
 

  

 

Aalborg Universitet

On the Interaction Between Linear Codes, Secret Sharing, and Multiparty Computation

Gundersen, Jaron Skovsted

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Gundersen, J. S. (2020). On the Interaction Between Linear Codes, Secret Sharing, and Multiparty
Computation. Aalborg Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

https://vbn.aau.dk/en/publications/dcb7812c-891a-41d8-bd07-df851437c50e




JA
R

O
N

 SK
O

VSTED
 G

U
N

D
ER

SEN
O

N
 TH

E IN
TER

A
C

TIO
N

 B
ETW

EEN
 LIN

EA
R

 C
O

D
ES, SEC

R
ET SH

A
R

IN
G

, A
N

D
 M

U
LTIPA

R
TY C

O
M

PU
TATIO

N

ON THE INTERACTION BETWEEN
LINEAR CODES, SECRET SHARING,

AND MULTIPARTY COMPUTATION

BY
JARON SKOVSTED GUNDERSEN

DISSERTATION SUBMITTED 2020





On the Interaction Between
Linear Codes, Secret Sharing,
and Multiparty Computation

Ph.D. Thesis
Jaron Skovsted Gundersen

Thesis submitted October, 2020



Dissertation submitted: October, 2020

PhD supervisors:  Professor Horia Cornean
   Aalborg University

   Assistant Professor Ignacio Cascudo
   IMDEA Software Institute

   Ramón-y-Cajal fellow Diego Ruano
   Universidad de Valladolid

   Professor Olav Geil
   Aalborg University

PhD committee:  Professor Lars Døvling Andersen (chairman)
   Aalborg University

   Research Expert Emmanuela Orsini 
   KU Leuven

   Associate Professor Claudi Orlandi
   Aarhus University

PhD Series: Faculty of Engineering and Science, Aalborg University

Department: Department of Mathematical Sciences

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-826-1

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Jaron Skovsted Gundersen

Printed in Denmark by Rosendahls, 2020



Abstract

This thesis is based on four articles on the interaction between linear codes,
secret sharing and multiparty computation.

The focus through my Ph.D. has been on achieving new results in these
three areas but I have mainly focussed on multiparty computation where the
computations take place in a small finite field. This is for instance reflected
directly in Paper D where I provide a new efficient protocol for multiparty
computation over the binary field. Even though Paper A and C are not di-
rectly focusing on multiparty computation the results in these papers are still
very relevant for multiparty computation over small finite fields since the
papers are considering secret sharing and linear codes; two tools that are of-
ten used in multiparty computation. In this context it is worth noticing that,
when using linear codes and secret sharing schemes in multiparty computa-
tion, the finite field for the codes and the schemes can have a great impact on
the efficiency of the multiparty computation protocol. Hence, when I show
limitations for secret sharing schemes over small finite fields in Paper A this
implies limitations for multiparty computation protocols over small fields,
and similarly when I construct good linear codes over small fields in Paper
C this can increase efficiency of multiparty computation protocols.

In all four articles, linear codes will be used in one form or another, even if
the main focus is on either secret sharing or multiparty computation. There-
fore, I also start Part I with an introduction to linear codes. Afterwards, I
introduce secret sharing and multiparty computation.

In Part II, the four articles are presented. The first deals with limitations
on what one can achieve in terms of privacy and reconstruction in secret
sharing. Since secret sharing is used in multiple protocols for multiparty
computation these results also provide some limitations for those protocols.

The second article uses linear codes as a tool to achieve a certain function-
ality known as oblivious transfer in multiparty computation. We show that
it is possible to use codes over other fields than previously used, which gives
more flexibility and sometimes saves complexity.

The third article considers a particular type of linear codes called matrix-
product codes. A matrix-product code is a certain type of code constructed

iii



from shorter constituent codes. If the constituent codes have good parameters
the longer matrix-product code is also guaranteed to have good parameters.
We show that in some cases one can describe the “square” of the matrix-
product code which may be necessary if one wants to use the codes in certain
multiparty computation contexts.

The fourth and final article provides a new efficient multiparty compu-
tation protocol over the binary field. This is probably the article where lin-
ear codes are most absent but since the protocol uses a linear secret sharing
scheme, linear codes are included indirectly. This shows very well that these
three areas are very connected and that the connection between them is worth
studying in more details.



Resumé

Denne afhandling bygger på fire artikler omhandlende samspillet mellem
lineære koder, secret sharing og multiparty computation.

Fokusset gennem min Ph.D. har været på at opnå nye resultater inden-
for disse tre områder, men jeg har hovedsageligt haft for øje, at opnå re-
sultater om multiparty computation hvor beregningerne foregår i et lille en-
deligt legeme. Dette afspejles for eksempel direkte i Paper D, hvor jeg giver
en ny effektiv protokol for multiparty computation over det binære legeme.
Selvom Paper A og C ikke direkte fokuserer på multiparty computation, er
resultaterne i disse artikler stadig meget relevante for multiparty compu-
tation over små endelige legemer, da artiklerne omhandler secret sharing
og lineære koder; to værktøjer, der ofte bruges i multiparty computation.
I denne sammenhæng er det værd at bemærke, at når du bruger lineære
koder og secret sharing schemes i multiparty computation, kan det endelige
legeme for koderne og schemes’ne have stor indflydelse på effektiviteten af
multiparty computation-protokollerne. Derfor når jeg viser begrænsninger
for secret sharing schemes over små endelige legemer i Paper A medfører
dette begrænsninger for multiparty computation-protokoller over små lege-
mer, og ligeledes når jeg konstruerer gode lineære koder over små legemer i
Paper C, kan dette øge effektiviteten af multiparty computation-protokoller.

I alle fire artikler vil der i en eller anden form være anvendt lineære koder
også selv om hovedfokusset er på enten secret sharing eller multiparty com-
putation. Derfor starter jeg også med i Part I at give en introduktion til linære
koder. Herefter introducerer jeg secret sharing og multiparty computation.

I Part II er de fire artikler præsenteret. Den første omhandler begræn-
sninger for hvad man kan opnå i forbindelse med privathed og rekonstruk-
tion i secret sharing. Eftersom secret sharing benyttes i flere protokoller for
multiparty computation giver disse resultater også nogle begrænsninger for
disse protokoller.

Den anden artikel benytter lineære koder som et redskab til at opnå en
bestemt funktionalitet kendt som oblivious transfer i multiparty computa-
tion. Vi viser, at det er muligt at benytte koder over andre legemer end der
tidligere er brugt, hvilket giver mere fleksibilitet og nogle gange sparer kom-

v



pleksitet.
Den tredje artikel betragter en bestemt type lineære koder kaldet matrix-

produkt koder. En matrix-produkt-kode er en bestemt type kode konstrueret
ud fra kortere koder. Hvis de kortere koder benyttet i konstruktionen har
gode parametre, garanteres det også, at den længere matrix-produkt-kode
vil have gode parametre. Vi viser, at man i visse tilfælde kan beskrive
“kvadratet” af matrix-produkt-koden, hvilket kan være nødvendigt, hvis man
vil bruge koderne i visse multiparty computation-sammenhænge.

Den fjerde og sidste artikel giver en ny effektiv multiparty computation-
protokol over det binære legeme. Dette er nok den artikel hvor lineære koder
er mest fraværende, men eftersom protokollen benytter sig af et lineært se-
cret sharing scheme er der indirekte lineære koder inkluderet herigennem.
Dette viser meget godt, at disse tre områder hænger meget sammen og at
sammenhængen mellem dem er værd at studere nærmere.



Contents

Abstract iii

Resumé v

Preface ix

Acknowledgement xi

I Introduction 1

Background 3
1 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Linear Secret Sharing and Shamir’s Scheme . . . . . . . 6
2.2 Privacy and Reconstruction . . . . . . . . . . . . . . . . . 8

3 Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Security in MPC . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 An MPC Protocol . . . . . . . . . . . . . . . . . . . . . . . 12

4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Papers 21

A Improved Bounds on the Threshold Gap in Ramp Secret Sharing 23
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Bounds from the Generalized Griesmer Bound . . . . . . . . . . 35
4 Further Bounds on the Partial Reconstruction

Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Asymptotic Comparisons . . . . . . . . . . . . . . . . . . . . . . 47

vii



Contents

A Linear Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 53
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B Actively Secure OT-Extension from q-ary Linear Codes 57
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 Cryptographic Definitions . . . . . . . . . . . . . . . . . . 63

3 Actively Secure OT-Extension . . . . . . . . . . . . . . . . . . . . 64
3.1 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Proofs of Security . . . . . . . . . . . . . . . . . . . . . . . 67

4 Consistency Check in a Subfield . . . . . . . . . . . . . . . . . . 72
5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C Squares of Matrix-product Codes 77
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1.1 Results and Outline . . . . . . . . . . . . . . . . . . . . . 82
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 The (u, u + v)-Construction . . . . . . . . . . . . . . . . . . . . . 85
4 Constructions from Binary Cyclic Codes . . . . . . . . . . . . . . 87
5 Other Matrix-Product Codes . . . . . . . . . . . . . . . . . . . . 91
A Products and Sums of Cyclic Codes . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D A Secret-Sharing Based MPC Protocol for Boolean Circuits with
Good Amortized Complexity 101
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . 106
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 108

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3 The Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.1 Comparison with MiniMAC and Committed MPC . . . 113
4 From Batch Computations to Single Circuit Computations . . . 119
5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Input, Reencoding, and Reorganizing Pairs . . . . . . . . 127
5.3 Multiplication Triples . . . . . . . . . . . . . . . . . . . . 129

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



Preface

This thesis is a collection of papers I have written with my co-authors during
my Ph.D. at the Department of Mathematics, Aalborg University.

The thesis is in two parts. The second part consists of four papers I have
produced during my Ph.D. study. The first and third paper are published in
peer-reviewed journals, the second paper is presented at the “Security and
Cryptography for Networks 2018” conference and the fourth will be pre-
sented at the “Theory of Cryptography Conference 2020”. Both the second
and the fourth paper are published in the book series “Lecture notes in Com-
puter Science” by Springer:

A I. Cascudo, J. S. Gundersen and D. Ruano, “Improved Bounds on the
Threshold Gap in Ramp Secret Sharing,” in IEEE – Transactions on Infor-
mation Theory, 2019.

B I. Cascudo, R. B. Christensen and J. S. Gundersen, “Actively Secure OT-
Extension from q-ary Linear Codes,” in Security and Cryptography for
Networks — SCN 18, Springer International Publishing, 2018.

C I. Cascudo, J. S. Gundersen and D. Ruano, “Squares of Matrix-product
Codes,” in Finite Fields and Their Applications, 2020.

D I. Cascudo and J. S. Gundersen, “A Secret-Sharing Based MPC Protocol
for Boolean Circuits with Good Amortized Complexity,” in Theory of
Cryptography — TCC 20, Springer International Publishing, 2020.

All the papers consider the interactions between three theoretical areas; Lin-
ear codes, secret sharing and multiparty computation. Hence, the first part
of the thesis gives small introductions to these three areas. Furthermore, I
indicate how these areas are related and rely on each other. At the end of
Part I, I put the papers from Part II into the theoretical context described in
Part I.

ix



Preface

x



Acknowledgement

I would like to thank my family for supporting me through my Ph.D. study
both at home but also on my stay abroad. I appreciate that you went with
me and that we also could make a home abroad so I did not have to miss you
during my stay.

In this context I am also grateful to CWI and the employees at the Cryp-
tology group for letting me visit your place and for welcoming me.

Another thanks goes to my friends and my colleagues, especially René
Bødker Christensen. Thanks for all your time and our discussions. You have
helped me several times during the four years.

At last I would like to thanks my supervisors. Olav Geil and Diego Ruano,
I am grateful for your support and guidance and Horia Cornean thanks for
stepping in when I needed a new supervisor. To Ignacio Cascudo I will say
that I am grateful for all the time you have spent on reading and commenting
drafts. You have been a great support and I appreciate that you still took your
time to supervise me even after you left Aalborg University. I am also grateful
for my visit at your new workplace at IMDEA Software Institute. I think that
we had some good days and fruitful discussions.

Jaron Skovsted Gundersen
Aalborg University, October 14, 2020

xi



Acknowledgement

xii



Part I

Introduction

1





Background

All the papers in Part II are related to cryptography and more specific secure
computation. The majority of the papers consider or are related to secure
multiparty computation over small fields. As you will see in the papers the
main building blocks rely on linear codes and secret sharing, two concepts
that are strongly related. Therefore, I will start by giving small introductions
to linear codes and secret sharing in Part I. After these introductions I will end
Part I with a presentation of some of the main concepts in secure multiparty
computation and an overview of the main results in the papers in Part II.

1 Linear Codes

In his paper “A Mathematical Theory of Communication” from 1948, [25],
Shannon built the foundation of what today is known as information theory.
One of the main motivations for information theory was to study communi-
cation and within this area a lot of research has been done on error-correcting
codes. Below I will give a small introduction to error-correcting codes. For a
deeper understanding of these concepts the reader is referred to [16].

The classical use of error-correcting codes is to improve the reliability
of communication in situations where the communication is through noisy
channels. If the sender only sends the message some information gets lost
because of the errors which occurs due to the noise. But if the sender uses an
error-correcting code the receiver is able to correct the errors if not too many
errors had occurred. The majority of error-correcting codes used in practice
are linear codes.

Generally, linear codes are subspaces of a vector space over a finite field.
Typically, we denote a finite field with q elements as Fq and hence a linear
code is a subspace C ⊆ Fn

q where n is called the length of the code. The
dimension k of C as a subspace of Fn

q is also said to be the dimension of the
code and we use the notation [n, k]q for C to tell which field the code is over
and what length and dimension it has.

Because C is a k-dimensional subspace one can fix a basis consisting of k

3



vectors (or codewords) in Fn
q . Collecting those vectors as rows in a matrix we

obtain what is called a generator matrix for the code C. A generator matrix G
for a linear code C is often used to encode the message m ∈ Fk

q by computing
the matrix-vector product c = mG. Since G has full rank the map represented
by G is an injection with image C. Thus Fk

q and C are isomorphic as vector
spaces.

That C is a k-dimensional subspace also gives rise to the study of another
subspace which is the orthogonal complement. We use the conventional no-
tation

C⊥ = {x | ∀c ∈ C, 〈c, x〉 = 0}
to denote the orthogonal complement. Here 〈·, ·〉 is the usually inner product
and due to some standard linear algebra it is clear that C⊥ is also a subspace
and has dimension n− k. We call C⊥ the dual code of C and from the above
observations it is an [n, n− k]q code.

Besides the length and dimension another parameter is also interesting
in the classical study of linear codes, namely the minimum distance. To
define the minimum distance we start by introducing the Hamming weight
of a vector x. The Hamming weight w(x) is defined to be the number of
nonzero elements in x. Similarly, we define the Hamming distance between
two vectors, x, y, to be the number of entries where the two vectors differ, or
equivalently d(x, y) = w(x− y).

The minimum distance of the code C is then defined as

d(C) = min
x,y∈C,x 6=y

d(x, y)

and if d(C) = d we often refer to the code C as an [n, k, d]q code. We remark
that due to the linearity of linear codes it holds that d(C) = minx∈C\{0} w(x).
One of the main studies for linear codes have been to find maximal values
of k or d when n and q (and the other parameter of k and d) are fixed. The
reason why we would like a high dimension is that a high dimension implies
that we communicate more data when sending a codeword. However, a
high dimension of course implies a low minimum distance. We consider two
extreme cases. First, if k = n we necessarily have d = 1. This follows since
we are actually not encoding (we are simply sending the data, we would like
to send). But this also comes with the drawback that we cannot correct any
errors since if an error occurs the receiver receives another message. The
other extreme case is using the repetition code. In this case k = 1 and we are
sending n copies of the same message. However, we see that the minimum
distance is n in this case and we can determine the message sent by a majority
vote. This also means we cannot always be able to correct if n

2 = d
2 errors

occur. To see this consider the situation where q = 2 (the possible values are
0 and 1), and n = 4. If the sender wants to send the message 1, he sends
1111 using the repetition code. But if 4

2 = 2 errors occur, such as the receiver

4



2. Secret Sharing

receives 0101 it cannot be decided by a majority vote which message was sent.
The fact that we can correct if less than d

2 errors occur is actually a general
result. By decoding here we mean that we correct to the codeword which is
closest to the received vector with respect to the Hamming distance.

These two extreme cases show the trade-off between large messages and
large capability of error-correction. However, intermediate values for the
dimension and minimum distance are often more preferable and a large
amount of research has been done trying to find optimal codes.

Up until now we have only considered the classical parameters for error-
correcting codes. Other parameters have also turned out to be important for
several purposes. This includes for example the minimum distance of the
dual code and the minimum distance of the squared code. The squared code
is defined as the Fq-linear span of the set consisting of every componentwise
product of two codewords in C and these codes and their generalizations
to higher powers have recently attained focus in research [5, 21–23]. This
is due to the fact that the parameters of these codes have impact on some
decoding algorithms for linear codes and several cryptographic protocols. I
will describe some of these protocols later on and return to the influence these
parameters have on their performance. Furthermore, some other, recently
discovered parameters are the relative generalized Hamming weights of code
pairs introduced in [15]. Here we consider two codes, C2 and C1, where
C2 ⊆ C1. The relative generalized Hamming weights (RGHW) generalizes in
some way the minimum distance of a linear code. To see this we present the
definition of the i’th RGHW for an i ∈ {1, 2, . . . , dim(C1)− dim(C2)} below.
It uses the support weight wS(D) = |⋂x∈D supp(x)| of a subspace D ⊆ Fn

q
and is defined as

Mi(C1, C2) = min{wS(D) : D ⊆ C1, D ∩ C2 = {0}, dim(D) = i}.

The first RGHW reduces to the usual minimum distance if C2 = {0} since
the support weight reduces to the Hamming weight when the dimension of
the spaces considered are one.

2 Secret Sharing

For a formal definition of secret sharing and many other concepts in this area
I refer the reader to Paper A. In this introduction I will only give explanations
and descriptions of the concepts.

The classical setup for secret sharing considers n parties and a single
dealer (the dealer can be, but is not necessarily, one of the parties). The
dealer holds some information or data which he wants to share among the
parties. Even though the dealer wants to share the data among the parties
he does not trust the individual parties enough to let them receive the data.

5



So he splits the data in shares and gives the individual parties a share each.
Small subsets of shares must not reveal anything about the secret but collect-
ing enough of the shares the collaborating parties should be able to recover
the shared data.

When secret sharing was invented in 1979, independently by Adi Shamir
and George Blakley [2, 24], only threshold schemes were considered. This
means that any t parties have no information about the secret while any t + 1
parties are able to reconstruct the secret.

2.1 Linear Secret Sharing and Shamir’s Scheme

Shamir’s secret sharing scheme is probably the most well-known scheme and
is also widely used nowadays. As an introduction to how secret sharing
works I will give a description of this scheme below.

To give a mathematical description of secret sharing we typically assume
that there is a translation from the secret to some element in a finite field (or
vector over a finite field). Therefore, when talking about the secret we are
from now on referring to the field element s ∈ Fq. If a dealer wants to secret
share s ∈ Fq among n parties such that any t parties have no information
about the secret and any t + 1 parties can recover the secret, the dealer can
use Shamir’s scheme as long q > n. The dealer starts by constructing the
polynomial

f (x) = s + r1x + r2x2 + · · · rtxt, (1)

where ri is randomly chosen in Fq by the dealer for i = 1, 2, . . . t. Afterwards,
the dealer distributes the shares f (αi) to the i’th party where the αi’s are
different nonzero elements of Fq (this is also why we need q > n). Using
Lagrange interpolation it is known that the evaluations in any t + 1 points
uniquely determine a polynomial of degree at most t. This shows that any
t+ 1 parties can determine the polynomial and hence the secret. On the other
hand, consider if we had only t shares. Then the parties do not have any
further information about s which was not known a priori. This can easily
be seen since adding the point (0, s) to the t shares gives a polynomial of the
right degree with s as constant term using Lagrange interpolation. However,
we can choose any value of s, meaning that the knowledge of t shares is not
enough to obtain any information about the secret.

Besides being a threshold scheme Shamir’s secret sharing scheme has also
another property, namely linearity. Linearity means that linear combinations
of sharings have to result in a share for the same linear combination of the
corresponding secrets. To see that this holds, we assume that a dealer has
secret shared s using f as above and s̃ using another t-degree polynomial
f̃ with constant term s̃. Then the parties can compute a f (αi) + b f̃ (αi) =
(a f + b f̃ )(αi) for some a, b ∈ Fq. The equality shows that this is a share for

6



2. Secret Sharing

the i’th party of the t-degree polynomial a f + b f̃ which has constant term,
and hence secret, as + bs̃.

Linear secret sharing schemes can in general be described by linear codes,
a connection which has been well-studied since the 1980’s, see for instance
[17–19]. There are typically two ways to describe secret sharing with linear
codes, the first one uses a single linear code and the latter uses a code pair
where the one is a subspace of the other, see for instance [7].

In the first approach we let the first entry (or entries) of the codeword be
the secret and distribute the remaining entries to the parties. Due to the error-
correction properties of the linear codes we conclude that knowing enough
correct shares we can find the codeword and hence the secret.

In the latter approach we consider the codes C2 ( C1. We denote by L a
subspace such that C1 = L⊕ C2. Fixing the randomness corresponds to fix-
ing a codeword in C2 and fixing the secret corresponds to fixing a codeword
in L. Hence, when the secret and the randomness is fixed we have a unique
codeword in C1 and we let the entries in the codeword of C1 be the shares
distributed to the parties. Since there is a bijective map between the code-
words in C1 on the one hand and the secret and randomness on the other it
is always possible to reconstruct the secret from the codeword (if we have the
codeword this means we have access to all the shares). We remark that know-
ing enough entries in the codeword the parties might be able to compute the
remaining entries (using some decoding algorithm for error-correcting codes)
and in that way they might be able to reconstruct the secret. Furthermore,
the linearity of the secret sharing scheme is inherited from the linearity of the
codes.

To see the difference between the two methods we consider Shamir’s
scheme. In the first approach we can identify the linear code with the gener-
ator matrix

G =


1 1 1 · · · 1
0 α1 α2 · · · αn
0 α2

1 α2
2 · · · α2

n
...

...
...

...
0 αt

1 αt
2 · · · αt

n

 .

Multiplying by the vector m = (s, r1, . . . , rt)T yields

mG = ( f (0), f (α1), f (α2), . . . , f (αn))
T ,

with the f from (1). We see that the first entry is the secret and the remaining
entries corresponds to the shares.

In the other approach we will identify the first code C1 with the code
spanned by the rows in G if we delete the first column. This is also known as
the punctured code. The other code C2 ( C1 is given by first restricting to all

7



the codewords having 0 in the first component and removing that coordinate.
This is also known as shortening the code. In the case above this corresponds
to removing the first column and row of G and this also implies that L =
span{(1, 1, . . . , 1)}, where the vector has n ones. Sharing is similar and is
done by the computation

m


1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n
...

...
...

αt
1 αt

2 · · · αt
n

 = ( f (α1), f (α2), . . . , f (αn))
T ,

where m is the same as above. One can see that the two methods are similar
and in fact they are equivalent. One can always convert the one to the other
following the method described above. For more details about this we refer
the reader to Appendix A in Paper A.

2.2 Privacy and Reconstruction

The two main concepts in secret sharing are privacy and reconstruction. The
dealer wants that when he shares the secret privacy is retained, which means
that small subsets of shares reveal no information about the secret, but simul-
taneously he wants that if enough of the parties pool together their shares
they are able to reconstruct. In Shamir’s scheme described above we have in
some sense the optimal framework since any t parties have no information
and any set of t + 1 parties can recover the secret. This means that there
are no subsets having partial information about the secret and furthermore
privacy and reconstruction relies completely on how many parties there are
cooperating.

Usually, we denote by t the maximum number such that all subsets of t
parties have no information about the secret and call t the privacy threshold.
Similarly, we denote by r the minimum number such that all subsets of r
parties are able to reconstruct the secret (i.e. Shamir’s scheme has r = t + 1)
and call r the reconstruction threshold. The difference between these two
numbers, g = r − t, is referred to as the threshold gap, and if g = 1 the
scheme is called a threshold scheme. Typically, we want this threshold gap to
be small and therefore one can consider threshold schemes as optimal with
this perspective.

On the other hand threshold schemes, such as Shamir’s scheme, are also
kind of limited. We could imagine setups where we would like different ac-
cess structures, meaning that we would like different subsets of parties of po-
tentially different cardinalities to be able to reconstruct. Furthermore, thresh-
old schemes have some other disadvantages for instance regarding share size.

8



3. Multiparty Computation

As we saw in Shamir’s scheme the size of the share was the same as the size
of the secret. In fact it is unavoidable to obtain smaller shares if we insist on
a threshold scheme. For some applications this might be a problem.

Another limitation we have for Shamir’s scheme is the requirement that
q > n. If for example the secret is just a single bit and the number of parties
is large we cannot immediately apply Shamir’s scheme. We could, however,
embed the secret into a larger field with q > n elements but this implies that
the shares are much larger than the secret which might be unintended for
complexity reasons.

Even though we have the above mentioned limitations we are always en-
sured to have some amount of privacy and reconstruction in linear secret
sharing schemes if we choose the linear codes for the construction wisely.
Due to some general results from coding theory it is shown in [7] that we
have the following bounds on t and r when the secret sharing scheme is
defined from a single code

t ≥ d(C⊥)− 2

r ≤ n− d(C) + 2.
(2)

Furthermore, [7] also shows that when the secret sharing scheme is con-
structed from a code pair C2 ⊆ C1, the t and r satisfy the bounds

t ≥ d(C⊥2 )− 1

r ≤ n− d(C1) + 1.
(3)

In fact it is shown in [11, 14] that we can turn the last inequalities into equal-
ities if we consider the RGHWs instead of the minimum distance.

t = M1(C⊥2 , C⊥1 )− 1

r = n−M1(C1, C2) + 1.
(4)

Unfortunately, the minimum distance of a linear code is often hard to com-
pute and the same holds for the RGHWs of a code pair.

3 Multiparty Computation

Yao formalized two-party computation in his paper [26] from 1982. The con-
cept was generalized to the multiparty setting in 1987 in the paper [12]. In
multiparty computation (MPC) we consider n parties who want to compute
the output of some function f . Each party holds an input, i.e. the i’th party
holds xi, to the function and are not willing to reveal its input to the other
parties. If all the parties could agree on some external trusted entity the
parties could send its input to this entity. This entity will then be able to

9



compute the output f (x1, x2, . . . , xn) and send back the output to the parties.
In multiparty computation we would like to replace this external trusted en-
tity by communication between the n parties but still obtain the same amount
of privacy.

Talking about privacy in multiparty computation is a bit tricky since we
want the parties to learn something, namely the output of the function. The
output can potentially reveal one or some of the parties’ inputs completely.
This could for instance be in a two-party protocol where the two parties
would like to compute f (x1, x2) = x1 + x2 for x1, x2 ∈ Fq. Since the second
party knows x2 and learns f (x1, x2) it is easy to determine x1 = f (x1, x2)− x2.
The same holds for the first party. But this is unavoidable due to the function
we would like to compute.

3.1 Security in MPC

This small example illustrates some of the challenges of talking about privacy
in multiparty computation. What we can request is that the parties do not
obtain more information about other parties’ inputs than what the output of
the function together with their own inputs reveal to them. This would be
what we would like to achieve with regard to privacy but we can have several
other security concerns to take care of and it is often difficult to list all the re-
quirement we want a multiparty computation protocol to achieve. Of course,
we want the parties to receive the correct output and we want privacy of
the inputs, but depending on the setup we might want additional properties.
In an auction it would for instance be bad if a corrupt party could modify
another party’s input and place it as its own input. There could also be a
question about fairness for some situation meaning that if one party gets the
output all other parties must also learn it. Furthermore, in other situations
we would like to ensure that all parties actually receives an output which is
known as guaranteed output delivery. Since you can never be sure that you
have listed all the requirements, the security in multiparty computation is
often defined in another way using the ideal/real world paradigm. The idea
about this paradigm is that we in some way are comparing to the ideal world
where we do have a trusted external entity everyone could send its inputs
to. This trusted entity takes care of all the computations and sends back the
outputs to the parties. In the real world this entity does not necessarily exist
so the parties are communicating by following some steps in a protocol. We
say that a protocol is secure if it is as secure as the ideal world meaning that
an adversary cannot do more harm in the protocol than it would be able to
do in the ideal setting.

One security definition using this ideal/real world paradigm is the uni-
versal composable (UC) security definition from [3, 4] which is a very com-
mon security definition nowadays. Typically, we are using the UC definition

10



3. Multiparty Computation

if the protocol might be a part of a larger protocol or if we want to compose
the protocol with others. A protocol might be secure as it stands alone but
there might be problems if the protocol is used several times, for instance
in parallel, or composed with other protocols. If a protocol is UC secure it
means that it is safe to use in any context. Below I give a small description of
the UC security definition.

In order to prove that a multiparty computation protocol is secure we
again consider the two worlds. In the real world we have the protocol and
the parties but we also have an adversary taking control over some of the
parties. Furthermore, we have the environment which is everything external
to the protocol and hence also includes the adversary. The environment can
provide inputs and see outputs of the honest parties.

In the ideal world we also have the environment but we do not consider
any parties. Instead of the protocol we have an uncorruptable ideal function-
ality which computes exactly what we would like to compute and instead of
the parties we have a simulator.

The simulator then needs to provide the data to the environment by fol-
lowing the steps in the protocol in such a way that the environment cannot
distinguish if it is interacting with the simulator in the ideal world or the
parties in the real world. The only help the simulator gets to simulate mes-
sages to the environment is access to the ideal functionality. This means that
the simulator can provide inputs on behalf of the corrupted parties to the
ideal functionality and receive the outputs as well. The environment is also
providing inputs and sees the outputs on behalf of the honest parties in this
setup.

We say that a protocol is secure, if the environment cannot distinguish if
it has run the protocol with the parties and adversary in the real world or if
it has received messages from the simulator using the ideal functionality in
the ideal world. In this way we ensure that an adversary cannot do any more
harm or collect any more information than it is capable of in an ideal world.

There are different security definitions depending on how good the sim-
ulator needs to be and the power of the environment/adversary. If the two
views the environment would see are identically distributed we say that the
protocol has perfect security. If the views are so close that the environment
has only a very small probability of distinguishing we say that the proto-
col has statistically security. We then need to specify the security parameter
and show that the probability of distinguishing between the two worlds are
negligible in the security parameter.

In both cases we have assumed that the adversary and environment have
unlimited computation power. If we restrict them to be bounded by polyno-
mial time, then we also talk about computational security.

Besides that we can also prove protocols secure under different assump-
tions on the adversary’s power. If the adversary is only allowed to try to

11



collect as much information they can, but is not allowed to deviate from the
protocol we say that a protocol is secure in the presence of passive (or semi-
honest) adversary. If the adversary is allowed to deviate from the protocol
we call it an active (or malicious) adversary. The papers collected in this the-
sis mainly focus on active adversaries. At last we also consider restrictions
on how many of the parties the adversary is allowed to corrupt. Typically,
we divide protocols into three groups. One where the adversary may cor-
rupt less than 1

3 of the parties, one where we have honest majority, and the
last where we have half or more of the parties corrupted. In this setting we
typically allow the adversary to corrupt all but one of the parties, and this
setting is called dishonest majority. For security against active adversaries we
require that less than 1

3 of the parties are corrupted if we want perfect secu-
rity. If up to half of the parties are corrupted we can only obtain statistical
security (here we also need to assume that a broadcast channel is available).
Similarly, if more than half of the parties are corrupted we can only strive
for computational security and in this setting we have to give up some of the
security requirements since we cannot guarantee fairness. This means that
the adversary can abort the protocol after they have received their outputs
but before the honest parties learned their outputs. To guarantee fairness we
require that less than half of the parties are corrupted. We remark that this is
not the case if we assume passive adversaries since all the parties will follow
the instructions in this case. A more restrictive situation is guaranteed out-
put delivery where all the parties must receive the output. This can also be
guaranteed as long as we have an honest majority and a broadcast channel
is available. If a broadcast channel is not available less than one third of the
parties must be corrupted to ensure guaranteed output delivery.

For a more formal and thorough walk-through of multiparty computation
we refer the reader to [8]. However, I will present a sketch of a multiparty
computation protocol below which indicates a strong relation between secret
sharing and MPC.

3.2 An MPC Protocol

The protocol I present is secure against a passive adversary if less than half
of the parties are corrupted. Even though my papers are mainly considering
active adversaries I decided to present a protocol with passive security here
since these protocols are simpler and the reason for presenting the protocol
is mainly to get a feeling of how MPC works and the interaction there is
between secret sharing and MPC. The protocol can also be found in [8].

In secret sharing based MPC protocols we typically describe the function
f as an arithmetic circuit. An arithmetic circuit is allowed to combine two
expressions it has already computed via an addition gate or a multiplication
gate. The circuit takes the inputs of the parties as inputs and combine those

12



3. Multiparty Computation

in a predetermined way until we have the output of the function.
If we want to compute f in the clear the parties could just broadcast

their inputs and compute the arithmetic circuit. However, we want to keep
the inputs secret so we compute the gates on the sharings instead of on the
values.

We will use the notation 〈x〉 for a sharing of x. This means that each party
Pi holds a share x(i) for i = 1, 2, . . . , n and there exists a linear reconstruction
function

ρ(x(1), x(2), . . . , x(n)) =
n

∑
i=1

λix(i) = x.

We call a secret sharing scheme multiplicative if there also exists a linear
reconstruction function

ρ∗(x(1)y(1), x(2)y(2), . . . , x(n)y(n)) =
n

∑
i=1

λ∗i x(i)y(i) = xy

for all x, y ∈ Fq and all possible shares of x and y.1 We remark that if a
secret sharing scheme is multiplicative we necessarily have that the privacy
threshold t < n

2 , see for instance [8].
Since we want that the sharings are travelling on the wires we start by

fixing a multiplicative secret sharing scheme and let each party secret share
its input using this scheme. After the parties have secretly shared their in-
put, meaning that we have 〈xi〉 for i = 1, 2, . . . , n, the protocol goes on gate
by gate. Addition and multiplication by constants can be carried out with
local computations because of the linearity of the secret sharing scheme. For
instance, if we needed to compute x + y, we can obtain 〈x + y〉 if all parties
sum their corresponding shares, i.e. x(i) + y(i) for i = 1, 2, . . . , n.

Multiplication gates are a bit more complex and require communication
between the parties to achieve. If we have 〈x〉 and 〈y〉 going into a multiplica-
tion gate we start by letting each party compute z̃i = x(i)y(i). Then the party
considers this value as a secret and shares this between all parties using the
same secret sharing scheme as before. Thus we have 〈z̃i〉 for i = 1, 2, . . . , n.
Now, we can use the properties of the multiplicative secret sharing scheme.
Let z = xy and notice that we have

ρ∗(z̃1, z̃2, . . . , z̃n) = xy.

Furthermore, if each party uses ρ∗ on the shares z̃(i)j we obtain shares of z,
i.e.

ρ∗(z̃(i)1 , z̃(i)2 , . . . , z̃(i)n ) = z(i).

1Remark that a sharing of 〈x〉 = (x(1), x(2), . . . , x(n)) is just a codeword in C1 if we are using
the code pair construction for the secret sharing scheme. Hence, (x(1)y(1), x(2)y(2), . . . , x(n)y(n))
is just a codeword in the squared code which is the reason for using the notation ρ∗

13



This follows since

ρ(z(1), z(2), . . . , z(n)) = ρ(ρ∗(z̃(1)1 , . . . , z̃(1)n ), . . . , ρ∗(z̃(n)1 , . . . , z̃(n)n ))

=
n

∑
i=1

λi

(
n

∑
j=1

λ∗j z̃(i)j

)

=
n

∑
j=1

λ∗j

(
n

∑
i=1

λi z̃
(i)
j

)
= ρ∗(z̃1, z̃2, . . . , z̃n)

= xy.

Since I now have described how the parties can handle the different gates
I only need to describe how they obtain the output. After the execution of
a number of addition and multiplication gates the parties will hold a share
each for the output. Since we only consider passive security we can just
instruct the parties to send this share to all other parties so that each party
can compute the output using ρ.

