉1)𝛦(𝜉2

𝐻) = 𝛦(𝑣1
𝐻𝑍  𝑍𝑇𝑣1

∗)

= 𝛦(𝑣1
𝑇𝑣1)

∗           

Eq. 3-74 

If 𝑅 ≜ 𝑐𝑜𝑣(𝜉1, 𝜉2), then 𝑅∗ ≜ 𝑐𝑜𝑣(𝜉2, 𝜉1), and Eq. 3-73 can be rewritten as: 

 
𝑐𝑜𝑣(𝜉) = [

1 𝑅
𝑅∗ 1

] Eq. 3-75 

𝑐𝑜𝑣(𝜉) is a Hermitian matrix with eigenvalues 1 ± |𝑅|. The spectral 

decomposition of 𝑐𝑜𝑣(𝜉) follows: 

 
𝑐𝑜𝑣(𝜉) = 𝑃𝛬𝑃𝐻     →     𝑃𝐻𝑐𝑜𝑣(𝜉)𝑃 = 𝛬 Eq. 3-76 

where Λ = [
1 + |𝑅| 0

0 1 − |𝑅|
], and unitary matrix  𝑃 =

√2

2
[
𝑅

|𝑅|⁄ 𝑅
|𝑅|⁄

1 −1
]. By applying 

Karhunen–Lo`eve expansion [46] and introducing [𝑢1 , 𝑢2 ]
𝑇 = 𝑃𝐻[𝜉1, 𝜉2]

𝑇, we can 

conclude that 𝑐𝑜𝑣([𝑢1, 𝑢2]) = 𝑃𝐻𝑐𝑜𝑣(𝜉)𝑃 = 𝛬. As 𝛬 is a diagonal matrix, u1 and u2 are 

statistically independent. Also, [𝜉1, 𝜉2]
𝑇 = 𝑃[𝑢1 , 𝑢2 ]

𝑇, so 𝜉1 =
√2 𝑅

2 |𝑅|
(𝑢1 + 𝑢2) and 𝜉2 =

√2 

2 
(𝑢1 − 𝑢2). Thus, 𝑛𝑠(|𝛾𝑖𝑗|

2 − |𝛾𝑖𝑗|
2) asymptotically converges to: 

 
𝑍𝑇  𝑫𝛾𝑍 = 𝜆𝑍𝑇(𝑢1

𝐻𝑢1 + 𝑢2
𝐻𝑢2)𝑍 Eq. 3-77 

If [𝒖𝟏, 𝒖𝟐] is the standard form of [𝑢1, 𝑢2], then: 

 
𝑍𝑇 𝑫𝛾𝑍 = 𝜆𝑍𝑇 ((1 + |𝑅|)𝒖𝟏

𝐻𝒖𝟏 + (1 − |𝑅|)𝒖𝟐
𝐻𝒖𝟐)𝑍 Eq. 3-78 

It can be concluded that 𝑍𝑇 𝑫𝛾𝑍
𝑑
→ 𝑐𝜒𝑣

2 , where according to Patnaik 

approximation [45, 33], 𝑐 = 𝜆(1 + |𝑅|2) and 𝑣 =
2

1+|𝑅|2
. 

Furthermore, if eigenvectors of 𝐷𝛾,Γ(𝑗) and 𝐷𝛾,𝑒(𝑖) are 𝑣Γ and 𝑣𝑒, then 𝑣1 =

𝑣Γ⨂𝑣𝑒 . Thus in Eq. 3-74: 

 
𝑅∗ = 𝛦(𝑣1

𝑇𝑣1) = 𝛦((𝑣Γ⨂𝑣𝑒)
𝑇(𝑣Γ⨂𝑣𝑒)) = 𝛦(𝑣Γ

𝑇𝑣Γ 𝑣𝑒
𝑇𝑣𝑒) Eq. 3-79 
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                                                                                                                             ∎ 

Statistical properties of group 𝜋 

For group π, 𝑫𝜋 = 𝐷𝜋,Γ(𝑗)⨂𝐷𝜋,𝑒(𝑖), where 𝐷𝜋,Γ(𝑗) = 𝐿Γ(𝑗)
𝑇 𝒞𝑇𝒞 𝐿Γ(𝑗) and 

𝐷𝜋,𝑒(𝑖) = 𝜎𝑖𝑖
−1𝐿𝑒(𝑖)

𝑇𝐿𝑒(𝑖). 𝐿𝑒(𝑖) (dimension of 1 × 𝐾) is the 𝑖𝑡ℎ row of the lower 

triangular matrix 𝐿𝑒, and 𝐿Γ(𝑗) (dimension of 𝑝 × 𝐾𝑝) is the (𝑚𝐾 + 𝑗)𝑡ℎ rows of the 

lower triangular matrix 𝐿Γ, for (𝑚 = 0,… , 𝑝 − 1). Thus: 

 
𝑐 = (

𝜆1
2 + 𝜆2

2

𝜆1 + 𝜆2
) Eq. 3-80 

 
𝑣 =

(𝜆1 + 𝜆2)
2

𝜆1
2 + 𝜆2

2  Eq. 3-81 

where 𝜆1 and 𝜆2 are the products of the eigenvalues of 𝐷𝜋,Γ(𝑗) and 𝐷𝜋,𝑒(𝑖). 

