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Abstract. State-of-the-art (SoTA) detection-based tracking methods
mostly accomplish the detection and the identification feature learning
tasks separately. Only a few efforts include the joint learning of detec-
tion and identification features. This work proposes two novel one-stage
trackers by introducing implicit and explicit attention to the tracking
research topic. For our tracking system based on implicit attention, we
further introduce a novel fusion of feature maps combining information
from different abstraction levels. For our tracking system based on ex-
plicit attention, we introduce utilization of an additional auxiliary func-
tion. These systems outperform the SoTA tracking systems in terms of
MOTP (Multi-Object Tracking Precision) and IDF1 score when eval-
uated on public benchmark datasets including MOT15, MOT16, and
MOT17. High MOTP score indicates precise detection of bounding boxes
of objects, while high IDF1 score indicates accurate ID detections, which
is very crucial for surveillance and security systems. Therefore, proposed
systems are good choice for event-detections in surveillance feeds as we
are capable of detecting correct ID and precise location.

Keywords: One-stage Trackers, Deep Neural Networks, Tracking-by-Detection,
Computer Vision

1 Introduction

Multi Object Tracking (MOT) is one of the most widely used and yet challenging
applications of computer vision. The aim is to predict the object trajectories
across the video frames. The predicted trajectories could further be used for
the analysis of the sports videos [20], anomaly detection in crowded scenes [1],
Automatic Driving Assistance Systems [17], to name a few.

The challenges related to visual object tracking such as occlusion, motion
blur, social interaction, and low-resolution images make it a complicated task.
Myriads of approaches are proposed overtime to resolve the multiple challenges.
Some of the earliest efforts in this field used correlation-filter [9], and mean-
shift algorithm [11]. Later on, deep learning-based tracking approaches become
popular due to an increase in GPU computation power. Some of the widely used
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deep learning based tracking approaches include Siamese Neural Network (SNN)
[4] which learns similarity function between target and search region, Recurrent
Neural Networks (RNN) [32] which incorporate temporal features in addition
to appearance based features, and Generative Adversarial Network (GAN) [39]
based tracker which works well even if training dataset is small.

Fig. 1. Illustrating the proposed tracking system.

The success of deep neural networks in object detection paved the way for
developing trackers using detectors in their backbone also know as tracking-by-
detection. Some research in this area includes two-stage and one-stage trackers.
In a two-stage trackers, target objects are detected as Bounding Boxes (BBoxes)
by an object detector in the first stage. In the second stage, a unique identifica-
tion (ID) is assigned to each BBox using a different network. Then, usually an
affinity/cost matrix is constructed by combining Intersection over Union (IoU)
of detection BBox and the assigned ID. Once the affinity matrix is created, an
algorithm like Hungarian [27] is used to associate the target object by minimiz-
ing the total cost function. Reliable tracking accuracy can be achieved by using
the best detection and identification networks in a two-stage tracker. However,
this also increases the training complexity of the network and its inference time.
To reduce the training effort, one-stage trackers [44] performing both the detec-
tion and the identification task in a single network using multi-task learning are
proposed. In multi-task learning [26], a shared network is used to learn multiple
tasks, here detection and re-identification (re-id). However, this joint learning
reduces the network’s generalization capabilities by sharing the same low-level
and high-level features for both tasks. Therefore, the accuracy of the one-stage
trackers is lower as compared to their two-stage counterparts. On further anal-
ysis, the unstable detection at small scale seems to be one of the major causes
of decreased accuracy of one-stage trackers. This paper improves the detection
accuracy of one-stage trackers adding different attention modules to the back-
bone architecture. Additionally, the proposed work also improved the identity
detection by enhancing the feature propagation.
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The accuracy of detection-based one-stage trackers can be improved by ei-
ther improving the detection task or association-task. State-of-The-Art (SoTA)
approaches such as Chained-Tracker [34] improves the data-association by in-
corporating task-specific attentions. In this paper, we focused on improving the
detection task and modified existing backbone architectures of a known network
that has been used mostly for object detection, HRNet [43], by introducing dif-
ferent attention modules to propose a novel one-stage tracker as shown in Figure
1. The concept of attention networks [38] is motivated by the human visual sys-
tem, which learns to focus on a relevant region of the image while discarding
the irrelevant part. In the past few years, attention-based networks have proved
to be very successful in improving the performance of multiple computer vision
tasks [23] and [15].