It can be shown using the ideal/real world paradigm that as long as the
privacy threshold t of the secret sharing scheme is high enough the protocol
is secure. To get a feeling of why this is true consider the messages sent
through the protocol. The only messages which are transmitted between the
parties are shares of the inputs and shares of x(i)y(i) in the multiplication
gates. But under the assumption that less than t of the parties are corrupted
these shares looks like random field elements to the adversary. Shamir’s
scheme with t =

⌊
n−1

2

⌋
is a multiplicative secret sharing scheme implying

that as long as the adversary is able to corrupt less than half of the parties the
described protocol is secure. This implies that the protocol is perfectly secure
against passive adversaries as long as we have an honest majority if we use
Shamir’s scheme.

4 Overview

Part II of this thesis consists of four papers I have published during my Ph.D.
Below I will put the papers into context of the existing theory and highlight
the main contributions for each of the papers. Furthermore, I will point
out how the papers use and contribute to each of the three theoretical areas
described above.

The main contribution of Paper A is new limitations on the threshold gap
and the privacy and reconstruction thresholds in linear secret sharing. We
use techniques from coding theory to obtain the results. More specifically, we
use the newly obtained results from [11, 14], which I presented in equation

14



4. Overview

(4), linking the RGHWs of a code pair to the privacy and reconstruction
thresholds for the corresponding secret sharing scheme. We combine the
equalities with bounds on the RGHWs to obtain the following bounds on the
thresholds t, r, and the threshold gap g, where q is the size of the field, n
is the number of parties and k1, k2 are the dimensions of the codes C1 ) C2
used in the construction of the scheme. Furthermore, ` = k1− k2 is the length
of the secret vector.

t ≤ qm+1 − qm

qm+1 − 1
(k2 + m + 1)− 1,

r ≥ qm − 1
qm+1 − 1

n +
qm+1 − qm

qm+1 − 1
(k1 −m− 1) + 1,

g ≥ qm − 1
qm+1 − 1

(n + 2) +
qm+1 − qm

qm+1 − 1
(`− 2m) (5)

for all m ∈ {0, 1, . . . , ` − 1}. The results shows that the threshold gap is
dependent on several factors such as the share size (q), the size of the secret
compared to the size of the shares (`) and the number of parties (n). There
have been presented several bounds on the threshold gap in the literature but
it is only few which include all these variables. One exception of this is the
following bound from [6].

g ≥ n + 2
2q + 1

+
2q

2q + 1
(`− 1), (6)

which holds ad long as ` ≥ 2. However, we show in the paper that if ` ≥ 2
which allows us to choose m = 0 and m = 1 in (5) one of these choices will
improve on the bound in (6).

We also compare to several other bounds showing that our bounds im-
prove on existing bounds both for concrete cases and in an asymptotic set-
ting. We see that especially when the field size is small our bounds improve
on existing bounds. One of the conclusions is that the field size (which is
essentially the share size) has a huge impact on the threshold gap. I remark
that these results also have an impact on several multiparty computations
protocols, for instance the protocol presented in section 3.2 since limitations
on the privacy threshold or threshold gap in secret sharing implies limitaions
for how many corrupted parties we can allow in multiparty computation
protocols using the schemes.

Paper B is regarding a specific primitive in multiparty computation known
as oblivious transfer (OT). An OT takes place between two parties; a sender
and a receiver. In its simplest form the sender inputs 2 messages, m0 and
m1, to the functionality and the receiver inputs a single bit b. The receiver
learns mb but the sender does not learn anything. Hence, the receiver does
not learn anything about the other message m1−b and the sender does not

15



learn which of the messages the receiver learnt. A natural generalization of
this simple OT functionality is that the sender inputs N messages and the
receiver chooses K < N of these messages to learn. We call such an OT for a
K-out-of-N OT.

OT is a very useful functionality for multiparty computation. In fact it
is shown in [13] that any functionality for multiparty computation can be
implemented if the OT-functionality is available. Unfortunately, construc-
tions of OT’s seems to be expensive which is an obstacle for the theoretical
result from [13]. Towards making MPC based on OT’s useful in practice OT-
extension was introduced. OT-extension protocols simulates a large number
of OT’s using a much smaller number of what is called base OT’s, and in this
way we can save some complexity in practice.

In Paper B we considered an actively secure protocol from [20] which
made use of binary linear codes to construct many 1-out-of-N OT’s. We
generalized the protocol so it was not restricted to use binary codes but it
could instead use a linear code over any finite field. The parameters of the
code have impact on both the complexity and the security of the protocol
but also on the possible values of N for the OT. For instance N equals the
number of codewords in the code and depends therefore on the dimension
of the code and the field size, the minimum distance has an impact of the
security, and the length of the code corresponds to the number of base OT’s.
It is especially the number of base OT’s we can lower when going to a q-ary
code. However, as we show in the paper this comes with a cost of increasing
the complexity in other parts of the protocol.

In the first two papers we need linear codes with “good” parameters in
order to obtain the best constructions. The parameters of interest differ how-
ever. In the first paper we are mainly interested in codes with high RGHWs
in order to obtain good thresholds for the secret sharing schemes while the
codes needed in Paper B needs to have “good classical parameters” to opti-
mize our OT-extension protocol. In Paper C we focus on constructing linear
codes with a “high” dimension and minimum distance on its square simulta-
neously. Several multiparty computation protocols rely on linear codes with
this property and in fact the sketch of an MPC protocol from section 3.2 re-
quires at least a similar property. To justify this statement without going into
details I refer to the inequalities involving t and r which I presented in (2).
For a scheme to be multiplicative we require that we are able to reconstruct in
the squared code (meaning that the minimum distance of the code C∗ needs
to be at least 2). Simultaneously, we would like a high dual distance on C but
since d(C⊥) ≤ dim(C) we need to have a high dimension as well. I will refer
to another application of codes with high squared distance when discussing
Paper D.

Even though such codes seem to be important for many MPC protocols,
not much research has been done in producing these codes, especially not

16



4. Overview

when the field is small. We consider matrix-product codes, a code construc-
tion where we obtain longer codes from shorter ones. By considering the
structure of generator matrices for matrix-product codes, we show that the
square of some matrix-product codes can be determined as another matrix-
product code allowing us to give bounds on the parameters of the square
from the codes used in the construction. This could for instance be useful if
we want to compute a boolean circuit in MPC with many parties. We cannot
directly rely on Shamir’s scheme as it needs the field size to be larger than the
number of parties. Hence, we would need to base our secret sharing scheme
used in the protocol on another code over F2 which has the length equal to
the number of parties. A matrix-product code could be a good suggestion
for such an application.

The last paper, Paper D, introduces a new multiparty computation pro-
tocol in the dishonest majority setting. We follow a similar strategy as the
protocol in [10] also known as MiniMAC. MiniMAC uses ideas from the
SPDZ protocol [9], where they, as in the protocol from section 3.2, also con-
sider the function as a circuit and use secret sharing. In their case they use
additive secret sharing, meaning that the reconstruction function ρ is just the
sum of all the shares. Like in section 3.2, addition gates can be carried out
without communication. Thus, the main difference is the setup the proto-
cols consider and the way they carry out the multiplication gates. SPDZ and
MiniMAC consider the dishonest majority setting so to ensure that the par-
ties do not deviate from the protocol they not only share their inputs but also
a so-called MAC. The MAC is used to check that values are opened correctly
and the probability of fooling the MAC is therefore important. In SPDZ the
probability of fooling the MAC is 1

q where q is the field size and hence SPDZ
requires that the field size is large. In MiniMAC the techniques from SPDZ
are adapted to work over small fields but a direct approach of using MACs
in small fields will of course not provide enough amount of security, so [10]
suggested to group several inputs together and encode them to a codeword
in a good linear error-correcting code. The MACs and the shares are then
vectors over a small field and the probability of fooling the MACs depends
on the minimum distance of the code.

In the dishonest majority setting we cannot apply the techniques for the
multiplication gates described in section 3.2 for several reasons. For instance,
we need to ensure that the corrupt parties do not deviate from the protocol
and another reason is that there do not exist multiplicative schemes with a
privacy threshold that high. Instead the SPDZ protocol uses a well-known
technique known as Beaver’s trick to carry out the multiplication gate [1].
However, in MiniMAC this trick implies that we end up with codewords in
the squared code and hence we need to have a large minimum distance on
the square to ensure security as well. Thus for the MiniMAC protocol one
needs a code over a small field with high dimension and minimum distance

17



References

on the square which are exactly such codes we considered in Paper C.
However, in Paper D we suggest to replace the linear code with a tool

which seems well-suited for this type of protocol, a tool called reverse mul-
tiplication friendly embedding (RMFE). Instead of mapping the grouped in-
puts to a codeword we map them to an element of an extension field and
use the map from the RMFE such that we can reverse back to the small field
after the multiplication gate is carried out in the extension field. In this way
we also circumvent the problem with MACs over small field because of this
conversion. We compare our protocol to MiniMAC and find that the re-
verse multiplication friendly embedding is “more compact” in some sense
and hence we save some complexity.

References

[1] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Ad-
vances in Cryptology — CRYPTO ’91. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1992, pp. 420–432.

[2] G. R. Blakley, “Safeguarding cryptographic keys,” Managing Requirements Knowl-
edge, International Workshop on, vol. 00, p. 313, 1979.

[3] R. Canetti, “Universally composable security: A new paradigm for cryptographic
protocols,” Cryptology ePrint Archive, Report 2000/067, 2000, https://eprint.
iacr.org/2000/067.

[4] R. Canetti, “Universally composable security: a new paradigm for cryptographic
protocols,” in Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, 2001, pp. 136–145.

[5] I. Cascudo, “On squares of cyclic codes,” IEEE Transactions on Information Theory,
vol. 65, no. 2, pp. 1034–1047, 02 2019.

[6] I. Cascudo, R. Cramer, and C. Xing, “Bounds on the threshold gap in secret
sharing and its applications,” IEEE Transactions on Information Theory, vol. 59,
no. 9, pp. 5600–5612, September 2013.

[7] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan, “Se-
cure computation from random error correcting codes,” Advances in Cryptology -
EUROCRYPT 2007, pp. 291–310, 2007.

[8] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

[9] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Advances in Cryptology – CRYPTO 2012.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–662.

[10] I. B. Damgård and S. Zakarias, “Constant-overhead secure computation of
boolean circuits using preprocessing,” in Theory of Cryptography. Berlin, Hei-
delberg: Springer, 2013, pp. 621–641.

18

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067


References

[11] O. Geil, S. Martin, R. Matsumoto, D. Ruano, and Y. Luo, “Relative generalized
hamming weights of one-point algebraic geometric codes,” IEEE Transactions on
Information Theory, vol. 60, no. 10, pp. 5938–5949, October 2014.

[12] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, ser.
STOC ’87. ACM, 1987, pp. 218–229.

[13] J. Kilian, “Founding crytpography on oblivious transfer,” in Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, ser. STOC ’88. ACM,
1988, pp. 20–31.

[14] J. Kurihara, T. Uyematsu, and R. Matsumoto, “Secret sharing schemes based on
linear codes can be precisely characterized by the relative generalized hamming
weight,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 95, no. 11, pp. 2067–2075, 2012.

[15] Y. Luo, C. Mitrpant, A. J. H. Vinck, and K. Chen, “Some new characters on the
wire-tap channel of type ii,” IEEE Transactions on Information Theory, vol. 51, no. 3,
pp. 1222–1229, March 2005.

[16] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. North-
Holland Publishing Company, 1977, vol. 16.

[17] J. L. Massey, “Some applications of coding theory in cryptography,” in Codes and
Ciphers: Cryptography and Coding IV, 1995, pp. 33–47.

[18] J. L. Massey, “Minimal codewords and secret sharing,” in Proceedings of the 6th
Joint Swedish-Russian International Workshop on Information Theory. Citeseer, 1993,
pp. 276–279.

[19] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon codes,”
Commun. ACM, vol. 24, no. 9, p. 583–584, Sep. 1981.

[20] M. Orrù, E. Orsini, and P. Scholl, Actively Secure 1-out-of-N OT Extension with
Application to Private Set Intersection. Cham: Springer International Publishing,
2017, pp. 381–396.

[21] H. Randriambololona, “Asymptotically good binary linear codes with asymp-
totically good self-intersection spans,” IEEE Transactions on Information Theory,
vol. 59, pp. 3038 – 3045, 05 2013.

[22] H. Randriambololona, “An upper bound of singleton type for componentwise
products of linear codes,” IEEE Transactions on Information Theory, vol. 59, pp.
7936 – 7939, 09 2013.

[23] H. Randriambololona, “On products and powers of linear codes under compo-
nentwise multiplication,” Contemporary Math., vol. 637, 04 2015.

[24] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
November 1979. [Online]. Available: http://doi.acm.org/10.1145/359168.359176

[25] C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[26] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, ser. SFCS ’82. Washington, DC,
USA: IEEE Computer Society, 1982, pp. 160–164.

19

http://doi.acm.org/10.1145/359168.359176


References

20



Part II

Papers

21





Paper A

Improved Bounds on the Threshold Gap in Ramp
Secret Sharing

Ignacio Cascudo, Jaron Skovsted Gundersen, and Diego Ruano

The paper has been published in the
IEEE Transactions on Information Theory Vol. 65(7), pp. 4620–4633, 2019.



© 2019 IEEE
The layout has been revised.



1. Introduction

Abstract

In this paper we consider linear secret sharing schemes over a finite field Fq, where
the secret is a vector in F`

q and each of the n shares is a single element of Fq. We
obtain lower bounds on the so-called threshold gap g of such schemes, defined as
the quantity r − t where r is the smallest number such that any subset of r shares
uniquely determines the secret and t is the largest number such that any subset of t
shares provides no information about the secret. Our main result establishes a family
of bounds which are tighter than previously known bounds for ` ≥ 2. Furthermore,
we also provide bounds, in terms of n and q, on the partial reconstruction and privacy
thresholds, a more fine-grained notion that considers the amount of information about
the secret that can be contained in a set of shares of a given size. Finally, we compare
our lower bounds with known upper bounds in the asymptotic setting.

1 Introduction

Secret sharing, introduced independently by Blakley and Shamir [2, 28], is
among the most useful primitives in cryptography. A secret sharing scheme
allows to distribute the knowledge of a secret among n participants by send-
ing each of them a piece of information (a share), in such a way that only cer-
tain prescribed subsets of these participants can reconstruct the secret from
the joint information they have received. Secret sharing schemes are not only
useful as a stand-alone primitive that can be used for secure distributed stor-
age of information, but also play an important role as an element in more
complex cryptographic tools, in areas such as threshold cryptography or se-
cure multiparty computation.

In the study of secret sharing schemes and its applications it is often inter-
esting to determine the amount of information about the shared secret that
can be derived from pooling together a certain fixed number of shares. We
say that a secret sharing scheme has t-privacy if any set of t shares provides
no additional information about the secret to what was known a priori. On
the other hand, the secret sharing scheme has r-reconstruction if the know-
ledge of any set of r shares uniquely determines the secret. By abuse of
notation, fix t to be the largest integer for which there is t-privacy and fix r
to be the smallest integer for which there is r-reconstruction. Then obviously
0 ≤ t < r ≤ n, and we define the threshold gap as g = r − t, which is thus a
strictly positive integer. It is usually desirable for applications of secret shar-
ing that the privacy and reconstruction thresholds are as close as possible
and hence, that the threshold gap is small. Since this allows to optimize the
compromise between security against an adversary who attempts to learn
enough shares to gain information about the secret (for which we want to
set t large), and resilience against losing a number of shares by corruption or

25



Paper A.

other reasons (for which we want to set r small).
Secret sharing schemes with threshold gap g = 1 are called threshold secret

sharing schemes. Shamir’s secret sharing scheme (see Section 2 for its defini-
tion) is the most well-known example of a threshold secret sharing scheme:
for any integers t and n with 1 ≤ t < n, one can construct a Shamir secret
sharing scheme for n participants with t privacy and t + 1 reconstruction.
However, Shamir’s scheme presents some restrictions regarding the size of
the secret and shares in terms of n: in first place, both the secret and each of
the shares are elements of the same finite field, which means that each of the
shares is as large as the secret; in second place, the finite field must have at
least n+ 1 elements (remember n is the number of participants) and therefore
each share must be at least log(n + 1) bits long.

Typically, in applications of secret sharing we would like the secret to be
as large as possible while the shares are small, but it turns out that the two
restrictions above are unavoidable for threshold secret sharing schemes, and
more in general in secret sharing schemes with small threshold gap.

Consider first the relation between the size of the shares and the size of
the secret. It is well-known that in any threshold secret sharing scheme, each
share must be at least the same size as the secret (this holds more gener-
ally for any perfect secret sharing scheme, i.e., any secret sharing scheme
where every set of shares either has full information about the secret or no
information about it). And, more generally, if every share is an element of a
certain alphabet of size q and the secret is a-priori uniformly distributed in
an alphabet of size M, then it necessarily holds that

g ≥ logq M. (A.1)

This is a well known bound that is included as a special case of more gen-
eral results in [4, 19, 25, 26], which relate the size of the secret and shares to
various properties of the access and adversary structures of the secret shar-
ing scheme1. However, when the only parameter about these structures we
consider is the threshold gap, the bound in (A.1) is tight: it can be attained
by a generalization of Shamir’s scheme frequently known as packed Shamir’s
scheme, first proposed by Blakley and Meadows [3] (also defined in Section 2)
where each share is in a finite field Fq, the secret is in F`

q for some ` ≥ 1 and
we have g = `. We point out that this secret sharing scheme requires that
q ≥ n + `, which indicates that a large number of participants n will also in-
troduce a restriction for the threshold gap and the size of secrets and shares,
as we will see next.

1The access structure is defined as the family of sets of participants which can determine
uniquely the secret from the shares they hold while the adversary structure is the family of sets
of participants which can obtain no information about the secret (beyond what they know a
priori) from their shares.

26



1. Introduction

First, we note that the size of the shares in a threshold scheme is restricted
by the number of participants, as a series of results have shown. In first place,
it is known that threshold secret sharing schemes where the secret and each
share is in the same alphabet are equivalent to maximum distance separa-
ble (MDS) codes (MDS codes are those which attain the so-called Singleton
bound, see for instance [23]). The length of these codes is upper bounded by
the size of the alphabet over which they are defined. Exploiting this connec-
tion, one can already show that if 1 ≤ t < n − 1 (and g = 1, since we are
considering threshold schemes), then n < 2q− 2 (see [12], Theorem 11.113).

But even in the more general case where we do not assume that the secret
is in the same alphabet as the shares (for example even if the secret is just
one bit), it was first noticed in the unpublished work [20] (see [7] for the
statement and proof) that in any threshold scheme the average bitlength λ∗

of the shares is Ω(log(n− t)). The result was later generalized in [7], where
it was shown that for any secret sharing scheme where t ≥ 1 (no individual
participant obtains information about the secret) it necessarily holds that

g ≥ n− t + 1
2λ∗

.

If all shares belong to some alphabet of cardinality q, the bound can be rewrit-
ten as

g ≥ n− t + 1
q

. (A.2)

This bound hence establishes that, for certain values of t and n, there exist
limitations on how small the threshold gap can be that depend solely on the
size of the shares (and not on the secret). The bound was shown to be tight
for t = 1 and t = 2 (the latter only in the case q = 2) in [27].

Later, [6] showed that if r ≤ n− 1, the bound

g ≥ r + 1
q

holds, which together with the bound in [7] implies

g ≥ n + 2
2q− 1

(A.3)

as long as 1 ≤ t < r ≤ n− 1. This last bound had been shown earlier by [7]
only in the case where the secret sharing scheme is Fq-linear.

The two kinds of limitations that we have mentioned, represented by
Equations (A.1) and (A.3) above are incomparable: the former depends on
the relation between the sizes of the secret and shares, while the latter sets
limitations on the relation between the size of the shares and the number of

27



Paper A.

participants. Note that, even though the bound given in Equation (A.1) can
be attained by the Blakley-Meadows construction, this requires that n < q,
and therefore the bound is not necessarily tight when n grows in relation to
q (and in fact in general it cannot be attained, by virtue of Equation (A.3)). It
is then natural to investigate what bounds one can get which depend on all
these parameters simultaneously. In this regard, for Fq-linear schemes where
the secret is in F`

q with ` ≥ 2 and each share is in Fq, [7] showed the bound

g ≥ n + 2
2q + 1

+
2q

2q + 1
(`− 1) (A.4)

which is tighter than the straightforward combination g ≥ max{`, n+2
2q−1} of

Equations (A.1) and (A.3), when ` is large enough.
Another bound depending on both the share size and the relation between

the size of the shares and the size of the secret can be deduced from [13]. In
the language of all-or-nothing transforms they present a bound which in the
setting of secret sharing implies

g ≥ r
q
+ 1− q− 1

q
r

q` − 1
. (A.5)

Here one should note that as ` increases the bounds tends to g ≥ r
q + 1. So

for large enough ` the bound in (A.4) performs better than this bound.2

1.1 Contributions

In this paper we focus on Fq-linear secret sharing schemes where secrets are
in F`

q and every share is in Fq. In Section 3, we improve the bound (A.4) given
in [7]. More precisely our main result (Theorem 3.2) is a family of bounds
given by

g ≥ qm − 1
qm+1 − 1

(n + 2) +
qm+1 − qm

qm+1 − 1
(`− 2m), (A.6)

for m = 0, 1, . . . , `− 1, and we show that for any ` ≥ 2, there is some m for
which this new bound is tighter than (A.4).

We obtain these bounds by proving limitations on the so-called partial
privacy and reconstruction thresholds. These are defined as follows: let ri,
for i = 1, . . . , `, be the smallest number such that every set of shares of that

2We also remark the similarities with the bound from Theorem 4.4 stating that g ≥ r+1
q +

q−1
q bi , where bi is an non-negative integer. With bi ≥ 1 this bound is tighter than r

q + 1 and even
for bi = 0 the bound in (A.5) can only be one unit larger and in order to be larger we require a
large `.

28



1. Introduction

size gives at least i q-bits of information about the secret and let ti, also for
i = 1, . . . , `, be the largest integer such that every set of shares of that size
learns less than i q-bits about the secret. We call ti and ri the partial privacy
and reconstruction thresholds, respectively, and note that r` = r and t1 = t
which means that g = r` − t1.

Relative generalized Hamming weight (RGHW) was first studied in the
context of wiretap channel of type II, see [22]. However, when representing a
linear secret sharing scheme as a nested code pair, it is shown in [17, 21] that
the RGHWs of the pair of nested codes used in the construction determine the
partial thresholds. Combining this with the Griesmer bound on the RGHWs
implies limitations for ti and ri which eventually leads to the bounds in (A.6).

We emphasize that the improvement over (A.4) comes from two sources.
The main one is the fact that we use results on the application of Griesmer
bounds directly to the RGHWs instead of using a shortening argument to
bound r and t and then applying the Griesmer bound to the resulting code
as in [7]. In addition, we set a parameter m that determines how we bound
each of the summands appearing in the Griesmer bound, while [7] simply set
m = 1. This provides more flexibility, which for example is beneficial when
proving asymptotic bounds (see Theorem 5.1).

In Section 4 we prove some additional results on the relation between the
partial privacy and reconstruction thresholds. We remark that this also imply
bounds on the RGHWs and therefore might also be relevant in the context
of wiretap channel of type II. In this section we follow more or less the same
approach as in [7] but generalize some of their results on r and t to the partial
thresholds. We derive that as long as t ≥ 1, we necessarily have

ri ≥
n

q`−i+1 + 1

for all i ∈ {1, . . . , `}. Note that for i = ` we obtain r ≥ n
q + 1. This is a bound

that was also shown in [7] and was used to prove the more general inequality
(A.2).

Moreover, we can also prove this bound under milder conditions, namely
if tj ≥ j for some j ∈ {1, . . . , `}, then the same bound

ri ≥
n

q`−i+1 + 1

holds, but now for every i ∈ {j, j + 1, . . . , `}.
This leads to the following generalization of (A.3):

g ≥ n + 2
2q− 1

+
q− 1

2q− 1
(ai + bi),

where ai = ti− t− i + 1 ≥ 0 and bi = r− r`−i+1− i + 1 ≥ 0 are two quantities
that capture how much the scheme deviates from the situation where t1 =

29



Paper A.

t, t2 = t + 1, . . . , t` = t + ` − 1 and r` = r, r`−1 = r − 1, . . . , r1 = r − ` +
1, which occurs in the scheme of Blakley-Meadows (also known as packed
Shamir), and which would correspond to ai = 0, bi = 0 for all i. At last in
this section, we consider an example attaining this bound.

There are several potential uses of partial reconstruction and privacy
thresholds in cryptography. For example, the notion of functional secret shar-
ing introduced in [1] considers a scenario where large enough sets of partic-
ipants can recover certain functions of the secrets and hence the threshold
ri gives us some information about functional secret sharing schemes where
the output of the functions of interest consist of i q-bits. On the other hand,
considering a relaxed notion of privacy (the threshold ti) may be interesting
in applications where secret sharing is combined with some other privacy
amplification technique. For example with the goal of constructing a linear-
time encodable secret sharing scheme [11] combines an error correcting code
(which can be seen as a secret sharing scheme where small sets of participants
can obtain partial information about the secret) with a hash function that de-
stroys this partial information, so that perfect privacy is obtained in the final
construction. This combination of “imperfect” secret sharing and privacy
amplification may be of interest in secure computation, too. Our bounds on
ti and ri would set some limitations on those potential applications as well.

Finally, we consider asymptotic secret sharing schemes in Section 5. We
adopt the setting considered in [16], define an asymptotic threshold gap (in
Equation (A.24)) and provide the asymptotic version of the previous bounds.
At the end, we compare our bound with the asymptotic version of the bounds
in [7] and investigate how sharp is our bound by comparing it with threshold
gaps of secret sharing schemes constructed from algebraic geometric codes
(in the case of large fields) and from random linear codes (for small fields).

2 Secret Sharing

In this section, we recall some notions regarding secret sharing schemes and
their relationship with linear codes.

Let S0, S1, . . . , Sn be random variables taking values in the finite alphabets
S0,S1, . . . ,Sn. Then we call S = (S0, S1, . . . , Sn) a vector of random variables.
In this paper, we let I = {0, 1, . . . , n} and I∗ = {1, 2, . . . , n} for some n ∈ N

and for a subset A ⊆ I we denote by SA the vector (Si)i∈A. Notice that
S = SI . With this notation we define a secret sharing scheme.

Definition 2.1 (Secret Sharing Scheme). A secret sharing scheme Σ is a vector
of random variables

S = (S0, S1, . . . , Sn) ∈ S0 × S1 × · · · × Sn,

30



2. Secret Sharing

such that

Hq(S0) = logq |S0|,

where Hq is the Shannon entropy with base q.3 Further, we require that

Hq(S0|SI∗) = 0.

We call S0 the secret and, for i ∈ I∗, we call Si the i’th share. The scheme has n
participants, which we identify with the set I∗, and the i’th participant holds
Si, for i = 1, 2, . . . , n.

The requirement that Hq(S0) = logq |S0| implies that the random variable
S0 is uniformly distributed in S0; while it is of course possible to consider
secret sharing schemes with a different distribution on the secret space, it
was shown in [5] that such scheme could be transformed into one where
the distribution of secrets is uniform and with the same reconstruction and
privacy thresholds (introduced below). Therefore, this assumption is without
loss of generality for our purposes.

The other requirement, that Hq(S0|SI∗) = 0, means that the secret is
uniquely determined by the set of all the shares with probability 1.

A secret sharing scheme is called linear if S is uniformly distributed on
some subspace V ⊆ S0 × S1 × · · · × Sn and if Si is a Fq-vector space for
all i ∈ I where Fq is the finite field with q element. In this paper, we will
focus on the schemes, where Si is one-dimensional for i ∈ I∗ and S0 is `-
dimensional. Without loss of generality we can assume that S0 = F`

q and
Si = Fq for the i ∈ I∗.

Linear secret sharing schemes are also characterized by the following
property; consider two secrets s, t ∈ S0 = F`

q. Let x ∈ Fn
q be a possible

share vector for the secret s, i.e. P((S0, SI∗) = (s, x)) > 0, and y ∈ Fn
q a

possible share vector for t. Thus, (s, x) ∈ V and (t, y) ∈ V. For a, b ∈ Fq, we
have (as + bt, ax + by) ∈ V, proving that

P((S0, SI∗) = (as + bt, ax + by)) > 0.

Therefore, a linear combination of share vectors results in a share vector
for the same linear combination of the corresponding secrets. This prop-
erty makes linear secret sharing schemes very useful for secure multiparty
computation and threshold cryptography.

Well known examples of linear secret sharing schemes are Shamir’s secret
sharing scheme and its generalization by Blakley and Meadows, described
below. Assume that n + ` ≤ q. Let α0,1, α0,2, . . . , α0,`, α1, α2, . . . , αn ∈ Fq be
pairwise-distinct. Fix an integer ` − 1 ≤ k ≤ n − 1 and define the vector
of random variables S given by selecting a polynomial uniformly at random

3Note that Hq is the Shannon entropy of base q and not the Rényi entropy of order q.

31



Paper A.

among the set of polynomials in Fq[X] of degree less than k and defining
S0 as the variable taking the value ( f (α0,1), f (α0,2), . . . , f (α0,`)) ∈ F`

q and
each of the Si’s as the variables taking values f (αi) ∈ Fq. Note that the
condition n + ` ≤ q can be weakened to n ≤ q by using an element of an
extension field as a single evaluation point for the secret, rather than the
elements α0,1, α0,2, . . . , α0,`, as was done in for example [9].

Shamir’s scheme as defined in [28] is the version with ` = 1 and α0,1 = 0.
Blakley and Meadows’ scheme is sometimes referred to as packed Shamir’s
scheme. It is easy to verify that this scheme is linear.

The following alternative definition of linear secret sharing schemes was
given in [10]. For completion we show that the definitions are equivalent in
Appendix A.

Let C1, C2, and L be linear codes in Fn
q , such that C1 = L⊕ C2. Further,

let dim L = `, dim C2 = k2, dim C1 = k1 = k2 + `, and let {b1, b2, . . . , b`}
be a basis of L and {b`+1, b`+2, . . . , bk1} be a basis of C2. We define a linear
secret sharing scheme from the nested linear codes C2 ( C1 in the following
manner. Given the secret s ∈ F`

q, choose k2 uniformly random elements in
Fq, say a1, a2, . . . , ak2 . Then the vector

c = s1b1 + s2b2 + · · ·+ s`b` + a1b`+1 + a2b`+2 + · · ·+ ak2 bk1 ∈ C1

is called a share vector and the i’th share is defined to be the i’th entry of
this vector c. One should notice that, setting the distribution of the secret
to be uniform in F`

q, this is indeed a secret sharing scheme according to our
definition, since the set of all shares corresponds to a vector in C1 = C2 ⊕ L
which can be projected into a unique element in L.

In secret sharing, we are interested in determining which subsets of par-
ticipants are able to reconstruct the secret from their shares and which subsets
are not. This leads to the definition of privacy and reconstructing sets.

Definition 2.2 (Privacy and Reconstructing set). Let Σ be a secret sharing scheme
given by the vector of random variables S and let A ⊆ I∗. Then A is a privacy set if

Hq(S0|SA) = Hq(S0),

and A is a reconstructing set if

Hq(S0|SA) = 0.

As in Definition 2.1, Hq(S0|SA) = 0 implies that the secret is uniquely de-
termined by the shares held by the participants in A. On the other hand,
Hq(S0|SA) = Hq(S0) is equivalent to S0 and SA being independent. There-
fore, the participants in A have no information about the secret from their
shares. Additionally, we can define the information held by the participants
in A using the mutual information

Iq(S0, SA) = Hq(S0)− Hq(S0|SA). (A.7)

32



2. Secret Sharing

This quantity is measured in q-bits and lies between 0 ≤ Iq(S0, SA) ≤ Hq(S0).
It equals 0 exactly when A is a privacy set and it equals Hq(S0) exactly when
A is a reconstructing set. One should notice that for linear secret sharing
schemes with S0 = F`

q we have Hq(S0) = `. Furthermore, it is shown in [21]
that for such schemes the mutual information is given by

Iq(S0, SA) = dim πA(C1)− dim πA(C2), (A.8)

where πA is the projection πA : Fn
q → F

|A|
q given by πA(c) = cA. Hence, we

conclude that, in linear secret sharing, the information about the secret held
by some set of participants, when expressed in q-bits, is always an integer
between 0 and `. Furthermore, we have for a subset A ⊆ I∗ and an element
i ∈ I∗ \ A that

Iq(S0, SA) ≤ Iq(S0, SA∪{i}) ≤ Iq(S0, SA) + 1.

The set of all privacy sets is called the adversary structure of the scheme and
is denoted by A(Σ). Similarly, the set of all reconstructing sets is called the
access structure and is denoted by Γ(Σ). From these definitions we introduce
some thresholds for the secret sharing schemes.

Definition 2.3 (Privacy and Reconstruction Threshold). Let Σ be a secret shar-
ing scheme with adversary structure A(Σ) and access structure Γ(Σ). The privacy
threshold t for the scheme Σ is given by the maximal s such that

{A ⊆ I∗ : |A| = s} ⊆ A(Σ).

Similarly, the reconstruction threshold r is given by the minimal s such that

{A ⊆ I∗ : |A| = s} ⊆ Γ(Σ).

Definition 2.4 (Threshold gap). Let Σ be a secret sharing scheme, and let t and r
be the privacy and reconstruction threshold, respectively. Then

g = r− t

is the threshold gap.

By (A.7) it can be deduced that 0 ≤ t < r ≤ n, and therefore the threshold
gap g is always a positive integer. Secret sharing schemes with r = t + 1, and
therefore g = 1, are called threshold secret sharing schemes. As mentioned in
the introduction it is often desirable to have a small g, but this will have the
disadvantage that the shares are large compared to the secret, which means
one has to consider this trade-off.

In a secret sharing scheme with secrets larger than the shares, some sub-
sets of participants will obtain partial information about the secret. This gives
rise to defining the partial privacy and reconstruction thresholds in a similar
manner that we defined t and r.

33



Paper A.

Definition 2.5 (Partial Privacy and Reconstruction Thresholds). The i’th par-
tial privacy threshold of a secret sharing scheme, ti, is given by

ti = max{s | ∀A ⊆ I∗, |A| = s, Iq(S0, SA) < i}.

Similarly, the i’th partial reconstruction threshold, ri, is given by

ri = min{s | ∀A ⊆ I∗, |A| = s, Iq(S0, SA) ≥ i}.

This means that ti is the maximal number such that all sets of ti participants
do not obtain i q-bits of information. On the other hand, ri is the minimal
number such that all subsets of ri participants can reconstruct i q-bits of in-
formation.

Since the information in q-bits is always a nonnegative integer and the
maximum information is ` we have that t = t1 and r = r`.

We will denote the dual of a linear code C by C⊥, the minimum distance by
dmin(C), the support by

supp(C) = {i : ∃(c1, c2, . . . , cn) ∈ C, ci 6= 0},

and the support weight by wS(C) = |supp(C)|. With these definitions, the i’th
relative generalized Hamming weight (RGHW) is defined as

Mi(C1, C2) = min{wS(D) : D ⊆ C1, D ∩ C2 = {0}, dim(D) = i}.

We notice that the first RGHW is simply the minimum Hamming weight of
C1 \ C2, which implies that dmin(C1) ≤ M1(C1, C2). For C2 = {0} we have
dmin(C1) = M1(C1, C2).

In [17, 21] it is shown that the RGHWs characterize the partial privacy
and reconstruction thresholds. They showed that

ti = Mi(C⊥2 , C⊥1 )− 1

ri = n−M`−i+1(C1, C2) + 1.
(A.9)

Further, it is shown in [22] that Mi(C1, C2) is strictly increasing with i, which
implies that ti < ti+1 and ri < ri+1, for all i = 1, 2 . . . `− 1.

In particular, (A.9) yields

t = M1(C⊥2 , C⊥1 )− 1

r = n−M1(C1, C2) + 1

g = n−
(

M1(C1, C2) + M1(C⊥2 , C⊥1 )
)
+ 2,

(A.10)

which implies that

t ≥ dmin(C⊥2 )− 1

r ≤ n− dmin(C1) + 1

g ≤ n + 2−
(

dmin(C1) + dmin(C⊥2 )
)

.

(A.11)

34



3. Bounds from the Generalized Griesmer Bound

3 Bounds from the Generalized Griesmer Bound

In applications, we often want secret sharing schemes where the privacy and
reconstruction thresholds are close to each other, which means that we want
the threshold gap to be small. From this point of view, we could refer to the
bounds in (A.11) as positive bounds.