𝐷𝜋,𝑒(𝑖) and 𝐷𝜋,Γ(𝑗) can be solved in 𝑂(𝐾3) and 𝑂(𝐾3𝑝2) operations, 

respectively, and with the same computational efforts for finding their eigenvalues. Since 

𝐷𝜋,𝑒(𝑖) is not frequency dependent, it can be estimated outside the loop.  Finally, 𝑐  and 𝑣 

are formed in 𝑂(𝐾3𝑝2) operations.  

• Proof of Eq. 3-80 and Eq. 3-81: 

According to [34]  𝑫𝜋 = 𝐿𝑏
𝑇(𝑇𝑛)𝐿𝑏. By substituting 𝑇𝑛 from Table 3-1 and Table 

3-2 and replacing 𝐿𝑏 from Eq. 3-5 , 𝑫𝜋 (2𝐾2 × 2𝐾2matrix) can be rewritten as: 

𝑫𝜋 = (𝐿𝛤⨂𝐿𝑒)
𝑇(𝒞𝑇⨂𝐼𝐾2)(𝐼2⨂𝐸𝑗⨂𝐸𝑖𝑆𝑛)(𝒞⨂𝐼𝐾2)(𝐿𝛤⨂𝐿𝑒)

= {𝐿𝛤
𝑇(𝒞𝑇⨂𝐼𝐾)(𝐼2⨂𝐸𝑗)(𝒞⨂𝐼𝐾)𝐿𝛤}⨂{𝐿𝑒

𝑇𝐸𝑖𝑆𝑛𝐿𝑒}

= {𝐿𝛤
𝑇(𝒞𝑇𝒞⨂𝑒𝑗𝑒𝑗

𝑇)𝐿𝛤}⨂{𝐿𝑒
𝑇𝑒𝑖𝑒𝑖

𝑇𝑆𝑛𝑒𝑖𝑒𝑖
𝑇𝐿𝑒}

= {𝐿𝛤
𝑇(𝐼𝑝⨂𝑒𝑗)𝒞

𝑇𝒞(𝐼𝑝⨂𝑒𝑗
𝑇)𝐿𝛤}⨂{𝐿𝑒(𝑖)

𝑇𝑆𝑛(𝑖𝑖)𝐿𝑒(𝑖)} 

= 𝐷𝜋,𝛤(𝑗)⨂𝐷𝜋,𝑒(𝑖)  

Eq. 3-82 
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Therefore, eigenvalues of  𝑫𝜋 equal the multiplication of the eigenvalues of 

𝐷𝜋,Γ(𝑗) and 𝐷𝜋,𝑒(𝑖) which are semi-positive definite matrices with dimensions of 

𝐾𝑝 × 𝐾𝑝, and 𝐾 × 𝐾, respectively. The ranks of 𝐷𝜋,Γ(𝑗) and 𝐷𝜋,𝑒(𝑖) follow:  

 
𝑟𝑎𝑛𝑘(𝐷𝛾(𝑗) ) ≤ 𝑟𝑎𝑛𝑘(𝐶) = 2 Eq. 3-83 

 
𝑟𝑎𝑛𝑘(𝐷𝑒(𝑖) ) = 𝑟𝑎𝑛𝑘(𝐿𝑒(𝑖)) = 1 Eq. 3-84 

Since 𝑟𝑎𝑛𝑘(𝑫𝜋) = 𝑟𝑎𝑛𝑘(𝐷𝜋,Γ(𝑗)   × 𝐷𝜋,𝑒(𝑖) ), then 𝑟𝑎𝑛𝑘(𝑫𝜋) ≤ 2. Hence, 𝑫𝜋 

has at most two positive eigenvalues, while the remaining eigenvalues are zero. Finally, 𝑐  

and 𝑣 are obtained by applying the Patnaik approximation [45, 33]. ∎                                                                                                     

3.3 Computational Complexity of Fast Asymptotic Algorithm 

The fast asymptotic algorithm can be divided into two major parts in terms of 

dependency on frequency. Reducing the workload in the frequency loop is particularly 

valuable when it is required to be run on a wide range of frequencies. In the proposed 

algorithm, the Cholesky decomposition which is a significant source of work -perhaps the 

dominant one- is executed outside the frequency loop.  

The frequency-dependent computational efforts consist of two consecutive steps; null and 

non-null case. The source of work on the null case is to solve the eigenvalue/eigenvector 

problem, and the source work on the non-null case is the matrix-matrix multiplication. 

Furthermore, the non-null case is performed in the case of rejection of the null 

hypothesis.  