Attention mechanisms can be broadly classified into two categories, i.e., im-
plicit [21] and explicit attention [29]. Implicit attention doesn’t enforce any ad-
ditional constraints on the attention unit. On the contrary, learning attention
units explicitly with additional supervision from ground-truth (GT) enforces the
network to improve on certain tasks. In this paper, we have introduced attention
(in both forms of implicit [16] and explicit [28] attention) to one-stage trackers
and shown that this improves the accuracy of the trackers.

The contributions of this paper are as follows:

1. We, for the first time, introduce attention, in its two forms of implicit and
explicit attentions, to one-stage trackers based on multi-task learning, re-
sulting in two one-stage trackers (one based on implicit attention and one
based on explicit attention) which outperform SoTA trackers in terms of
MOTP and IDF1 score on public benchmark datasets, while achieving com-
petitive results on MOTA score. The proposed attention-gates improves the
feature propagation across the later stages of the network and hence the ID
detection.

2. For our tracker based on implicit attention, we propose a novel fusion of
feature maps combining information coming from different abstraction levels,
that improves the accuracy of the tracker even further (Section 5, Table 4).

3. For our tracker based on explicit attention, we propose a novel modification
to our employed backbone architecture via an auxiliary loss function, that
further improves the tracking accuracy (Section 5, Table 5).

The rest of this paper is organized as follows: The related work in the litera-
ture is reviewed in the next section. Then, Section 3 explains the details of the
proposed idea. Section 4, gives the details of the experimental results comparing
the performance of the system with the SoTA systems. Section 5 presents the
ablation study, and finally the paper is concluded in Section 6.
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Fig. 2. Introducing implicit attention to a one-stage tracker based on HRNet [43]
backbone.

2 Related Work

This section is divided into two parts. First, we review SoTA MOT approaches
focusing on detection-based trackers. Then, we review the reported incorporation
of implicit and explicit attention for improving the performance of deep learning-
based computer vision methods.

2.1 Deep Learning-based Tracking

Most of the recent research works in MOT are using deep-learning based archi-
tectures. The recent major contributions include Graph Convolutional Network
(GCN) [12], multi-task learning [41], articulated tracking [24], and tracking-by-
detection [49]. SoTA GCN-based trackers consist of two different GCNs, i.e.,
spatial-temporal GCN represents the structure and contextual GCN models the
context. Multi-task learning-based architectures jointly optimizing on different
related tasks such as: Multi-Object Tracking and Segmentation (MOTS) [41]
optimize detection, tracking and segmentation tasks, JDE [44] optimizing detec-
tion and re-id tasks, and FAMNet [5] which is based on joint optimization of
feature extraction, affinity estimation, and multi-dimension assignment. Artic-
ulated trackers track the key-points across the video frames, e.g., architecture
proposed in [24] contains two networks SpatialNet and TemporalNet. Spatial-
Net detects the body parts and group them in a single frame and TemporalNet
converts those key-points into trajectories. Tracking-by-detection uses detected
BBox to compute the affinity matrix, e.g., POI [50] incorporated an accurate ob-
ject detector based on Faster-RCNN for pedestrian tracking. CenterNet [54] and
Chained Tracker [34] proposed an integrated system performing simultaneous
detection and association using consecutive frames as input.