However, as it was mentioned in the introduction, there are known re-
strictions for how small the shares of such schemes can be when one requires
a small threshold gap. These restrictions come from two sources: the relative
size of the secret with respect to the shares and the relation between the size
of the shares and the total number of participants.

In this section we obtain new bounds for the threshold gap of linear secret
sharing schemes that depend on the two aforementioned factors simultane-
ously and show how they improve previous bounds in all cases.

First we recall known bounds. As in the previous section, let F`
q be the

space of secrets and let each of the shares be an element of Fq. Then, it is
well-known that g ≥ `. This is a consequence of the more general result, also
valid for non-linear secret sharing schemes, that g ≥ H(S0)/H(Si) for every
share Si, as proved in [4]. Coming back to the linear case, it is interesting to
see this bound in the light of partial privacy and reconstruction thresholds
too: in the context of Wiretap channel type II, the results in [22] imply the
following bounds on ti and ri:

ti ≤ k2 + i− 1

ri ≥ k2 + i,
(A.12)

which combined also yield g ≥ `. This bound is of the first type mentioned
above: it only depends on the relation between the size of the secret and the
size of the shares, but does not take into account the number of participants.
The bound is attainable by the Blakley-Meadows’ secret sharing scheme, but
this scheme requires n ≤ q.

In [7] lower bounds on the threshold gap depending on the number of
participants and its relation to the size of the shares were derived. If we
denote by

BCCX(1)(n, q) =
n + 2
2q− 1

,

BCCX(2)(n, q, `) =
n + 2
2q + 1

+
2q

2q + 1
(`− 1),

then the bounds in [7] state that

g ≥ BCCX(1)(n, q), if 1 ≤ t < r ≤ n− 1

g ≥ BCCX(2)(n, q, `), if ` ≥ 2.
(A.13)

35



Paper A.

Both bounds were proved in [7] for linear secret sharing schemes. However,
the first one is also valid for non-linear secret sharing schemes, as shown
in [6].

Note that both bounds exclude the case ` = 1 and t = 0, and the case
` = 1 and r = n. This is unavoidable, since in both cases there exist secret
sharing schemes where n and q are unrestricted. Indeed in the first case the
scheme consisting on simply distributing the secret to all participants fulfils
r = 1, and hence g = 1. On the other hand, for the second case consider
additive secret sharing schemes, where the secret is the sum of all the shares,
implying that t = n− 1. Note that the second bound implies that the bound
g ≥ ` we mentioned above cannot be attained with equality for all n and q as
long ` ≥ 2.

In the following, by considering RGHWs, we construct a new lower bound
on the threshold gap for linear secret sharing schemes which, as in the case of
g ≥ BCCX(2)(n, q, `), also takes both the secret and the share size into account.
Additionally, we will derive limitation bounds on ti and ri using the same
approach. We will compare the bound on the threshold gap with the bounds
in (A.13), showing improvement in most cases.

We first present the following bounds on the RGHWs from [31].

Proposition 3.1 (The generalized Griesmer bound on RGHW). Let C2 ( C1
be linear codes. For 0 ≤ i ≤ k1 − k2 = `, the i’th RGHW satisfies

n ≥ k2 + Mi(C1, C2) +
`−i

∑
j=1

⌈
q− 1

qj(qi − 1)
Mi(C1, C2)

⌉
.

By using that dae ≥ a, for the first m terms in the sum, and dae ≥ 1, for the
remaining terms, we write

n ≥ k2 + Mi(C1, C2) +
q− 1
qi − 1

Mi(C1, C2)
m

∑
j=1

1
qj + `− i−m⇔

n ≥ k1 − i−m + Mi(C1, C2) +
qm − 1

qm+i − qm Mi(C1, C2),

which is equivalent to

Mi(C1, C2) ≤
qm+i − qm

qm+i − 1
(n− k1 + i + m) . (A.14)

Similar arguments show that

Mi(C⊥2 , C⊥1 ) ≤ qm+i − qm

qm+i − 1
(k2 + i + m) . (A.15)

36



3. Bounds from the Generalized Griesmer Bound

One should notice that different choices of m lead to different bounds on the
RGHWs. It is not necessarily the highest possible m which gives the best
bound, and hence we need to choose the parameter m carefully in order to
make the bound as good as possible.

The expressions in (A.14) and (A.15) lead to the following bounds on the
partial privacy and reconstruction thresholds together with the threshold gap
as well.

Theorem 3.2. Let C2 ( C1 define a linear secret sharing scheme. Then for i ∈
{1, 2, . . . , `},

ti ≤
qm+i − qm

qm+i − 1
(k2 + m + i)− 1,

r`−i+1 ≥
qm − 1

qm+i − 1
n +

qm+i − qm

qm+i − 1
(k1 −m− i) + 1,

for all m ∈ {0, 1, . . . , `− i}. Now, let

BGr
(m)(n, q, `) =

qm − 1
qm+1 − 1

(n + 2) +
qm+1 − qm

qm+1 − 1
(`− 2m).

Then the threshold gap satisfies

g ≥ BGr
(m)(n, q, `),

for all m ∈ {0, 1, . . . , `− 1}.

Proof. For r`−i+1 we combine (A.9) and (A.14) and obtain

r`−i+1 ≥ n− qm+i − qm

qm+i − 1
(n− k1 + i + m) + 1⇔

r`−i+1 ≥
qm − 1

qm+i − 1
n +

qm+i − qm

qm+i − 1
(k1 −m− i) + 1.

Similarly the bound on ti follows by combining (A.9) with (A.15).
In order to show the bound on g, we recall from (A.10) that

g = n + 2−
(

M1(C1, C2) + M1(C⊥2 , C⊥1 )
)

,

which by (A.14) and (A.15) yield

g ≥ qm − 1
qm+1 − 1

(n + 2) +
qm+1 − qm

qm+1 − 1
(`− 2m)

for all m ∈ {0, 1, . . . , `− 1}.

37



Paper A.

One should notice that g ≥ BGr
(0)(n, q, `) leads to the well-known bound

g ≥ `. Hence, for secret sharing schemes having ` = 1, this bound on the
threshold gap do not improve the existing bounds. However, when ` ≥ 2
we will show that there exist choices of m such that BGr

(m)(n, q, `) is at least
as good, and in almost all cases, better than the bounds BCCX(1)(n, q) and
BCCX(2)(n, q, `) in (A.13). We only consider m = 0, which imply g ≥ ` as
explained above, and m = 1, which imply the bound

g ≥ BGr
(1)(n, q, `) =

q− 1
q2 − 1

(n + 2) +
q2 − q
q2 − 1

(`− 2)

=
n + 2
q + 1

+
q

q + 1
(`− 2).

One should notice that other choices of m could improve BGr
(m)(n, q, `), but

in the following theorem we show that either m = 0 or m = 1 imply a bound
which is at least as good as the known bounds.

Theorem 3.3. Let ` ≥ 2, then

BGr
(1)(n, q, `) ≥ BCCX(1)(n, q), (A.16)

and

BGr
(0)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≥ n− 2(q− 1),

BGr
(1)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≤ n− 2(q− 1).

(A.17)

Proof. In order to prove (A.16) we consider the difference

BGr
(1)(n, q, `)− BCCX(1)(n, q) =

n + 2
q + 1

+
q

q + 1
(`− 2)− n + 2

2q− 1

=
q− 2

(q + 1)(2q− 1)
(n + 2) +

q
q + 1

(`− 2)

≥ 0, (A.18)

where the inequality holds for all n and q, since ` ≥ 2 and q ≥ 2.
To prove (A.17) we start by considering the difference

BGr
(0)(n, q, `)− BCCX(2)(n, q, `) = `−

(
n + 2
2q + 1

+
2q

2q + 1
(`− 1)

)
=

`− n + 2(q− 1)
2q + 1

.

This is greater than or equal to zero if

` ≥ n− 2(q− 1).

38



4. Further Bounds on the Partial Reconstruction
Thresholds

Similarly, the difference BGr
(1)(n, q, `)− BCCX(2)(n, q, `) is greater than or

equal to zero if

0 ≤ n + 2
q + 1

+
q

q + 1
(`− 2)−

(
n + 2
2q + 1

+
2q

2q + 1
(`− 1)

)
⇔

0 ≤ q
(q + 1)(2q + 1)

(n− `+ 2)− 2q2

(q + 1)(2q + 1)
⇔

` ≤ n− 2(q− 1),

which proves (A.17).

Remark
One should notice that the inequality in (A.18) is strict if ` > 2 or if ` ≥ 2 and
q > 2 showing that the bound BGr

(1)(n, q, `) is sharper in these cases. Similarly, if
` 6= n− 2(q− 1) and ` ≥ 2 there exists a choice of m such that BGr

(m)(n, q, `) >
BCCX(2)(n, q, `).

In order to illustrate how much this new bound on the threshold gap im-
proves the existing bounds we consider an example.

Example
Let q = 2, n = 100, and ` = 10. Then the well-known bound g ≥ ` yields g ≥ 10.
The bound BCCX(1)(100, 2) implies g ≥ 34. Similarly, the bound BCCX(2)(n, q, `)
implies g ≥ 28, since we can round up because the threshold gap is an integer.
However, for m = 4, which is the optimal value for m in this example, we have⌈

BGr
(4)(100, 2, 10)

⌉
= 51. Hence, we conclude that a linear secret sharing scheme

over F2 with 100 participants for sharing 10-bit long secrets has a threshold gap
greater than or equal to 51. J

We return to the bounds in Theorem 3.2 in Section 5, where the bounds are
considered asymptotic. Before that, we will focus on the bound BCCX(1)(n, q).

4 Further Bounds on the Partial Reconstruction
Thresholds

Now, we will consider the bound g ≥ BCCX(1)(n, q) from [7] more in depth.
This bound is obtained first by proving that r ≥ n

q + 1 under the assumption

that t ≥ 1, later using shortening of secret sharing schemes to show g ≥ n−t+1
q

(still assuming t ≥ 1) and finally applying this bound to the scheme and its
dual, which yields g ≥ BCCX(1)(n, q) under the conditions t ≥ 1, r ≤ n− 1.

In this section we consider the first step of that argument (the one showing
r ≥ n

q + 1 if t ≥ 1) and explore its generalization to the partial reconstruction

39



Paper A.

and privacy thresholds when ` > 1. First, we show that we can obtain the
same bound on r but under a weaker assumption, tj ≥ j. Note that t ≥ 1
implies tj ≥ j for all j, since tj < tj+1 as mentioned in Section 2, but the
converse is not necessarily true. Furthermore, we may extend the results
to obtain bounds for the partial reconstruction thresholds as well. We will
derive that

ri ≥
n

q`−i+1 + 1,

for i ∈ {j, j + 1, . . . , `}, if tj ≥ j. Notice that under the assumption t ≥ 1 we
obtain that ri ≥ n

q`−i+1 + 1, for all 1 ≤ i ≤ `. Similarly, the result r ≥ n
q + 1

holds even if we only assume that t` ≥ `. From these results on ri we will
also generalize the bound g ≥ BCCX(1)(n, q) by using shortening of codes.

Before proving the new bound for partial reconstruction thresholds we
shall consider Lemma 4.1 and introduce the following notation. For a subset
V ⊆ Fn

q , an element a ∈ Fq, and an index i ∈ {1, . . . , n} define

(V)a,i = {v ∈ V : πi(v) = a}.

Note that if V is a linear code, where (V)a,i 6= ∅ for some a 6= 0, then

|(V)a,i| = |(V)b,i| (A.19)

for all a, b ∈ Fq by the linearity of V.

Lemma 4.1. Let C2 ( C1 define a secret sharing scheme and assume that tj ≥ j for
some j ∈ {1, 2, . . . , `}. Then there exists a set W = {v1, v2, . . . , v`−j+1} ⊆ L, such
that the elements in W are linearly independent, and for all m ∈ {1, 2, . . . , n} and
k ∈ {1, 2, . . . , `− j + 1}, we either have that

πm(C2) = {0} and πm(vk + C2) = {0}

or

|(C2)a,m| = |(vk + C2)a,m| = qk2−1, for all a ∈ Fq.

Proof. Let B = {m : πm(C2) = {0}} and notice that πB(C1) = πB(L ⊕
C2) = πB(L). For any A ⊆ B we have that Iq(S0, SA) = dim πA(C1) =

dim πA(L) ≤ `. Now consider the homomorphism πB : L → F
|B|
q , and as-

sume that dim πB(L) ≥ j. Then one can puncture the code πB(L) at a set A
with cardinality j, such that dim πA(L) = j. This contradicts the assumption
that tj ≥ j. Hence, dim πB(L) < j, which means that the kernel of πB has
dimension at least `− j + 1. Let W consists of `− j + 1 linearly independent
vectors in this kernel.

40



4. Further Bounds on the Partial Reconstruction
Thresholds

let m ∈ {0, 1, . . . , `− 1} \ B and a vk ∈ W. By (A.19), |(C2)a−πm(vk),m| =
qk2−1, for all a ∈ Fq. This shows that |(vk + C2)a,m| ≥ qk2−1, for all a ∈ Fq.
However, since C2 and vk +C2 can be considered as quotient classes in C1/C2,
we have that |C2| = |vk + C2| = qk2 , implying that |(vk + C2)a,m| = qk2−1 for
all a ∈ Fq.

We can now prove the aforementioned generalizations on ri.

Theorem 4.2. Let C2 ( C1 define a secret sharing scheme. If tj ≥ j the thresholds
ri satisfy

ri ≥
n

q`−i+1 + 1,

for i ∈ {j, j + 1, . . . , `}.

Proof. By assumption i ≥ j, implying that ` − i + 1 ≤ ` − j + 1. Therefore,
by Lemma 4.1 there exists v1, v2, . . . , v`−i+1 ∈ L linearly independent vectors
satisfying for all m ∈ {1, 2, . . . , n} and k ∈ {1, 2 . . . , `− i + 1}, that πm(C2) =
{0} and πm(vk + C2) = {0} or

|(C2)a,m| = |(vk + C2)a,m| = qk2−1,

for all a ∈ Fq. We define the vector space

V(r1, r2, . . . , r`−i+1) = 〈v1 + r1, v2 + r2, . . . , v`−i+1 + r`−i+1〉,

for some vectors rk, and consider the sum

∑
r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

wS(V(r1, r2, . . . , r`−i+1)).

Since v1, v2, . . . , v`−i+1 are linearly independent, rk ∈ C2, and vk ∈ L, for all
k, the set V(r1, r2, . . . , r`−i+1) is an `− i + 1 dimensional vector space in C1
having only 0 in common with C2. Therefore, we conclude that

wS(V(r1, r2, . . . , r`−i+1)) ≥ M`−i+1(C1, C2)

and hence
∑

r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

wS(V(r1, r2, . . . , r`−i+1))

≥ q(`−i+1)k2 M`−i+1(C1, C2)

= q(`−i+1)k2(n− ri + 1),

(A.20)

where the last equality follows from (A.9). Now notice that

wS(V(r1, r2, . . . , r`−i+1)) =
n

∑
m=1

dim πm(V(r1, r2, . . . , r`−i+1)),

41



Paper A.

which implies that

∑
r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

wS(V(r1, r2, . . . , r`−i+1)) =

∑
r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

n

∑
m=1

dim πm(V(r1, r2, . . . , r`−i+1)) =

n

∑
m=1

∑
r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

dim πm(V(r1, r2, . . . , r`−i+1)).

In each term the dimension can either be zero or one. It is zero exactly when

πm(rk) = −πm(vk)

for all k = 1, 2, . . . , `− i+ 1. By the assumptions on vk, we have that πm(rk) =
−πm(vk) for at least qk2−1 of the elements rk ∈ C2 for a specific m. Since this
holds for all k = 1, 2, . . . , `− i + 1, we have that πm(rk) = −πm(vk), for all k,
at least q(`−i+1)(k2−1) times. Hence,

n

∑
m=1

∑
r1∈C2

∑
r2∈C2

· · · ∑
r`−i+1∈C2

dim πm(V(r1, r2, . . . , r`−i+1))

≤
n

∑
m=1

q(`−i+1)k2 − q(`−i+1)(k2−1)

= nq(`−i+1)k2
(

1− q−(`−i+1)
)

Combining this inequality with (A.20) we obtain that

q(`−i+1)k2(n− ri + 1) ≤ nq(`−i+1)k2
(

1− q−(`−i+1)
)
⇔

ri ≥
n

q`−i+1 + 1.

We first define the notion of shortening a secret sharing scheme and prove
some results on the shortened schemes parameters before we prove the bounds
on the threshold gap. Let C2 ⊆ C1 define a secret sharing scheme and let
A ⊆ I∗. Now define Ā = I∗ \ A. Then the shortened secret sharing scheme
is given by the code pair CA

2 ( CA
1 , where

CA
i = πĀ(ker πA(Ci)).

Lemma 4.3. Let A ⊆ I∗ be a set of participants in the secret sharing scheme defined
by C2 ( C1 such that Iq(S0, SA) = m. Denote by `A the dimension of LA, where
LA is a code such that CA

1 = LA⊕CA
2 . Additionally, denote by tA

i and rA
i the partial

42



4. Further Bounds on the Partial Reconstruction
Thresholds

privacy and reconstruction thresholds of the shortened scheme CA
2 ( CA

1 , and let nA

be the length of the shortened codes. Then

nA = n− |A|,
`A = `−m

tA
i ≥ ti+m − |A|,

rA
i ≤ ri+m − |A|,

for all i ∈ {1, 2, . . . , `A}.

Proof. The result on nA follows from the definition of πĀ. For `A we use
Forney’s first duality lemma [14], stating that for a code C,

dim C = dim πA(C) + dim CA.

This leads to

`A = dim CA
1 − dim CA

2

= k1 − dim πA(C1)− k2 + dim πA(C2)

= `−m.

Now let B ⊆ Ā and notice, that knowing |B| shares in the scheme CA
2 ( CA

1
corresponds to knowing |B ∪ A| = |B|+ |A| shares in the scheme C2 ( C1.
However, for B = ∅, we have Iq(S0, S∅) = 0 in the shortened scheme, while
it gives Iq(S0, SA) = m in the original scheme. So the information held by B
in the shortened scheme equals Iq(S0, SA∪B)−m in the original scheme.

If |B|+ |A| ≤ ti+m, the participants will know at most i + m− 1 q-bits in
the scheme C2 ( C1. This corresponds to knowing at most i− 1 q-bits in the
shortened scheme, and hence tA

i ≥ ti+m − |A|, for i ∈ {1, 2, . . . , `A}.
Similarly for rA

i , if |B| + |A| ≥ ri+m, the participants in B will know at
least i q-bits in the shortened scheme, showing that rA

i ≤ ri+m − |A|.

We will use the notation ai and bi to describe the gaps between ti and t, and
r and r`−i+1, respectively. Therefore, denote by

ai = ti − t− i + 1

bi = r− r`−i+1 − i + 1.
(A.21)

Since t = t1, r = r`, we have that a1 = b1 = 0. Using that ti and ri are strictly
increasing with i we have that ai ≥ 0 and bi ≥ 0.

Another way to interpret ai and bi is to consider the ti’s and ri’s as a stair-
case. Two consecutive ti’s differ by at least one unit. The values ai measure
how different the sequence of ti behaves from the case where all these steps

43



Paper A.

t′i := ti − ti−1 are exactly 1 (this happens in the Blakley-Meadows’ scheme).
Indeed ai − ai−1 = ti − ti−1 − 1. So if all steps t′i are 1, then all ai’s are 0, and
in general ai = ∑i

j=2(t
′
i − 1), the sum of “all deviations from 1” up to step i.

An analogous relation holds with with ri and bi.
This also implies that ai and bi are non-decreasing with i, which is useful

in the following theorem.

Theorem 4.4. Let C2 ( C1 define a secret sharing scheme. Fix some i ∈ {1, 2, . . . , `}
and let ai and bi be as in (A.21). If ti ≥ i, then the threshold gap g satisfies

g ≥ n− t + 1
q

+
q− 1

q
ai. (A.22)

If r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ r + 1
q

+
q− 1

q
bi. (A.23)

If both ti ≥ i and r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ n + 2
2q− 1

+
q− 1

2q− 1
(ai + bi).

Proof. Choose A such that |A| = t − 1 + ai. Hence, the shortened scheme
given by CA

2 ( CA
1 has parameters nA = n− t + 1− ai, rA ≤ r − t + 1− ai,

and tA
i ≥ i by Lemma 4.3. By Theorem 4.2 and Lemma 4.3, the threshold gap

now satisfies
g = r− t ≥ rA + ai − 1

≥ nA

q
+ ai

=
n− t + 1− ai

q
+ ai

=
n− t + 1

q
+

q− 1
q

ai.

By (A.9) and (A.10) one has that the dual scheme has thresholds t⊥i = n −
r`−i+1 and r⊥`−i+1 = n− ti. Therefore, the threshold gap of the dual scheme is
the same as for the original and ai of the dual equals bi. We can use the bound
in (A.22) on the dual scheme if it holds that t⊥i ≥ i, but this is equivalent to
the assumption r`−i+1 ≤ n− i. Therefore, we obtain

g ≥ n− t⊥ + 1
q

+
q− 1

q
bi =

r + 1
q

+
q− 1

q
bi.

44



4. Further Bounds on the Partial Reconstruction
Thresholds

The last bound is obtained by summing the bounds in (A.22) and (A.23).

2g ≥ n− t + 1 + r + 1
q

+
q− 1

q
(ai + bi) =

n + g + 2
q

+
q− 1

q
(ai + bi)⇔

g ≥ n + 2
2q− 1

+
q− 1

2q− 1
(ai + bi).

The bounds in [7], stating that

g ≥ n− t + 1
q

, g ≥ r + 1
q

, g ≥ BCCX(1)(n, q),

if t ≥ 1 and r ≤ n− 1, are a particular case of this theorem.
In the following example we will consider a scheme attaining the bounds

in Theorem 4.2. We will also note in which cases, for this particular example,
the bounds from Theorem 4.4 are sharp. Similar examples of codes attaining
the bound g ≥ n−t+1

q can be found in [27].

Example
Let vT

1 , vT
2 , . . . , vT

q` be all possible vectors in F`
q, and define the code C1 from the

(`+ 1)× q` generator matrix

G =

[
v1 v2 · · · vq`

1 1 · · · 1

]

where C2 is generated by the last all-one row. Then clearly Iq(S0, Sj) = 1− 1 = 0
by (A.8) for all 1 ≤ j ≤ n, meaning that t ≥ 1. In fact ti = i for all i in this
example. This comes from the fact that the canonical basis vectors and the all zero
vector lie in F`

q. The set of participants corresponding to these vectors is a set with
cardinality `+ 1, which can reconstruct all ` q-bits. Therefore, t` ≤ `, and from this
we conclude ti = i. Hence, we will show that the bounds in Theorem 4.2 are sharp
for this secret sharing scheme, that is

ri =
n

q`−i+1 + 1 =
q`

q`−i+1 + 1 = qi−1 + 1.

We consider a set of participants A knowing i− 1 q-bits, and derive that |A| ≤ qi−1,
which means that qi−1 + 1 participants will know at least i q-bits, and hence ri ≤
qi−1 + 1. Combining this with Theorem 4.2 yields ri = qi−1 + 1.

Thus, assume that A knows i− 1 q-bits and assume for contradiction that |A| >
qi−1. First notice that by (A.8), we have

dim πA(C1) = i− 1 + dim πA(C2) = i

45



Paper A.

On the other hand, we can determine the dimension of πA(C1) in another way by
considering the generator matrix. Let A = {j1, j2, . . . , jk}, where k > qi−1. Denote
by

GA =

[
vj1 vj2 · · · vjk
1 1 · · · 1

]
and

G′A =
[
vj1 vj2 · · · vjk

]
.

The rank of GA equals dim πA(C1). Clearly, rank(G′A) ≤ rank(GA), but since
|A| > qi−1, we obtain rank(G′A) = i. This means that we have i linearly inde-
pendent columns, and without loss of generality we denote these by vj1 , vj2 , . . . , vji .
Hence, all the columns in G′A must be of the form

a1vj1 + a2vj2 + · · ·+ aivji ,

for some ak ∈ Fq. However, since rank(G′A) = rank(GA) one has that ∑i
k=1 ak =

1. Therefore, |A| ≤ qi−1, contradicting the assumption on A.
From this we conclude that ri = qi−1 + 1, showing that the bound in Theorem 4.2

is sharp for this example. The threshold gap in this example can also be determined;
g = r− t = q`−1 + 1− 1 = q`−1. Now considering the bounds in Theorem 4.4 we
show that some of these bounds are attained in this case as well. Since ti = i, we
have that ai = 0 for all i in Theorem 4.4. Thus,

n− t + 1
q

=
q` − 1 + 1

q
= q`−1 = g,

which shows that the inequality in (A.22) is sharp. We consider the inequality in
(A.23) as well, and since bi is non-decreasing we determine b` in order to make the
bound as good as possible.

b` = r− r1 − `+ 1 = q`−1 + 1− 2− `+ 1 = q`−1 − `.

Hence, the bound states

g ≥ r + 1
q

+
q− 1

q
b` =

q`−1 + 2
q

+
q− 1

q

(
q`−1 − `

)
= q`−1 − `+

2 + `

q
.

Note that there is no contradiction with g = q`−1, since the bound does not hold for
` = 1 and q = 2. When ` = 1 we require, in order to use the bound, that r ≤ n− 1,
but n = 21 = 2 and r = 21−1 + 1 = 2 in this case.

For this bound to be sharp ` = 2+`
q , which implies `(q− 1) = 2. Therefore, this

bound is attained in the case where ` = 2 and q = 2. The same would then hold
for the last bound in Theorem 4.4, since this bound is obtained by summing the two
previous bounds. J

46



5. Asymptotic Comparisons

5 Asymptotic Comparisons

In this section we analyse the asymptotic behaviour of the bounds presented
in Theorem 3.2 when the number of players n grows, and the size of the
secret ` grows as a linear function of n.

We assume the setting considered in [16]; let {Σj}∞
j=1 denote an infinite

family of Fq-linear secret sharing schemes with increasing number of partic-

ipants nj and where Σj has secrets in F
`j
q , so that {`j}∞

j=1 is a monotonely
increasing sequence such that

lim
j→∞

`j

nj
= L , for some L ∈ R with 0 < L < 1.

To simplify, we assume that if we denote k1(j), k2(j) the dimensions of the
codes C1 and C2 in any nested code pair representation of {Σj}, then k1(j)

nj

converges to some R1 ∈ R and k2(j)
nj

converges to some R2 ∈ R. Clearly,

L = R1 − R2 since `j = k1(j)− k2(j).
Denote the privacy threshold and reconstruction threshold of Σj by t(Σj)

and r(Σj) respectively. Furthermore, we define

Ω(1) = lim inf
j→∞

t(Σj)

nj
and Ω(2) = lim sup

j→∞

r(Σj)

nj
.

Additionally, we denote the threshold gap of Σj by g(Σj) and define

Ω(3) = lim sup
j→∞

g(Σj)

nj
. (A.24)

Note that Ω(3) does not necessarily equal Ω(2) −Ω(1). Indeed, in general we
have

Ω(3) = lim sup
j→∞

(
r(Σj)

nj
−

t(Σj)

nj

)

≤ lim sup
j→∞

r(Σj)

nj
− lim inf

j→∞

t(Σj)

nj
= Ω(2) −Ω(1).

(A.25)

but equality may not hold as the example illustrated in Figure A.1 shows.
The lower dashed line illustrates Ω(1) and the top dashed line Ω(2). As we
can see in the figure, the difference between Ω(2) and Ω(1) is larger than the
actual threshold gap, which is the black vertical dashed line.

We now present the asymptotic version of the bound g ≥ BGr
(m)(n, q, `)

together with bounds on Ω(1) and Ω(2).

47



Paper A.

Fig. A.1: Illustration of Ω(3). The solid lines illustrate
t(Σj)

nj
and

r(Σj)

nj
, both as a function of j, and

the black vertical dashed line illustrates
g(Σj)

nj
for a specific j.

Theorem 5.1. Let {Σj} be a family of secret sharing schemes over Fq as above. We
have

Ω(1) ≤ q− 1
q

R2,

Ω(2) ≥ 1
q
+

q− 1
q

R1,

Ω(3) ≥ 1
q
+

q− 1
q

L. (A.26)

Proof. We have by Theorem 3.2 that

t(Σj)

nj
≤ qmj+1 − qmj

qmj+1 − 1

(
k2(j)

nj
+

mj

nj
+

1
nj

)
− 1

nj
,

r(Σj)

nj
≥ qmj − 1

qmj+1 − 1
+

qmj+1 − qmj

qmj+1 − 1

(
k1(j)

nj
−

mj

nj
− 1

nj

)
+

1
nj

,

g(Σj)

nj
≥ qmj − 1

qmj+1 − 1

(
1 +

2
nj

)
+

qmj+1 − qmj

qmj+1 − 1

(
`j

nj
− 2

mj

nj

) (A.27)

where mj is any choice of m for Σj in Theorem 3.2, i.e. mj ∈ {0, . . . , `j− 1}.
In particular we can choose mj as a function of nj such that mj = o(nj) but

48



5. Asymptotic Comparisons

Fig. A.2: Comparison of asymptotic bounds on the threshold gap for q = 2.

still limj→∞ mj = ∞, for example mj = min{`j − 1,
⌊
log nj

⌋
} (where L > 0

implies that for large enough j, we simply have mj =
⌊
log nj

⌋
).

Letting j tend to infinity in (A.27) with such selection of mj, we obtain the
claimed result.

It is not difficult to see that the bound

Ω(3) ≥ 1
q
+

q− 1
q

L

that we just derived is strictly tighter than the asymptotic versions of the
bounds g ≥ `, BCCX(1)(n, q), and BCCX(2)(n, q, `), which are respectively

Ω(3) ≥ L, Ω(3) ≥ 1
2q− 1

, Ω(3) ≥ 1
2q + 1

+
2q

2q + 1
L,

for any q and any 0 < L < 1. We show these four bounds on Ω(3) in Figure
A.2 for the case q = 2.

In the rest of this section, we collect known results on upper bounds for
Ω(3), and compare them with the lower bounds we have obtained.

We will consider algebraic geometric codes and random codes. As far
as the authors know, secret sharing schemes from algebraic geometric codes
yield the smallest values of Ω(3) when the finite field Fq is sufficiently large,
while random codes give smaller Ω(3) for small q.

An algebraic geometric evaluation code is defined from an algebraic func-
tion field F, a divisor G of F (which determines a space of functions to be

49



Paper A.

evaluated) and a set of rational places in F (as evaluation points), the lat-
ter usually represented by a divisor D. We remit the reader to [29] for de-
tails. Secret sharing schemes defined from algebraic geometric codes where
first considered in [8]. We here use the construction from [10], defined by
a nested code pair where both codes are algebraic geometric codes defined
using the same function field F and the set of all rational places as evaluation
points, but different divisors G1, G2. Such secret sharing schemes then satisfy
t ≥ k2 − G and r ≤ k1 + G, where G is the genus of the function field, and
k1, k2 are as always the dimensions of the two linear codes. Moreover, the
length of these codes (and hence the number of shares n) is the number of
rational places of the function field.

Consider now an optimal tower of function fields {Fj}∞
j=1, i.e. limj→∞

Nj
Gj

=

A(q) where Nj,Gj are respectively the number of rational places and genus
in Fj and A(q) is the so-called Ihara’s constant and Gj is the genus. Apply-
ing the construction described above gives a family of secret sharing schemes
such that

Ω(1) ≥ R2 −
1

A(q)
,

Ω(2) ≤ R1 +
1

A(q)
,

see [16]. By (A.25) this implies

Ω(3) ≤ L +
2

A(q)
. (A.28)

While Ihara’s constant A(q) has not been determined for every q, we sum
up some known facts next. First A(q) > 0 for all q, and in fact A(q) ≥ c log(q)
for some constant c, see for instance [24]. On the other hand, A(q) ≤ √q− 1,
see [30]. If q is a perfect square, it was shown in [18] that A(q) =

√
q − 1.

Furthermore, Garcia and Stichtenoth gave a explicit construction [15] of an
optimal tower of function fields in this case.

Consequently, for small values of q, the bound in (A.28) is trivial since
A(q) ≤ 2. For large enough q, however, we have A(q) > 2 (for example for q
square with q ≥ 16).

We observe the following, in relation with the lower bounds: the differ-
ence between the upper bound (A.28) and the lower bound from Theorem
5.1 is

2
A(q)

− 1
q
(1− L).

Note that the term 1
q (1− L) is precisely what the bound in Theorem 5.1 has

gained with respect to the lower bound Ω(3) ≥ L. However this factor is

50



5. Asymptotic Comparisons

overshadowed by the considerably larger factor 2/A(q). It is an interesting
open question to bring these bounds together, by either proving stronger
lower bounds or improving the known constructions.

For small finite fields, the bounds in (A.28) are trivial and the best upper
bounds are achieved by inifinite families of secret sharing schemes based
on random codes. We follow the results from [10]. The following result is
a consequence of the fact that random codes are on the Gilbert-Varshamov
bound.

Proposition 5.2. Let C be a random variable with the uniform distribution taking
values in the set of all [n, k] linear codes over Fq, and let 0 < d, d⊥ < (1− 1

q )n be
integers. For a realization of C = C we then have

P(dmin(C) < d) ≤ qk+n(Hq(
d
n )−1)

P(dmin(C⊥) < d⊥) ≤ qnHq(
d⊥
n )−k,

where Hq(x) = x logq(q− 1)− x logq(x)− (1− x) logq(1− x) is the q-ary en-
tropy function.

The q-ary entropy function Hq is strictly increasing and therefore injective
in the interval [0, 1− 1

q ] (we define Hq(0) = 0 as usual) and there its image is

the interval [0, 1]. We can therefore define the inverse H−1
q : [0, 1]→ [0, 1− 1

q ].

With this definition in mind, we can choose d
n = H−1

q (1− k
n − ε′) and d⊥

n =

H−1
q ( k

n − ε′) for some ε′ > 0 and both probabilities above become lower than

or equal to q−ε′n.
A linear code C1 can be chosen uniformly at random from all [n, k1] linear

codes by rejection sampling of the elements bi in its basis. The subcode
C2 ( C1 generated by the last k2 basis elements is then also uniformly random
among all [n, k2] linear codes. Combining Proposition 5.2 and the comment
below with the inequalities in (A.11), we obtain

P
(

r
n
< 1− H−1

q

(
1− k1

n
− ε′

)
+

1
n

)
≥ 1− q−ε′n

P
(

t
n
> H−1

q

(
k2

n
− ε′

)
− 1

n

)
≥ 1− q−ε′n,

(A.29)

For any fixed ε′ > 0 the probabilities in (A.29) are larger than 0, and hence
by the probabilistic method we conclude that there exists an infinite family
of secret sharing schemes with

Ω(3) ≤ 1− H−1
q
(
1− R1 − ε′

)
− H−1

q
(

R2 − ε′
)

.

51



Paper A.

Fig. A.3: Comparison of asymptotic lower and upper bounds (when R1 = 1) on the threshold
gap for q = 2.

For a fixed L = R1 − R2, the smallest value of the right-hand side is attained
by setting R1 close to 1 (and hence R2 close to 1− L) or, symmetrically, setting
R2 close to 0 (and R1 = L). In that case, the inequality becomes

Ω(3) ≤ 1− H−1
q (1− L) + ε,

for any ε > 0.
In Figure A.3, we compare this upper bound, in the case q = 2, with our

lower bound from equation (A.26).
At last, we make the following remark on the asymptotic behaviors of the

partial privacy and reconstruction thresholds, which is one of the main focus
in the work [16]. There the authors define

Λ(1)(δ1) = sup
{

lim inf
j→∞

tm1(j)

nj

∣∣∣∣
{m1(j)}∞

j=1, 1 ≤ m1(j) ≤ `j, lim
j→∞

m1(j)
nj

= δ1L
}

,

Λ(2)(δ2) = inf
{

lim sup
j→∞

r`j−m2(j)+1

nj

∣∣∣∣
{m2(j)}∞

j=1, 1 ≤ m2(j) ≤ `j, lim
j→∞

m2(j)
nj

= δ2L
}

.

That is, asymptotically, no fraction less than Λ(1)(δ1) of the participants holds
more than a fraction of δ1 of the secret. Similarly, Λ(2)(δ2) ensures that

52



A. Linear Secret Sharing

asymptotically a fraction of Λ(2)(δ2) of the participants will be able to re-
construct a fraction of 1− δ2 of the secret.