In general, the computational complexity of the whole algorithm except for calculating 

the Γ𝑦
−1 is independent of 𝑛𝑠. The computational cost of each part as a function of 𝐾 and 
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𝑝 is evaluated according to Appendix B and the final assessments are provided in Table 

3-5. According to Table 3-5, the total procedure over one frequency is 𝑂(𝐾3𝑝3). 

Table 3-5: Time complexity of the Fast Asymptotic algorithm 

 

PROCEDURE 

TIME COMPLEXITY 

GROUP 𝜋 GROUP 𝛾 

Outside 

frequency 

loop 

Cholesky decomposition of  Σ𝑒 𝑂(𝐾3) 

Building Γ𝑦
−1 𝑂(𝑛𝑠𝐾

2𝑝2 + 𝐾3𝑝3) 

Cholesky decomposition of  Γ𝑦
−1 𝑂(𝐾3𝑝3) 

Inside 

frequency 

loop 

Estimating |𝜙𝑖𝑗|
2
 

𝑂(𝐾3 + 𝐾2𝑝) for 𝑖𝑃𝐷𝐶 and 𝑖𝐷𝑇𝐹 

𝑂(𝐾2𝑝) for other measures 

Null case 

Eigenpairs of 𝐷𝜙,𝛤  𝑂(𝐾3𝑝2) 𝑂(𝐾3𝑝2) 

Eigenpairs of 𝐷𝜙,𝑒 
𝑂(𝐾3)(outside 

frequency loop) 
𝑂(𝐾3) 

Non-null 

case  

 Ω𝜙𝝈
 𝑂(𝐾3) 𝑂(𝐾3) 

 Ω𝜙
(𝒉  𝒐𝒓 𝒃)

 𝑂(𝐾3 + 𝐾𝑝2) 𝑂(𝐾3𝑝2) 
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CHAPTER 4 

 

PERFORMANCE EVALUATION OF THE PROPOSED FAST 

ASYMPTOTIC METHODOLOGY 
 

4.1 Validation of the Fast Asymptotic Algorithm 

We first validated the results on connectivity statistics from our new fast 

asymptotic algorithm by comparing them with the ones from the original asymptotic 

algorithm in a well-cited simulation example in the literature [16, 35]. The equations of 

the investigated 5-dimensional, 2nd order, interconnected system, are the following: 

𝑦1(𝑛) = 0.95 √2 𝑦1(𝑛 − 1) − 0.9025 𝑦1(𝑛 − 2) + 0.5 y5(𝑛 − 2) + 𝝐1(𝑛) 

𝑦2(𝑛) = −0.5 𝑦1(𝑛 − 1) + 𝝐2(𝑛) 
 
𝑦3(𝑛) = 0.4  𝑦2(𝑛 − 2) + 𝝐3(𝑛) 
 

𝑦4(𝑛) = −0.5  𝑦3(𝑛 − 1) + 0.25√2 𝑦4(𝑛 − 1) + 0.25√2 𝑦5(𝑛 − 1)
+ 𝝐4(𝑛) 

 

𝑦5(𝑛) = −0.25√2 𝑦4(𝑛 − 1) + 0.25√2 𝑦5(𝑛 − 1) + 𝝐5(𝑛) 

Eq. 4-1 

 

Figure 4-1 illustrates the direct connectivity diagram of Eq. 4-1. According to 

Figure 4-1, signals from any structure can reach all other structures. The diagram shows 

the existence of the direct coupling between consecutive signals. Moreover, 𝑦5(𝑛) is a 

direct source to 𝑦1(𝑛) and 𝑦4(𝑛). 
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Figure 4-1: Connectivity diagram between all structures for Eq. 4-1. 

The connectivity results from the application of the original and new algorithm to 

the estimation of the statistics of 𝑖𝑃𝐷𝐶 and 𝑖𝐷𝑇𝐹 measures in the 𝒚(𝑛) signals generated 

from system Eq. 4-1, using standard white noise processes for 𝝐(𝑛) and with 𝑛𝑠 = 2000, 

𝛼 = 0.01,  are shown in Figure 4-2 and Figure 4-3 respectively. It is shown that the 

statistical thresholds and confidence intervals for the estimated connectivity measures 

between the system’s 𝒚(𝑛) variables by the proposed fast asymptotic algorithm were 

identical to the ones from the original asymptotic algorithm reported in [16, 35]. 

 

Figure 4-2: Comparative statistics from the original and the new asymptotic estimation 

of the 𝑖𝑃𝐷𝐶(𝑓) connectivity measures for Eq. 4-1. The statistical threshold is denoted 

by black dashed lines if estimated by the original algorithm, and with green triangle 
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symbols if estimated by the new algorithm. The 99% confidence interval is denoted by 

error bars, gray for the original, and blue for the proposed algorithms. Indexes 𝒊 and 𝒋 
are denoting the sinks and sources, respectively.  