Large scale image recognition challenges such as ImageNet [6] are bringing up
accurate and efficient object detectors, which oriented the research direction to-
wards detector-based trackers [49]. There are multiple tracking approaches based
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on different object detection architecture such as YOLO [35], Faster-RCNN [36],
and SSD [30]. Different association techniques discussed further are used to es-
tablish the temporal relationship and predict the trajectories of target objects.
Deep-association is proposed in [22], where a separate deep neural network is
used to accomplish the association task. A tubelet proposal network [25] incor-
porated temporal features using Long Short-Term Memory (LSTM) networks.
Detection-based tracking approaches mentioned above are computationally ex-
pensive and suffer from increased inference time. To meet the real-time con-
straint, Tracktor++ [2] transformed object detector to a tracker by simply using
regression and classification differently. This simple conversion improved the
inference time but failed to improve accuracy due to the missing temporal re-
lationships. To further improve the idea, one-stage trackers [44] which jointly
learn detection for spatial and feature embedding for the temporal association
are proposed.

2.2 Attention Gates

Attention gates have were initially primarily used in natural language processing
(NLP), e.g., hand-writing synthesis [13], and machine translation [14] to improve
the contextual information in a text. More recently attention networks became a
popular means to improve various computer-vision tasks such as image classifi-
cation [15], and segmentation [10]. Not every feature generated by a deep neural
network is equally important. Therefore, channel attention providing weights to
different output channels has been applied in such cases. For example, squeeze-
and-excitation networks proposed in [18] learn the channel weights by squeezing
the spatial dimension. Additionally, few locations in the feature-maps are more
relevant than the other. Therefore, spatial attention [42] generates the attention
map by utilizing the inter-spatial relationship of features. Some networks such
as Convolutional Block Attention Module (CBAM) [47] have incorporated both
channel and spatial attention in a single network.

Attention maps can be learned implicitly using self-guidance from the net-
work itself or explicitly using external supervision. Guided inference network
[28] learns attention explicitly by adding an auxiliary loss function. In general,
it has been observed that the attention generated by additional supervision usu-
ally performs better as also mentioned in [28]. To the best of our knowledge,
attention mechanisms either implicit or explicit have not previously been used
for accuracy improvement of one-stage tracker.

3 The Proposed Idea

This section discusses the details of the proposed idea of introducing attention to
one-stage trackers, resulting in two systems, one using implicit and the other one
explicit attention. This section also includes the details about similarities and
differences between proposed explicit and implicit attention-based networks. We
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Fig. 3. Introducing explicit attention to a one-stage tracker based on HRNet [43] back-
bone.

have introduced our attention idea to the HRNet [43] architecture as it main-
tains high-resolution throughout the network unlike Feature Pyramid Net (FPN)
[35] based architecture, which consist of an encoder branch to reduce the res-
olution of feature-maps from high to low and a decoder branch to recover the
high-resolution information. This property of HRNet [43] provided us with the
scope for improving the detection accuracy for small objects by adding differ-
ent attention modules. The following subsections present the proposed building
blocks, network architectures, objective functions, and inference details of the
two systems based on the different mentioned attentions.

3.1 Components

The basic building blocks for both implicit and explicit attention networks are
the same. This section contains the details for the common blocks of the two
networks as show in Figure 2 (implicit-based) and Figure 3 (explicit-based).

Attention-gate A basic function of any gate is to allow some information to
pass through it while blocking the rest. The attention gates used in this paper
are similar to the one proposed in [33]. The idea of the proposed attention gates
is to filter the irrelevant features and prevent them from propagating across the
network, which in turn improves the gradient flow of the network.

Backbone HRNet [43] typically contains four stages, where a lower resolution is
added to the network at the end of each stage. The basic structure of each stage
remains unchanged as in original HRNet [43], i.e., each stage contains parallel
multi-resolution convolution followed by multi-resolution fusion. For example,
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Stage 2 of HRNet [43] is shown in Figure 4, other stages are designed in a
similar way. This repeated addition of new resolution and multi-resolution fusion
increases the amount of global information after each stage [43]. The multi-
resolution feature maps are concatenated and provided to the predictions heads,
i.e., object detection and BBox estimation, as shown in Figure 2 and 3. These
figures are based on generic block diagram of one-stage trackers [44].

Fig. 4. Stage 2 in the backbone of proposed architecture contains parallel convolution
for two different resolution(yellow and blue) followed by the addition of new resolution
(pink) and multi-resolution fusion represented by cross-connections.