In [16] the gap between the limitations on Λ(1)(δ1) and Λ(2)(δ2) and what
is possible to achieve is almost closed. The limitations considered there are
derived from (A.12), i.e.,

Λ(1)(δ1) ≤ R2 + δ1L,

Λ(2)(δ2) ≥ R1 − δ2L.
(A.30)

We can obtain the same bounds from Theorem 3.2 by setting m = 0. However,
contrary to what happens in the proof of Theorem 5.1, choosing m as a small
fraction of ` will not improve this bound in this case.

A Linear Secret Sharing

Proposition A.1. A secret sharing scheme based on a nested code pair C2 ⊆ C1 is
a linear secret sharing scheme.

Proof. Clearly, Si is a Fq-linear subspace. So we need to show that S is uni-
formly distributed on some subspace V ⊆ S0 ×S1 × · · · × Sn. Indeed, this is
the case for

V = {(s, c) : s ∈ F`
q and c ∈ (s1b1 + s2b2 + · · ·+ s`b`) + C2}.

First of all it is a subspace, so we show that S is uniformly distributed on V.

P(S = (s, c1, c2, . . . , cn)) = P(SI∗ = (c1, c2, . . . , cn)|S0 = s)P(S0 = s)

=
1

qk2

1
q`

for S in V, showing that this construction resulting in a linear secret sharing
scheme.

Proposition A.2. All linear secret sharing schemes can be represented by a nested
code pair C2 ( C1.

Proof. Let a linear secret sharing scheme be given by S. Let V be the subspace
such that S is uniformly distributed on V, and define

C2 = {c : (0, c) ∈ V where 0 ∈ S0 and c ∈ S1 × S2 × · · · Sn}
C1 = {c : (s, c) ∈ V where s ∈ S0 and c ∈ S1 × S2 × · · · Sn}

Clearly, C2 ⊆ C1 and both are linear subspaces and therefore linear codes.
Denote by k2 the dimension of C2 and k1 the dimension of C1. Since both S

53



References

and S0 are uniformly distributed we also obtain that S|S0 = 0 is uniformly
distributed on C2 with probability function

pS(S|S0) =
pS(S)

pS0(S0)
=

1
qk1

1
q`

=
1

qk1−`
.

Hence, k2 = k1 − `. Because all the shares uniquely determine the secret in
a secret sharing scheme, there is a one-to-one correspondence between C1
and V, showing that for any possible outcome of S there is a corresponding
element in C1. Therefore, we can represent the scheme using the nested codes
C2 ( C1.

References

[1] A. Beimel, M. Burmester, Y. Desmedt, and E. Kushilevitz, “Computing functions
of a shared secret,” SIAM J. Discrete Math., vol. 13, no. 3, pp. 324–345, 2000.
[Online]. Available: http://dx.doi.org/10.1137/S0895480195288819

[2] G. R. Blakley, “Safeguarding cryptographic keys,” Managing Requirements Knowl-
edge, International Workshop on, vol. 00, p. 313, 1979.

[3] G. R. Blakley and C. Meadows, “Security of ramp schemes,” Advances in Cryptol-
ogy: Proceedings of CRYPTO 84, pp. 242–268, 1985.

[4] C. Blundo, A. D. Santis, and U. Vaccaro, “Efficient sharing of many secrets,”
Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer
Science, pp. 692–703, 1993. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646509.694823

[5] C. Blundo, A. D. Santis, and U. Vaccaro, “On secret sharing schemes,”
Inf. Process. Lett., vol. 65, no. 1, pp. 25–32, 1998. [Online]. Available:
https://doi.org/10.1016/S0020-0190(97)00194-4

[6] A. Bogdanov, S. Guo, and I. Komargodski, “Threshold secret sharing requires a
linear size alphabet,” Theory of Cryptography, pp. 471–484, 2016.

[7] I. Cascudo, R. Cramer, and C. Xing, “Bounds on the threshold gap in secret
sharing and its applications,” IEEE Transactions on Information Theory, vol. 59,
no. 9, pp. 5600–5612, September 2013.

[8] H. Chen and R. Cramer, “Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields,” Advances in Cryptology - CRYPTO
2006, pp. 521–536, August 2006.

[9] H. Chen, R. Cramer, R. de Haan, and I. C. Pueyo, “Strongly multiplicative ramp
schemes from high degree rational points on curves,” Advances in Cryptology –
EUROCRYPT 2008, pp. 451–470, 2008.

[10] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan, “Se-
cure computation from random error correcting codes,” Advances in Cryptology -
EUROCRYPT 2007, pp. 291–310, 2007.

54

http://dx.doi.org/10.1137/S0895480195288819
http://dl.acm.org/citation.cfm?id=646509.694823
http://dl.acm.org/citation.cfm?id=646509.694823
https://doi.org/10.1016/S0020-0190(97)00194-4


References

[11] R. Cramer, I. B. Damgård, N. Döttling, S. Fehr, and G. Spini, “Linear secret
sharing schemes from error correcting codes and universal hash functions,”
Advances in cryptology—EUROCRYPT 2015. Part II, vol. 9057, pp. 313–336, 2015.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-46803-6_11

[12] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

[13] Y. Dodis, A. Sahai, and A. Smith, “On perfect and adaptive security in exposure-
resilient cryptography,” in Advances in Cryptology — EUROCRYPT 2001, B. Pfitz-
mann, Ed. Springer Berlin Heidelberg, 2001, pp. 301–324.

[14] G. D. Forney, “Dimension/length profiles and trellis complexity of linear
block codes,” IEEE International Symposium on Information Theory, vol. 40,
November 1994. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=340452

[15] A. Garcia and H. Stichtenoth, “On the asymptotic behaviour of some towers of
function fields over finite fields,” Journal of Number Theory, vol. 61, no. 2, pp.
248–273, 1996.

[16] O. Geil, S. Martin, U. Martínez-Peñas, R. Matsumoto, and D. Ruano, “On asymp-
totically good ramp secret sharing schemes,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E100.A, no. 12, pp. 2699–
2708, 2017.

[17] O. Geil, S. Martin, R. Matsumoto, D. Ruano, and Y. Luo, “Relative generalized
hamming weights of one-point algebraic geometric codes,” IEEE Transactions on
Information Theory, vol. 60, no. 10, pp. 5938–5949, October 2014.

[18] Y. Ihara, “Some remarks on the number of rational points of algebraic curves
over finite fields,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 28, no. 3, pp. 721–724
(1982), 1981.

[19] W.-A. Jackson and K. M. Martin, “A combinatorial interpretation of ramp
schemes,” Australasian J. Combinatorics, vol. 14, pp. 51–60, 1996.

[20] J. Kilian and N. Nisan, “Unpublished result,” 1991.

[21] J. Kurihara, T. Uyematsu, and R. Matsumoto, “Secret sharing schemes based on
linear codes can be precisely characterized by the relative generalized hamming
weight,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 95, no. 11, pp. 2067–2075, 2012.

[22] Y. Luo, C. Mitrpant, A. J. H. Vinck, and K. Chen, “Some new characters on the
wire-tap channel of type ii,” IEEE Transactions on Information Theory, vol. 51, no. 3,
pp. 1222–1229, March 2005.

[23] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. North-
Holland Publishing Company, 1977, vol. 16.

[24] H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields: Theory
and Applications. New York, NY, USA: Cambridge University Press, 2001.

[25] W. Ogata and K. Kurosawa, “Some basic properties of general nonperfect secret
sharing schemes,” j-jucs, vol. 4, no. 8, pp. 690–704, August 1998. [Online].
Available: http://www.jucs.org/jucs_4_8/some_basic_properties_of

55

http://dx.doi.org/10.1007/978-3-662-46803-6_11
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=340452
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=340452
http://www.jucs.org/jucs_4_8/some_basic_properties_of


References

[26] W. Ogata, K. Kurosawa, and S. Tsujii, “Nonperfect secret sharing schemes,” in
Advances in Cryptology — AUSCRYPT ’92, J. Seberry and Y. Zheng, Eds. Springer
Berlin Heidelberg, 1992, pp. 56–66.

[27] M. B. Paterson and D. R. Stinson, “A simple combinatorial treatment
of constructions and threshold gaps of ramp schemes,” Cryptography
Commun., vol. 5, no. 4, pp. 229–240, December 2013. [Online]. Available:
http://dx.doi.org/10.1007/s12095-013-0082-1

[28] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
November 1979. [Online]. Available: http://doi.acm.org/10.1145/359168.359176

[29] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd ed., ser. Graduate Texts in
Mathematics. Springer, 2009.

[30] S. G. Vlèduts and V. G. Drinfeld, “The number of points of an algebraic curve,”
Funktsional. Anal. i Prilozhen., vol. 17, no. 1, pp. 68–69, 1983.

[31] Z. Zhuang, Y. Luo, A. J. H. Vinck, and B. Dai, “Some new bounds on relative
generalized hamming weight,” 2011 IEEE 13th International Conference on Com-
munication Technology, pp. 971–974, September 2011.

56

http://dx.doi.org/10.1007/s12095-013-0082-1
http://doi.acm.org/10.1145/359168.359176


Paper B

Actively Secure OT-Extension from q-ary Linear
Codes

Ignacio Cascudo, René Bødker Christensen, and Jaron Skovsted
Gundersen

The paper was presented at the 11th Conference on Security and Cryptography
for Networks Conference 2018 and is published in

Lecture Notes in Computer Science Vol. 11035, pp. 333–348, 2018.



© Springer Nature Switzerland AG 2018
The layout has been revised.



1. Introduction

Abstract

We consider recent constructions of 1-out-of-N OT-extension from Kolesnikov and
Kumaresan (CRYPTO 2013) and from Orrú et al. (CT-RSA 2017), based on binary
error-correcting codes. We generalize their constructions such that q-ary codes can
be used for any prime power q. This allows to reduce the number of base 1-out-of-2
OT’s that are needed to instantiate the construction for any value of N, at the cost
of increasing the complexity of the remaining part of the protocol. We analyze these
trade-offs in some concrete cases.

1 Introduction

A K-out-of-N oblivious transfer, or (N
K)-OT, is a cryptographic primitive that

allows a sender to input N messages and a receiver to learn exactly K of these
with neither the receiver revealing which messages he has chosen to learn nor
the sender revealing the other N − K input messages. This is a fundamental
cryptographic primitive in the area of secure multiparty computation, and in
fact [9] showed that any protocol for secure multiparty computation can be
implemented if the OT functionality is available. However, the results in [6]
indicate that OT is very likely to require a public key cryptosystem, and there-
fore implementing OT is relatively expensive. Unfortunately, well-known
protocols such as Yao’s garbled circuits [13] and the GMW-compiler [5] rely
on using a large number of independent instances of OT. It is therefore of
interest to reduce the number of OT’s used in a protocol in an attempt to
reduce the overall cost. This can be done using what is called OT-extensions,
where a large number of OT’s are simulated by a much smaller number of
base OT’s together with the use of cheaper symmetric crypto primitives, such
as pseudorandom generators.

Beaver showed in [1] that OT-extension is indeed possible, but it was
not before 2003 that an efficient (2

1)-OT-extension protocol was presented by
Ishai et al. in [7]. In addition, while this protocol had security against passive
adversaries, subsequent has work showed that active security can be achieved
at a small additional cost [8].

In [10], Kolesnikov and Kumaresan noticed that Ishai et al. were in
essence relying on the fact that the receiver encodes its input as a code-
word in a repetition code, and therefore one can generalize their idea by
using other codes, such as the Walsh-Hadamard code, which not only obtains
efficiency improvements for (2

1)-OT-extension, but also allows to generalize
the protocol into passively secure (N

1 )-OT-extension. In such an extension
protocol the base OT’s are (2

1)-OT’s, but the output consist of a number of
(N

1 )-OT’s. In more recent work, Orrù et al. [12] transformed the protocol

59



Paper B.

by [10] into an actively secure (N
1 )-OT-extension protocol by adding a “con-

sistency check” which is basically a zero-knowledge proof that the receiver
is indeed using codewords of the designated code to encode his selections.
As shown in [12], 1-out-of-N oblivious transfer has a direct application to the
problem of private set inclusion and, via this connection, to the problem of
private set intersection. In fact this application requires only a randomized
version of (N

1 )-OT, where the sender does not have input messages, but these
are generated by the functionality and can be accessed on demand by the
sender. The structure of the aforementioned OT extension protocols is espe-
cially well suited for this application, since such a randomized functionality
is essentially implemented by the same protocol without the last step, where
the sender would send its masked inputs to the receiver.

The aforementioned papers on (N
1 )-OT-extension relied on the use of bi-

nary linear codes, and the concrete parameters of the resulting construction,
the number of OT’s and the value of N, are given respectively by the length
and size of the binary linear code being used. Furthermore, the construc-
tion requires that the minimum distance of the code is at least the desired
security parameter. Well-known bounds on linear codes, such as the Plotkin,
Griesmer or Hamming bounds [11], provide lower bounds for the length of
a code with certain size and minimum distance, and therefore these imply
lower bounds on the number of base OT’s for the OT-extension protocol. In
fact, even if we omit the requirement on the minimum distance, we can see
that at least log2 N base OT’s are needed for those extension protocols.

In this paper, we discuss the use of q-ary linear codes, where q can be any
power of a prime, as a way of reducing the number of required base OT’s in
the 1-out-of-N OT-extension constructions mentioned above. We show that
one can easily modify the protocol in [12] to work with q-ary codes, rather
than just binary. Given that all parameters of the code still have the same sig-
nificance for the construction and, in particular, N is still the size (the number
of codewords) of the code, we obtain a reduction in the number of base OT’s
required: indeed, for given fixed values N and d, the minimal length among
all q-ary linear codes of size N and minimum distance d becomes smaller
as q increases. In particular one can show cases where the lower bound of
log2 N base OT’s can be improved even if we have relatively large minimum
distance.

This improvement, however, comes at a cost: since we need to commu-
nicate elements of a larger field, the communication complexity of the OT-
extension protocol (not counting the complexity of the base OT’s) increases.
This increase is compensated to some extent by the fact that this communi-
cation complexity also depends on the number of base OT’s.

The concrete tradeoffs obtained by the use of q-ary codes depend of course
on N and the security level. We show several examples comparing explicit
results listed in [12] and the q-ary alternative achieving the same (or similar)

60



1. Introduction

N and security level. For example, for the largest value of N considered
in [12] we show that by using a linear code over the finite field of 8 elements,
we need less than half of the base OT’s, while the communication complexity
increases only by 33%.

When q is a power of two, we can show an improvement on the complex-
ity of the consistency check that we use in the case of a general q. Namely, the
consistency check in [12] works by asking the receiver, who has previously
used the base OT’s to commit to both the codewords encoding his selections
and some additional random codewords, to open sums of random subsets
of these codewords. The natural way of generalizing this to a general prime
power q is to ask the receiver to open random linear combinations over Fq
of the codewords. However, in case q is a power of two, we show that it is
enough to open random linear combinations over F2, i.e., sums, just as in [12]
(naturally, this extends to the case where q is a power of p, where it would be
enough to open combinations over Fp). The advantage of this generalization
is of course that the verifier needs to send less information to describe the lin-
ear combinations that it requests to open, and in addition less computation
is required from the committer to open these combinations.

We give a presentation of the protocol and its security proof that is in-
spired by a recent work on homomorphic universally composable secure
commitments [2]. As noted in [12], there is a strong similarity between
the OT-extension protocol constructions in the aforementioned works and
several protocol constructions in a line of work on homomorphic UC com-
mitments [2–4]. In the first part of the OT-extension protocol in [10], the
base OT’s are used for the receiver to eventually create an additive 1-out-of-2
sharing of each coordinate in the codewords encoding his selection, so that
the sender learns exactly one share of each. This is essentially the same as
the committing phase of the passively secure homomorphic UC commitment
proposed in [3] (one can say that the receiver from the OT-extension proto-
col has actually committed to his inputs at that point). In order to achieve
active security, a consistency check was added in [4], which is basically the
same as the one introduced in [12] in the context of OT-extension. Finally, [2]
generalized this consistency check by proving that rather than requesting the
opening of uniformly random linear combinations of codewords, these com-
binations can be determined by a hash function randomly selected from an
almost universal family of hash functions. This leads to asymptotical com-
plexity gains, both in terms of communication and computation (since one
can use linear time encodable almost universal hash functions which can in
addition be described by short seeds), but in our case it also allows us to give
a unified proof of security in both the case where the linear combinations for
the consistency check are taken over Fq and when they are taken over the
subfield.

The work is structured as follows. After the preliminaries in Section 2,

61



Paper B.

we present our OT-extension protocol and prove its security in Section 3. In
Section 4, we show that the communication cost can be reduced by perform-
ing the consistency checks over a subfield, and finally Section 5 contains a
comparison with previous protocols.

2 Preliminaries

This section contains the basic definitions needed to present and analyse the
protocol for OT-extension.

2.1 Notation

For a bitstring b ∈ {0, 1}n, we will use the notation ∆b to denote the diagonal
matrix in Fn×n

q with entries from the vector b, i.e. the (i, i)-entry of ∆b is bi.
Note that for vectors b, c ∈ Fn

q , the product c∆b equals the componentwise
product of b and c.

2.2 Linear Codes

Since our protocol depends heavily on linear codes, we recall here the basics
of this concept. First, a (not necessarily linear) code of length n over an
alphabet Q is a subset C ⊆ Qn. An Fq-linear code C is an Fq-linear subspace
of Fn

q . The dimension k of this subspace is called the dimension of the code,
and therefore C is isomorphic to Fk

q. A linear map Fk
q → C can be described

by a matrix G ∈ Fk×n
q , which is called a generator matrix for C. Note that G

acts on the right, so w ∈ Fk
q is mapped to wG ∈ C by the aforementioned

linear map.
For x ∈ Fn

q we define the support of x to be the set indices where x
is nonzero, and we denote this set by supp(x). Using this definition we can
turn Fn

q into a metric space. This is done by introducing the Hamming weight
and distance. The Hamming weight of x is defined as wH(x) = |supp(x)|,
and this induces the Hamming distance dH(x, y) = wH(x− y), where y ∈ Fn

q
as well. The minimum distance d of a linear code C is defined to be

d = min{dH(c, c′) | c, c′ ∈ C, c 6= c′},

and by the linearity of the code it can be shown that in fact

d = min{wH(c) | c ∈ C \ {0}}.

Since n, k, and d are fixed for a given linear code C over Fq, we often refer to
it as an [n, k, d]q-code.

62



2. Preliminaries

It may be shown that if x ∈ Fn
q is given by c + e for some codeword c ∈ C

and an error vector e with wH(e) < d, it is possible to recover c from x and
supp(e). This process is called erasure decoding.

Another way to see erasure decoding is by considering punctured codes.
For a set of indices E ⊆ {1, 2, . . . , n} we denote the projection of x ∈ Fn

q
onto the indices not in E by πE(x). For a code C and a set of indices E, we
call πE(C) a punctured code. Now consider the case where |E| < d, which
implies the existence of a bijection between C and πE(C). This is the fact
exploited in erasure decoding, where E is the set of indices where the errors
occur.

As in [2], we will use interleaved codes. If C ⊆ Fn
q is a linear code, C�s

denotes the set of s× n-matrices with entries in Fq whose rows are codewords
of C. We can also see such an s× n-matrix as a vector of length n with entries
in the alphabet Fs

q. Then we can see C�s as a non-linear1 code of length n
over the alphabet Fs

q.
Since the alphabet Fs

q contains a zero element (the all zero vector), we can
define the notions of Hamming weight and Hamming distance in the space
(Fs

q)
n. We can then speak about the minimum distance of C�s and even

though C�s is not a linear code, it is easy to see that the minimum distance of
C�s coincides with its minimum nonzero weight, and also with the minimum
distance of C.

2.3 Cryptographic Definitions

Consider a sender S and a receiver R participating in a cryptographic proto-
col. The sender holds vj,i ∈ {0, 1}κ for j = 1, 2, . . . , N and i = 1, 2, . . . , m. For
each i the receiver holds a choice integer wi ∈ [1, N]. We let F κ,m

N-OT denote the
ideal functionality that, on inputs vj,i from S and wi from R, outputs vwi ,i for
i = 1, 2, . . . , m to the receiver R. For ease of notation, we will let the sender
input N matrices of size κ×m with entries in {0, 1}, and the receiver a vector
of length m, with entries in [1, N]. Hence, for the i’th OT the sender’s inputs
are the i’th column of each matrix, and the receiver’s input is the i’th entry
of the vector.

The protocol presented in Section 3 relies on two functions with certain
security assumptions, the foundations of which we define in the following.
For the first function let X be a probability distribution. The min-entropy of
X is given by

H∞(X ) = − log(max
x

Pr[X = x]),

where X is any random variable following the distribution X . If H∞(X ) = t
we say that X is t-min-entropy. This is used in the following definition.

1The code is linear over Fq, but not the alphabet Fs
q.

63



Paper B.

Definition 2.1 (t-min-entropy strongly C-correlation robustness). Consider a
linear code C ⊆ Fn

q , and let X be a distribution on {0, 1}n with min-entropy t. Fix
{ti ∈ Fn

q | i = 1, 2, . . . , m} from some probability distribution and let κ be a positive
integer. An efficiently computable function H : Fn

q → {0, 1}κ is said to be t-min-
entropy strongly C-correlation robust if

{H(ti + c∆b) | i = 1, 2, . . . , m, c ∈ C}

is computationally indistinguishable from the uniform distribution on {0, 1}κm|C|

when b is sampled according to the distribution X .

The second type of function we need is a pseudorandom generator.

Definition 2.2. A pseudorandom generator is a function PRG : {0, 1}κ → Fm
q such

that the output of PRG is computationally indistinguishable from the uniform distri-
bution on Fm

q .

If A = [a1, a2, . . . , an] is a κ × n-matrix with entries in {0, 1} for some integer
n, we use the notation PRG(A) = [PRG(a1),PRG(a2), . . . ,PRG(an)] where we
see PRG(ai) as columns of an m× n matrix.

In addition to the usual concept of advantage, one can also consider the
conditional advantage as it is done in [12]. Let A be an event such that there
exist x0 and x1 in the sample space of the two random variables X0 and X1,
respectively, where Pr[Xi = xi | A] > 0 for i = 0, 1. Then we define the
conditional advantage of a distinguisher D given A as

Adv(D|A) =
∣∣∣Pr[D(X0) = 0|A]− Pr[D(X1) = 0|A]

∣∣∣.
We end this section by presenting the following lemma, which allows us to
bound the advantage by considering disjoint cases. The proof follows by the
law of total probability and the triangle inequality.

Lemma 2.3. Let A1, A2, . . . , An be events as above. Additionally, assume that the
events are disjoint. If ∑n

i=1 Pr[Ai] = 1, then

Adv(D) ≤
n

∑
i=1

Adv(D | Ai)Pr[Ai]

for any distinguisher D.

3 Actively Secure OT-Extension

In this section we describe and analyse a generalization of the protocol de-
scribed in [12] which uses OT-extensions to implement the functionality F κ,m

N-OT
by using only n ≤ m base OT’s, which are 1-out-of-2. Our OT-extension pro-
tocol is also using 1-out-of-2 base OT’s, but works with q-ary linear codes
instead of binary. Our main result is summarized in the following theorem.

64



3. Actively Secure OT-Extension

Theorem 3.1. Given security parameters κ and s, let C be an [n, k, d]q linear code
with k = logq(N) and d ≥ max{κ, s}. Additionally, let PRG : {0, 1}κ → Fm+2s

q
be a pseudorandom generator and let H : Fn

q → {0, 1}κ be a t-min-entropy strongly
C-correlation robust function for all t ∈ {n− d + 1, n− d + 2, . . . , n}. If we have
access to C, the functions PRG and H, and the functionality F κ,n

2-OT, then the protocol
in Figure B.1 on page 66 implements the functionality F κ,m

N-OT.
The protocol is computationally secure against an actively corrupt adversary.

3.1 The Protocol

We start by noticing that in our protocol R has inputs wi ∈ Fk
q rather than

choice integers wi ∈ [1, N]. However, the number of elements in Fk
q is qk = N,

and hence wi can for instance be the q-ary representation of wi. In this way
we have a bijection between selection integers and input vectors.

Our protocol is, like the protocol in [12], very similar to the original pro-
tocol in [7]. The idea in this protocol is that we first do OT’s with the roles of
the participants interchanged such that the sender learns some randomness
chosen by the receiver. Afterwards, R encodes his choice vectors using the
linear code C and hides the value with a one-time pad. He sends these to S,
who will combine this information with the outputs of the OT functionality
to obtain a set of vectors, only m of which R can compute; namely the ones
corresponding to his input vectors. When S applies a t-min-entropy strongly
C-correlation robust function H to the set of vectors, he can use the outputs
as one-time pads of his input strings. Like in [12] the protocol contains a con-
sistency check to ensure that R acts honestly, or otherwise he will get caught
with overwhelming probability. The full protocol is presented in Figure B.1
on page 66.

In order to argue that the protocol is correct, we see that for each i,
the sender S computes and sends the values yw,i for all w ∈ Fk

q. Since
k = logq(N), this yields N strings for each i ∈ {1, 2, . . . , m}. The receiver
R obtains one of these because

H(qi −wiG∆b) = H(qi − ci∆b) = H(ti).

Furthermore, if both S and R act honestly, the consistency checks in phase 3
will always pass. This follows from the observation that

T̃ + W̃G∆b = M(T0 + C∆b) = MQ.

Hence, we note that if only passive security is needed in Protocol 1, we can
omit phase 3 and set s = 0. The aforementioned steps are included to ensure

1In Section 4, we show if the protocol relies on a code over Fpr , it is enough to choose
M′ ∈ F2s×m

p .

65



Paper B.

Protocol 1: OT-Extension

1. Initialization phase

(a) S chooses uniformly at random b ∈ {0, 1}n.

(b) R generates uniformly at random two seed matrices N0, N1 ∈
{0, 1}κ×n and defines the matrices Ti = PRG(Ni) ∈ F

(m+2s)×n
q for

i = 0, 1.

(c) The participants call the functionality F κ,n
2-OT, where S acts as

the receiver with input b, and R acts as the sender with inputs
(N0, N1). S receives N = N0 + (N1− N0)∆b, and by using PRG, he
can compute T = T0 + (T1 − T0)∆b.

2. Encoding phase

(a) Let W ′ ∈ Fk×m
q be the matrix which has wi as its columns. R

generates a uniformly random matrix W ′′ ∈ Fk×2s
q , and defines the

(m + 2s)× k-matrix W = [W ′ |W ′′]T .

(b) R sets C = WG, and sends U = C + T0 − T1.

(c) S computes Q = T + U∆b. This implies that Q = T0 + C∆b.

3. Consistency check

(a) S samples a uniformly random matrix M′ ∈ F2s×m
q and sends this

to R.2 They both define M = [M′ | I2s].

(b) R computes the 2s× n-matrix T̃ = MT0 and the 2s× k-matrix W̃ =
MW and sends these matrices to S.

(c) S verifies that MQ = T̃ + W̃G∆b. If this fails, S aborts the protocol.

4. Output phase

(a) Denote by qi and ti, the i’th rows of Q and T0, respectively. For
i = 1, 2, . . . , m and for all w ∈ Fk

q, S computes yw,i = vw,i ⊕H(qi −
wG∆b) and sends these to R. For i = 1, 2, . . . , m, R can recover
vwi ,i = ywi ,i ⊕H(ti).

Fig. B.1: This protocol implements the functionality F κ,m
N-OT having access to F κ,n

2-OT. The security
of the protocol is controlled by the security parameters κ and s. The sender S and the receiver
R have agreed on a linear code C ⊆ Fn

q with generator matrix G of dimension k = logq(N) and
minimum distance d ≥ max{κ, s}. The protocol uses a pseudorandom generator PRG : {0, 1}κ →
Fm+2s

q and a function H : Fn
q → {0, 1}κ , which is t-min-entropy strongly C-correlation robust for

all t ∈ {n− d + 1, n− d + 2, . . . , n}. R has m inputs w1, w2, . . . , wm ∈ Fk
q, which act as selection

integers. S has inputs vw,i ∈ {0, 1}κ , indexed by i ∈ {1, 2, . . . , m} and w ∈ Fk
q.

66



3. Actively Secure OT-Extension

that the receiver uses codewords in the matrix C. What a malicious receiver
might gain by choosing rows which are not codewords is explained in [7, Sec.
4].

3.2 Proofs of Security

In this section we give formal proofs for security. The proof of security against
a malicious sender works more or less the same as the proof in [12] but in a
different notation. For completeness, we have included this proof. However,
we present the proof against a malicious receiver in another way, where the
structure, some strategies, and some arguments differ from the original proof.

Theorem 3.2. The Protocol in Figure B.1 is computationally secure against an ac-
tively corrupt sender.

Proof. To show this theorem we give a simulator, which simulates the view
of the sender during the protocol. The view of S is ViewS = {N, U, T̃, W̃}.
The simulator SimS works as follows.

1. SimS receives b from S and defines a uniformly random matrix N, sets
T = PRG(N), and passes N back to S.

2. Then SimS samples U uniformly at random and sends this to S. Addi-
tionally, it computes Q as S should.

3. In phase 3 the simulator receives M′ from S, and constructs M. The
matrix W̃ is sampled uniformly at random in F2s×k

q , and using this,
SimS sets T̃ = MQ− W̃G∆b. It sends T̃ and W̃ to S.

4. SimS receives yw,i from S and since SimS already knows Q and b, it
can recover vw,i = yw,i ⊕ H(qi − wG∆b) and pass these to the ideal
functionality F κ,m

N-OT.

We now argue that the simulator produces values indistinguishable from
ViewS. The matrix N is distributed identically in the real and ideal world.
Since both T0 and T1 are outputs of a pseudorandom generator, the matrix
T0 − T1, and therefore also U, is computationally indistinguishable from a
uniformly random matrix. In the real world, W̃ = M′(W ′)T + (W ′′)T is
uniform since W ′′ is chosen uniformly. The simulator SimS constructs T̃
such that the consistency check will pass. This will always be the case in
the real world, and hence S cannot distinguish between the real and ideal
world. Additionally, we note that step 4 ensures that the receiver obtains the
same output in both worlds. This shows security against an actively corrupt
sender.

67



Paper B.

We now shift our attention to an actively corrupt receiver. This proof is not as
straight forward as for the sender. The idea is to reduce the problem of break-
ing the security of the protocol to the problem of breaking the assumptions
on H. Before delving into the proof itself, we will introduce some lemmata
and notations that will aid in the proof. The focus of these will be the proba-
bility that certain events happen during the protocol. These events are based
on situations that determine the simulator’s ability or inability to simulate
the real world. Essentially, they are the event that R passes the consistency
check, which we denote by PC; the event that R has introduced errors in too
many positions, denoted by LS; and the event that the error positions from
the consistency check line up with the errors in C, which we call ES. These
will be defined more precisely below.

Inspired by the notation in the protocol, we define

C̃ = MC. (B.1)

A corrupt receiver may deviate from the protocol and may send an erroneous
W̃, which we denote by W̃∗. Let

C̄ = C̃− W̃∗G

and let E = supp(C̄), where C̄ is interpreted in C�2s. When writing C̃, C̄, and
E later in this section these are the definitions we are implicitly referring to.

Lemma 3.3. Let C, C, and M be as in Protocol 1. Further, let LS be the event that
|E| ≥ s, and let ES be the event that for every C′ ∈ C�2s there exists a Ĉ ∈ C�m+2s

such that supp(C̃− C′) = supp(C− Ĉ). Then the probability that neither ES nor
LS happen is at most q−s.

Proof. The matrix M′ in Protocol 1 is chosen uniformly at random, and hence
M can be interpreted as a member of a universal family of linear hashes.
Thus, this lemma is a special case of [2, Theorem 1] when letting m′ = m+ 2s,
s′ = s, and t′ = 0 where the primes denote the parameters in [2]. Addition-
ally, note that our event LS happens if MC has distance at least s from C�2s.

We will now bound the probability that an adversary is able to pass the
consistency check, even if C contains errors.

Lemma 3.4. Let PC denote the event that the consistency check passes. Then

Pr[PC] ≤ 2−|E|.

Proof. In order to compute Pr[PC], we consider C̄ and T̄ = T̃ − T̃∗, where
the ∗ indicates that the matrix may not be constructed as described in the

68



3. Actively Secure OT-Extension

protocol. The event PC happens if MQ = T̃∗ + W̃∗G∆b. However, from the
definition of Q, MQ = T̃ + C̃∆b, implying that PC happens if and only if

T̃ + C̃∆b = T̃∗ + W̃∗G∆b ⇐⇒ T̄ = −C̄∆b.

Now consider T̄ and C̄ in (Fn
q )
�2s, meaning that the entries C̄j and T̄j are

elements in F2s
q . If the adversary chooses C̄j = 0 for some j ∈ {1, 2, . . . , n}, it

must choose T̄j = 0 as well since the check would fail otherwise. If it chooses
C̄j 6= 0, it has two options. Either bet that bj = 0 and set T̄j = 0 or bet that
bj = 1 and set T̄j = −C̄j. This means that for each entry j ∈ E the adversary
has probability 1

2 of guessing the correct value of bj. For every entry j /∈ E,
each possible bj gives a consistent value since C̄j = T̄j = 0. By this and the
independence of the entries in b, it follows that the probability of the check
passing is bounded by Pr[PC] ≤ 2−|E|.

This immediately gives the following corollary.

Corollary 3.5. If LS denotes the same event as in Lemma 3.3, then

Pr[PC | LS] ≤ 2−s.

We now have the required results to prove the security of Protocol 1 against
an actively corrupt receiver. The events PC, LS, and ES from the previous
lemmata and corollaries will also be used in the proof of the following theo-
rem.

Theorem 3.6. The Protocol in Figure B.1 is computationally secure against an ac-
tively corrupt receiver.

Proof. As in the proof of Theorem 3.2, we construct a simulator SimR simu-
lating the view of the receiver, which is ViewR = {M′, yw,i}. The simulator
works as follows.

1. SimR receives N0 and N1 from R.

2. The simulator receives U from R and combines these with T0 = PRG(N0)
and T1 = PRG(N1) to reconstruct the matrix C. Additionally, it samples
uniformly at random an internal value b. Using this b, the simulator
SimR computes Q = T0 + C∆b.

3. SimR samples a random M′ like the sender would have done in the
protocol and sends this to R. In return, it receives T̃∗ and W̃∗, where
the ∗ indicates that the vectors may not be computed according to the
protocol. The simulator runs the consistency check and aborts if it fails.

69



Paper B.

4. Otherwise, it erasure decodes each row of C by letting E be the erasures
to obtain W ′. If the decoding fails, it aborts. If the decoding succeeds,
the simulator gives W ′ as inputs to the ideal functionality F κ,m

N-OT, which
returns the values vwi ,i to SimR. It can now compute ywi ,i = vwi ,i ⊕
H(qi − wiG∆b), and chooses yw,i uniformly at random in Fκ

q for all
w 6= wi.

The matrix M′ is uniformly distributed both in the real and ideal world.
Hence, we only need to show that the output yw,i produced by the simulator
is indistinguishable from the output of the protocol.

Let Z be a distinguisher for distinguishing between a real world execution
of the protocol and an ideal execution using the simulator. By Lemma 2.3 its
advantage is bounded by

Adv(Z) ≤Adv(Z | PC) + Adv(Z | PC, LS)Pr[PC | LS]
+ Adv(Z | PC, LS,ES)Pr[LS,ES] + Adv(Z | PC, LS,ES)Pr[PC],

(B.2)

where we have omitted some probability factors since they are all at most 1.
Notice that ywi ,i is constructed identically in both worlds. The remaining yw,i
are uniformly distributed in the ideal world, but constructed as

yw,i = vw,i ⊕H(qi −wG∆b) (B.3)

in the real world. Also notice that, if the consistency check fails, the simulator
aborts before constructing the yw,i. This is the same as in the real world, and
the only information R has received before this is M′, which is identically
distributed in both worlds. Hence, the simulator is perfect in this case. This
implies that the first term on the right-hand side in (B.2) is zero.

Since the consistency check by the simulator is identical to the consistency
check done by S, it follows that the probability for the consistency check to
pass even if R might have sent inconsistent values is the same in both worlds.
This means that Pr[PC | LS] ≤ 2−s by Corollary 3.5. In a similar fashion,
Lemma 3.3 implies that the penultimate term in (B.2) can be bounded above
by q−s. In summary, (B.2) can be rewritten as

Adv(Z) ≤ 2−s + q−s + Adv(Z | PC, LS,ES)2−|E|. (B.4)

To show that this is negligible in κ and s, assume the opposite; that is, Z has
non-negligible advantage. We then construct a distinguisher D breaking the
security assumptions on H.