 

Figure 4-3: Comparative statistics from the original and the new asymptotic 

estimation of the 𝑖𝐷𝑇𝐹(𝑓) measures for Eq. 4-1 . The statistical threshold is 

denoted by black dashed lines if estimated by the original algorithm, and with green 

triangle symbols if estimated by the new algorithm. The 99% confidence interval 

is denoted by error bars, gray for the original, and blue for the proposed algorithms. 

Indexes 𝒊 and 𝒋 are denoting the sinks and sources, respectively. 

 

4.2 Use of Asymptotic Versus Surrogate Statistics  

In the same simulation experiment, we then compared the results from the 

asymptotic methodology to the ones from the surrogate methodology denoted as causal 

Fourier transform shuffling (CFT) for estimation of the statistics of the derived 

connectivity measures (shown in Figure 4-4). We figured out that the results obtained 

from both statistical methods completely match for the connectivities in group  which is 

in agreement with[21]. It is shown that the use of CFT surrogates provides false 

information about causal coupling between some of the system’s variables in group . In 
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particular, from Figure 4-4, we can see that the 99% threshold obtained by CFT for 

|𝛾2,3(𝑓) |
2
, |𝛾3,4(𝑓) |

2
 and |𝛾5,2(𝑓) |

2
 does not match the one from the asymptotic theory, 

which results in false conclusions about the statistical significance of the estimated 

connectivities, especially the 3→2 connectivity over a wide spectral band. 

 

Figure 4-4: The  connectivity measure |𝑖𝐷𝑇𝐹| 2 estimated from signals generated by 

the simulation example Eq. 4-1 and its statistical 99% thresholds over frequency 

obtained by a) the CFT method and 100 surrogates (dashed red lines) and b) by the 

new asymptotic theory (blue dotted lines). The asymptotic methods provide more 

accurate statistically significant values for the actual connectivities than the surrogate 

method.  Note: The threshold values with the new are the same as with the original 

asymptotic theory (see Figure 4-3). 

4.3 Computation Time of the Fast Versus the Original Asymptotic Algorithm 

Intracranial EEG (iEEG) recordings consented at the U. Alabama’s medical 

center was used for comparison of the original and the new asymptotic methods with 

respect to the computation time required for estimation of 𝜙 connectivity measures. 

Figure 4-5 shows the computation time for the original and the new asymptotic 

algorithms for 10 sec EEG segments recorded concurrently from 𝐾 (𝐾 = 2, . . , 32) 

electrodes and with sampling frequency 𝑓𝑠 = 500 Hz (that is, 𝑛𝑠 = 5000  data points per 

electrode / dimension). Both algorithms ran on a computer with a 2.2 GHz Intel Xeon 

processor and 128 GB of RAM. They were written in MATLAB, and the function 
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“𝑡𝑖𝑚𝑒𝑖𝑡” was used to measure the median of computation time for the estimation of the 

asymptotic statistics of 𝑖𝐷𝑇𝐹 and 𝑖𝑃𝐷𝐶 connectivity measures at one frequency (𝑓 =

41 Hz) per algorithm. For estimation of computation time, the algorithm was forced to 

run both null and non-null cases. The computation time of the proposed algorithm as a 

function of 𝑝 is visibly shorter than the original one (Figure 4-5, right panels). More 

importantly, a clear exponential increase of computation time of the original algorithm 

with 𝐾 is apparent (Figure 4-5, left panels). 

 

Figure 4-5: Computation time (min) of “𝑖𝐷𝑇𝐹” (top panels) and “𝑖𝑃𝐷𝐶” (bottom 

panels) of the original algorithm (blue asterisk ∗) and the proposed algorithm (red 

circle o) versus 𝐾 (left) for 𝑝 = 3, and versus 𝑝 (right) for 𝐾 = 15. The algorithms 

were applied to EEG datasets of 10 sec in duration (𝑓𝑠 = 500 Hz) and 𝑖𝐷𝑇𝐹 and 𝑖𝑃𝐷𝐶 

were estimated at a single frequency (𝑓 = 41 Hz). 

Having shown the superiority of the new asymptotic algorithm over the original 

one with respect to computation time required for the estimation of 𝜙 measures of 

connectivity, we sought to further investigate the effect of larger values of 𝐾 and 𝑝 on the 

computation time of the proposed new algorithm. In Figure 4-6, the computation time of 
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the six different connectivity measures discussed in this study was estimated. According 

to the left panel of Figure 4-6, when 𝑝 = 3, real-time (10 sec, i.e. approximately 0.16 

minutes) computation for the group 𝜋 of 𝜙 connectivity measures (𝑃𝐷𝐶, 𝑔𝑃𝐷𝐶 and 

𝑖𝑃𝐷𝐶) is achieved with dimension 𝐾 less than 500, and for the group 𝛾 (𝐷𝑇𝐹, 𝑔𝐷𝑇𝐹 and 

𝑖𝐷𝑇𝐹) with dimension 𝐾 less than 330. Our investigation indicates that the computation 

time for estimation of all 𝜙 connectivity measures depends on 𝑝 in an identical way. 