Object Detection The object detection branch predicts two different outputs,
i.e., heatmap and BBoxes’ size and center offset. These are explained here:

Heatmap Estimation Heatmaps are mostly used in the context of key-point
estimation [40]. We employ them to get the estimated position of the object’s
center and the most probable detection areas. The size of the predicted heatmap
is the same as the input image but it contains only one channel. The output
response of the predicted heatmap is expected to be one at the object center
and decays exponentially with increase in distance from the center.

BBox Estimation BBox estimation predicts the size and offset for the target
objects. The size of a BBox corresponds to its height and width around the
probable regions proposed by the predicted heatmaps and offset to the object’s
center. The precise localization of the object has a significant role in a tracking
system. The reason is, re-id features are extracted on the basis of the object’s
center. Therefore, accuracy in locating object’s center needs to be high in order
to improve the tracking system.

Re-Identification The re-id branch generates the embedding vector, which
distinguishes among different target objects and helps in predicting their cor-
responding tracks. The re-id branch learns a metric such that instances of the
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same identity are close to each other, and instances of different identities are far
apart. To achieve the same, a convolutional layer predicting a 1-dimensional em-
bedding vector of size 128 is introduced, which shares the same features as used
for object detection. The embedding feature vector, corresponding to an object
with center at (x,y) and is extracted from the feature map, which is finally used
for association across the subsequent frames.

3.2 Network Architectures

Until now, we have discussed the structure of all the basic components, which
are the same in both explicit and implicit attention networks. However, there
are still some basic differences between their architectures which are described
in this sub-section.

Implicit Attention The architecture of the proposed implicit attention-based
network is shown in Figure 2. Higher resolution in the HRNet [43] goes through
a series of convolutional layers and keeps on adding more global information af-
ter each stage. Due to this long series of convolutions, the feature-map towards
the end of the network tends to lose the information about the local context.
To recover this information, attention-gated skip connections between the con-
secutive stages are proposed in the current research work. The reason for fusing
the different feature-maps between the consecutive stages is discussed along with
some experiments in Section 5. This attention-gated fusion of features weighs the
lower-level features from the previous stage to complement the global features
at the current stage and finally combines the information. Such connections are
repeated for each resolution in the proposed architecture. This type of attention
is called implicit because the attention-gate automatically learns to weigh the
local context based on the existing global context.

Explicit Attention The network architecture of the proposed explicit attention-
based network is shown in Figure 3. We have introduced an auxiliary heatmap
loss to our proposed explicit attention type which provides additional super-
vision. In this attention-type, a heatmap is predicted from the attention-gated
feature at an intermediate stage. The attention gates here filter the feature maps
at an intermediate stage based on the global information. An auxiliary loss be-
tween the predicted and ground-truth (GT) heatmap is calculated using the
attention-gated feature-maps and later added to the objective function which is
used during the network’s training. The choice of the intermediate stage to add
an auxiliary loss is decided experimentally and discussed in Section 5.

3.3 Loss Functions

This section contains the details of the overall objective which is obtained by
combining multiple loss functions. The implicit and explicit attentions combine
three and four types of different losses, respectively. The first three losses in
explicit architecture are the same as that for implicit and acquired from [52].
Further details of the objective function are mentioned below.
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2σ2c , which shows that response is decreasing with increase
in distance from the center. The loss function used for the regression of heatmap
is pixel-wise logistic regression with focal loss. It is represented via Equation 1
[52]:

Lhm = − 1

N

∑
xy

{
(1− Ĥxy)α log(Ĥxy), if Hxy = 1;

(1−Hxy)β(Ĥxy)α log(1− Ĥxy) otherwise,
(1)

Offset and Size Loss The predictions from the offset and size head is denoted as
Cp ∈ RW×H×2 and Sp ∈ RW×H×2 respectively, the size of single GT BBox with
coordinates as (xk1 , y

k
1 , x

k
2 , y

k
2 ) is computed as S = (xk2 − xk1 , y

k
2 − yk1 ) and center

offset is calculated as C = C/4. The detection loss of a single BBox is the sum
of deviations in size and center offset. Total loss is obtained by the summation
of K detected boxes as represented by equation 2 [52]:

Lbbox =

K∑
k=1

|Ck − Ckp |+ |Sk − SkP | (2)

Re-ID Loss The ID prediction is considered a classification task where the num-
ber of classes corresponds to the number of IDs in the dataset, i.e., objects with
the same ID are treated as one class. To calculate the Re-ID loss for each BBox
(Bk), the softmax function is applied to the predicted embedding vector to get
the class distribution P (N ). GT can be represented as one-hot vector GT k(N ).
The loss function used for this case is a cross-entropy loss for multi-class classi-
fication as shown in Equation 3 [52].

Lid = −
K∑
k=1

N∑
n=1

GT k(N )log(P (N )) (3)

where N and K are total number of classes and detected BBoxes respectively.

Auxiliary Loss In case of explicit attention, a heatmap is predicted from in-
termediate feature-maps. An auxiliary loss is added to optimize the heatmap
prediction from an intermediate layer. The calculation of this auxiliary loss is
similar to that of Equation 1.

Loss Balancing based on Uncertainty of Tasks The overall objective of the net-
works is a weighted sum of the above-mentioned losses. However, the manual
tuning of those weights is computationally expensive and difficult. Therefore,
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we used automatic loss balancing as proposed in [26] which uses task uncer-
tainty to weigh the different losses. The total loss therefore can be represented
via Equation 4 [52]. Weights Whm,Wbbox,Wid are learned automatically as part
of neural network learning process, as follows:

LImplicittotal =
1

2

(
1

eWhm
Lhm +

1

eWbbox
Lbbox +

1

eWid
Lid

+shm + sbbox + sid

) (4)

where Lhm, Lbbox, and Lid are heatmap, BBox, ID loss respectively and shm,
sbbox, and sid are task dependent uncertainties. In case of explicit attention-
based architecture, total loss will be modified by adding an auxiliary loss (Laux)
balanced via weight (Waux) and having task-dependent uncertainty of saux as
in Equation 5:

LExplicittotal =
1

2

(
1

eWhm
Lhm +

1

eWbbox
Lbbox +

1

eWid
Lid

+
1

eWaux
Laux + shm + sbbox + sid + saux

) (5)

3.4 Inference and Online Association

Giving an input image to either of the two systems illustrated in Figure 2 and
3, they generate an output that can be categorized into two parts, i.e., detection
and re-id. The detection part is represented via heatmap, BBox size, and offset
for the detection task. The re-id part is depicted by the embedding vector. A
non-maximum suppression (NMS) is performed based on heatmap scores on top
of the predicted heatmap, which provides the most probable detection locations.
The locations with score greater than a certain threshold are kept and the rest are
discarded, which is finally followed by the estimation of BBox’s size and offset.
The embedding vectors corresponding to the detections are also extracted. The
next step is to associate the detected BBox and identity embeddings across the
subsequent video frames.

Association is based on a standard online tracking algorithm as also dis-
cussed in [44]. Tracklets are first initialized based on the appearance features
extracted from the first video frames and added to the tracklet pool. In the sub-
sequent frames, pairwise motion and appearance similarity is calculated between
the observations and tracklets from the pool. Metrics used for the association
of appearance and motion-based features are Cosine similarity and Mahalanobis
distance respectively. Finally, the assignment problem is resolved by using the
Hungarian algorithm [27]. The appearance features are updated using a weighted
combination of BBox IoU and embedding vector. However, motion cues are up-
dated by using Kalman Filter [45]. The observations which are not assigned to
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any of the existing tracklets from the pool are marked new. On the contrary,
tracklets are marked as terminated if no observation is found for a few subsequent
frames.

4 Experimental Results

This section includes information about the evaluation metrics, dataset, and
training methodology. In addition, this section also discusses the qualitative
analysis, as well as compares our results with SoTA methods which have reported
their results on the same benchmark datasets used in our experiments.