The distinguisher D simulates the protocol with minor changes in order
to produce its input to the challenger. After receiving the challenge it uses
the output of Z to respond. There exist inputs and random choices for R and

70



3. Actively Secure OT-Extension

S, which maximize the advantage of Z , and we can assume that D has fixed
these in its simulation. This also means that PC, LS and ES happen in the
simulation since otherwise, Adv(Z) is negligible.

Because ES happens, puncturing C in the positions in E gives a code-
word in πE(C�m+2s). Further, the event LS ensures that this corresponds
to a unique codeword in C�m+2s. Hence, D is able to erasure decode and
for i = 1, 2, . . . , m + 2s obtain ci = wiG + ei, where ci is the i’th row of C,
wH(ei) < d, and supp(ei) ⊆ E.

The following arguments use that no matter which b the challenger choo-
ses, the distinguisher D knows ei∆b. This follows from the fact that PC has
happened and therefore bj for j ∈ E is known to the adversary, which is
simulated by D. Hence, the distinguisher is able to construct t′i = ti + ei∆b,
where the b is the vector eventually chosen by the challenger, and ti the i’th
row of T0. Letting t = n − |E|, define the probability distribution X to be
the uniform distribution on Fn

2 under the condition that the indices in E are
fixed to the corresponding entry of b. By uniformity this distribution has
min-entropy t. The distinguisher passes X and the t′i to the challenger. It
receives back xw,i for all i = 1, 2, . . . , n and w ∈ Fk

q and needs to distinguish
them between being uniformly random and being constructed as

xw,i = H(t′i + wG∆b), (B.5)

As in the protocol, let Q = T0 + C∆b, where b is again the vector chosen by
the challenger. Therefore, if xw,i is constructed as in (B.5), we have that

xw,i = H(ti + ei∆b + wG∆b)

= H(qi − ci∆b + ei∆b + wG∆b)

= H(qi − (wi −w)G∆b).

The distinguisher will now construct and input to Z the following

ywi ,i = vwi ,i ⊕H(t′i),

yw,i = vw,i ⊕ xwi−w,i, for w 6= wi.

Since t′i = ti + ei∆b = qi −wiG∆b, we have that ywi ,i is identical to the value
computed in both the real and ideal worlds.

For the remaining w we notice that if the challenger has chosen xw,i uni-
formly at random, then the values yw,i are uniformly distributed as well.
This is the same as the simulator will produce in the ideal world. On the
other hand, if xw,i = H(t′i + wG∆b), then we have yw,i = vw,i ⊕H(qi −w∆b).
This is exactly the same as produced during the protocol in the real world.
Hence, D can feed the values yw,i to Z , which can distinguish between the
real and ideal world, and depending on the answer from Z , D can dis-
tinguish whether the xw,i are uniformly distributed or are constructed as

71



Paper B.

H(t′i + wG∆b). Hence, the advantage of D is the same as that of Z under the
restriction that PC, LS, and ES happen. This means that

Adv(D) = Adv(Z|PC, LS,ES) ≥ 2|E|
(
Adv(Z)− 2−s − q−s) , (B.6)

where the inequality comes from (B.4). This contradicts that H is t-min-
entropy strongly C-correlation robust, and therefore Z must have negligible
advantage in the security parameters κ and s.

4 Consistency Check in a Subfield

Assume that q = 2r and that r | s. By restricting the matrix M′ in Protocol 1 to
have entries in F2, the set of possible matrices M form a 2−2s-almost universal
family of hashes. The probability in Lemma 3.3 can then be replaced by 2−s

by setting m′ = m + 2s, s′ = s
r , and t′ = 2s(1 − 1/r). This modification

will show itself in (B.4), but here only the term q−s is replaced by 2−s, and
hence the advantage will still be negligible in κ and s. However, choosing
M′ in a subfield reduces the communication complexity, since the number
of bits needed to transmit M′ is lowered by a factor of r. Furthermore, the
computation of T̃ and W̃ can be done using only sums in Fq, instead of
multiplication and sums.

This method of reducing the communication complexity can be done to
an intermediate subfield, which will give a probability bound between q−s

and 2−s. In a similar way, this procedure could also be applied to fields of
other characteristics.

5 Comparison

We compare the parameters of our modified construction with those that can
be achieved by the actively secure OT-extension construction from [12]. We
will show that the ability to use larger finite fields in our modified construc-
tion induces a tradeoff between the number of base OT’s that are needed for
a given N and given security parameters (and hence also the complexity of
the set-up phase), and the complexity of the encoding and consistency check
phases of the extension protocol.

We have shown that given an [n, k, d]q-code, with d ≥ max{κ, s}, one
can build an OT-extension protocol that implements the functionality F κ,m

N-OT

using the functionality F κ,n
2-OT, where N = qk. The parameters achieved in [12]

are the same as we obtain in the case q = 2.
We will limit our analysis to the case where q = 2r, and r | s. We fix the

security parameters s and κ, and fix N to be a power of q, N = qk. Note then

72



5. Comparison

that N = 2k·log2 q. Let n′ and n be the smallest integers for which there exist
an [n′, k log2 q,≥ d]2-linear code and an [n, k,≥ d]q-linear code, respectively.
As we discuss later, we can always assume that n ≤ n′, and in most cases
it is in fact strictly smaller. Therefore, by using q-ary codes one obtains a
reduction on the number of base OT’s from n′ to n, and therefore a more
efficient initialization phase. Note for example that the binary construction
always requires at least a minimum of log2 N base OT’s, while using q-ary
codes allows to weaken this lower bound to n ≥ logq N.

On the other hand, however, this comes at the cost of an increase in the
communication complexity of what we have called the encoding and consis-
tency check phases of the protocol since we need to send a masking of code-
words over a larger field. We compare these two phases separately since the
consistency check is only needed for an actively secure version of the protocol
and it has a smaller cost than the encoding phase anyway. In the encoding
phase, [12] communicates a total of (m + s)n′ bits, while our construction
communicates (m + 2s)n log2 q bits. However, typically m� s, and therefore
we only compare the terms mn′ and mn log2 q. Hence, the communication
complexity of this phase gets multiplied by a factor log2 q · n/n′. During the
consistency check phase, which is less communication intensive, [12] com-
municates a total of sm + sn′ + sk log2 q bits while our construction commu-
nicates 2sm + 2sn log2 q + 2sk log2 q bits when using the method from Section
4.

We now discuss in more detail the rates between n and n′ that we can
obtain for different values of q. In order to do that, having fixed d and k,
let n′ and n denote the minimum values for which [n′, k log2 q,≥ d]2-linear
codes and [n, k,≥ d]q-linear codes exist. Let k′ denote k log2 q. It is easy to see
that n ≤ n′ by considering a generator matrix for the binary code of length
n′ and considering the code spanned over Fq by that same matrix. In many
situations, however, n is in fact considerably smaller than n′. The extreme
case is when q = N, and therefore k = 1, in which case one can take the
repetition code over Fq and set n = d. It is difficult to give a general tight
bound on the relation between n and n′, although at least we can argue that
n ≤ n′ − k′ + k: indeed, given an [n′, k′,≥ d]2-code C2 then one can obtain an
[n′, k′,≥ d]q-code Cq by simply considering the linear code spanned over the
field Fq by the generator matrix of C2 and then shorten3 Cq at k′− k positions,
after which we obtain an [n,≥ k,≥ d]q-code C, with n = n′ − k′ + k. This
bound is however by no means tight in general. We now consider concrete
examples of codes, that will be summarized in Table B.1.

3Shortening a code at positions i1, . . . , it means first taking the subcode consisting of all code-
words with 0′s at all those positions and then erasing those coordinates.

73



Paper B.

Comparison

Code N n (Base OT’s) d n CC

Walsh-Had. [10] 256 256 128
Juxt. simplex code over F4 256 170 128 ÷ 1.51 × 1.33
Punct. Walsh-Had. [12] 512 256 128

Juxt. simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511, 76,≥ 171]2-BCH [12] 276 511 ≥ 171

[455, 48,≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023, 443,≥ 128]2-BCH [12] 2443 1023 ≥ 128

[455, 154,≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

Table B.1: Comparison of using binary and q-ary codes for OT-extension. In the last two columns
we consider the decrease in the number of base OT’s and increase in the dominant term of the
communication complexity in the encoding phase when we consider a q-ary construction.

Small values of N

For relatively small values of N (N < 1000), [10] suggests the use of Walsh-
Hadamard codes, with parameters [2k′ , k′, 2k′−1]2, while [12] improves on this
by using punctured Walsh-Hadamard codes instead.
Punctured Walsh-Hadamard codes (also known as first order Reed-Muller
codes) are [2k′−1, k′, 2k′−2]2-linear codes. These are the shortest possible bi-
nary linear codes for those values of N and d, as they attain the Griesmer
bound. In terms of N, the parameters can be written as [N/2, log2 N, N/4]2.

The natural generalization of these codes to Fq are first order q-ary Reed
Muller codes, which have parameters [qk−1, k, qk−1 − qk−2]q. Moreover, there
is a q-ary generalization of Walsh-Hadamard codes, known as simplex codes,

which have parameters [ qk−1
q−1 , k, qk−1]q.

For example for q = 4, the parameters of the simplex code can be written
in terms of N as [(N− 1)/3, log4 N, N/4]4, and hence, for the same values of
d and N, the number of base OT’s is reduced by a factor 3/2 since n/n′ <
2/3. On the other hand, the communication complexity of the encoding
phase increases by a factor 2n/n′ < 4/3 compared to using binary punctured
Walsh-Hadamard codes. We note, however, that this comparison is only valid
if N is a power of 4.

Because of the fact that N needs to be a power of q, in the comparison
table below it will be convenient to use the juxtaposition of two copies of
the same code. This means that given an [n, k, d]q code C ′, we can obtain a
[2n, k, 2d]q code by sending each symbol in a codeword twice. With respect
to the examples listed in [12], we see that by choosing an adequate finite field
and using juxtapositions of simplex codes, the number of OT’s gets divided
by a factor slightly over 1.5, while the communication complexity increases

74



References

by a somewhat smaller factor.

Larger values of N

For larger values of N, [12] suggests using binary BCH codes. We use q-
ary BCH codes instead. It is difficult to find BCH codes that match exactly
the parameters (N, d) from [12] so in our comparison we have always used
larger values of both N and d. This is actually not too advantageous for our
construction since the codes in [12] were selected so that their length is of
the form 2m − 1 (what is called primitive binary BCH codes, which usually
yields the constructions with best parameters) and that results in a range
of parameters where it is not adequate to choose primitive q-ary BCH codes.
Nevertheless, in the case where the large value N′ = 2443 is considered in [12],
we can reduce the number of base OT’s needed to less than half, while the
communication complexity only increases by 4/3, and in addition to that we
achieve a larger value N = 2462. Observe that, for this value of N, with a
binary code the number of base OT’s would be restricted by the naïve bound
n′ ≥ log2 N = 462 in any case (i.e. even if d = 1), while using a code over F8
we only need to use 455.

Acknowledgements

The authors wish to thank Claudio Orlandi for providing helpful sugges-
tions during the early stages of this work, and Peter Scholl for his valuable
comments.

References

[1] D. Beaver, “Correlated pseudorandomness and the complexity of private com-
putations,” in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing, ser. STOC ’96. ACM, 1996, pp. 479–488.

[2] I. Cascudo, I. B. Damgård, B. David, N. Döttling, and J. B. Nielsen, “Rate-1, linear
time and additively homomorphic uc commitments,” in Advances in Cryptology
– CRYPTO 2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 179–207.

[3] I. Cascudo, I. B. Damgård, B. David, I. Giacomelli, J. B. Nielsen, and R. Trifiletti,
“Additively homomorphic uc commitments with optimal amortized overhead,”
in Public-Key Cryptography – PKC 2015, J. Katz, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 495–515.

[4] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti, “On the com-
plexity of additively homomorphic uc commitments,” in Theory of Cryptography,

75



References

E. Kushilevitz and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 542–565.

[5] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, ser.
STOC ’87. ACM, 1987, pp. 218–229.

[6] R. Impagliazzo and S. Rudich, “Limits on the provable consequences of one-way
permutations,” in Proceedings of the Twenty-first Annual ACM Symposium on Theory
of Computing, ser. STOC ’89. ACM, 1989, pp. 44–61.

[7] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, Extending Oblivious Transfers Effi-
ciently. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 145–161.

[8] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot extension with optimal
overhead,” in Advances in Cryptology – CRYPTO 2015, R. Gennaro and M. Rob-
shaw, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 724–741.

[9] J. Kilian, “Founding crytpography on oblivious transfer,” in Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, ser. STOC ’88. ACM,
1988, pp. 20–31.

[10] V. Kolesnikov and R. Kumaresan, Improved OT Extension for Transferring Short
Secrets. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 54–70.

[11] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, 1st ed. North
Holland, 1983.

[12] M. Orrù, E. Orsini, and P. Scholl, Actively Secure 1-out-of-N OT Extension with
Application to Private Set Intersection. Cham: Springer International Publishing,
2017, pp. 381–396.

[13] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, ser. SFCS ’82. Washington, DC,
USA: IEEE Computer Society, 1982, pp. 160–164.

76



Paper C

Squares of Matrix-product Codes

Ignacio Cascudo, Jaron Skovsted Gundersen, and Diego Ruano

The paper has been published in the
Finite Fields and Their Applications Vol. 62, p. 101606, 2020.



© 2019 Elsevier Inc.
The layout has been revised.



1. Introduction

Abstract

The component-wise or Schur product C ∗ C′ of two linear error-correcting codes
C and C′ over certain finite field is the linear code spanned by all component-wise
products of a codeword in C with a codeword in C′. When C = C′, we call the pro-
duct the square of C and denote it C∗2. Motivated by several applications of squares
of linear codes in the area of cryptography, in this paper we study squares of so-
called matrix-product codes, a general construction that allows to obtain new longer
codes from several “constituent” codes. We show that in many cases we can relate
the square of a matrix-product code to the squares and products of their constituent
codes, which allow us to give bounds or even determine its minimum distance. We
consider the well-known (u, u + v)-construction, or Plotkin sum (which is a special
case of a matrix-product code) and determine which parameters we can obtain when
the constituent codes are certain cyclic codes. In addition, we use the same techniques
to study the squares of other matrix-product codes, for example when the defining
matrix is Vandermonde (where the minimum distance is in a certain sense maximal
with respect to matrix-product codes).

1 Introduction

Component-wise or Schur products of linear error-correcting codes have been
studied for different purposes during the last decades, from efficient decod-
ing to applications in several different areas within cryptography. Given two
linear (over some finite field F) codes C1, C2 of the same length we define
the component-wise product of the codes C1 ∗ C2 to be the span over F of all
component-wise products c1 ∗ c2, where ci ∈ Ci.

Many of these applications involve the study of the main parameters of
interest in the theory of error-correcting codes, namely dimension and mini-
mum distance, where in this case we want to analyze the behaviour of some
of these parameters both on the factor codes and their product simultane-
ously. Recall that the dimension dim C of a linear code C is its dimension
as a vector space over the finite field, and the minimum distance d(C) of
C is the smallest Hamming distance between two distinct codewords of the
code. Additionally, some applications involve the analysis of the minimum
distance of the duals of the factor codes (recall that the dual C⊥ of C is the
linear code containing all vectors that are orthogonal to all codewords of C
under the standard inner product over F).

One of the first applications where component-wise products of codes
became relevant concerned error decoding via the notion of error-locating
pairs in the works of Pellikaan and of Duursma and Kötter [13, 22]. An error-
locating pair for a code C is a pair C1, C2 where C1 ∗C2 ⊆ C⊥, and the number
of errors the pair is able to correct depends on the dimensions and minimum

79



Paper C.

distances of the codes and their duals. More precisely, it is required that
dim(C1) > t and d(C⊥2 ) > t if we should be able to locate t errors.

Later on, the use of component-wise products found several applications
in the area of cryptography. For example, some attacks to variants of the
McEliece cryptosystem (which relies on the assumption that it is hard to
decode a general linear code) use the fact that the dimension of the product
C ∗ C tends to be much larger when C is a random code than when C has
certain algebraic structure, which can be used to identify algebraic patterns
in certain subcodes of the code defining the cryptosystem, see for instance
[7, 8, 19, 23, 27].

A different cryptographic problem where products of codes are useful is
private information retrieval, where a client can retrieve data from a set of
servers allocating a coded database in such a way that the servers do not
learn what data the client has accessed. In [15] a private information retrieval
protocol based on error-correcting codes was shown, where it is desirable to
use two linear codes C1 and C2 such that dim(C1), d(C⊥2 ), and d(C1 ∗ C2) are
simultaneously high.

In this work, however, we are more interested in the application of prod-
ucts of codes to the area of secure multiparty computation. The goal of secure
multiparty computation is to design protocols which can be used in the sit-
uation where a number of parties, each holding some private input, want
to jointly compute the output of a function on those inputs, without at any
point needing that any party reveals his/her input to anybody. A central
component in secure computation protocols is secure multiplication, which
different protocols realize in different ways. Several of these protocols require
to use an error-correcting code C whose square C∗2 = C ∗ C has large mini-
mum distance while there are additional conditions on C which vary across
the different protocols.

For example a well known class of secure computation protocols [1, 6, 9]
relies on the concept of strongly multiplicative secret sharing scheme for-
malized in [9]. Such secret sharing schemes can be constructed from linear
codes C where the amount of colluding cheating parties that the protocol can
tolerate is min(d(C⊥), d(C∗2)) + 2, where C⊥ is the dual code to C. These
two minimum distances are therefore desired to be simultaneously high. For
more information about secret sharing and multiparty computation, see for
instance [10].

Other more recent protocols have the less stringent requirement that d(C∗2)
and dim C are simultaneously large. This is the case of the MiniMac [12]
protocol, a secure computation protocol to evaluate boolean circuits, and its
successor Tinytables [11]. In those protocols, the cheating parties have certain
probability of being able to disrupt the computation, but this probability is
bounded by 2−d(C∗2), meaning that a high distance on the square will give a

80



1. Introduction

higher security. On the other hand, a large relative dimension, or rate, of C
will reduce the communication cost, so it is desirable to optimize both param-
eters. A very similar phenomenon occurs in recent work about commitment
schemes, which are a building block of many multiparty computation proto-
cols; in fact, when these schemes have a number of additional homomorphic
properties and in addition can be composed securely, we can base the entire
secure computation protocol on them [14]. Efficient commitment schemes
with such properties were constructed in [5] based on binary linear codes,
where multiplicative homomorphic properties require again to have a rela-
tively large d(C∗2) (see [5, section 4]) and the rate of the code is also desired
to be large to reduce the communication overhead.

These applications show the importance of finding linear codes where
the minimum distance of the square d(C∗2) is large relative to the length of
the codes and where some other parameter (in some cases dim(C), in others
d(C⊥)) is also relatively large. Moreover, it is especially interesting for the
applications that the codes are binary, or at least be defined over small fields.

Powers of codes, and more generally products, have been studied in sev-
eral works such as [3, 4, 20, 24–26] from different perspectives. In [25] an
analog of the Singleton bound for dim(C) and d(C∗2) was established, and
in [20] it is shown that Reed Solomon codes are essentially the only codes
which attain this bound unless some of the parameters are very restricted.
However, Reed Solomon codes come with the drawback that the field size
must be larger than or equal to the length of the codes. Therefore, finding
asymptotically good codes over a fixed small field has also been studied,
where in this case asymptotically good means that both dim(C) and d(C∗2)
grows linearly with the length of the code C. In [24] the existence of such
a family over the binary field was shown, based on recent results on alge-
braic function fields. However, it seems like most families of codes do not
have this property: in fact, despite the well known fact that random linear
codes will, with high probability, be over the Gilbert Varshamov bound, and
hence are asymptotically good in the classical sense, this is not the case when
we impose the additional restriction that d(C∗2) is linear in the length, as it
is shown in [4]. The main result in [4] implies that for a family of random
linear codes either the code or the square will be asymptotically bad.

The asymptotical construction from [24], despite being very interesting
from the theoretical point of view, has the drawbacks that the asymptotics
kick in relatively late and moreover, the construction relies on algebraic ge-
ometry, which makes it computationally expensive to construct such codes.
Motivated by the aforementioned applications to cryptography, [3] focuses
on codes with fixed lengths (but still considerably larger than the size of the
field), and constructs cyclic codes with relatively large dimension and mini-
mum distance of their squares. In particular, the parameters of some of these
codes are explicitly computed in the binary case.

81



Paper C.

This provides a limited constellation of parameters that we know that
are achievable for the tuple consisting of length of C, dim(C) and d(C∗2).
It is then interesting to study what other parameters can be attained, and a
natural way to do so is to study how the square operation behaves under
known procedures in coding theory that allow to construct new codes from
existing codes.

One such construction is matrix-product codes, where several codes can
be combined into a new longer code. Matrix-product codes, formalized in [2],
is a generalization of some previously known code constructions, such as
for example the (u, u + v)-construction, also known as Plotkin sum. Matrix-
product codes have been studied in several works, including [2, 16, 17, 21].

1.1 Results and Outline

In this work, we study squares of matrix-product codes. We show that in
several cases, the square of a matrix-product code can be also written as a
matrix-product code. This allows us to determine new achievable parameters
for the squares of codes.

More concretely, we start by introducing matrix-product codes and pro-
ducts of codes in Section 2. Afterwards, we determine the product of two
codes when both codes are constructed using the (u, u + v)-construction in
Section 3. In Section 4, we restrict ourselves to squares of codes and exem-
plify what parameters we can achieve using cyclic codes in the (u, u + v)-
construction in order to compare the parameters with the codes from [3].

At last, in Section 5, we consider other constructions of matrix-product
codes. In particular, we consider the case where the defining matrix is Van-
dermonde, which is especially relevant because such matrix-product codes
achieve the best possible minimum distance that one can hope for with this
matrix-product strategy. We show that the squares of these codes are again
matrix-product codes, and if the constituent codes of the original matrix-
product code are denoted Ci, then the ones for the square are all of the form
∑i+j=l Ci ∗ Cj for some l. This is especially helpful for determining the pa-
rameters if the Ci’s are for example algebraic geometric codes. We remark
that this property also holds for the other constructions we study in this pa-
per, but only when the Ci’s are nested. Finally, we also study the squares of
a matrix-product construction from [2] where we can apply the same proof
techniques as we have in the other constructions.

2 Preliminaries

Let Fq be the finite field with q elements. A linear code C is a subspace of
Fn

q . When C has dimension k, we will call it an [n, k]q code. A generator

82



2. Preliminaries

matrix for a code C is a k × n matrix consisting of k basis vectors for C as
the k rows. The Hamming weight of x ∈ Fn

q , denoted w(x), is the number of
nonzero entries in x and the Hamming distance between x, y ∈ Fn

q is given
by d(x, y) = w(x− y). By the linearity of C the minimum Hamming distance
taken over all pairs of distinct elements in C is the same as the minimum
Hamming weight taking over all non-zero elements in C, and therefore we
define the minimum distance of C to be d(C) = minx∈C\{0}{w(x)}. If it is
known that d(C) = d (respectively if we know that d(C) ≥ d) then we call C
an [n, k, d]q code (resp. [n, k,≥ d]q). We denote by C⊥ the dual code to C, i.e.,
the vector space given by all elements y ∈ Fn

q such that for every x ∈ C, x
and y are orthogonal with respect to the standard inner product in Fn

q . If C
is an [n, k]q code then C⊥ is an [n, n− k]q code.

We recall the definition and basic properties of matrix-product codes (fol-
lowing [2]) and squares of codes.

Definition 2.1 (Matrix-product code). Let C1, . . . , Cs ⊆ Fn
q be linear codes and

let A ∈ Fs×l
q be a matrix with rank s (implying s ≤ l). Then we define the matrix-

product code C = [C1, . . . , Cs]A, as the set of all matrix products [c1, . . . , cs]A,
where ci = (c1i, . . . , cni)

T ∈ Ci.

We call A =
[
aij
]

i=1,...,s,j=1,...,l the defining matrix and the Ci’s the constituent
codes. We can consider a codeword c, in a matrix-product code, as a matrix
of the form

c =

c11a11 + c12a21 + · · ·+ c1sas1 · · · c11a1l + c12a2l + · · ·+ c1sasl
...

. . .
...

cn1a11 + cn2a21 + · · ·+ cnsas1 · · · cn1a1l + cn2a2l + · · ·+ cnsasl

 ,

(C.1)

using the same notation for the ci’s as in the definition. Reading the entries
in this matrix in a column-major order, we can also consider c as a vector of
the form

c =

(
s

∑
i=1

ai1ci, . . . ,
s

∑
i=1

ailci

)
∈ Fnl

q . (C.2)

We sum up some known facts about matrix-product codes in the following
proposition.

Proposition 2.2. Let C1, . . . , Cs ⊆ Fn
q be linear [n, k1], . . . , [n, ks] codes with gen-

erator matrices G1, . . . , Gs, respectively. Furthermore, let A ∈ Fs×l
q be a matrix with

rank s and let C = [C1, . . . , Cs]A. Then C is an [nl, k1 + · · ·+ ks] linear code and

83



Paper C.

a generator matrix of C is given by

G =

a11G1 · · · a1lG1
...

. . .
...

as1Gs · · · aslGs

 .

We now turn our attention to the minimum distance of C. Denote by Ai
the matrix consisting of the first i rows of A and let CAi be the linear code
spanned by the rows in Ai. From [21], we have the following result on the
minimum distance.

Proposition 2.3. We are making the same assumptions as in Proposition 2.2, and
write Di = d(CAi ) and di = d(Ci). Then the minimum distance of the matrix-
product code C satisfies

d(C) ≥ min{D1d1, D2d2, . . . , Dsds}. (C.3)

The following corollary is from [16].

Corollary 2.4. If we additionally assume that C1 ⊇ · · · ⊇ Cs, equality occurs in
the bound in (C.3).

The dual of a matrix-product code is also a matrix-product code, if we make
some assumptions on the matrix A, as it was noted in [2].

Proposition 2.5. Let C = [C1, C2, . . . , Cs]A be a matrix product code. If A is an
invertible square matrix then

C⊥ = [C⊥1 , C⊥2 , . . . , C⊥s ](A−1)T

Additionally, if J is the s× s matrix given by

J =


0 · · · 0 1
0 · · · 1 0
... . . . ...

...
1 · · · 0 0


the dual can be described as

C⊥ = [C⊥s , C⊥s−1, . . . , C⊥1 ](J(A−1)T).

Notice that with regard to Proposition 2.3 the last expression is often more
useful since d(C⊥i ) will often decrease when i increases.

Now, we turn our attention to products and squares of codes. We denote
by ∗ the component-wise product of two vectors. That is, if x = (x1, . . . , xn)
and y = (y1, . . . , yn), then x ∗ y = (x1y1, . . . , xnyn). With this definition in
mind, we define the product of two linear codes.

84



3. The (u, u + v)-Construction

Definition 2.6 (Component-wise (Schur) products and squares of codes).
Given two linear codes C, C′ ⊆ Fn

q we define their component-wise product, denoted
by C ∗ C′, as

C ∗ C′ = 〈{c ∗ c′ | c ∈ C, c′ ∈ C′}〉.

The square of a code C is C∗2 = C ∗ C.

First note that the length of the product is the same as the length of the
original codes. Regarding the other parameters (dimension and minimum
distance) we enumerate some known results only in the case of the squares
C∗2 since this will be our primary focus.

If

G =


g1
g2
...

gk


is a generator matrix for C, then {gi ∗ gj | 1 ≤ i ≤ j ≤ n} is a generating
set for C∗2. However, it might not be a basis since some of the vectors might
be linearly dependent. If additionally, a submatrix consisting of k columns
of G is the identity, the set {gi ∗ gi} consists of k linearly independent vec-
tors. Since there is always a generator matrix satisfying this, this implies
k ≤ dim(C∗2) ≤ k(k+1)

2 , where k = dim(C), and d(C∗2) ≤ d(C).
In most cases, however, d(C∗2) is much smaller than d(C). For example,

the Singleton bound for squares [25] states that d(C∗2) ≤ max{1, n− 2k + 2}
(which is much restrictive than the Singleton bound for C, which states that
d(C) ≤ n− k+ 1). Additionally, the codes for which d(C∗2) = n− 2k+ 2 have
been characterized in [20], where it was shown that essentially only Reed-
Solomon codes, certain direct sums of self-dual codes, and some degenerate
codes have this property. Furthermore, it is shown in [4] that taking a random
code with dimension k the dimension of C∗2 will with high probability be
min{n, k(k+1)

2 }. Therefore, often dim(C∗2) � dim(C) and hence typically
d(C∗2)� d(C).

3 The (u, u + v)-Construction

In this section, we will consider one of the most well-known matrix-product
codes, namely the (u, u + v)-construction. We obtain this construction when
we let

A =

[
1 1
0 1

]
∈ F2×2

q (C.4)

85



Paper C.

be the defining matrix.
Note that if C = [C1, C2] A then d(C) ≥ min{2d(C1), d(C2)} and d(C⊥) ≥
min{2d(C⊥2 ), d(C⊥1 )}. This can easily be deduced from Propositions 2.3 and
2.5 by constructing J(A−1)T .

In the following theorem, we will determine the product of two codes C
and C′ when both codes come from the (u, u + v)-construction. We will use
the notation C + C′ to denote the smallest linear code containing both C and
C′.

Theorem 3.1. Let C1, C2, C′1, C′2 ⊆ Fn
q be linear codes. Furthermore, let A be as in

(C.4) and denote by C = [C1, C2]A and by C′ = [C′1, C′2]A. Then

C ∗ C′ = [C1 ∗ C′1, C1 ∗ C′2 + C2 ∗ C′1 + C2 ∗ C′2]A.

Proof. Let G1, G2, G′1, G′2 be generator matrices for C1, C2, C′1, C′2 respectively.
By Proposition 2.2, we have that

G =

[
G1 G1
0 G2

]
, G′ =

[
G′1 G′1
0 G′2

]
are generator matrices for C and C′ respectively. A generator matrix for C ∗C′

can be obtained by making the componentwise products of all the rows in G
with all the rows in G′ and afterwards removing all linearly dependent rows.
We denote by G ∗ G′ the matrix consisting of all componentwise products of
rows in G with rows in G′. Then

G ∗ G′ =


G1 ∗ G′1 G1 ∗ G′1

0 G1 ∗ G′2
0 G2 ∗ G′1
0 G2 ∗ G′2

 .

The set of rows in Gi ∗ G′j is a generating set for Ci ∗ C′j. Hence, by removing
linearly dependent rows we obtain a generator matrix of the form

G̃ =

[
G̃1 G̃1
0 G̃2

]
,

where G̃1 is a generator matrix for C1 ∗C′1, and G̃2 for C1 ∗C′2 +C2 ∗C′1 +C2 ∗
C′2. By using Proposition 2.2 once again, we see that G̃ is a generator matrix
for the code [C1 ∗ C′1, C1 ∗ C′2 + C2 ∗ C′1 + C2 ∗ C′2]A proving the theorem.

The following corollary consider the square of a code from the (u, u + v)-
construction, and in the remaining of the paper the focus will be on squares.

Corollary 3.2. Let C1, C2 ⊆ Fn
q be linear codes. Furthermore, let A be as in (C.4)

and denote by C = [C1, C2]A. Then

C∗2 = [C∗21 , (C1 + C2) ∗ C2]A,

86



4. Constructions from Binary Cyclic Codes

and we have that

d(C∗2) ≥ min{2d(C∗21 ), d((C1 + C2) ∗ C2)}. (C.5)

Additionally, if C2 ⊆ C1 we obtain

C∗2 = [C∗21 , C1 ∗ C2]A,

and we have that

d(C∗2) = min{2d(C∗21 ), d(C1 ∗ C2)}. (C.6)

Proof. The results follows by setting C′i = Ci in Theorem 3.1 implying C′ = C,
and we obtain that

C∗2 = [C1 ∗ C1, C1 ∗ C2 + C2 ∗ C1 + C2 ∗ C2]A = [C∗21 , (C1 + C2) ∗ C2]A.

If C2 ⊆ C1 we have C1 + C2 = C1. The bound in (C.5) follows directly from
Proposition 2.3, and (C.6) follows by Corollary 2.4.

4 Constructions from Binary Cyclic Codes

In this section, we exemplify what parameters we can achieve for C and
C∗2 when we use the (u, u + v)-construction together with cyclic codes as
constituent codes. We start by presenting some basics of cyclic codes.

Cyclic codes are linear codes which are invariant under cyclic shifts. That
is, if c = (c0, c1, . . . , cn−2, cn−1) is a codeword then (cn−1, c0, c1, . . . , cn−2) is as
well. We will assume that gcd(n, q) = 1. A cyclic code of length n over Fq is
isomorphic to an ideal in R = Fq[x]/〈xn − 1〉 generated by a polynomial g,
where g|xn − 1. The isomorphism is given by

c0 + c1x + . . . + cn−1xn−1 7→ (c0, c1, . . . , cn−1),

and we notice that a cyclic shift is represented by multiplying by x. The
cyclic code generated by g has dimension n− deg g. To bound the minimum
distance of the code, we introduce the q-cyclotomic cosets modulo n.

Definition 4.1 (q-cyclotomic coset modulo n). Let a ∈ Z/nZ. Then the q-
cyclotomic coset modulo n of a is given by

[a] = {aqj mod n | j ≥ 0}.

Now let βn = 1 and βk 6= 1 for 1 ≤ k ≤ n, meaning that β is a primitive
n-th root of unity in an algebraic closure of Fq. Since g|xn − 1 every root
of g must be of the form βj for some j ∈ {0, 1, . . . , n − 1} = Z/nZ. This
leads to the following definition which turns out to be useful in describing
the parameters of a cyclic code.

87



Paper C.

Definition 4.2 (Defining and generating set). Denote by J = {j ∈ Z/nZ |
g(βj) = 0} and I = {j ∈ Z/nZ | g(βj) 6= 0}. Then we call J the defining set and
I the generating set of the cyclic code C generated by g.

We remark that g = ∏j∈J(x− βj) = (xn − 1)/ ∏i∈I(x− βi), implying that |I|
is the dimension of the cyclic code generated by g. We note that I and J must
be a union of q-cyclotomic cosets modulo n. Now we define the amplitude of
I as

Amp(I) = min{i ∈ Z | ∃c ∈ Z/nZ such that I ⊆ {c, c + 1, . . . , c + i− 1}}.

As a consequence of the BCH-bound, see for example [3], we have that the
minimum distance of the code generated by g is greater than or equal to
n−Amp(I) + 1.

Hence, we see that both the dimension and minimum distance depend
on I, and since C is uniquely determined by I, we will use the notation C(I)
to describe the cyclic code generated by g = (xn − 1)/(∏i∈I(x − βi)). To
summarize, we have that C(I) is a cyclic linear code with parameters

[n, |I|,≥ n−Amp(I) + 1]q. (C.7)

The dual of a cyclic code is also a cyclic code. In fact, C(I)⊥ = C(−J), where
−J = {−j mod n | j ∈ J}. Clearly Amp(−J) = Amp(J) which shows that
C(I)⊥ is a cyclic linear code with parameters

[n, |J|,≥ n−Amp(J) + 1]q. (C.8)

Furthermore, we remark that Amp(J) = n−max{s | {i, i + 1, . . . , i + s− 1} ⊆
I for some i}, i.e n minus the size of the largest set of consecutive elements
in I. We conclude that the minimum distance of C(I)⊥ is strictly larger than
the size of any set of consecutive elements in I.

We consider cyclic codes for the (u, u + v)-construction, and therefore we
will need the following proposition.

Proposition 4.3. Let I1 and I2 be unions of q-cyclotomic cosets, and let C(I1) and
C(I2) be the corresponding cyclic codes. Then

C(I1) + C(I2) = C(I1 ∪ I2)

C(I1) ∗ C(I2) = C(I1 + I2),

where I1 + I2 = {a + b mod n | a ∈ I1, b ∈ I2}.

We obtain this result by describing the cyclic codes as a subfield subcode of
an evaluation code and generalizing Theorem 3.3 in [3]. The proof of this
proposition is very similar to the one in [3] and can be found in Appendix A.
The proposition implies the following corollary.