Therefore, we plot only 𝑖𝑃𝐷𝐶 and 𝑖𝐷𝑇𝐹 in the right panel of Figure 4-6, from which we 

can conclude that, with 𝐾 = 15, the computation of 𝜙 connectivity measures is achieved 

in real time with model order 𝑝 less than 75. 

  

Figure 4-6: Computation time (min) for estimation of the statistics of connectivity 

measures versus K and p. Left panel: Computation time of all measures versus 𝐾 with 

𝑝 = 3 [𝑃𝐷𝐶 (diamond), 𝑔𝑃𝐷𝐶 (dotted lines), 𝑖𝑃𝐷𝐶 (green asterisk), 𝐷𝑇𝐹 (circle), 

𝑔𝐷𝑇𝐹 (dashed line), and 𝑖𝐷𝑇𝐹 (blue asterisk)]. Right panel: Computation time versus 

𝑝 with 𝐾 = 15 for 𝑖𝑃𝐷𝐶 (circle) and 𝑖𝐷𝑇𝐹 (asterisk). 𝑓𝑠 = 2000 Hz and 𝑓 = 41 Hz. 

Runtimes of the connectivity measures as functions of 𝐾 are very similar within group 

𝜋 or group 𝛾; they are almost identical across groups with respect to 𝑝.  

The order of complexity of the proposed algorithm is illustrated by the log-log 

plot of Figure 4-6. Since the computation time of the connectivity measures within each 
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group is almost identical when analyzed with respect to 𝐾, and is nearly equal for both 

groups in evaluations versus 𝑝, in Figure 4-7, we just investigated the 𝑖𝑃𝐷𝐶 and 𝑖𝐷𝑇𝐹 in 

the logarithmic plots. 

In Figure 4-7, the tangential lines fitted to 𝑖𝑃𝐷𝐶 and 𝑖𝐷𝑇𝐹 curves are almost 

parallel with the approximate slope of 2.7 for 𝐾 (left). Furthermore, the tangential line 

fitted to 𝑖𝐷𝑇𝐹 has the slope of 2.05 for 𝑝 (right). The results are consistent with the order 

of complexities obtained in chapter three. 

  

Figure 4-7: Log of computation time (min) of 𝑖𝑃𝐷𝐶 (circle) and 𝑖𝐷𝑇𝐹(asterisk) versus 

natural logarithm of 𝐾 (left) for 𝑝 = 3, and versus natural logarithm of 𝑝 (right) for 

𝐾 = 15. The dashed lines are fitted on curves for 𝐾 > 340 with the approximate slope 

of 2.7 (left graph), and for 𝑝 > 280 with the approximate slope of 2.05 (right graph). 

The shaded area represents the minimum slope of 2 and the maximum slope of 3. The 

algorithms were applied to EEG datasets of 10 sec in duration (𝑓𝑠 = 2000 Hz) and 

𝑖𝐷𝑇𝐹 and 𝑖𝑃𝐷𝐶 were estimated at a single frequency (𝑓 = 41 Hz). 
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The remarkable potential of the proposed algorithm to deal with a wide range of 

frequencies is shown in Figure 4-8. According to Figure 4-8, the new algorithm 

noticeably consumes less computation time (solid lines) than expected (dotted lines), 

especially for 𝑖𝑃𝐷𝐶, when it runs over a wide frequency range. 

 

Figure 4-8: Computation time (min) of 𝑖𝑃𝐷𝐶 (circle) and 𝑖𝐷𝑇𝐹(asterisk) as a function 

of number of frequencies the measures are estimated at. The algorithm was applied to 

10 sec EEG datasets of a patient with 122 electrodes (𝐾 = 122), where the model 

order 𝑝 = 8 was determined using Akaike’s information criterion. The dotted lines 

(blue for 𝑖𝑃𝐷𝐶 and pink for 𝑖𝐷𝑇𝐹) represent the expected computation time when the 

algorithm runs for each single frequency. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 
 

5.1 Conclusion 

In this study, we addressed a substantial drawback in the application of the 

published asymptotic MVAR method to the estimation of statistically significant causal 

connectivity measures in high-dimensional time series. It has been previously shown [21] 

that the asymptotic method provides shorter computation time than the one of empirical 

approaches that use surrogate data such as CFT [28]. Although the original asymptotic 

algorithms first delineated in [34] and [35] are fast when compared with surrogate 

methods, they are not fast enough to be applied to high-dimensional time series. We 

proposed a new methodology to address this drawback that required extensive changes in 

the formulation of the original methodology. In chapter three, it was shown that the 

proposed algorithm can be accomplished using 𝑂(𝐾3𝑝3) operations. It is also noteworthy 

that the ratio of the computation time of the new algorithm over the computation time of 

the original asymptotic algorithm decreases exponentially with the dimension 𝐾 

(approximately exp(−0.2𝐾), for 𝐾 = 2,… ,32; see Figure 4-5). 