4.1 Evaluation Metrics and Dataset

The proposed system developed in this paper are compared using Multi Object
Tracking Accuracy (MOTA) [3], MOTP [3], IDF1 Score [37], and number of ID
Switches from CLEAR metric [3] as described below:

– Multi-object tracking accuracy (MOTA): Computes the overall tracking ac-
curacy from false positives, false negatives and identity switches [3].

– Multi-object tracking precision (MOTP): Depicts overall tracking precision
in terms of BBox overlap between ground-truth and predicted location [3].

– Identification F1 (IDF1): Measures the extent that predicted identities con-
front the ground-truth [37].

– Identity switches (ID): Number of times the reported identity of a ground-
truth track changes.

The system is evaluated on MOT15 train, MOT17 test, and MOT16 test
data, where MOT15 train data is used as validation set in our experiments.
We are using the private protocol of MOT 16 and 17 under which we are allowed
to use additional training data. We have therefore collected a set of additional
training datasets including ETH dataset [8], CityPersons (CP) dataset [51], Cal-
Tech (CT) dataset [7], MOT17 (M17) dataset [31], CUHK-SYSU (CS) dataset
[48], and PRW dataset [53]. The same datasets are used in the training of JDE
[44], tracker that we have compared our results against. The joint dataset can be
divided into two categories, i.e., ETH and CP contain annotations for detection
only while CT, MOT17, CS, and PRW contain annotations for both detection
and ID. The overlapping videos between the testing and training dataset are
removed from the training data.

4.2 Implementation Details

The training of the network on a huge dataset is a arduous task and requires a
lot of computational power and time. To improve the convergence speed, weights
of the proposed models are initialized using a network pre-trained on the COCO
dataset. Our network with implicit attention is trained for 60 epochs with a
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Fig. 5. Comparison among the tracklets detected and tracked in the proposed systems
(Explicit and Implicit) and existing multi-task learning-based tracker, i.e., JDE [44]

Dataset Tracker MOTA↑ IDF1↑ IDs↓
MOT15 Train JDE [44] 67.5 66.7 218

Ours(Implicit) 73.2 73.5 203
Ours(Explicit) 73.8 75.9 232

Table 1. Comparing the proposed trackers with the existing one-stage tracking ap-
proaches on MOT15 train dataset.

Tracker Publication Year MOT16 MOT17
MOTA↑ MOTP↑ IDF1↑ IDs↓ MOTA↑ MOTP↑ IDF1↑ IDs↓

DeepSORT [46] ICIP 2017 61.4 79.1 62.2 781 60.3 79.1 61.2 2442
Tracktor+CTdet [2] ICCV 2019 - - - - 54.4 78.1 56.1 2574

JDE [44] ICCV 2019 64.4 55.8 1881 - - -
CenterNet [54] ECCV 2020 - - - - 67.8 - 64.7 3039

Chained-Tracker [34] ECCV 2020 67.6 78.4 57.2 1897 66.6 78.2 57.4 5529
Ours(Implicit) IntelliSys 2021 64.6 78.8 65.9 1234 63.2 78.7 64.8 3357
Ours(Explicit) IntelliSys 2021 64.9 79.7 66.4 1489 63.7 79.1 66.0 3696

Table 2. Comparing the proposed systems against SoTA two-stage and one-stage
trackers that have reported their results on MOT16 and MOT17.

batch size of 16 on 2 × Nvidia 1080 Ti GPUs and took ∼60 hrs to complete.
However, our network with explicit attention is trained for 100 epochs with a
batch size of 8 on 2 × Nvidia 1080 Ti GPUs and took ∼120 hrs. The collected
training dataset is augmented by applying rotation, scaling and color jittering
randomly to the input images similar to JDE [44].
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Fig. 6. left: results obtained from implicit attention-based tracker, right: results ob-
tained via our explicit attention-based tracker. Small objects at the back are detected
accurately using explicit attention (right), which are missing in left image.