88



4. Constructions from Binary Cyclic Codes

Corollary 4.4. Let I1 and I2 be unions of q-cyclotomic cosets, and let C(I1) and
C(I2) be the corresponding cyclic codes. Then C(I1) ∗ C(I2) is an

[n, |I1 + I2|,≥ n−Amp(I1 + I2) + 1]q

cyclic code.

Now, let C(I1) and C(I2) be two cyclic codes over Fq of length n, and let

C = [C(I1), C(I2)]

[
1 1
0 1

]
. (C.9)

Then C is a

[2n, |I1|+ |I2|,≥ min{2(n−Amp(I1) + 1), n−Amp(I2) + 1}]q

linear code. This is in fact a quasi-cyclic code of index 2, see for instance
[16, 18]. By combining Corollary 3.2 with Proposition 4.3, we obtain that

C∗2 = [C(I1 + I1), C(I2 + (I1 ∪ I2))]

[
1 1
0 1

]
. (C.10)

And from Propositions 2.2 and 2.3, and Corollary 4.4, we obtain that

dim(C∗2) = |I1 + I1|+ |I2 + (I1 ∪ I2)|,

and

d(C∗2) ≥ min{2(n−Amp(I1 + I1) + 1), n−Amp(I2 + (I1 ∪ I2)) + 1)}.
(C.11)

Therefore, it is of interest to find I1 and I2 such that the cardinalities of these
sets are relatively large, implying a large dimension of C, while at the same
time Amp(I1 + I1) and Amp(I2 + (I1 ∪ I2)) are relatively small, implying a
large minimum distance on the square.

To exemplify what parameters we can obtain we will use some specific
cyclic codes from [3] based on the notion of s-restricted weights of cyclotomic
cosets introduced in the same article. Let n = qr − 1 for some r and for a
number t ∈ {0, 1, . . . , n− 1} let (tr−1, tr−2, . . . , t0) be its q-ary representation,
i.e. t = ∑r−1

i=0 tiqi, where ti ∈ {0, 1, . . . , q− 1}. Then for an s ≤ r the s-restricted
weight is defined as

w(s)
q (t) = max

i∈{0,1,...,r−1}

s−1

∑
j=0

ti+j.

We will not go into details about these s-restricted weights but we refer the
reader to [3] for more information. However, we remark that [3] proves that

89



Paper C.

this weight notion satisfies w(s)
q (v) ≤ w(s)

q (t) + w(s)
q (u) if v = t + u, and that

w(s)
q (t) = w(s)

q (u) whenever t and u are in the same cyclotomic coset. The
latter implies that we can talk about the s-restricted weight of a cyclotomic
coset.

Let Wr,s,m denote the union of all cyclotomic cosets modulo qr − 1 with
s-restricted weights lower than or equal to m. I.e.

Wr,s,m = {t ∈ {0, 1, . . . , qr − 2} | w(s)
q (t) ≤ m}.

We remark that the minimum distance of C(Wr,s,m) can be deduced using
that an upper bound for Amp(Wr,s,m) is max Wr,s,m + 1 and the maximum
element of Wr,s,m can be easily deduced [3]. Furthermore, the dimension of
C(Wr,s,m) is simply the cardinality of Wr,s,m, which either can be counted for
the specific choices of r, s, and m, or can be expressed as a recurrent sequence
in r (for a fixed selection of adequately small s and m) using an argument
involving counting closed walks of length r in certain graph, see [3]. Finally,
it is not hard to realize that the largest set of consecutive elements in Wr,s,m
is {0, 1, . . . , 2m+1 − 2} and thus, by the remarks about the dual distance after
equation (C.8), we have that d(C(Wr,s,m)⊥) ≥ 2m+1.

We define the code

C = [C(Wr,s,m1), C(Wr,s,m2)]

[
1 1
0 1

]
,

where we let m1 ≥ m2. Note that d(C⊥) ≥ min{2 · 2m2+1, 2m1+1}. From (C.10)
we conclude that

C∗2 = [C(Wr,s,m1 + Wr,s,m1), C(Wr,s,m1 + Wr,s,m2)]

[
1 1
0 1

]
(C.12)

since Wr,s,m1 ∪Wr,s,m2 = Wr,s,m1 . It is noted in [3] that Wr,s,mi + Wr,s,mj =
Wr,s,mi+mj does not hold in general, but the inclusion Wr,s,mi + Wr,s,mj ⊆
Wr,s,mi+mj holds. However, we are able to determine the exact dimension
for C∗2 in (C.12) by computing Wr,s,m1 + Wr,s,mi for i = 1, 2. Additionally,
when computed these, we can bound the minimum distance directly from
(C.11). This is what we do in Table C.1 for the following choices. We present
the parameters for C and C∗2 when setting q = 2, s = 5, m1 = 2, and m2 = 1.
In this case we have d(C⊥) ≥ 8 for each r.

We make a comparison to the cyclic codes from [3]. They present codes
constructed using the 3-restricted weight with m = 1 (Table 1 in [3]) and
using the 5-restricted weight with m = 2 (Table 2 in [3]). Let any one of our
new codes from Table C.1 have parameters

(n, dim(C), d(C∗2)) = (n, k, d∗).

90



5. Other Matrix-Product Codes

r n dim(C) d(C) ≥ dim(C∗2) d(C∗2) ≥
5 62 22 14 57 2
6 126 29 30 99 6
7 254 37 62 163 14
8 510 54 126 348 18
9 1022 86 238 650 38

10 2046 142 462 1319 66
11 4094 233 926 2543 134

Table C.1: Parameters for C and C∗2 using the 5-restricted weight

First we compare to Table 1 from [3], where there always exists a code C′

with length n + 1, dim(C′) < k, and d((C′)∗2) > d∗. Hence, our new codes
have larger dimension but lower minimum distance for the square compared
to these codes, for comparable lengths. On the other hand, in Table 2 from [3]
there is a code C′ with length n + 1 and dim(C′) ≥ k (i.e. the dimensions of
the codes from [3] are larger than those in our table). However, the minimum
distances of the squares for the codes in [3] satisfy

d((C′)∗2) =

{
d∗ + 1 for r = 5, 6, 8, 10, 11
d∗ − 5 for r = 7, 9

.

Thus, even though the dimension of our codes are lower than the ones from
Table 2 in [3], for r = 7 and r = 9 we obtain that d∗ > d((C′)∗2).

Therefore, our results on matrix-product codes allow us to obtain codes
with a different trade-off between dim C and d(C∗2) than those from [3],
where we can obtain a larger distance of the square at the expense of reducing
the dimension with respect to one of the tables there, and viceversa with
respect to the other.

5 Other Matrix-Product Codes

In this section, we consider squares of some other families of matrix-product
codes. We start by determining the square of C when C is a matrix-product
code where the defining matrix A is Vandermonde.

Theorem 5.1. Let C0, C1, · · · , Cs−1 be linear codes in Fn
q . Furthermore, let

Vq(s) =


1 1 · · · 1
α1

1 α1
2 · · · α1

q−1
...

...
...

αs−1
1 αs−1

2 · · · αs−1
q−1

 ,

91



Paper C.

where the αi’s are distinct nonzero elements in Fq and s ≤ q − 1 is some positive
integer. Denote by C = [C0, C1, . . . , Cs−1]Vq(s). Then

C∗2 = [ ∑
i+j=0

Ci ∗ Cj, ∑
i+j=1

Ci ∗ Cj, . . . , ∑
i+j=s̃−1

Ci ∗ Cj]Vq(s̃)

where s̃ = min{2s− 1, q− 1} and the sums i + j are modulo q− 1.

Proof. Let G0, G1, . . . , Gs−1 be generator matrices of C0, C1, . . . , Cs−1 respec-
tively and let G be a generator matrix for C. Using the same notation as in
the proof of Theorem 3.1, G ∗ G contains all rows of the form

(α
i+j
1 Gi ∗ Gj, . . . , α

i+j
q Gi ∗ Gj)

for i, j = 0, 1, . . . , s− 1. Note that if i + j ≥ q− 1 then αi+j = αi+j−q+1 and
hence we can consider i + j modulo q − 1. Thus if l ≤ q − 1 and i + j ≡
l (mod q − 1) we could write the coefficients in front of Gi ∗ Gj as αl

k for
k = 1, 2, . . . , n. Removing linearly dependent rows this results in a generator
matrix for a matrix-product code of the form

C∗2 = [ ∑
i+j=0

Ci ∗ Cj, ∑
i+j=1

Ci ∗ Cj, . . . , ∑
i+j=s̃−1

Ci ∗ Cj]Vq(s̃), (C.13)

where again i + j is considered modulo q− 1.

As we will show below, the fact that we obtain codes of the form ∑i+j=l Ci ∗Cj

is especially helpful for determining the parameters of C∗2 in some cases.
We remark that the same phenomenon occurs in the case of the (u, u + v)
construction but only if the codes Ci are nested.

Note also that C(Vq(s)i) (the linear code spanned by the first i rows of
Vq(s)) is a Reed Solomon code1 of length q− 1 and dimension i and hence
we have that d(C(Vq(s)i)) = q− i, for i = 1, 2, . . . , s. Applying Proposition
2.3 with Di = d(C(Vq(s)i+1)) = q− i− 1 and di = d(Ci) for i = 0, 1, . . . , s− 1
we obtain that C is a[

(q− 1)n, k0 + k1 + · · ·+ ks−1,≥ min
i∈{0,1,··· ,s−1}

{(q− i− 1)di}
]

q

linear code, and C∗2 has minimum distance greater than or equal to

min
l∈{0,1,··· ,s̃−1}

{
(q− l − 1)d

(
∑

i+j=l
Ci ∗ Cj

)}
. (C.14)

1A Reed-Solomon code is an MDS code meaning that it achieves the highest possible min-
imum distance for a given length and dimension. Thus the Di’s are maximal and hence we
obtain the best possible bound for the minimum distance we can hope for using the matrix-
product construction.

92



5. Other Matrix-Product Codes

Even though the expression in (C.13) may at first sight seem hard to work
with, this is not the case if the Ci’s come from some specific families of codes.
For example, Proposition 4.3 tells us that ∑i+j=l Ci ∗ Cj will again be a cyclic
code if the Ci’s are cyclic and we will be able to determine its generating set
from the generating sets of the Ci’s.

Additionally, one could consider the case where the Ci’s are Reed-Solomon
codes or more generally algebraic geometric codes. Let D = P1 + P2 +
· · · + Pn be a formal sum of rational places in a function field over Fq and
let Gi = ri,1Q1 + ri,2Q2 + · · · + ri,mQm where all the Qi’s and Pj’s are dif-
ferent. An algebraic geometric code Ci = CL(D, Gi) is the evaluation of
the elements in the Riemann-Roch space L(Gi) in the places from D. It is
then known that Ci ∗ Cj ⊆ CL(D, Gi + Gj) and Ci + Cj ⊆ CL(D, H), where
H = ∑m

k=1 max{ri,k, rj,k}Qk. Hence, we can find a lower bound for d(C∗2)
from (C.14) using the fact that from the above observations we can find al-
gebraic geometric codes containing ∑i+j=l Ci ∗ Cj where we can control the
minimum distance. Furthermore, if deg Gi ≥ 2g + 1 and deg Gj ≥ 2g, where
g is the genus of the function field, we obtain that CL(D, Gi) ∗ CL(D, Gj) =
CL(D, Gi + Gj), see for instance [7]. Similarly, if we only consider one-point
codes, meaning that Gi = riQ, we obtain that Ci ⊆ Cj if rj ≥ ri and hence
Ci + Cj = Cj. We exemplify some specific constructions with algebraic geo-
metric codes, more specific one-point Hermitian codes, in the following ex-
ample.

Example
We will not go into details about the Hermitian function field and codes, but we
do mention that the Hermitian function field is defined over Fq2 , it has genus g =
q(q−1)

2 , and it has q3 + 1 rational places, where one of these places is the place at
infinity. Denote the place at infinity by Q and the remaining rational places by Pi,

for i = 1, 2, . . . , q3, and let D = ∑
q3

i=1 Pi. Then a Hermitian code is given by the
algebraic geometric code Cr = CL(D, rQ). This is a [q3, r− g + 1, q3 − r]q2 code as
long as 2g ≤ r ≤ q3 − q2 − 1, see for instance [28]. Denote by

C(r, s) = [Cr+s−1, Cr+s−2, . . . , Cr]Vq2(s),

where 2 ≤ s ≤ q2

2 and 2g + 1 ≤ r. Furthermore, assume that r + s ≤ q3−q2+1
2 .

With such a construction we have that

(C(r, s))∗2 = [C2r+2s−2, C2r+2s−3, . . . , C2r]Vq2(2s− 1) = C(2r, 2s− 1) (C.15)

from the observations about algebraic geometric codes above the example. Note that
2r + 2s− 2 ≤ q3 − q2 − 1 implying that all the Hermitian codes in (C.15) satisfy

93



Paper C.

that their r is lower than q3 − q2 − 1. Hence,

d((C(r, s))∗2) = min
i=0,1...,2s−2

{(q2 − i− 1)(q3 − 2r− 2s + 2 + i)}

= (q2 − 2s + 1)(q3 − 2r),

where the last equality follows from the following observations:

(q2 − i− 1)(q3 − 2r− 2s + 2 + i)

= (q2 − 2s + 1 + (2s− 2− i))(q3 − 2r− (2s− 2− i))

= (q2 − 2s + 1)(q3 − 2r) + (2s− 2− i)(q3 − 2r− q2 + 2s− 2− 2s + 2 + i)

= (q2 − 2s + 1)(q3 − 2r) + (2s− 2− i)(q3 − q2 − 2r + i).

From the restrictions on r the last factor is positive. Hence, the minimum is attained
when i = 2s − 2. Similar arguments show that d(C(r, s)) = (q2 − s)(q3 − r).
Summing up, we have that C(r, s) has parameters[

q5 − q3, s
(

r− g +
s + 1

2

)
, (q2 − s)(q3 − r)

]
q2

and its square is the code C(2r, 2s− 1) with parameters[
q5 − q3, (2s− 1) (2r− g + s) , (q2 − 2s + 1)(q3 − 2r)

]
q2

.

The parameters of this construction for q = 4 can be found in Table C.2. J

Finally, we remark that the strategy used in the proof of Theorems 3.1 and
5.1 is more or less identical. Thus, such strategy may also be used for other
matrix-product codes. For example, we can consider the matrix-product
codes with defining matrix

MSp =

[(
p− i
j− 1

)
mod p

]
i,j=1,2,...,p

,

where p is a prime number. We remark that (n
k) = 0 if k > n and that

these matrix-product codes were also considered in [2]. We show that, as
for Theorems 3.1 and 5.1, we can express the square of such matrix-product
codes.

Theorem 5.3. Let p be a prime number and let C1 ⊇ C2 ⊇ · · · ⊇ Cp be linear
codes in Fn

q , where Fq has characteristic p. Denote C = [C1, C2, . . . , Cp]MSp and

MS∗p =

[(
p− i
j− 1

)(
p− 1
j− 1

)
mod p

]
i,j=1,2,...,p

.

Then

C∗2 = [ ∑
i+j=2

Ci ∗ Cj, ∑
i+j=3

Ci ∗ Cj, . . . , ∑
i+j=p+1

Ci ∗ Cj]MS∗p.

94



5. Other Matrix-Product Codes

Field size r s n k d k∗ d∗

16 13 2 960 17 714 66 494
16 16 2 960 23 672 84 416
16 19 2 960 29 630 102 338
16 22 2 960 35 588 120 260
16 13 4 960 38 612 168 342
16 16 4 960 50 576 210 288
16 19 4 960 62 540 252 234
16 13 6 960 63 510 286 190
16 16 6 960 81 480 352 160
16 13 7 960 77 459 351 114
16 16 7 960 98 432 429 96
16 13 8 960 92 408 420 38
16 16 8 960 116 384 510 32

Table C.2: Parameters for C(s, r) and (C(s, r))∗2 with the construction from Theorem 5.1 and
Hermitian codes. We use the notation k = dim(C(s, r)), k∗ = dim((C(s, r))∗2), d = d(C(s, r)),
and d∗ = d((C(s, r))∗2).

Proof. Let Gi be a generator matrix for Ci and let G be a generator matrix for
C. As in the previous proofs we construct G ∗G, the matrix whose rows span
C∗2. The rows in G ∗ G are given by[(

p−m
j− 1

)(
p− n
j− 1

)
Gm ∗ Gn

]
j=1,2,...,p

(C.16)

for 1 ≤ m ≤ n ≤ p. We remark that the codes are nested and hence we might
assume that rows in Gm ∗ Gn are also rows in Gi ∗ Gn when m ≥ i.

We will show that by doing row operations on G ∗ G we can obtain the
rows [(

p− 1
j− 1

)(
p−m− n + 1

j− 1

)
Gm ∗ Gn

]
j=1,2,...,p

. (C.17)

Notice that the coefficients only depends on m + n, so proving that we can
obtain (C.17) by row operations proves the theorem.

In order to obtain this, we note that we can replace the rows correspond-
ing to Gm ∗ Gn by any linear combination of the form

m

∑
i=1

ai

[(
p− i
j− 1

)(
p− n
j− 1

)
Gm ∗ Gn

]
j=1,2,...,p

. (C.18)

Here we have used that, as remarked in the beginning of the proof, rows
in Gm ∗ Gn are included in Gi ∗ Gn when i ≤ m and therefore the rows in the
linear combination given by (C.18) are included in those from (C.16).

95



Paper C.

Thus, in order to end the proof, we need to show that there exist coeffi-
cients ai ∈ Fq such that

m

∑
i=1

ai

(
p− i
j− 1

)(
p− n
j− 1

)
=

(
p− 1
j− 1

)(
p−m− n + 1

j− 1

)
, for j = 1, 2, . . . , p.

(C.19)

We observe that if (p−n
j−1 ) = 0 then (p−n−m+1

j−1 ) = 0. Hence, we only need to
prove that (C.19) holds for j− 1 ≤ p− n.

Now note that(
p− i
j− 1

)
=

(p− j)(p− j− 1) · · · (p− i− j + 2)
(p− 1)(p− 2) · · · (p− i + 1)

(
p− 1
j− 1

)
, and(

p−m− n + 1
j− 1

)
=

(p− n− j + 1)(p− n− j) · · · (p− n− j−m + 3)
(p− n)(p− n− 1) · · · (p− n−m + 2)

(
p− n
j− 1

)
Plugging this into (C.19) and dividing by (p−1

j−1)(
p−n
j−1 ) we see that

m

∑
i=1

ai

i−2

∏
k=0

p− j− k
p− 1− k

=
m−2

∏
k=0

p− n− j + 1− k
p− n− k

.

The right hand side can be considered as a degree m− 1 polynomial in the
variable j. The left hand side is a sum of ai times a polynomial of degree i− 1
in the variable j. Hence, there is a value am such that the coefficients of jm−1

on both sides coincide. If we set the value of am, we can then determine the
value of am−1 such that the coefficients of jm−2 coincide, and so on. In this
way we can inductively choose the ai’s such that (C.19) holds.

We remark that the condition that the codes are nested is essential in the
proof since otherwise the linear combination in (C.18) is not valid.

In summary, we have shown in this section that the squares of some of
the most well-known matrix-product codes are again matrix-product codes
of a form simple enough that we can relate their minimum distance to that
of the squares and products of the constituent codes (in some cases we need
those constituent codes to be nested). Furthermore, the strategies used in the
proofs from the different constructions are similar, which also suggests that
the same techniques may be used for showing similar results in the case of
other families of matrix-product codes.

A Products and Sums of Cyclic Codes

It is possible to describe a cyclic code as a subfield subcode of an evaluation
code. For a set M ⊆ {1, . . . , n− 1} and the extension field F = Fq(�) denote

96



A. Products and Sums of Cyclic Codes

by

P(M) =

{
∑

i∈M
aiXi | ai ∈ F

}
.

Furthermore, let evβ( f ) = ( f (1), f (β), . . . , f (βn−1)) and define

B(M) = {evβ( f ) | f ∈ P(M)} ⊆ Fn.

This is a linear code over F. We can obtain a linear code over Fq by taking
the subfield subcode B(M) ∩ Fn

q . Letting M = −I = {−i mod n | i ∈ I}, we
obtain the cyclic code with generating set I, i.e.

C(I) = B(−I) ∩Fn
q ,

see for instance Lemma 2.22 in [3]. We generalize Theorem 3.3 in [3], stating
that C(I)∗2 = C(I + I), to C(I1) ∗ C(I2) = C(I1 + I2) below. The proofs are
almost identical to the ones in [3].

Lemma A.1. Let I1 and I2 be cyclotomic cosets. Then

B(−I1) ∗ B(−I2) = B(−(I1 + I2)),

where I1 + I2 = {a + b mod n | a ∈ I1, b ∈ I2}.

Proof. We start by proving the inclusion B(−I1) ∗ B(−I2) ⊆ B(−(I1 + I2)).
Let v ∈ B(−I1) ∗ B(−I2). Then for f1 ∈ P(−I1) and f2 ∈ P(−I2), we have

v = evβ( f1) ∗ evβ( f2) = evβ( f1 f2).

Since f1 f2 ∈ P(−(I1 + I2)) the inclusion follows.
For the other inclusion, let w ∈ B(−(I1 + I2)). Then for

f = ∑
i∈−(I1+I2)

aiXi ∈ P(−(I1 + I2)),

where ai ∈ F, we have

w = evβ( f ) = ∑
i∈−(I1+I2)

aievβ(Xi).

Since i ∈ −(I1 + I2), there exists j ∈ −I1 and k ∈ −I2, such that Xi =
X jXk, and therefore evβ(Xi) = evβ(X j) ∗ evβ(Xk). Hence, w is an F-linear
combination of elements in B(−I1) ∗ B(−I2) showing that w ∈ B(−I1) ∗
B(−I2).

With this lemma, we are able to proof Proposition 4.3.

97



References

Proposition 4.3
Let I1 and I2 be unions of q-cyclotomic cosets, and let C(I1) and C(I2) be the corre-
sponding cyclic codes. Then

C(I1) + C(I2) = C(I1 ∪ I2),

C(I1) ∗ C(I2) = C(I1 + I2).

where I1 + I2 = {a + b mod n | a ∈ I1, b ∈ I2}. J

Proof. Let C̃ be the smallest linear code containing C(I1) and C(I2). Every
codeword c ∈ C̃ must be of the form a1c2 + a2c2, where a1, a2 ∈ Fq and
ci ∈ C(Ii). Now, let T be the function that do a cyclic shift. Then

T(c) = T(a1c1 + a2c2) = a1T(c1) + a2T(c2),

and since T(ci) ∈ C(Ii), we also have c ∈ C̃. Therefore, C̃ is cyclic. For C(Ii)
to be included in the cyclic code C̃ the generating polynomial g for C̃ must
divide gi, the generating polynomial for C(Ii). The smallest code, which
means the polynomial with highest degree, satisfying this is g = gcd(g1, g2).
This implies that C̃ = C(I1 ∪ I2).

To show the second equality, we start by noticing that B(−Ii) = C(Ii)F,
i.e. extending the code C(Ii) to scalars over F gives back B(−Ii). This is
shown in [3]. Additionally, we use Lemma 2.23(iii) in [26] implying that
C(I1)F ∗C(I2)F = (C(I1) ∗C(I2))F. Putting these two statements together we
obtain

C(I1) ∗ C(I2) = (C(I1) ∗ C(I2))F ∩Fn
q = (C(I1)F ∗ C(I2)F) ∩Fn

q

= (B(−I1) ∗ B(−I2)) ∩Fn
q = B(−(I1 + I2)) ∩Fn

q

= C(I1 + I2),

where we have used Lemma A.1 in the second to last step.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, ser. STOC ’88. ACM, 1988,
pp. 1–10.

[2] T. Blackmore and G. H. Norton, “Matrix-product codes over fq,” Applicable Alge-
bra in Engineering, Communication and Computing, vol. 12, no. 6, pp. 477–500, 12
2001.

[3] I. Cascudo, “On squares of cyclic codes,” IEEE Transactions on Information Theory,
vol. 65, no. 2, pp. 1034–1047, 02 2019.

98



References

[4] I. Cascudo, R. Cramer, D. Mirandola, and G. Zémor, “Squares of random linear
codes,” IEEE Transactions on Information Theory, vol. 61, pp. 1159 – 1173, 03 2015.

[5] I. Cascudo, I. B. Damgård, B. M. David, N. Döttling, R. Dowsley, and I. Gia-
comelli, “Efficient uc commitment extension with homomorphism for free (and
applications),” IACR Cryptology ePrint Archive, vol. 2018, p. 983, 2018.

[6] D. Chaum, C. Crépeau, and I. B. Damgård, “Multiparty unconditionally secure
protocols,” in Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, ser. STOC ’88. ACM, 1988, pp. 11–19.

[7] A. Couvreur, I. Márquez-Corbella, and R. Pellikaan, “Cryptanalysis of mceliece
cryptosystem based on algebraic geometry codes and their subcodes,” IEEE
Transactions on Information Theory, vol. 63, no. 8, pp. 5404–5418, Aug 2017.

[8] A. Couvreur, A. Otmani, and J.-P. Tillich, “Polynomial time attack on wild
mceliece over quadratic extensions,” IEEE Transactions on Information Theory,
vol. 63, no. 1, pp. 404–427, 01 2017.

[9] R. Cramer, I. B. Damgård, and U. Maurer, “General secure multi-party com-
putation from any linear secret-sharing scheme,” in Advances in Cryptology —
EUROCRYPT 2000. Springer Berlin Heidelberg, 2000, pp. 316–334.

[10] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

[11] I. B. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The tinytable proto-
col for 2-party secure computation, or: Gate-scrambling revisited,” in Advances
in Cryptology – CRYPTO 2017. Cham: Springer International Publishing, 2017,
pp. 167–187.

[12] I. B. Damgård and S. Zakarias, “Constant-overhead secure computation of
boolean circuits using preprocessing,” in Theory of Cryptography. Berlin, Hei-
delberg: Springer, 2013, pp. 621–641.

[13] I. M. Duursma and R. Kötter, “Error-locating pairs for cyclic codes,” IEEE Trans-
actions on Information Theory, vol. 40, pp. 1108 – 1121, 08 1994.

[14] T. K. Frederiksen, B. Pinkas, and A. Yanai, “Committed mpc,” in Public-Key Cryp-
tography – PKC 2018. Springer International Publishing, 2018, pp. 587–619.

[15] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private infor-
mation retrieval from coded databases with colluding servers,” SIAM Journal on
Applied Algebra and Geometry, vol. 1, no. 1, pp. 647–664, 2017.

[16] F. Hernando, K. Lally, and D. Ruano, “Construction and decoding of matrix-
product codes from nested codes,” Applicable Algebra in Engineering, Communica-
tion and Computing, vol. 20, no. 5, pp. 497–507, 10 2009.

[17] F. Hernando and D. Ruano, “New linear codes from matrix-product codes with
polynomial units,” Advances in Mathematics of Communications, vol. 4, p. 363, 2009.

[18] K. Lally and P. Fitzpatrick, “Algebraic structure of quasicyclic codes,” Discrete
Applied Mathematics, vol. 111, no. 1, pp. 157 – 175, 2001, coding and Cryptology.

[19] L. Minder and A. Shokrollahi, “Cryptanalysis of the sidelnikov cryptosystem,”
in Advances in Cryptology - EUROCRYPT 2007. Springer Berlin Heidelberg, 2007,
pp. 347–360.

99



References

[20] D. Mirandola and G. Zémor, “Critical pairs for the product singleton bound,”
IEEE Transactions on Information Theory, vol. 61, pp. 4928 – 4937, 06 2015.

[21] F. Özbudak and H. Stichtenoth, “Note on niederreiter-xing’s propagation rule
for linear codes,” Applicable Algebra in Engineering, Communication and Computing,
vol. 13, no. 1, pp. 53–56, 04 2002.

[22] R. Pellikaan, “On decoding by error location and dependent sets of error posi-
tions,” Discrete Mathematics, vol. 106-107, pp. 369 – 381, 1992.

[23] R. Pellikaan and I. Márquez-Corbella, “Error-correcting pairs for a public-key
cryptosystem,” Journal of Physics: Conference Series, vol. 855, 06 2017.

[24] H. Randriambololona, “Asymptotically good binary linear codes with asymp-
totically good self-intersection spans,” IEEE Transactions on Information Theory,
vol. 59, pp. 3038 – 3045, 05 2013.

[25] H. Randriambololona, “An upper bound of singleton type for componentwise
products of linear codes,” IEEE Transactions on Information Theory, vol. 59, pp.
7936 – 7939, 09 2013.

[26] H. Randriambololona, “On products and powers of linear codes under compo-
nentwise multiplication,” Contemporary Math., vol. 637, 04 2015.

[27] C. Wieschebrink, “Cryptanalysis of the niederreiter public key scheme based on
grs subcodes,” in Post-Quantum Cryptography. Springer Berlin Heidelberg, 2010,
pp. 61–72.

[28] K. Yang and P. V. Kumar, “On the true minimum distance of hermitian codes,”
in Coding Theory and Algebraic Geometry. Springer Berlin Heidelberg, 1992, pp.
99–107.

100



Paper D

A Secret-Sharing Based MPC Protocol for Boolean
Circuits with Good Amortized Complexity

Ignacio Cascudo and Jaron Skovsted Gundersen

The paper will be presented at the 18th Theory of Cryptography Conference
2020 and will be published in

Lecture Notes in Computer Science.



© IACR 2020
The layout has been revised.



1. Introduction

Abstract

We present a new secure multiparty computation protocol in the preprocessing model
that allows for the evaluation of a number of instances of a boolean circuit in parallel,
with a small online communication complexity per instance of 10 bits per party and
multiplication gate. Our protocol is secure against an active dishonest majority, and
can also be transformed, via existing techniques, into a protocol for the evaluation of
a single “well-formed” boolean circuit with the same complexity per multiplication
gate at the cost of some overhead that depends on the topology of the circuit.

Our protocol uses an approach introduced recently in the setting of honest ma-
jority and information-theoretical security which, using an algebraic notion called
reverse multiplication friendly embeddings, essentially transforms a batch of eva-
luations of an arithmetic circuit over a small field into one evaluation of another
arithmetic circuit over a larger field. To obtain security against a dishonest majority
we combine this approach with the well-known SPDZ protocol that operates over a
large field. Structurally our protocol is most similar to MiniMAC, a protocol which
bases its security on the use of error-correcting codes, but our protocol has a commu-
nication complexity which is half of that of MiniMAC when the best available binary
codes are used. With respect to certain variant of MiniMAC that utilizes codes over
larger fields, our communication complexity is slightly worse; however, that vari-
ant of MiniMAC needs a much larger preprocessing than ours. We also show that
our protocol also has smaller amortized communication complexity than Committed
MPC, a protocol for general fields based on homomorphic commitments, if we use the
best available constructions for those commitments. Finally, we construct a prepro-
cessing phase from oblivious transfer based on ideas from MASCOT and Committed
MPC.

1 Introduction

The area of secure multiparty computation (MPC) studies how to design
protocols that allow for a number of parties to jointly perform computations
on private inputs in such a way that each party learns a private output, but
nothing else than that. In the last decade efficient MPC protocols have been
developed that can be used in practical applications.

In this work we focus on secret-sharing based MPC protocols, which are
among the most used in practice. In secret-sharing based MPC, the target
computation is represented as an arithmetic circuit consisting of sum and
multiplication gates over some algebraic ring; each party initially shares her
input among the set of parties, and the protocol proceeds gate by gate, where
at every gate a sharing of the output of the gate is created; in this manner
eventually parties obtain shares of the output of the computation, which can
then be reconstructed.

103



Paper D.

A common practice is to use the preprocessing model, where the com-
putation is divided in two stages: a preprocessing phase, that is completely
independent from the inputs and whose purpose is to distribute some corre-
lated randomness among the parties; and an online phase, where the actual
computation is performed with the help of the preprocessing data. This ap-
proach allows for pushing much of the complexity of the protocol into the
preprocessing phase and having very efficient online computations in return.

Some secret sharing based MPC protocols obtain security against any
static adversary which actively corrupts all but one of the parties in the com-
putation, assuming that the adversary is computationally bounded. Since
in the active setting corrupted parties can arbitrarily deviate from the proto-
col, some kind of mechanism is needed to detect such malicious behaviour,
and one possibility is the use of information-theoretic MACs to authenticate
the secret shared data, which is used in protocols such as BeDOZa [3] and
SPDZ [14].

In SPDZ this works as follows: the computation to be performed is given
by an arithmetic circuit over a large finite field F. There is a global key α ∈ F

which is secret shared among the parties. Then for every value x ∈ F in the
computation, parties obtain not only additive shares for that value, but also
for the product α · x which acts as a MAC for x. The idea is that if a set of
corrupt parties change their shares and pretend that this value is x + e, for
some nonzero error e, then they would also need to guess the correction value
α · e for the MAC, which amounts to guessing α since F is a field. In turn this
happens with probability 1/|F| which is small when the field is large.

The problem is that over small fields the cheating success probability
1/|F| is large. While one can take a large enough extension field L of F

(e.g. if F = F2, then L could be the field of 2s elements) and embed the
whole computation into L, this looks wasteful as communication is blown
up by a factor of s.

An alternative was proposed in MiniMAC [15]. MiniMAC uses a batch
authentication idea: if we are willing to simultaneously compute k instances
of the same arithmetic circuit over a small field at once, we can bundle these
computations together and see them as a computation of an arithmetic circuit
over the ring Fk, where the sum and multiplication operations are considered
coordinatewise. Note the same authentication technique as in SPDZ does not
directly work over this ring (if |F| is small): if we define the MAC of a data
vector x in Fk to be α ∗ x where the key α is now also a vector in Fk and ∗ is
the coordinatewise product, the adversary can introduce an error in a single
coordinate with probability 1/|F|. Instead, MiniMAC first encodes every
vector x as a larger vector C(x) by means of a linear error-correcting code C
with large minimum distance d, and then defines the MAC as α ∗ C(x). Now
introducing an error requires to change at least d coordinates of C(x) and the
MAC can be fooled with probability only 1/|F|d. However, when processing

104



1. Introduction

multiplication gates, the minimum distance d∗ of the so-called Schur square
code C∗ also needs to be large. These requirements on the minimum distance
of these two codes have an effect on the communication overhead of the
protocol, because the larger d and d∗ are, the worse the relation between the
length of messages and the length of the encoding.

This same article shows how to adapt this technique for computing a
single boolean “well-formed” circuit while retaining the efficiency advantages
of the batch simultaneous computation of k circuits. The idea is that if the
target boolean circuit is structured into layers of addition and multiplication
gates, where each layer has a large number of gates and its inputs are outputs
of previous layers, then we can organize them into blocks of k gates of the
same type, which can be computed using the above method. We then need
an additional step that directs each block of outputs of a layer into the right
block of inputs of next layers; this uses some additional preprocessed random
sharings, and some openings, which slightly increases the communication
complexity of the protocol.

In this paper, we explore an alternative to the error-correcting codes ap-
proach from MiniMAC, using an idea recently introduced in the honest ma-
jority, information-theoretically secure setting [8]. The point is that we can
embed the ring Fk

q in some extension field of Fq in such a way that we can
make the operations of both algebraic structures, and in particular the prod-
ucts (in one case the coordinatewise product, in the other the product in
the extension field), “somewhat compatible”: i.e., we map Fk

q into a slightly
larger field Fqm with some dedicated linear “embedding” map φ, that satisfies
that for any two vectors x, y in Fk

q the field product φ(x) · φ(y) contains all in-
formation about x ∗ y, in fact there exists a “recovery” linear map ψ such that
x ∗ y = ψ(φ(x) · φ(y)). The pair (φ, ψ) is called a (k, m)-reverse multiplication
friendly embedding (RMFE) and was introduced in [5, 8]. With such tool, [8]
embeds k evaluations of a circuit over Fq (i.e. an evaluation of an arith-
metic circuit over Fk

q with coordinatewise operations) into one evaluation of
a related circuit over Fqm , which is securely computed via an information-
theoretically secure MPC protocol for arithmetic circuits over that larger field
(more precisely the Beerliova-Hirt protocol [2]). The use of that MPC protocol
over Fqm is not black-box, however, as there are a number of modifications
that need to be done at multiplication and input gates, for which certain ad-
ditional correlated information has to be created in the preprocessing phase.
Note that the reason for introducing this technique was that Beerliova-Hirt
uses Shamir secret sharing schemes and hyperinvertible matrices, two tools
that are only available over large finite fields (larger than the number of par-
ties in the protocol).