The major modifications we performed include:  
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1) Decrease the dimensions of the involved matrices by implementing the 

properties of 𝑣𝑒𝑐 operator (Appendix A.1). These transformations dismissed the 

redundant Kronecker products, “diag” operators, and, when combined with Eq. 3-11, 

discard the commutation matrix.  

2) Separate 𝑖, 𝑗, and 𝑓 variables in the involved equations as this decreases the 

computational complexity due to loops.  

3) Simplify the estimation of the gradient of connectivity measures 𝜙 by 

appropriate reformatting of the involved equations. As explained in chapter three, part 

3.2.1, for computing the covariance of 𝜙 with respect to 𝝈, instead of equations in Table 

2-2 and Table 2-3 used in the original algorithm, separable equations are applied. This 

simple change in the new algorithm resulted in dealing with matrices of dimension of 

order 𝐾 instead of 𝐾4.  

4) In the original asymptotic algorithm, the Cholesky factorization of  Ω�̅�  
(or Ωℎ̅) 

with dimension of 2𝐾2 × 2𝐾2 has to be performed for each frequency. However, in the 

new algorithm, factorization of Γ𝑦
−1 (with dimension of 𝐾𝑝 × 𝐾𝑝) and Σ𝑒(with dimension 

of 𝐾 × 𝐾) is done once and it can then be used in the estimations at all frequencies. 

 Ω�̅�  
(or Ωℎ̅) was decomposed according to Eq. 3-5 and Eq. 3-7. By considering the 

complexity of Cholesky factorization (Appendix B.2) , this modification leads to a 

remarkable improvement in the speed of the algorithm.  

5) Speed up the finding of the dominant eigenvalues. By decomposing the 

matrices (𝑫𝜋  or 𝑫𝛾) and applying the powerful properties of Kronecker product, we 

reduced the size of the matrices in the related characteristic polynomial from 2𝐾2 × 2𝐾2 

to two low-dimensional matrices with the size of 𝐾 × 𝐾 and 𝐾𝑝 × 𝐾𝑝.  
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6) Separation of the variables in 𝑫𝑃𝐷𝐶 (or 𝑫𝐷𝑇𝐹) in terms of 𝑖 and 𝑗 for each 

frequency 𝑓, also helped the required instructions to run on 2𝐾 loops instead of 𝐾2 loops, 

a huge improvement.  

7) The effect on complexity of matrix multiplication does not seem to be 

noticeable, unless we deal with extremely high-dimensional matrices (Appendix B.1). In 

the new algorithm, due to decrease in the dimension of matrices, the complexity of 

multiplication of high-dimensional matrices is significantly reduced. The modification in 

Eq. 3-4, and the matrix form representation of  ℋ in Eq. 3-6 were prerequisites for these 

improvements. 

We validated the new asymptotic MVAR method with a simulation example. 

Considering the extensive applications of the connectivity measures for the analysis of a 

plurality of other high-dimensional biological signals in real-time, availability of fast 

asymptotic MVAR algorithms like the one we herein present is critical for generation of 

timely and reliable results.  

5.2 Future Work 

Substantial optimization of the asymptotic algorithm performed in this thesis 

facilitates a practical algorithm for high-dimensional time series of real-life instances. 

Hence, applying the proposed algorithm on a physiological example with high-

dimensional physiological time series such as EEG is crucial to show the need for the 

new than the original methodology to accurately address a clinical problem.
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APPENDIX A  
 

MATRIX PROPERTIES [44]  
 

A.1 Vectorization Operator (𝒗𝒆𝒄) 

 If 𝑋, 𝐴, 𝐵, 𝐶, and 𝐷 are matrices with the dimensions of (𝑚 × 𝑛), (𝑝 × 𝑚), 

(𝑛 × 𝑞), (𝑝 × 𝑞), and (𝑞 × 𝑚) respectively, 𝑌, and 𝑍 are (𝑚 × 𝑚) matrices, and 𝑥 is a 

𝑚-dimensional vector, some of the properties of the column vectorizing operator, 𝑣𝑒𝑐, 

which were implemented in this study are as follows:  

 

𝜕𝑣𝑒𝑐(𝐴𝑋𝐵)

𝜕𝑣𝑒𝑐(𝑋)𝑇
= 𝐵𝑇⨂𝐴 Eq. A-1 

 

 

𝑣𝑒𝑐(𝑋)𝑇(𝐵⨂𝐴𝑇) = 𝑣𝑒𝑐(𝐴𝑋𝐵)𝑇 Eq. A-2 

 
If 𝐴 = 𝐶𝐷       →       𝑣𝑒𝑐(𝐴) =  (𝐷𝑇⨂𝐼𝑝)𝑣𝑒𝑐(𝐶) Eq. A-3 

 

𝜕(𝑥𝑇𝐶𝑥)

𝜕𝑣𝑒𝑐(𝑥)
= 𝑥(𝐶 + 𝐶𝑇) Eq. A-4 

For nonsingular 𝑌:            
𝜕𝑣𝑒𝑐(𝑌−1)