4.3 Results and Discussion

Only a few published approaches, i.e., JDE [44], and Track-RCNN [41] are built
on multi-task learning-based one-stage tracking. JDE [44] optimizes two tasks
simultaneously, i.e., detection and re-id. However, Track-RCNN [41] jointly opti-
mises detection, re-id, and segmentation task. The inclusion of extra task requires
different training datasets containing annotations of segmentation in addition to
detection, and re-id, which makes it incomparable with our tracker. We are com-
paring our method with trackers using private detections, e.g., JDE [44].

Quantitative Results Table 1 compares the existing one-stage tracker’s ac-
curacy with our systems using both explicit and implicit attention on MOT15
training dataset as also done in JDE [44]. It can be seen from the table, that our
attention-based tracker outperforms the existing one-stage tracker, JDE [44] by
a large margin both in terms of MOTA (6.3%) and IDF1 (9.2%).

Table 2 shows a comparison between the proposed approaches and other
SoTA tracking methods reported on MOT challenge [31]. It can be observed from
results that our tracker with explicit attention is performing the best in terms of
MOTP and IDF1 scores on both MOT16 and MOT17 testing datasets. A high
value of MOTP indicates precise localization of target object, while improve-
ment in IDF1 score indicates better prediction of identities compared to Ground
Truth (GT). Both ID preservation and precise localization are critical factors
for designing a surveillance system as also stated by [37], which enables the pro-
posed attention-gated tracker for security applications. On the other hand, the
improvement in overall object detection in this framework increases the size of
the affinity matrix, which in turn increases the ID switches (IDs) especially for
the crowded sequences.

It can be observed from the quantitative results in Tables 1 and 2 that
the tracking accuracy is improved by a large margin for the MOT15 valida-
tion dataset in comparison to MOT16 and MOT17 test data. The reason is that
MOT15 validation sequences are less crowded in comparison to MOT16 and
MOT17 test sequences. As discussed before, the proposed system improves the
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detection of small and partly occluded objects, which increases both the number
of objects and the computational complexity of the association matrix. An in-
crease in the size of the affinity matrix leads to multiple ambiguities and hence
makes it difficult to optimize for the minimum cost. As a result, the MOTA
of our proposed systems is comparatively lower on MOT16 and MOT17 test
datasets than the MOT15 validation data containing fewer tracking objects.

Qualitative Results Figure 5 and 6 show the results of the proposed system
using both explicit and implicit attentions. It can be clearly seen from the re-
sults in Figure 6 that the attention modules improve the detection even for small
or partially visible objects. Furthermore, results in Figure 5 illustrate that the
proposed attention-gated trackers are performing better in comparison to the
existing one-stage tracker JDE [44] (also based on multi-task learning) for the
objects approaching towards the boundaries of the frame. In the existing one-
stage trackers like JDE [44], inconsistent detections for objects decreases the
system’s IDF1 score. The proposed systems improve object detection via incor-
porating attention-gates in the backbone network. However, it also increases the
size of the affinity matrix, which further increases identity switches (IDs). One
of the main benefits of using attention in the proposed system is that it also
improves the embedding vector responsible for assigning an ID to a tracking
object, which consequently improves the overall IDF1 of the proposed tracker.

5 Ablation Studies

This section contains the extended experiments required for adapting the base
HRNet [43] to the proposed attention-gated architecture. The main experiments
require a massive amount of computational time. In order to save computation
time, all experiments in this section are trained on a small dataset, i.e., MOT17.
The training on a small dataset provides a quick overview of different configu-
rations setting required for explicit and implicit attention-based trackers. This
section discusses the details about adding the attention-gates, feature fusion
from different abstract levels, and novel modification of network architecture
using explicit attention.

5.1 Attention-gates

The feature-maps at the highest resolution in HRNet [43] goes through a series
of convolutional operations. As motivated by DenseNets [19], features from every
stage are fused with each subsequent stage’s features. This fusion can be a simple
addition or attention-gated where low-level features are weighted based on high-
level features. This helps in extracting only relevant information from the earlier
stages. Experimental results in Table 3 compare the system’s accuracy using
HRNet [43], dense feature fusion without attention-gates, and attention-gated
dense feature fusion. It can be observed from the results that dense feature fusion
decreases the accuracy rather than showing any improvement. The main reason
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for this decrease in accuracy is that the combination of lowest and highest level
features decreases the quality of features and hence the overall accuracy. The
accuracy is improved by adding attention-gates to the dense-feature fusion but
it is still lower than the HRNet [43]. The next section contains experiments to
overcome this problem.