105



Paper D.

1.1 Our Contributions

In this paper we construct a new secure computation protocol in the dis-
honest majority setting that allows to compute several instances of a boolean
circuit at an amortized cost.1 We do this by combining the embedding tech-
niques from [8] with the SPDZ methodology. As opposed to [8], where one
of the points of the embedding was precisely to use Shamir secret sharing, in
our construction vectors x ∈ Fk

2 are still additively shared in Fk
2, and it is only

the MACs which are constructed and shared in the field F2m : the MAC of x
will be α · φ(x) where φ is the embedding map from the RMFE. Only when
processing a multiplication gate, authenticated sharings where the data are
shared as elements in F2m are temporarily used. MACs are checked in a
batched fashion at the output gate, at which point the protocol aborts if dis-
crepancies are found.

By this method we obtain a very efficient online phase where processing
multiplication gates need each party to communicate around 10 bits2 per
evaluation of the circuit, for statistical security parameters like s = 64, 128
(meaning the adversary can successfully cheat with probability at most 2−s,
for which in our protocols we need to set m ≥ s).

Our protocol can also be adapted to evaluating a single instance of a
boolean circuit by quite directly adapting the ideas in MiniMAC that we
mentioned above, based on organizing the circuit in layers, partitioning the
layers in blocks of gates and adding some preprocessing that allows to map
each block into the appropriate one in the next layer. The reason is that the
maps used between layers of gates are F2-linear, and essentially all we need
to use is the F2-linearity of the map φ from the RMFE. The actual complex-
ity added by this transformation is quite dependent on the topology of the
circuit. Under some general assumptions one can expect to add 2 bits of
communication per gate.

Our online phase follows a similar pattern to MiniMAC in the sense that,
up to the output phase, every partial opening of a value in Fk

2 takes place
when a partial opening of a C-encoding occurs in MiniMAC. Respectively,
we need to open values in F2m whenever MiniMAC opens C∗-encodings. At
every multiplication gate, both protocols need to apply “re-encoding func-
tions” to convert encodings back to the base authentication scheme, which
requires a preprocessed pair of authenticated sharings of random correlated
elements.

However, the encoding via RMFE we are using is more compact than the
one in MiniMAC; the comparison boils down to comparing the “expansion

1Our ideas can be extended to arithmetic circuits over other small fields.
2Here we assume that broadcasting messages of M bits requires to send M bits to every other

player, which one can achieve with small overhead that vanishes for large messages [14, full
version]

106



1. Introduction

factor” m/k of RMFEs with the ratio k∗/k between the dimensions of C∗ and
C for the best binary codes with good distances of C∗ [7]. We cut the commu-
nication cost of multiplication gates by about half with respect to MiniMAC
where those binary codes are used. We achieve even better savings in the
case of the output gates since in this case MiniMAC needs to communicate
full vectors of the same length as the code, while the input and addition gates
have the same cost.

We also compare the results with a modified version of MiniMAC pro-
posed by Damgård, Lauritsen and Toft [13], that allows to save communica-
tion cost of multiplication gates, by essentially using MiniMAC over the field
of 256 elements, at the cost of a much larger amount of preprocessing that
essentially provides authenticated sharings of bit decompositions of the F256-
coordinates of the elements in a triple, so that parties can compute bitwise
operations. This version achieves a communication complexity that is around
80% of that of our protocol, due to the fact that this construction can make
use of Reed-Solomon codes. However, it requires to have created authenti-
cated sharings of 19 elements, while ours need 5 and as far as we know there
is no explicit preprocessing protocol that has been proposed for this version
of MiniMAC.

Finally we compare the results with Committed MPC [16], a secret-sharing
based protocol which uses (UC-secure) homomorphic commitments for au-
thentication, rather than information-theoretical MACs. In particular, this
protocol can also be used for boolean circuits, given that efficient construc-
tions of homomorphic commitments [9, 10, 17] over F2 have been proposed.
These constructions of homomorphic commitments also use error-correcting
codes. We find that, again, the smaller expansion m/k of RMFE compared to
the relations between the parameters for binary error-correcting codes pro-
vides an improvement in the communication complexity of a factor ∼ 3 for
security parameters s = 64, 128.

We also provide a preprocessing phase producing all authenticated shar-
ings of random correlated data that we need. The preprocessing follows the
steps of MASCOT [19] (see also [18]) based on OT extension, with some modi-
fications due to the slightly different authentication mechanisms we have and
the different format of our preprocessing. All these modifications are easily
to carry out based on the fact that φ and ψ are linear maps over F2. Never-
theless, using the “triple sacrificing steps” from MASCOT that assure that
preprocessed triples are not malformed presents problems in our case for
technical reasons. Instead, we use the techniques from Committed MPC [16]
in that part of the triple generation.

107



Paper D.

1.2 Related Work

The use of information-theoretical MACs in secret-sharing based multiparty
computation dates back to BeDOZa (Bendlin et al., [3]), where such MACs
where established between every pair of players. Later SPDZ (Damgård et
al., [14]) introduced the strategy consisting of a global MAC for every ele-
ment of which every party has a share, and whose key is likewise shared
among parties. Tiny OT (Nielsen et al., [21]), a 2-party protocol for bi-
nary circuits, introduced the idea of using OT extension in the preprocess-
ing phase. Larraia et al., [20] extended these ideas to a multi-party proto-
col by using the SPDZ global shared MAC approach. MiniMAC (Damgård
and Zakarias, [15]), as explained above, used error-correcting codes in order
to authenticate vectors of bits, allowing for efficient parallel computation of
several evaluations of the same binary circuits on possibly different inputs.
Damgård et al., [13] proposed several improvements for the implementation
of MiniMAC, among them the use of an error correcting code over an exten-
sion field, trading smaller communication complexity for a larger amount of
preprocessing. Frederiksen et al., [18] gave new protocols for the construction
of preprocessed multiplication triples in fields of characteristic two, based on
OT extension, and in particular provided the first preprocessing phase for
MiniMAC. MASCOT (Keller et al., [19]) built on some of these ideas to create
preprocessing protocols for SPDZ based on OT extension. Committed MPC
(Frederiksen et al., [16]) is a secret-sharing based secure computation protocol
that relies on UC-secure homomorphic commitments instead of homomor-
phic MACs for authentication, but other than that, it follows a similar pattern
to the protocols above. Efficient constructions of UC-secure homomorphic
commitments from OT have been proposed by Frederiksen et al., [17] and
Cascudo et al., [10] based on error correcting codes. Later, in [9] a modi-
fied construction from extractable commitments, still using error-correcting
codes, was proposed that presents an important advantage for its use in Com-
mitted MPC, namely the commitment schemes are multi-verifier.

The notion of reverse multiplication friendly embedding was first expli-
citly defined and studied in the context of secure computation by Cascudo et
al. in [8] and independently by Block et al. in [5]. The former work is in the
context of information-theoretically secure protocols, while the latter studied
2-party protocols over small fields where the assumed resource is OLE over
an extension field. This is partially based on a previous work also by Block
et al., [4] where (asymptotically less efficient) constructions of RMFEs were
implicitly used.

108



2. Preliminaries

2 Preliminaries

Let Fq denote a finite fields with q elements. Vectors are denoted with bold
letters as x = (x1, x2, . . . , xn) and componentwise products of two vectors
are denoted by x ∗ y = (x1 · y1, x2 · y2, . . . , xn · yn). Fixing an irreducible
polynomial f of degree m in Fq[X], elements in the field Fqm with qm el-
ements can be represented as polynomials in Fq[X] with degree m − 1, i.e
α = α0 + α1 · X + · · · + αm−1 · Xm−1 ∈ Fqm , where αi ∈ Fq. The sums and
products of elements are defined modulo f .

In our protocols we will assume a network of n parties who communicate
by secure point-to-point channels, and an static adversary who can actively
corrupt up to n − 1 of these parties. Our proofs will be in the universal
composable security model [6].

We recall the notion of reverse multiplication friendly embeddings from
[8].

Definition 2.1. Let k, m ∈ Z+. A pair of Fq-linear maps (φ, ψ), where φ : Fk
q →

Fqm and ψ : Fqm → Fk
q is called a (k, m)q-reverse multiplication friendly embedding

(RMFE) if for all x, y ∈ Fk
q

x ∗ y = ψ(φ(x) · φ(y))

In other words, this tool allows to multiply coordinatewise two vectors over
Fq by first embedding them in a larger field with φ, multiplying the resulting
images and mapping the result back to a vector over Fq with the other map
ψ.

Several results about the existence of such pairs can be found in [8], both
in the asymptotic and concrete settings. For our results we will only need
the following construction, which can be obtained via simple interpolation
techniques:

Theorem 2.2 ( [8]). For all r ≤ 33, there exists a (3r, 10r− 5)2 -RMFE.

However, we remark that for implementations, it might be more useful to
consider the following constructions of RMFEs which can also be deduced
from the general framework in [8] (also based on polynomial interpolation).
They have worse rate k/m than those in Theorem 2.2, but they have the
advantage that their image can be in a field of degree a power of two, e.g.
Fqm = F264 or F2128 .

Theorem 2.3. For any r ≤ 16, there exists a (2r, 8r)2-RMFE.3

3Specifically the result is obtained by noticing that the proof of Lemma 4 in [8] can also be
used to show the existence of (k, 2k)q-RMFE for any q ≤ k + 1, and then composing (2, 4)2 and
(r, 2r)16-RMFEs in the manner of Lemma 5 in the same paper.

109



Paper D.

For our numerical comparisons we will mainly consider the constructions
with better rate in Theorem 2.2 and point out that, should one want to use
Theorem 2.3 instead, then some small overhead in communication is intro-
duced.

It is important to understand some properties and limitations of the RM-
FEs. Because φ and ψ are Fq-linear then

φ(x + y) = φ(x) + φ(y), ψ(x + y) = ψ(x) + ψ(y)

holds for all x, y ∈ Fk
q and x, y ∈ Fqm . However, for example

φ(x ∗ y) 6= φ(x) · φ(y)

in general. Likewise we will need to take into account that the composition
φ ◦ ψ : Fqm → Fqm is a linear map over Fq but not over Fqm . Therefore

(φ ◦ ψ)(x + y) = (φ ◦ ψ)(x) + (φ ◦ ψ)(y) for all x, y ∈ Fqm , but

(φ ◦ ψ)(α · x) 6= α · (φ ◦ ψ)(x)

for α, x ∈ Fqm in general (it does hold when α ∈ Fq, but this is not too
relevant).

These limitations on the algebra of φ and ψ posed certain obstacles in the
information-theoretical setting [8], since processing multiplication gates re-
quired to compute gates given by the map φ ◦ ψ, and this cannot be treated
as a simple linear gate over Fqm . The additivity of φ ◦ ψ combined with cer-
tain involved preprocessing techniques saved the day there. For completion
(and comparison to our paper) we sum up some of the main details of [8]
in the full version of this paper [11]. In our case, we will again encounter
problems caused by these limitations as we explain next, but can solve them
in a different way.

3 The Online Phase

In this section we present our protocol for computing simultaneously k in-
stances of a boolean circuit in parallel, which we can see as computing one
instance of an arithmetic circuit over the ring Fk

2 of length k boolean vectors
with coordinatewise sum and product.

Our strategy is to have mixed authenticated sharings: inputs and the rest
of values in the computation x are additively shared as vectors over Fk

2 (we
refer to this as data shares), but their MACs are elements α · φ(x) in the larger
field F2m , where α ∈ F2m is (as in SPDZ) a global key that is additively shared
among the parties from the beginning (with α(i) denoting the share for party

110



3. The Online Phase

Pi), and parties hold additive shares of α · φ(x) also in the field F2m (the MAC
shares). We will denote the authentication of x by 〈x〉. That is

〈x〉 =
(
(x(1), x(2), . . . , x(n)), (m(1)(x), m(2)(x), . . . , m(n)(x))

)
where each party Pi holds an additive share x(i) ∈ Fk

2 and a MAC share
m(i)(x) ∈ F2m , such that ∑n

i=1 m(i)(x) = α ·∑n
i=1 φ(x(i)) = α · φ(x).

The additivity of φ guarantees that additions can still be computed locally,
and we can define 〈x〉+ 〈y〉 = 〈x + y〉 where every party just adds up their
shares for both values. Moreover, given a public vector a and 〈x〉, parties can
also locally compute an authenticated sharing of a + x as

a + 〈x〉 =
(
(x(1) + a,x(2), . . . ,x(n)),

(α(1) · φ(a) + m(1)(x), . . . ,α(n) · φ(a) + m(n)(x))
)

This allows to easily process addition with constants. Moreover, this also
allows us to explain how inputs are shared in the first place. In the pre-
processing phase parties have created for each input gate an authenticated
random values 〈r〉 where r is known to the party that will provide the input
x at that gate. This party can just broadcast the difference ε = x− r, and then
parties simply add ε + 〈r〉 = 〈x〉 by the rule above.

As in SPDZ, parties in our protocol do not need to open any MAC until
the output gate. At the output gate, the parties check MACs on random linear
combinations of all values partially opened during the protocol, ensuring that
parties have not cheated except with probability at most 2−m (we need that
m ≥ s if s is the statistical security parameter); then, they open the result of
the computation and also check that the MAC of the result is correct.

A harder question, as usual, is how to process multiplication gates; given
〈x〉, 〈y〉 parties need to compute 〈x ∗ y〉 which implies not only obtaining an
additive sharing of x ∗ y but also of its MAC α · φ(x ∗ y). If we try to apply
directly the well-known Beaver’s technique [1] we encounter the following
problem. Suppose we have obtained a random triple 〈a〉,〈b〉,〈a ∗ b〉 from
the preprocessing phase and, proceeding as usual, parties partially open the
values ε = x− a, δ = y− b (a partially opening is an opening of the shares
but not the MAC shares). From here, computing data shares for x ∗ y is easy;
however, the obstacle lies in computing shares of α · φ(x ∗ y). Indeed

α · φ(x ∗ y) = α · φ(a ∗ b) + α · φ(a ∗ δ) + α · φ(ε ∗ b) + α · φ(ε ∗ δ),

and the two terms in the middle present a problem: for example for α · φ(a ∗
δ) we have by the properties of the RMFE

α · φ(a ∗ δ) = α · φ(ψ(φ(a) · φ(δ))) = α · (φ ◦ ψ)(φ(a) · φ(δ))

111



Paper D.

However, φ ◦ ψ is only F2-linear, and not F2m -linear, so we cannot just
“take α inside the argument” and use the additive sharing of α · φ(a) given
in 〈a〉 to compute a sharing of the expression above. Instead, we use a two-
step process to compute multiplication gates, for which we need to introduce
regular SPDZ sharings on elements x ∈ F2m . I.e. both x and its MAC α · x are
additively shared in F2m . We denote these by [x], that is

[x] =
(
(x(1),x(2), . . . ,x(n)),(m(1)(x),m(2)(x), . . . ,m(n)(x))

)
,

where Pi will hold x(i) and m(i)(x) ∈ F2m with ∑n
i=1 m(i)(x) = α ·∑n

i=1 x(i).
To carry out the multiplication we need to preprocess a triple (〈a〉,〈b〉,〈c〉)

where c = a ∗ b, and a pair of the form (〈ψ(r)〉, [r]) where r is a random ele-
ment in F2m . In the first step of the multiplication we compute and partially
open

[σ] = [φ(x) · φ(y)− φ(a) · φ(b)− r]. (D.1)

This can be computed from the ε and δ described above (details will be given
later). In the second step, we create 〈x ∗ y〉 from (D.1) by using the properties
of the RMFE; namely, x ∗ y = ψ(φ(x) · φ(y)) and a ∗ b = ψ(φ(a) · φ(b)), so
applying ψ on σ in (D.1) yields x ∗ y− a ∗ b− ψ(r) because of the additivity
of ψ. Adding 〈a ∗ b〉+ 〈ψ(r)〉 (the yet unused preprocessed elements) gives
〈x ∗ y〉.

We still need to explain how to construct [σ]. For this we introduce some
algebraic operations on the two types of authenticated sharings and public
values. First given a public vector a and a shared vector x we define:

a ∗ 〈x〉 =
(
(φ(a) · φ(x(1)), . . . ,φ(a) · φ(x(n))),(φ(a) ·m(1)(x), . . . ,φ(a) ·m(n)(x))

)
Note that the data shares are shares of φ(a) · φ(x), which is an element of
F2m , and the MAC shares also correspond to additive shares of α · φ(a) · φ(x).
However, the data shares are not distributed uniformly in F2m because φ is
not surjective, so one cannot say this equals [φ(a) · φ(x)]. Nevertheless, given
another [z], with z ∈ F2m , it is true that a ∗ 〈x〉+ [z] = [φ(a) · φ(x) + z] where
the sum on the left is defined by just local addition of the data and MAC
shares. We also define

〈x〉+ [y] =
(
(φ(x(1)) + y(1), . . . ,φ(x(n)) + y(n)),

(m(1)(x) + m(1)(y), . . . ,m(n)(x) + m(n)(y))
)
= [φ(x) + y]

112



3. The Online Phase

Now, given 〈x〉,〈y〉 and a triple 〈a〉,〈b〉,〈a ∗ b〉, parties can open ε = x− a,
δ = y− b and construct

ε∗〈y〉+δ∗〈x〉−φ(ε) ·φ(δ)− [r] = [φ(ε) ·φ(y)+φ(δ) ·φ(x)−φ(ε) ·φ(δ)− r]

= [φ(x) ·φ(y)− φ(a) ·φ(b)− r],

where the latter equality can be seen by developing the expressions for ε and
δ, and using the additivity of φ. The obtained sharing is the [σ] we needed
above . Summing up, the whole multiplication gate costs 2 openings of shar-
ings of vectors in Fk

2 and one opening of a share of an element in F2m . Ev-
ery multiplication gate requires fresh preprocessed correlated authenticated
sharings (〈a〉,〈b〉,〈a ∗ b〉) and (〈ψ(r)〉, [r]) for random a,b,r.

We present formally the online protocol we just explained, the function-
ality it implements, and the functionalities needed from preprocessing. The
functionality constructing the required preprocessed randomness is given in
Figure D.2, and relies on the authentication functionality in Figure D.1. The
latter augments the one in MASCOT [19] allowing to also authenticate vec-
tors and to compute linear combinations involving the two different types
of authenticated values and which can be realized by means of the [·]- and
〈·〉-sharings.

The functionality for our MPC protocol is in Figure D.3 and the protocol
implementing the online phase is in Figure D.4.

Theorem 3.1. ΠOnline securely implements FMPC in the FPrep-hybrid model.

Proof. The correctness follows from the explanation above. For more details
we refer to the full version, but we also note that the online phase from this
protocol is similar to the online phases of protocols such as [14–16, 19], except
that in every multiplication we additionally need to use the pair (〈ψ(r)〉, [r])
in order to transform a [·]-sharing into 〈x ∗ y〉. However, since r is uniformly
random in the field F2m , the opened value σ masks any information on x, y.

3.1 Comparison with MiniMAC and Committed MPC

We compare the communication complexity of our online phase with that
of MiniMAC [15] and Committed MPC [16], two secret-sharing based MPC
protocols which are well-suited for simultaneously evaluating k instances of
the same boolean circuit. We will count broadcasting a message of M bits
as communicating M(n − 1) bits (M bits to each other party). This can be
achieved using point-to-point channels as described in the full version of [14].

113



Paper D.

Functionality FAuth
The functionality maintains two dictionaries Val and ValField, to keep track of authenticated
values. We remark that we can store elements from Fk

2 in Val and elements from F2m in ValField.
Entries in the dictionaries cannot be changed.

1. Input: On input

(Input,(id1, id2, . . . ids),(id′1, id′2, . . . id′t),(x1,x2, . . . ,xs),(x1,x2, . . . ,xt),Pi)

from Pi and (Input,(id1, id2, . . . ids),(id′1, id′2, . . . id′t),Pi) from all other parties, set Val[idj] =

xj for j = 1,2, . . . ,s and ValField[id′j] = xj for j = 1,2, . . . ,t.

2. Add: On input (Add, ¯id,id,a)) from all parties. If a is an id store Val[ ¯id] = Val[id] +Val[a].
If a is a vector in Fk

2 store Val[ ¯id] = Val[id] + a.

3. LinComb: On input

(LinComb, ¯id,(id1, id2, . . . ids),(id′1, id′2, . . . id′t),a1,a2, . . . ,as+t,a)

from all parties, where aj is in F2m or Fk
2 and t ≥ 1. Define ãj to be aj if aj ∈ F2m , and

φ(aj) if aj ∈ Fk
2, and store ValField[ ¯id] = ∑s

j=1 ãj · φ(Val[idj]) +∑t
j=1 ãs+j ·ValField[id′j] + ã.

4. Open: On input (Open,Dict,id,S) from all parties, where S is a non-empty subset of
parties. If Dict = Val and Val[id] 6= ⊥ wait for an x from the adversary and send x to
the honest parties in S. If Dict = ValField and ValField[id] 6= ⊥ wait for an x from the
adversary and send x to the parties in S.

5. Check: On input

(Check,(id1, id2, . . . , ids),(id′1, id′2, . . . , id′t),(x1,x2, . . . ,xs),(x1,x2, . . . ,xt))

from every party wait for an input from the adversary. If they input OK, Val[idj] = xj for
j = 1,2, . . . ,s and ValField[id′j] = xj for j = 1,2, . . . ,t return OK to all parties. Otherwise
abort.

Notation: We will use the notation 〈x〉 to refer to a value x ∈ Fk
2 stored in Val, and the notation

[x] to refer to a value x ∈ F2m stored in ValField.

Fig. D.1: Functionality – Authentication

Functionality FPrep
This functionality has the same features as FAuth along with the following commands.

1. InputPair: On input (InputPair,id,Pi) from all parties let Pi choose r ∈ Fk
2 at random and

call FAuth with input (Input,id,r,Pi) to obtain 〈r〉. Output 〈r〉 to all parties and r to Pi .

2. ReEncodePair: On input (ReEncodePair,id1, id2) sample a random field element r ∈ F2m

and set Val[id1] = ψ(r) and ValField[id2] = r.

3. Triple: On input (Triple,ida, idb, idc) from all parties, sample two random vectors a,b ∈
Fk

2 and set (Val[ida],Val[idb],Val[idc]) = (a,b,a ∗ b).

Fig. D.2: Functionality – Preprocessing

Communication complexity of our protocol.

Partially opening a 〈·〉-authenticated secret involves 2k(n − 1) bits of com-
munication, since we have one selected party receive the share of each other

114



3. The Online Phase

Functionality FMPC

1. Initialize: On input Init from all players setup an empty dictionary Val.

2. Input: On input (Input,id,x,Pi) from Pi and (Input,id,Pi) from all other parties where
x ∈ Fk

2 and Val[id] = ⊥ set Val[id] = x.

3. Add: On input (Add,id1, id2, id3) from all parties where Val[id1] 6= ⊥ and Val[id2] 6= ⊥,
set Val[id3] = Val[id1] + Val[id2].

4. Multiply: On input (Mult,id1, id2, id3) from all parties where Val[id1] 6= ⊥ and Val[id2] 6=
⊥, set Val[id3] = Val[id1] ∗Val[id2].

5. Output: On input (Output,id) from all parties when Val[id] 6= ⊥ retrieve z = Val[id] and
send z to the adversary. Wait for an input from the adversary, if the adversary inputs OK
send z to the honest parties. Otherwise abort.

Fig. D.3: Functionality – MPC

Protocol ΠOnline

1. Initialize: The parties call the preprocessing functionality FPrep to obtain input pairs
(r,〈r〉) for each party, re-encode pairs (〈ψ(r)〉, [r]), and multiplication triples (〈a〉,〈b〉,〈c〉).

2. Input: For an input gate for which Pi has input x ∈ Fk
2 the parties do the following

(a) Pi takes a pair (r,〈r〉) and broadcasts ε = x− r.

(b) The parties compute 〈x〉 = ε + 〈r〉.

3. Add: To compute componentwise addition of 〈x〉 and 〈y〉 the parties locally compute
〈x + y〉 = 〈x〉+ 〈y〉.

4. Multiply: To compute a componentwise multiplication of 〈x〉 and 〈y〉, take the next
available multiplication triple (〈a〉,〈b〉,〈c〉) and pair (〈ψ(r)〉, [r]).

(a) Set 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 and partially open ε and δ.

(b) Compute [σ] = ε ∗ 〈y〉+ δ ∗ 〈x〉 − φ(ε) · φ(δ)− [r] = [φ(x) · φ(y)− φ(a) · φ(b)− r]
and partially open σ.

(c) Compute ψ(σ) + 〈c〉+ 〈ψ(r)〉 = 〈x ∗ y〉 and output this value.

5. Output: This stage is entered when the players have an unopened sharing 〈z〉 which they
want to output. Let x1,x2, . . . ,xs be all opened 〈·〉-sharings, i.e. xj ∈ Fk

2 and let x1,x2, . . . ,xt
be all opened [·]-sharings, i.e. xj ∈ F2m . The parties do the following:

(a) Call FAuth.Check with inputs (x1,x2, . . . ,xs) and (x1,x2, . . . ,xt).

(b) If the check passes, partially open z.

(c) Call FAuth.Check with input z

(d) If the check passes, output z to all parties.

Fig. D.4: Online phase

party and broadcast the reconstructed value. Likewise, partially opening a
[·]-authenticated value communicates 2m(n − 1) bits. In our online phase,

115



Paper D.

every input gate requires k(n − 1) bits of communication. Multiplication
gates require the partial opening of two 〈·〉-authenticated values and one
[·]-authenticated value, hence (4k + 2m)(n − 1) bits of communication. An
output gate requires to do a MAC-check on (a linear combination of) previ-
ously partially opened values, then partially opening the output, and finally
doing a MAC check on the output. A MAC check require every party to com-
municate a MAC share in F2m , for a total of mn bits communicated. Hence
output gates require 2k(n− 1) + 2mn bits of communication.

MiniMAC.

MiniMAC uses a linear error correcting code C with parameters [`,k,d] (i.e., it
allows for encoding of messages from Fk

2 into F`
2 and has minimum distance

d). Parties have additive shares of encodings C(x), where the shares are also
codewords, and shares of the MAC α ∗ C(x), which can be arbitrary vectors
in F`

2. In addition, at multiplication gates C∗-encodings of information are
needed, where C∗ is the code C∗ = span{x ∗ y | x,y ∈ C}, the smallest linear
code containing the coordinatewise product of every pair of codewords in
C∗, with parameters [`,k∗,d∗]. We always have d ≥ d∗, and the cheating
success probability of the adversary in the protocol is 2−d∗ , so we need d∗ ≥ s
for the statistical parameter s. The online phase of MiniMAC has a very
similar communication pattern to ours: a multiplication requires to open two
elements encoded with C (coming from the use of Beaver’s technique) and
one encoded with C∗. Since shares of C-(resp C∗-)encodings are codewords in
C (resp C∗), and describing such codewords require k bits (resp. k∗ bits)4 the
total communication complexity is (4k + 2k∗)(n− 1), so the difference with
our protocol depends on the difference between the achievable parameters
for their k∗ and our m, compared below. Input gates require k(n− 1) bits, as
in our case, and for output gates, since MAC shares are arbitrary vectors in
F`

2, a total of 2k(n− 1) + 2`n bits are sent. See full version for more details
on this.

Committed MPC.

Committed MPC [16] is a secret-sharing based MPC protocol that relies on
UC-secure additively homomorphic commitments for authentication, rather
than on MACs. Efficient commitments of this type have been proposed in
works such as [9, 10, 17] where the main ingredient5 is again a linear er-
ror correcting code C with parameters [`,k,d]. In committed MPC, for every

4We observe that this is more lenient than the description of MiniMAC in [13, 15] where it is
implied that ` bits need to be sent in order to do these openings.

5The constructions rely also on OT (in the first two cases) and extractable commitments (in
the third) but these primitives are only used in a preprocessing phase.

116



3. The Online Phase

x ∈ Fk
2, each party Pi holds an additive share xi ∈ Fk

2 to which she commits
towards every other party Pj (in the multi-receiver commitment from [9],
this can be accomplished by only one commitment). During most of the
online phase there are only partial openings of values and only at output
gates the commitments are checked. Multiplication is done through Beaver’s
technique. In this case only two values ε, δ are partially opened. In ex-
change, parties need to communicate in order to compute commitments to
δ ∗ a (resp. ε ∗ b) given δ, and commitments to a (resp. ε and commitments
to b) at least with current constructions for UC-secure homomorphic com-
mitments. [16, full version, fig. 16] provides a protocol where each of these
products with known constant vectors requires to communicate one full vec-
tor of length ` and two vectors of k∗ components (again ` is the length of C
and k∗ is the dimension of C∗). In total the communication complexity of a
multiplication is (4k + 2k∗ + `)(n− 1) bits. Output gates require to open all
the commitments to the shares of the output. Since opening commitments
in [9, 10, 17] requires to send two vectors of length ` to every other party,
which has a total complexity of 2`(n− 1)n. Input gates have the same cost as
the other two protocols.

Concrete parameters.

Summing up we compare the communication costs of multiplication and
output gates in Table D.1 since these are the gates where the communication
differs.

MiniMAC Committed MPC Our protocol
Multiply (4k + 2k∗)(n− 1) (4k + 2k∗ + `)(n− 1) (4k + 2m)(n− 1)
Output 2 · ` · n + 2k(n− 1) 2 · ` · (n− 1)n 2 ·m · n + 2k(n− 1)

Table D.1: Total number of bits communicated in the different gates in the online phases, when
computing k instances of a boolean circuit in parallel. Communication per party is obtained
dividing by n.

The key quantities are the relation between m/k (in our case) and k∗/k
and `/k in the other two protocols. While the possible parameters `,k,d of
linear codes have been studied exhaustively in the theory of error-correcting
codes, relations between those parameters and k∗, d∗ are much less studied,
at least in the case of binary codes. As far as we know, the only concrete
non-asymptotic results are given in [7, 12]. In particular, the parameters in
Table D.2 are achievable.

On the other hand, the parameters for our protocol depend on parameters
achievable by RMFEs. By Theorem 2.2 for all 1 ≤ r ≤ 33, there exists a RMFE
with k = 3r and m = 10r− 5. Some specific values are shown in Table D.3.

This leads to the communication complexities per computed instance of the

117



Paper D.

` k d ≥ k∗ d∗ ≥ k∗/k `/k
2047 210 463 1695 67 8.07 9.75
4095 338 927 3293 135 9.74 12.11

Table D.2: Parameters for C and C∗2 from [7].

k m m/k
21 65 3.10
42 135 3.21

Table D.3: Parameters
for RMFE from [8].

boolean circuit for security parameters s = 64 and s = 128 given in Table D.4.
For larger security parameter, the comparison becomes more favourable to
our technique, since the “expansion factor” m/k degrades less than the one
for known constructions of squares of error correcting codes.

Sec. par. Phase MiniMAC Committed MPC Our protocol

s = 64
Multiply 20.14 · (n− 1) 29.89 · (n− 1) 10.2 · (n− 1)
Output 19.5 · n + 2(n− 1) 19.5 · (n− 1)n 6.2 · n + 2(n− 1)

s = 128
Multiply 23.48 · (n− 1) 35.58 · (n− 1) 10.42 · (n− 1)
Output 24.22 · n + 2(n− 1) 24.22 · (n− 1)n 6.42 · n + 2(n− 1)

Table D.4: Total number of bits sent per instance at multiplication and output gates

If instead we want to use Theorem 2.3, so that we can define the MACs
over a field of degree a power of two, then the last column would have com-
plexities 12 · (n− 1) and 8 · n + 2(n− 1) in both the cases s = 64 and s = 128.

Comparison with an online communication-efficient version of MiniMAC.

In [13], a version of MiniMAC is proposed which uses linear codes over the
extension field F256. The larger field enables to use a Reed-Solomon code,
for which k∗ = 2k − 1. However, because this only gives coordinatewise
operations in Fk

256, the protocol needs to be modified in order to allow for
bitwise operations instead. The modified version requires the opening of two
C∗-encodings at every multiplication gate and a more complicated and much
larger preprocessing, where in addition to creating certain type of multiplica-
tion triple, the preprocessing phase needs to provide authenticated sharings
of 16 other vectors created from the bit decompositions of the coordinates of
the two “factor” vectors in the triple. As far as we know, no preprocessing
phase that creates these authenticated elements has been proposed.

The amortized communication complexity of that protocol is of 8(n− 1)
bits per multiplication gate, per instance of the circuit, which is slightly less
than 80% of ours. On the other hand, we estimate that the complexity of the
preprocessing would be at least 4 times as that of our protocol and possibly
larger, based on the number of preprocessed elements and their correlation.

118



4. From Batch Computations to Single Circuit Computations

Computation and storage.

In terms of storage, each authenticated share of a k-bit vector is m + k bits,
which is slightly over 4 bits per data bit. MiniMAC and Committed MPC re-
quire a larger storage of `+ k bits because the MAC shares/commitments are
in F`

2. In [13] shares are also 4 bits per data bit because of using RS codes, but
the amount of preprocessed data is much larger. In terms of computation,
while our protocol does slightly better for additions (again because of the
shorter shares, and since the addition in F2m is as in Fm

2 ), and the same hap-
pens with additions required by multiplication gates, computing the terms
ε ∗ 〈y〉, δ ∗ 〈x〉, φ(ε) · φ(δ) requires in total 5 multiplications in F2m which,
being field multiplications, are more expensive than the coordinatewise ones
required by MiniMAC, even if some of them are in a larger space F`

2.

4 From Batch Computations to Single Circuit Com-
putations

We explain now how to adapt our protocol, which was presented as a proto-
col for the simultaneous secure evaluation of k instances of the same boolean
circuit, into a protocol that computes a single evaluation of a boolean circuit
with little overhead, as long as the circuit is sufficiently “well-formed”. This
is a quite straightforward adaptation of the ideas presented in [15]. The tech-
nique can be used in general for any boolean circuit but it works better when
the circuit satisfies a number of features, which we can loosely sum up as
follows:

• The circuit is organized in layers, each layer consisting of the same type
of gate (either additive or multiplicative). We number the layers in
increasing order from the input layer (layer 0) to the output layer.

• For most layers, the number of gates u is either a multiple of k or large
enough so that the overhead caused by the need to add u′ dummy
gates to obtain a multiple of k and compute the gates in batches of k is
negligible.

• For most pairs of layers i and j, where i < j, the number of output bits
from layer i that are used as inputs in layer j is either 0 or sufficiently
large so that we do not incur in much overhead by adding dummy
outputs or inputs (again to achive blocks of size exactly k).

The idea from [15] is that given a layer of u gates, where we can assume
u = t · k we organize the inputs of the layers in t blocks of k gates, and
we will compute each block by using the corresponding subroutine in our
protocol.

119



Paper D.

For that we need to have authenticated shared blocks of inputs 〈x〉, 〈y〉
where the i-th coordinates xi,yi are the inputs of the i-th gate in the block.
This assumes gates are of fan-in 2. For the case of addition gates, we can also
support of course arbitrary fan-in gates, but then we want to have the same
fan-in in every gate in the same block, again to avoid overheads where we
need to introduce dummy 0 inputs. In any case at the end of the computation
of this layer we obtain t authenticated sharings 〈z〉.

The question is how to now transition to another layer j. Let us assume
that layer j takes inputs from l blocks 〈x1〉, . . . ,〈xl〉 of k bits each coming from
some previous layer. Of course the issue is that we are not guaranteed that we
can use these as input blocks for the layer j. We will likely need to reorganize
the bits in blocks, we may need to use some of the bits more than once, and
we may not need to use some of the bits of some output blocks. At first sight
this reorganization may look challenging, because note that the bits of each
xi can be “quite intertwined” in the MAC α · φ(xi).

However in all generality, we can define l′ functions F1, . . . ,Fl′ : Fkl
2 →

Fk
2 such that if we write X = (x1,x2, . . . ,xl) the concatenation of the output

blocks, then F1(X), . . . ,Fl′(X) are the input blocks we need. These maps are F2-
linear; in fact, each of the coordinates of each Fi are either a projection to one
coordinate of the input or the 0-map. We assume that all these reorganizing
functions can be obtained from the description of the function and therefore
they are known and agreed upon by all parties.