𝜕𝑣𝑒𝑐(𝑌)
= −𝑌−𝑇⨂𝑌−1 Eq. A-5 

 

𝜕𝑣𝑒𝑐(𝑌⨀𝑍)

𝜕𝑣𝑒𝑐(𝑌)
= 𝑑𝑖𝑎𝑔(𝑣𝑒𝑐(𝑍)) Eq. A-6 

𝑣𝑒𝑐(𝐷𝑇)𝑇(𝐶𝑇⨂𝑋)𝑣𝑒𝑐(𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝑋𝐵𝐶𝐷) = 𝑡𝑟𝑎𝑐𝑒(𝐷𝑋𝐵𝐶)

= 𝑡𝑟𝑎𝑐𝑒(𝐶𝐷𝑋𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐶𝐷𝑋) 

Eq. A-7 
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A.2 Rank of Matrix (𝒓𝒂𝒏𝒌) 

Rank of a matrix is the maximum number of linearly independent rows or 

columns of the matrix. Here, some general properties of the 𝒓𝒂𝒏𝒌 function exploited in 

this study are presented. For three matrices  𝐴, 𝐵, and 𝐶 with the dimensions of (𝑚 × 𝑛), 

(𝑛 × 𝑟), and (𝑚 × 𝑛), respectively: 

A.3 Moore-Penrose Pseudo-inverse 

The Moore-Penrose pseudo-inverse of (𝑚 × 𝑛) matrix 𝐴 is the unique matrix 𝐴+ 

with a dimension of (𝑛 × 𝑚) satisfying the four Moore-Penrose conditions: 

 

1. 𝐴𝐴+𝐴 = 𝐴,              2. 𝐴+𝐴𝐴+ = 𝐴+,

3. (𝐴𝐴+)𝐻 = 𝐴𝐴+,   4. (𝐴+𝐴)𝐻 = 𝐴+𝐴   
Eq. A-12 

If 𝐴 = 𝑈𝑆𝑉𝐻 is the Singular Value Decomposition (SVD) of 𝐴 with 𝑟 = 𝑟𝑎𝑛𝑘(𝐴), and 

𝑠1, 𝑠2, … , 𝑠𝑟 being the nonzero elements lie along the main diagonal of 𝑆, then 𝐴+ =

𝑉𝑆+𝑈𝐻, where 𝑆+ is a (𝑛 × 𝑚)  diagonal matrix with  
1

𝑠1
,

1

𝑠2
, … ,

1

𝑠𝑟
 being the components 

of the main diagonal. 

A.4 Commutation Matrix 

  𝑇𝑚,𝑛 is called the commutation matrix with a dimension of (𝑚𝑛 × 𝑚𝑛) such that 

for matrix 𝐴 with a dimension of (𝑚 × 𝑛), 𝑣𝑒𝑐(𝐴𝑇) = 𝑇𝑚,𝑛𝑣𝑒𝑐(𝐴). 

 
𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ min {𝑟𝑎𝑛𝑘(𝐴), 𝑟𝑎𝑛𝑘(𝐵)} Eq. A-8 

 
𝑟𝑎𝑛𝑘(𝐴⨂𝐵) = 𝑟𝑎𝑛𝑘(𝐴)𝑟𝑎𝑛𝑘(𝐵) Eq. A-9 

 
𝑟𝑎𝑛𝑘(𝐴 + 𝐶) ≤ 𝑟𝑎𝑛𝑘(𝐴) + 𝑟𝑎𝑛𝑘(𝐶) Eq. A-10 

 
𝑟𝑎𝑛𝑘(𝐴∗) = 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐴𝐻) Eq. A-11 
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If A is a (𝑚 × 𝑚) symmetric matrix, then according to the definition: 

 
𝑇𝑚,𝑚𝑣𝑒𝑐(𝐴) = 𝑣𝑒𝑐(𝐴) → 𝑇𝑚,𝑚 = 𝐼𝑚2 Eq. A-13 

If 𝐷𝑚 is a Duplication matrix with a dimension of (𝑚2 × 1 2⁄ 𝑚(𝑚 + 1)), then:  

 
𝐷𝑚𝐷𝑚

+ =
1

2
(𝐼𝑚2 + 𝑇𝑚,𝑚) Eq. A-14 

A.5 Kronecker Product (denoted by ⨂) Properties: 

If 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 are (𝑚 × 𝑛), (𝑝 × 𝑞), (𝑛 × 𝑟), (𝑞 × 𝑠), and (𝑝 × 𝑞) 

dimension matrices, respectively, the following rules of the Kronecker products hold: 

For 𝐴 and 𝐵 being square matrices, if 𝜆(𝐴) and 𝜆(𝐵) are the vectors containing 

the eigenvalues of 𝐴 and 𝐵 with associated eigenvectors 𝑣(𝐴) and 𝑣(𝐵), then: 

 
𝜆(𝐴⨂𝐵) = 𝜆(𝐴)⨂ 𝜆(𝐵) Eq. A-18 

 
𝑣(𝐴⨂𝐵) = 𝑣(𝐴)⨂ 𝑣(𝐵) Eq. A-19 

A.6 Spectral Decomposition of a Hermitian Matrix 

The Hermitian (𝑛 × 𝑛) matrix 𝐴 is diagonalizable in the form of 𝐴 = 𝑈Λ𝑈𝐻, 

where 𝑈 is a unitary matrix whose columns are the orthonormal eigenvectors of 𝐴 

associated with eigenvectors 𝜆1, 𝜆2, … , 𝜆𝑛, and Λ = 𝑑𝑖𝑎𝑔 (𝜆1, 𝜆2, … , 𝜆𝑛). 