Backbone MOTA↑ IDF1↑
HRNet 79.2 72.9

Ours(Implicit) + dense-connections + without attention-gates 76.5 72.8
Ours(Implicit) + dense-connections + with attention-gates 79.2 72.2

Table 3. The effect of adding attention-gates during the fusion of features.

5.2 Implicit Attention

The experiments in Table 3 depict that attention-gated fusion of features im-
proves the accuracy, but dense connections decrease it. Therefore, further ex-
periments are performed by reducing the dense skip connections to consecutive
stages as also shown in Figure 2. In attention-gated dense fusion, features from
the current stage are provided to all the subsequent stages at a single resolu-
tion. For example, feature maps from stage-1 are provided to stage-2, stage-3,
and stage-4 at the highest resolution. However, the attention-gated fusion of
features across the consecutive stages only combines the feature from current to
the next subsequent stage, e.g., the connection between stage-1 and stage-2. It
can be observed from the results obtained in Table 4 that attention-gated fusion
of features across the consecutive stages improves the overall tracking accuracy.

Backbone MOTA↑ IDF1↑
HRNet 79.2 72.9

Ours(Implicit) + dense-connections 79.2 72.2
Ours(Implicit) + consecutive-stages 80.7 73.9

Table 4. Comparing the tracking accuracy by adding attention gated dense-
connections and consecutive-connection across the different stages.

5.3 Explicit Attention

The proposed explicit attention is guided by additional supervision by min-
imizing the auxiliary loss at an intermediate-stage as shown in Figure 3. This
auxiliary loss minimizes the deviation between predicted and GT heatmaps. The
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heatmap is predicted using attention-gated features at different stages of the net-
work. The results in Table 5 which shows adding an auxiliary loss after stage-1
has a negligible effect on overall tracking accuracy. As we shift the auxiliary
loss towards the later stages of the network, the overall tracking accuracy starts
increasing. This implies that the initial features of HRNet [43] do not contain
any information about the global context and hence are incapable of making
any predictions. The feature-maps get more relevant when the global context
increases by an additional level after every stage. Additionally, this auxiliary
loss is calculated only for the feature-maps generated from the high resolution
because the lower resolutions are added at the later stages of the network. Fur-
thermore, we would like to deal with inconsistencies in the detection of smaller
objects which are detected at higher resolutions.

Backbone MOTA↑ IDF1↑
HRNet 79.2 72.9

Ours(Explicit) + Stage 1 79.2 73.5
Ours(Explicit) + Stage 2 79.6 73.7
Ours(Explicit) + Stage 3 81.8 74.8

Table 5. Adding supervised attention and auxiliary losses after stage 1, 2 and 3 at
highest resolution in HRNet [43].

6 Conclusion

In this paper, we proposed two one-stage trackers based on implicit and ex-
plicit attention mechanisms for multi-object tracking. The one based on implicit
attention utilizes a novel fusion of feature maps for combining information ex-
tracted from different abstract levels, while the other based on explicit attention
utilizes an auxiliary heatmap function that provides additional supervision for
the attention mechanism. The latter tracker outperforms the former one, and
both outperform state-of-the-art tracking systems in terms of MOTP and IDF1
scores when evaluated on public benchmark datasets. The main advantage of
the proposed system over other SoTA approaches is that it detects small objects
and the object IDs precisely, which makes it ideal for surveillance applications.
We observed that our proposed attention-based architectures improve the track-
ing accuracy for less crowded scenes such as MOT15 sequences. For crowded
sequences such as MOT16 and MOT17, the proposed attention-gated one-stage
tracker improved the feature propagation and hence the object detection and
identity-based measures such as IDF1 scores. However, to improve MOTA on
MOT16 and MOT17, as a future work, we will work on developing an associa-
tion block to reduce the identity switches.
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