(𝐴⨂𝐵)(𝐶⨂𝐷) = 𝐴𝐶⨂𝐵𝐷 Eq. A-15 

𝐴⨂(𝐵 ± 𝐸) = 𝐴⨂𝐵 ±  𝐴⨂𝐸 Eq. A-16 

(𝐴⨂𝐵)𝐻 = 𝐴𝐻⨂𝐵𝐻 , (𝐴⨂𝐵)𝑇 = 𝐴𝑇⨂𝐵𝑇 , (𝐴⨂𝐵)∗ = 𝐴∗⨂𝐵∗ Eq. A-17 
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APPENDIX B  
 

       COMPLEXITY OF THE IMPLEMENTED FUNCTIONS 

 

B.1 Matrix Multiplication and Inversion 

The computation of conventional matrix-matrix multiplication is 𝑂(𝑛3). By 

applying fast multiplication algorithms, the computation can be done with less arithmetic. 

For instance, the Strassen’s method is 𝑂(𝑛2.807) and Coppersmith-Winograd algorithm 

which is the fastest currently known algorithm is 𝑂(𝑛2.376). Strassen’s method appears in 

the libraries like BLAS (Basic Linear Algebra Subprograms) where 𝑛 > ~100.  

The complexity for estimating the matrix inversion is 𝑂(𝑛3) when algorithms 

such as Gauss-Jordan, LU decomposition, Gaussian elimination are applied. However, 

Strassen and Coppersmith-Winograd methods acquire the same complexity in matrix 

inversion as in matrix multiplication [47].  

Matrix operations on MATLAB built on LAPACK (Linear Algebra Package), use 

the optimized block matrix algorithms that operate on several columns of a matrix at a 

time. On machines with high-speed cache memory, these algorithms can considerably 

accelerate the computations involving large matrices by factors of two to eight [48]. 

 In this study, to estimate the computational complexity of the proposed 

algorithm, we assumed the worst-case computation of matrix-matrix multiplication and 

inversion of 𝑂(𝑛3) and Kronecker product of 𝑂(𝑛4). 

B.2 Cholesky Decomposition 

The Hermitian positive definite (𝑛 × 𝑛) matrix 𝐴 has a special factorization called 

“Cholesky decomposition”. According to this factorization, 𝐴 can be decomposed to the 
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product of the unique lower triangle matrix 𝐿 and its conjugate transpose, 𝐿𝐻. The 

“Cholesky factor” 𝐿, sometimes is referred to as the square root of 𝐴, albeit literally it is 

not.  

The elements of 𝐿 = 𝑙𝑖𝑗 are given as: 

 𝑙𝑖𝑖 = √𝑎𝑖𝑖 − ∑ 𝑙𝑖𝑘
2

𝑖−1

𝑘=0
 Eq. B-1 

 
𝒍𝒊𝒋 =

𝟏

𝒍𝒋𝒋
(𝒂𝒊𝒋 − ∑ 𝒍𝒊𝒌𝒍𝒋𝒌

𝒋−𝟏
𝒌=𝟎 )      𝒋 < 𝒊  Eq. B-2 

According to Eq. B-1 and Eq. B-2, 𝐿 can be built by estimating the main diagonal 

with 𝑛 (𝑛 − 1) 2⁄  multiplications and 𝑛 square roots, and the other lower triangular 

elements by 𝑛 (𝑛 − 1)(𝑛 − 2) 6⁄  multiplications and 𝑛 (𝑛 − 1) 2⁄  divisions. As a result, 

the operations count for estimating the Cholesky factor is 𝑂(𝑛3) [47]. 

B.3 Eigen-pair Calculation 

In this study, the MATLAB function “eigs” was used to find a few, say 𝑘, 

dominant eigenvalues and their associated eigenvectors of a 𝑛-dimensional Hermitian 

matrix. “Implicit restarting Lanczos Method” defined in ARPACK (Arnoldi Package) 

software is used in MATLAB to implement the “eigs” function.  

This method executes efficiently by restricting the maximum number of steps in 

the Lanczos process, and subsequently leads to fewer arithmetic operations and storage 

(2𝑛𝑘 + 𝑂(𝑘2) storage). The computational complexity of this method is determined 

through matrix-vector products with the worst case being 𝑂(𝑛2) [49, 50].
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