Calling F = (F1,F2, . . . ,Fl′), suppose we can obtain by preprocessing

((〈r1〉,〈r2〉, . . . ,〈rl〉),(〈F1(R)〉,〈F2(R)〉, . . . ,〈Fl′(R)〉),

where R = (r1,r2, . . . ,rl) is again the concatenation in Fkl
2 . To ease the notation

we will write (〈R〉,〈F(R)〉) and call this a reorganizing pair.
Then, reorganizing is done in the following way. The parties compute

〈xj〉 − 〈rj〉 and open these values for j = 1,2, . . . , l. Afterwards, they compute

Fj(x1 − r1, . . . ,xl − rl) + 〈Fj(r1, . . . ,rl)〉 = 〈Fj(x1, . . . ,xl)〉

which holds by the linearity of Fj.
We can add this property to our setup above by including the supplements

in Figure D.5 to FPrep, FMPC, and ΠOnline. Apart from this we also need to
point out that at the input layer, a party may need to add dummy inputs so
that her input consists of a number of blocks of k bits.

Of course, it looks as though we have moved the problem to the prepro-
cessing phase, as we still need to construct the reorganizing random pairs
(〈R〉,〈F(R)〉). But this will be easy because of the F2-linearity of the maps φ
and F.

The communication complexity of each reorganizing round is that of
opening l vectors in Fk

2, therefore 2lk(n− 1) bits of communication. There-
fore, the efficiency of this technique clearly depends much on the topology of

120



5. Preprocessing

Functionality FPrep (supplement)

4. ReOrgPair: On input (ReOrgPair,F,(id1, id2, . . . , idl),(id
′
1, id′2, . . . , id′l′ )) where F =

(F1,F2, . . . ,Fl′ ), sample l random vectors r1,r2, . . . ,rl and set Val[idj],= rj for j = 1,2, . . . , l
and Val[id′j],= Fj(r1,r2, . . . ,rl) for j = 1,2, . . . , l′.

Functionality FMPC (supplement)
6. Reorganize: On input (ReOrg,F,(id1, id2, . . . , idl),(id

′
1, id′2, . . . , id′l′ ) compute

F(Val[id1],Val[id2], . . . ,Val[idl ]) = (z1,z2, . . . ,zl′ ). Set Val[id′j] = zj for j = 1,2, . . . , l′.

Protocol ΠOnline (supplement)
6. Reorganize: To reorganize between the layers, take a corresponding reorganizing pair

(〈R〉,〈F(R)〉).

(a) Compute 〈εj〉 = 〈xj〉 − 〈rj〉 and open εj for j = 1,2, . . . , l.

(b) Compute Fj(ε1,ε2, . . . ,εl) + 〈Fj(R)〉 = 〈Fj(x1,x2, . . . ,xl)〉 for j = 1,2, . . . , l′ and input
these to the next layer.

Fig. D.5: Reorganizing supplement

the circuit. For example if all the output bits of a given layer are used in the
next layer and only there, then we can say that this technique adds roughly 2
bits of communication per party per gate.

5 Preprocessing

In this section, we present how to obtain the preprocessed correlated informa-
tion we need in our online protocols. The implementation of authentication
and construction of multiplication triples is adapted in a relatively straight-
forward way from MASCOT. This is because MASCOT is based on bit-OT
extension, and working bit-by-bit is well suited for our situation because of
the maps φ,ψ being F2-linear. For the preprocessing of multiplication triples
we do need to introduce some auxiliary protocols with respect to MASCOT:
one is the preprocessing of reencoding pairs (〈ψ(r)〉, [r]) that we anyway need
for the online protocol; another one creates [r] for a random r in the kernel
of ψ, which we need in order to avoid some information leakage in the sac-
rifice step. Both types of preprocessing can be easily constructed based on
the F2-linearity of ψ. Finally, we use the sacrifice step in Committed MPC,
rather than the one in MASCOT, because of some technical issues regarding
the fact that the image of φ is not the entire F2m which creates problems when
opening certain sharings.

Aside from the aforementioned multiplication triples (〈a〉,〈b〉,〈c〉) where

121



Paper D.

Prep

InputPair ReOrgPair ReEncodePair Triple

Auth

RanKer

Comm Rand COPEe ROT

Fig. D.6: Overview of dependency of the protocols needed for the preprocessing.

c = a ∗ b, for the online phase we also need to generate input pairs (r,〈r〉),
reencoding pairs of the form (〈ψ(r)〉, [r]), and (in case we want to use the
techniques in Section 4) layer reorganizing pairs (〈R〉,〈F(R)〉).

To obtain an overview of the way the functionalities presented in this
section are dependent on each consider Figure D.6. We use the following
basic ideal functionalities: parties can generate uniform random elements in
a finite set using the functionality FRand (for the sake of notational simplicity
we omit referring to FRand in protocols). Moreover, parties have access to a
commitment functionality FComm, see Figure D.7. We will also make use of

Functionality FRand

1. Upon receiving (Rand,S) from all parties, where S is a finite set, choose a uniform ran-
dom number r ∈ S and send it to all parties.

Functionality FComm

1. Upon receiving (Comm,x,Pi) from Pi and (Comm,Pi) from all other parties the function-
ality stores x. When receiving an opening command from all parties, the functionality
sends x to all parties.

Fig. D.7: Functionalities – Randomness generation and Commitment

a functionality Fn,k
ROT that implements n 1-out-of-2 oblivious transfers of k-bit

strings (Figure D.8).
We adapt the correlated oblivious product evaluation functionality FCOPEe

defined in MASCOT [19]. We recall how this functionality works: we again
see the field F2m as F2[X]/( f ) for some irreducible polynomial f ∈ F2[X].
Then {1,X,X2, . . . ,Xm−1} is a basis for F2m as a F2-vector space. The function-

122



5. Preprocessing

Functionality Fn,k
ROT

1. Upon receiving (ROT,Pi ,Pj) from party Pi and (ROT,Pi ,Pj,b) from party Pj, where b ∈
{0,1}n, the functionality chooses rl

0,rl
1 ∈ {0,1}k uniformly at random and sends these to

Pi , while it sends rl
bl

to Pj for l = 1,2, . . . ,n.

Fig. D.8: Functionality – Random OT

ality as described in [19] takes an input α ∈ F2m from one of the parties PB in
the initialization phase; then there is an arbitrary number of extend phases
where on input x ∈ F2m from PA, the functionality creates additive sharings
of α · x for the two parties. However, if PA is corrupted it may instead decide
to input a vector of elements (x0,x1, . . . ,xm−1) ∈ (F2m)m, and in that case the
functionality outputs a sharing of ∑m−1

i=0 xi · αi · Xi (where αi are the coordi-
nates of α in the above basis). The honest case would correspond to all xi
being equal to x. This functionality from MASCOT corresponds to the steps
Initialize and ExtendField in our version Figure D.10. We augment this by
adding the step ExtendVector, where party PA can input a vector x ∈ Fk

2 and
the functionality outputs an additive sharing of α · φ(x) ∈ F2m . If party PA
is corrupted it may instead input (x0,x1, . . . ,xm−1) ∈ (Fk

2)
m. In that case the

functionality outputs an additive sharing of ∑m−1
i=0 φ(xi) · αi · Xi, and note that

this is more restrictive for the corrupted adversary than ExtendField since the
values φ(xi) are not free in F2m but confined to the image of φ. We define the
functionality FCOPEe in Figure D.9 and present a protocol implementing the
functionality in Figure D.10.

Proposition 5.1. ΠCOPEe securely implements FCOPEe in the Fm,λ
OT -hybrid model.

Proof. The commands Initialize and ExtendField are as in [19] (the latter be-
ing called Extend there). The proof for our ExtendVector command is anal-
ogous to the one for the ExtendField except, as explained, because the ideal
functionality restricts the choice by a corrupt PA of the element that is se-
cret shared. We briefly show the simulation of ExtendVector together with
Initialize.

If PB is corrupted, the simulator receives (α0, . . . ,αm−1) from the adversary,
and simulates the initialization phase by sampling the seeds at random, and
sending the corresponding one to the adversary. It simulates the ExtendVec-
tor phase by choosing ui uniformly at random in the corresponding domain,
computes q as an honest PB would do and inputs this to the functionality.
Indistinguishability holds by the pseudorandomness of F, as shown in [19].

If PA is corrupted then the simulator receives the seeds from the ad-
versary in the Initialize phase, and from there it computes all the ti

b in the
ExtendVector phase. Then when the adversary sends ui, the simulators ex-
tract xi = ui − ti

0 + ti
1 and inputs t = −∑m−1

i=0 φ(ti
0) · Xi and (x1,x2, . . . ,xm)

123



Paper D.

Functionality FCOPEe
This functionality runs with two parties PA and PB and an adversary A. The Initialize phase is
run once first. The ExtendVector and ExtendField may be run an arbitrary number of times, in
arbitrary order.

1. Initialize: On input α ∈ F2m from PB the functionality stores this value. We identify α by
the vector (α0,α1, . . . ,αm−1) ∈ Fm

2 , s.t. α = ∑m−1
i=0 αi · Xi .

2. ExtendVector: PA inputs a vector x ∈ Fk
2.

(a) If PA is corrupt receive t ∈ F2m and (x0,x1, . . . ,xm−1) ∈ (Fk
2)

m from A, where the
numbers indicate that xi might be different from x. Then compute q such that
q + t = ∑m−1

i=0 φ(xi) · αi · Xi .

(b) If both parties are honest sample t ∈ F2m at random and compute q such that
q + t = α · φ(x).

(c) If only PB is corrupt then receive q ∈ F2m from A and compute t such that q + t =
α · φ(x).

(d) Output t to PA and q to PB.

3. ExtendField: PA inputs a field element x ∈ F2m .

(a) If PA is corrupt receive t ∈ F2m and (x0,x1, . . . ,xm−1) ∈ (F2m )m from A, where
the numbers indicate that xi might be different from x. Then compute q such that
q + t = ∑m−1

i=0 xi · αi · Xi .

(b) If both parties are honest sample t ∈ F2m at random and compute q such that
q + t = α · x.

(c) If only PB is corrupt then receive q ∈ F2m from A and compute t s.t. q + t = α · x.

(d) Output t to PA and q to PB.

Fig. D.9: Functionality – Correlated oblivious product evaluation with errors.

to FCOPEe. In this case all outputs are computed as in the real world and
indistinguishability follows.

5.1 Authentication

In protocol ΠAuth (Figures D.11, D.12, and D.13), we use FCOPEe to implement
FAuth.

In the initialize phase each pair of parties (Pi,Pj) call the initialize phase
from FCOPEe where Pi inputs a MAC key. Afterwards Pj can create authenti-
cated sharings to the desired values, both of boolean vectors and of elements
in the larger field: namely Pj constructs additive random sharings of the in-
dividual values and uses the appropriate extend phase of FCOPEe to obtain
additive sharings of the MACs. At last, a random linear combination of the
values chosen by Pj is checked. Here privacy is achieved by letting Pj include
a dummy input xt+1 to mask the other inputs.

124



5. Preprocessing

Protocol ΠCOPEe
The protocol is a two party protocol with parties PA and PB that uses PRFs F : {0,1}λ×{0,1}λ →
Fk

2 and FField : {0,1}λ × {0,1}λ → F2m , has access to the ideal functionality Fm,λ
ROT, and maintains

a global counter j := 0. The Initialize phase is run once first, and then the ExtendVector and
ExtendField may be run an arbitrary number of times, in arbitrary order.

1. Initialize: On input α ∈ F2m from PB:

(a) The parties engage in Fm,λ
ROT where PB inputs (α0,α1, . . . ,αm−1) ∈ Fm

2 s.t. α =

∑m−1
i=0 αi · Xi ∈ F2m . PA receives

{
(ki

0,ki
1)
}m−1

i=0
and PB receives ki

αi
for i =

0,1, . . . ,m− 1.

2. ExtendVector: On input x ∈ Fk
2 from PA:

(a) For i = 0,1, . . . ,m− 1:

i. Define ti
0 = F(ki

0, j) ∈ Fk
2, ti

1 = F(ki
1, j) ∈ Fk

2 so PA knows (ti
0,ti

1) and PB
knows ti

αi
.

ii. PA sends ui = ti
0 − ti

1 + x to PB.
iii. PB computes qi = αi · ui + ti

αi
= ti

0 + αi · x ∈ Fk
2.

(b) j := j + 1

(c) PB outputs q = ∑m−1
i=0 φ(qi) · Xi and PA outputs t = −∑m−1

i=0 φ(ti
0) · Xi

3. ExtendField: On input x ∈ F2m from PA:

(a) For i = 0,1, . . . ,m− 1:

i. Define ti
0 = FField(k

i
0, j) ∈ F2m ,ti

1 = FField(k
i
1, j) ∈ F2m , so PA knows (ti

0,ti
1)

and PB knows ti
αi

.

ii. PA sends ui = ti
0 − ti

1 + x to PB.
iii. PB computes qi = αi · ui + ti

αi
.

(b) j := j + 1.

(c) PB outputs q = ∑m−1
i=0 qi · Xi and PA outputs t = −∑m−1

i=0 ti
0 · Xi .

Fig. D.10: Correlated oblivious product evaluation with errors.

Proposition 5.2. ΠAuth securely implements FAuth in the
(FCOPEe,FRand,FComm)-hybrid model

Proof. Since the proof is similar to the proof of security for Π[[·]] in [19], we
point out the differences and argue why it does not have an impact on the
security.

First of all note that our functionality, in contrary to Π[[·]], has an Add
command and a LinComb command. This is because we reserve the Lin-
Comb command for linear combinations which output [·]-sharings, while
Add outputs a 〈·〉-sharing. In any case, the Add and LinComb command con-
sist of local computations so it is trivial to argue their security. The Initialize
command only invokes the Initialize command from the ideal functionality
FCOPEe, which is exactly the same as in [19]. Since the Open command lets

125



Paper D.

Protocol ΠAuth – Part 1
This protocol additively shares and authenticates elements in Fk

2 or F2m , and allows linear oper-
ations and openings to be carried out on these shares. Note that the Initialize procedure only
needs to be called once, to set up the MAC key. We assume access to the ideal functionalities
FRand, FComm, and FCOPEe.

1. Initialize: Each party Pi samples a MAC key share α(i) ∈ F2m . Each pair of parties (Pi ,Pj)

for i 6= j calls FCOPEe.Initialize where Pi inputs α(i).

2. Input: On input x1,x2, . . . ,xs ∈ Fk
2 and x1,x2, . . . ,xt ∈ F2m from Pj the parties do the

following:

(a) Pj samples random element xt+1 ∈ F2m .

(b) For h = 1,2, . . . ,s, Pj generates additive sharing ∑n
i=1 x(i)h = xh and sends x(i)h to

Pi . Similarly, for l = 1,2, . . . ,t + 1, Pj generates additive sharing ∑n
i=1 x(i)l = xl and

sends x(i)l to Pi .

(c) For every i 6= j, Pi and Pj call FCOPEe.ExtendVector s times where Pj inputs x1,x2, . . . ,xs
and FCOPEe.ExtendField t + 1 times with inputs x1,x2, . . . ,xt+1.

(d) Pi receives q(i,j)h ∈ F2m and Pj receives t(j,i)
h ∈ F2m such that

q(i,j)h + t(j,i)
h = α(i) · φ(xh), for h = 1,2, . . . ,s

q(i,j)l+s + t(j,i)
l+s = α(i) · xl , for l = 1,2, . . . ,t + 1

(e) Each Pi , i 6= j defines the MAC shares m(i)(xh) = q(i,j)h for h = 1,2, . . . ,s and

m(i)(xl) = q(i,j)l+s for l = 1,2, . . . ,t + 1. Pj computes MAC share

m(j)(xh) = α(j) · φ(xh) + ∑
i 6=j

t(j,i)
h for h = 1,2, . . . ,s

m(j)(xl) = α(j) · xl + ∑
i 6=j

t(j,i)
l+s for l = 1,2, . . . ,t + 1

This implies that we have 〈xh〉 for h = 1,2, . . . ,s and [xl ] for l = 1,2, . . . ,t + 1

(f) The parties call FRand(F
s+t+1
2m ) to obtain (r1, . . . ,rs+t+1).

(g) Compute [y] = ∑s
h=1 rh · 〈xh〉+ ∑t+1

l=1 rs+l · [xl ] by calling ΠAuth.LinComb and open y
by calling ΠAuth.Open.

(h) Call ΠAuth.Check on y. If the check succeeds output 〈xh〉 for h = 1,2, . . . ,s, and [xl ]
for l = 1,2, . . . ,t.

Fig. D.11: Authenticated shares – Part 1.

the adversary choose what to open to there is not much to discuss here either.
Therefore, what we need to discuss is the Input and Check commands.

The idea is that if the check in the input phase is passed and the adversary
opens to incorrect values later on, then the probability to pass a check later
on will be negligible. In comparison to [19], we have both values in F2m and
vectors in Fk

2, but we can still use the same arguments there, because the

126



5. Preprocessing

Protocol ΠAuth – Part 2
3. Add: On input (Add, ¯id,id,a) the parties do the following. If a is an index of Val they

retrieve shares and MAC shares x(i),y(i),m(i)(x),m(i)(y) where x corresponds to id and y
corresponds to the index a in Val. Pi computes

x(i) + y(i) and m(i)(x) + m(i)(y)

and stores these under ¯id. If a is a vector, i.e. a = a, they retrieve the share and MAC
share x(i),m(i)(x) where x corresponds to id in Val. Pi computes

x(i) +

{
a if i = 1
0 if i 6= 1

and m(i)(x) + α(i) · φ(a).

and stores these under Val[ ¯id].

4. LinComb: On input (LinComb, ¯id,(id1, id2, . . . ids),(id′1, id′2, . . . id′t),c1,c2, . . . ,cs+t,c) where

t ≥ 1, the Pi retrieves its shares and MAC shares
{

x(i)j ,m(i)(xj)
}

j=1,2,...,s
corresponding to

idj in Val and
{

x(i)j ,m(i)(xj)
}

j=1,2,...,t
corresponding to id′j in ValField. Pi computes

y(i) =
s

∑
j=1

cj · φ(x
(i)
j ) +

t

∑
j=1

cs+j · x
(i)
j +

{
c if i = 1
0 if i 6= 1

m(i)(y) =
s

∑
j=1

cj ·m(i)(xj) +
t

∑
j=1

cs+j ·m(i)(xj) + c · α(i)

and stores these under ¯id in ValField.

Fig. D.12: Authenticated shares – Part 2.

check in the Input phase and all further checks are in F2m and therefore the
simulation and indistinguishability is following by the exact same arguments
as in [19].

5.2 Input, Reencoding, and Reorganizing Pairs

The two functionalities FCOPEe and FAuth are the building blocks for the pre-
processing. They are very similar in shape to the MASCOT functionalities
but with some few corrections to include that sharings can be of vectors in-
stead of field elements in F2m . With these building blocks we can produce the
randomness needed for the online phase. First of all, we produce input pairs
with protocol ΠInputPair in Figure D.14. Proposition 5.3 is straightforward.

Proposition 5.3. ΠInputPair securely implementsFPrep.InputPair in theFAuth-hybrid
model.

We also need to construct pairs to re-encode [·]-sharings to 〈·〉-sharings af-
ter a multiplication. A protocol ΠReEncodePair for producing the pairs (〈ψ(r)〉, [r])
for random r ∈ F2m is shown in Figure D.15.

127



Paper D.

Protocol ΠAuth – Part 3
5. Open: On input (Open,Dict,id,S) party Pi retrieves the share corresponding to the dic-

tionary and index, sends the share to Pj (the party with lowest index in S) who sums the
shares and sends the sum back to the other parties in S.

6. Check:

(a) On input

(Check,(id1, id2, . . . , ids),(id′1, id′2, . . . , id′t),(x1,x2, . . . ,xs),(x1,x2, . . . ,xt))

parties sample a random vector (r1,r2, . . . ,rs+t) ∈ Fs+t
2m . Pi retrieves its MAC shares

m(i)(xj) for j = 1,2, . . . ,s corresponding to idj in Val and m(i)(xj) for j = 1,2, . . . ,t
corresponding to id′j in ValField. Define

y =
s

∑
j=1

rj · φ(xj) +
t

∑
j=1

rs+j · xj

and let Pi compute

m(i)(y) =
s

∑
j=1

rj ·m(i)(xj) +
t

∑
j=1

rs+j ·m(i)(xj)

(b) Pi calls FComm to commit to σ(i) = m(i)(y)− α(i) · y and afterwards open the com-
mitment.

(c) The parties check if σ(1) + σ(2) + · · ·+ σ(n) = 0 and abort otherwise.

Fig. D.13: Authenticated shares – Part 3.

Protocol ΠInputPair
The protocol generates (r,〈r〉) where r ∈ Fk

2 is chosen randomly by Pi , the party calling the
protocol.

1. Construct:

(a) Pi chooses r ∈ Fk
2 uniformly at random.

(b) Pi calls FAuth.Input to obtain 〈r〉 and output this authenticated share.

Fig. D.14: Creating input pairs.

Proposition 5.4. ΠReEncodePair securely implements FPrep.ReEncodePair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

Proof. First notice that at least one of the parties is honest and hence rj =

∑n
i=1 r(i)j is random because one of the terms is. Suppose that at the end of

the Combine phase parties have created (〈sj〉, [rj]), where possibly sj 6= ψ(rj).
Let εj = sj − ψ(rj) for all j. By F2-linearity of ψ, bi − ψ(bi) = ∑t+s

j=1 aijεj.
Hence if all εj = 0, the check passes for all i. While if there is some εj 6= 0,

128



5. Preprocessing

j = 1, . . . ,t, then for every i the probability that ∑t+s
j=1 aijεj = 0 is at most 1/2.

Since the checks are independent we obtain that if some εj 6= 0, j = 1, . . . ,t
then the protocol will abort except with probability at most 2−s. Note also
that bi = rt+i + ∑t

j=1 aijrj, so opening the bi reveals no information about the
output values r1, . . . ,rt.

Protocol ΠReEncodePair
The protocol generates (〈ψ(rj)〉, [rj]) for j = 1,2, . . . ,t, where rj is random in F2m and unknown
to all parties. We assume access to the functionalities FRand and FAuth.

1. Construct:

(a) Pi chooses r(i)j for j = 1,2, . . . ,t + s uniformly at random in F2m .

(b) Pi calls FAuth.Input to obtain [r(i)j ] and 〈ψ(r(i)j )〉.

(c) Compute [rj] = ∑n
i=1[r

(i)
j ] and 〈ψ(rj)〉 = ∑n

i=1〈ψ(r
(i)
j )〉 for j = 1,2, . . . ,t + s.

2. Sacrifice:

(a) Call FRand(F
t
2) to obtain a′i for i = 1,2, . . . ,s and define ai = (a′i ,ei) ∈ Ft+s

2 where ei
is the i’th canonical basis vector of length s.

(b) Compute [bi ] = ∑t+s
j=1 aij[rj] and 〈bi〉 = ∑t+s

j=1 aij〈ψ(rj)〉, where aij is the j’th entry of
ai , and partially open bi and bi .

(c) If ψ(bi) 6= bi for some i ∈ {1,2, . . . ,s} then abort.

(d) Call FAuth.Check on the opened values bi and bi .

3. Output: Output (〈ψ(rj)〉, [rj]) for j = 1,2, . . . ,t.

Fig. D.15: Re-encode pairs.

Finally, a protocol for producing reorganizing pairs is given in Figure
D.16.

Proposition 5.5. ΠReOrgPair securely implements FPrep.ReOrgPair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 5.4.

5.3 Multiplication Triples

Our protocol ΠTriple for constructing triples is given in Figure D.18. We note

that c = a ∗ b = ∑i,j a(i) ∗ b(j) and hence sharings of c can be obtained by
adding sharings of the summands, where each of the summands only require
two parties Pi and Pj to interact. Again, the construction step is much like the
construction step from the protocol ΠTriple in [19]. where we have modified
the protocol such that it produces triples (〈a〉,〈b〉,〈c〉) instead of ([a], [b], [c]).

129



Paper D.

Protocol ΠReOrgPair
The protocol generates (〈Rh〉,〈F(Rh)〉) where Rh = (rh,1, . . . ,rh,l) and F = (F1, . . . ,Fl′ ) is a linear
function F : Fkl

2 → Fkl′
2 for h = 1,2, . . . ,t. Furthermore, rh,j is random in Fk

2 and unknown to all
parties. We assume access to the functionalities FRand and FAuth.

1. Construct:

(a) Pi chooses r(i)h,j for j = 1,2, . . . , l and h = 1,2, . . . t + s uniformly at random in Fk
2.

(b) Pi calls FAuth.Input to obtain 〈r(i)h,j〉 and 〈Fj′ (r
(i)
h,1, . . . ,r(i)h,l )〉 for j = 1,2, . . . , l, j′ =

1,2, . . . , l′ and h = 1,2, . . . ,t + s.

(c) The parties compute 〈rh,j〉 = ∑n
i=1〈r

(i)
h,j〉 and 〈Fj′ (rh,1, . . .rh,l)〉 =

∑n
i=1〈Fj′ (r

(i)
h,1, . . .r(i)h,l )〉. Thus we have (〈Rh〉,〈F(Rh)〉) for h = 1,2, . . . ,t + s.

2. Sacrifice:

(a) Call FRand(F
t
2) to obtain a′i for i = 1,2, . . . ,s and define ai = (a′i ,ei) ∈ Ft+s

2 where ei
is the i’th canonical basis vector of length s.

(b) Compute 〈Bi〉 = ∑t+s
h=1 aih〈Rh〉 and 〈Di〉 = ∑t+s

h=1 aih〈F(Rh)〉, where aih is the h’th
entry of ai , and partially open Bi and Di .

(c) If F(Bi) 6= Di for some i ∈ {1,2, . . . ,s} then abort.

(d) Call FAuth.Check on the opened values Bi and Di .

3. Output: Output (〈Rh〉,〈F(Rh)〉 for h = 1,2, . . . ,t.

Fig. D.16: Re-organize pairs.

However, after authentication, we use techniques from Committed MPC
[16] to check correctness and avoid leakage on the produced triples. In-
deed using the combine and sacrifice steps in MASCOT presents some prob-
lems in our case: in the sacrificing step in MASCOT parties take two triples
([a], [b], [c]) and ([â], [b], [ĉ]) and start by opening a random combination s ·
[a]− [â] to some value ρ, so that they can later verify that s · [c]− [ĉ]− ρ · [b]
opens to 0. Since the second triple will be disregarded, and s · a − â com-
pletely masks a since â is uniformly random, no information is revealed
about a. In our case we would have triples (〈a〉,〈b〉,〈c〉) and (〈â〉,〈b〉,〈ĉ〉)
and sample a random s ∈ F2m , it would not be the case that φ(â) would act
as a proper one-time pad for s · φ(a)6. A similar problem would arise for
adapting the combine step in [19].

Therefore, we proceed as in [16]: in the protocol ΠTriple we start by con-
structing additive sharings of N = τ1 + τ1 · τ2

2 · T triples. Then some of these
triples are opened and it is checked that they are correct. This guarantees
that most of the remaining triples are correct. The remaining triples are then
organized in buckets and for each bucket all but one of the triples are sacri-

6Sampling s ∈ Fk
2 instead would not solve the problem since s ∗ 〈a〉 − 〈â〉 is not a proper

[·]-sharing as described in Section 3.

130



5. Preprocessing

Protocol ΠTripleConstruct
The protocol produces N multiplication triples.

1. Construction:

(a) Pi samples a(i)l ,b(i)
l ∈ Fk

2 for l = 1,2, . . . , N. Denote by a(i)h,l , b(i)h,l the h’th entry of a(i)l ,

b(i)
l , respectively.

(b) For l = 1,2, . . . , N every ordered pair (Pi ,Pj) does the following:

i. The pair call F k,1
ROT where Pi inputs a(i)h,l for the h’th instance.

ii. Pj receives t(j,i)
0,h,l ,t

(j,i)
1,h,l ∈ F2 and Pi receives t(j,i)

a(i)h,l ,h,l
for h = 1,2, . . . ,k. Denote by

t(j,i)
l the vector having t(j,i)

0,h,l as entries and t(j,i)
1,l the vector having t(j,i)

1,h,l as entries

for h = 1,2, . . . ,k. Similarly, denote by t(j,i)

a(i)l

the vector having t(j,i)

a(i)h,l ,h,l
as entries.

iii. Pj sends u(j,i)
l = t(j,i)

l − t(j,i)
1,l + b(j)

l .

iv. Pi sets q(j,i)
l = a(i)l ∗ u(j,i)

l + t(j,i)

a(i)l

= t(j,i)
l + a(i)l · b

(j)
l .

v. Pi sets c(i)i,j,l = q(j,i)
l and Pj sets c(j)

i,j,l = −t(j,i)
l

(c) Each party Pi computes c(i)l = a(i)l ∗ b(i)
l + ∑j 6=i c(i)i,j,l + c(i)j,i,l

Now we have cl = ∑n
i=1 c(i)l = ∑n

i=1 a(i)l ∗∑n
i=1 b(i)

l = al ∗ bl for l = 1,2, . . . , N

2. Authenticate:

(a) Pi calls FAuth.Input to obtain 〈a(i)l 〉, 〈b
(i)
l 〉, and 〈c(i)l 〉.

(b) Parties compute 〈al〉 = ∑n
i=1〈a

(i)
l 〉 and similarly to obtain 〈bl〉 and 〈cl〉.

Fig. D.17: Construction of multiplication triples.

fied in order to guarantee that the remaining triple is correct with very high
probability. In order to be able to open proper sharings in the sacrifice step
we need to add authenticated sharings of an element in the kernel of ψ. We
present a functionality serving that purpose in Figure D.19 and a protocol
implementing it in Figure D.20.

Proposition 5.6. ΠRanKer securely implementsFRanKer in the (FAuth,FRand)-hybrid
model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 5.4. The correct-
ness follows from the additivity of ψ.

The sacrifice step opens the door for a selective failure attack, where the
adversary can guess some information about the remaining triples from the
fact that it has not aborted, so a final combining step is used to remove this
leakage.

131



Paper D.

Protocol ΠTriple
The protocol generates T multiplication triples (〈a〉,〈b〉,〈c〉) where a,b ∈ Fk

2 are random vectors
and c = a ∗ b. The integers τ1,τ2 are bucket sizes and are for security reasons. Let N =

τ1 + τ1 · τ2
2 · T. We assume access to the functionalities FAuth, Fm,k

ROT, FRand, and FRanKer, and we
call ΠTripleConstruct as a subprotocol.

1. Construction: Call ΠTripleConstruct to produce N multiplication triples.

2. Cut-and-choose:

(a) Call FRand to obtain (l1, l2, . . . , lτ1 ), where li 6= lj when i 6= j.

(b) Open 〈alj 〉, 〈blj 〉, and 〈clj 〉 for j = 1,2, . . . ,τ1. Abort if clj 6= alj ∗ blj for some j.

3. Sacrifice:

(a) Use FRand to randomly divide the remaining N− τ1 triples into τ2
2 · T buckets with

τ1 triples in each.

(b) In each bucket we denote the triples by (〈al〉,〈bl〉,〈cl〉) for l = 1, . . . ,τ1 and call
FRanKer to obtain [rl ], l = 2, . . . ,τ1 for each bucket.

i. Compute 〈εl〉 = 〈al〉 − 〈a1〉 and 〈δl〉 = 〈bl〉 − 〈b1〉 and open εl and δl for
l = 2, . . . ,τ1.

ii. Compute [σl ] = 1 ∗ 〈cl〉 − 1 ∗ 〈c1〉 − εl ∗ 〈b1〉 − δl ∗ 〈a1〉 − φ(εl) · φ(δl) + [rl ]
and open σl for l = 2, . . . ,τ2. Abort if ψ(σl) 6= 0. Otherwise, call
(〈a1〉,〈b1〉,〈c1〉) a correct triple.

4. Combine:

(a) Combine on a: Use FRand to randomly divide the remaining τ2
2 · T non-malformed

triples into τ2 · T buckets with τ2 in each. Denote the triples in each bucket by
(〈al〉,〈bl〉,〈cl〉) for l = 1, . . . ,τ2 and call FReEncodePair to obtain one pair for each
bucket. Combine the triples in each bucket as follows:

i. Compute 〈a′〉 = ∑τ2
l=1〈al〉 and 〈b′〉 = 〈b1〉

ii. For l = 2,3, . . .τ2: Compute 〈εl〉 = 〈b1〉 − 〈bl〉 and open εl

iii. Compute [σ′] = 1 ∗ 〈c1〉+ ∑τ2
l=2 εl ∗ 〈al〉+ 1 ∗ 〈cl〉 − [r], where [r] is from the

reencoding pair.
iv. Open σ′ and set 〈c′〉 = ψ(σ′) + 〈ψ(r)〉 = 〈a′ ∗ b′〉 and call (〈a′〉,〈b′〉,〈c′〉) a

good triple.

(b) Combine on b: Use FRand to randomly divide the remaining τ2 · T non-malformed
triples into T buckets with τ2 in each. Denote the triples in each bucket by
(〈al〉,〈bl〉,〈cl〉) for l = 1, . . . ,τ2 and call FReEncodePair to obtain one pair for each
bucket. Combine the triples in each bucket as follows:

i. Compute 〈b′〉 = ∑τ2
l=1〈bl〉 and 〈a′〉 = 〈a1〉

ii. For l = 2,3, . . .τ2: Compute 〈εl〉 = 〈a1〉 − 〈al〉 and open εl

iii. Compute [σ′] = 1 ∗ 〈c1〉+ ∑τ2
l=2 εl ∗ 〈bl〉+ 1 ∗ 〈cl〉 − [r], where [r] is from the

reencoding pair.
iv. Open σ′ and set 〈c′〉 = ψ(σ′) + 〈ψ(r)〉 = 〈a′ ∗ b′〉 and call (〈a′〉,〈b′〉,〈c′〉) a

good triple.

(c) Call FAuth.Check on all opened values so far. If the check succeeds output the T
good triples.

Fig. D.18: Multiplication triples.

132



5. Preprocessing

Functionality FRanKer
This functionality is an extension to FPrep

1. RanKer On input (RanKer,id) sample a random field element r ∈ ker(ψ) and set
ValField[id] = r.

Fig. D.19: Functionality – Authenticated random element in ker(ψ).

Protocol ΠRanKer
The protocol generates [rj] for j = 1,2, . . . ,t, where [rj] is random in ker(ψ) and unknown to all
parties. We assume access to the functionality FRand.

1. Construct:

(a) Pi chooses r(i)j for j = 1,2, . . . ,t + s uniformly at random in ker(ψ).

(b) Pi calls FAuth.Input to obtain [r(i)j ].

(c) Compute [rj] = ∑n
i=1[r

(i)
j ] for j = 1,2, . . . ,t + s.

2. Sacrifice:

(a) Call FRand(F
t
2) to obtain a′i for i = 1,2, . . . ,s and define ai = (a′i ,ei) ∈ Ft+s

2 where ei
is the i’th canonical basis vector of length s.

(b) Compute [bi ] = ∑t+s
j=1 aij[rj], where aij is the j’th entry of ai , and partially open bi .

(c) If bi /∈ ker(ψ) for some i ∈ {1,2, . . . ,s} then abort.

(d) Call FAuth.Check on the opened values bi .

3. Output: Output [rj] for j = 1,2, . . . ,t.

Fig. D.20: Authenticated random element in ker(ψ).

Proposition 5.7. ΠTriple securely implements FPrep.Triple in the
(FAuth,Fm,k

ROT,FRand,FRanKer)-hybrid model.

The proof uses similar arguments as in [16] and can be found in the full
version.

Proposition 5.8. ΠInputPair, ΠReEncodePair, and ΠTriple securely implements FPrep

in the (FAuth,Fm,k
ROT,FRand)-hybrid model.

Proof. This follows directly from Propositions 5.3, 5.4, and 5.7.

Complexity of Preprocessing

We briefly describe the communication complexity for producing the ran-
domness needed for the online phase. Starting by considering the construc-
tion of an input pair the only communication we have to consider here is a

133



References

single call to FAuth.Input. The main cost of authentication is the call to ΠCOPEe
where the parties needs to send mk(n− 1) bits for each vector authenticated.
In the case where a field element is authenticated instead they need to send
m2(n− 1) bits. Furthermore, the party who is authenticating needs to send
the shares of the vector authenticating but this has only a cost of k(n− 1) bits.
At last, the check is carried out but we assume that the parties authenticate
several vectors/values in a batch and hence this cost is amortized away.

For the re-encoding pairs we assume that t is much larger than s. This
means that in order to obtain a single pair the parties need to authenticate
n field elements and n vectors. Once again we assume that the check is
amortized away, so this gives a total cost of sending (m2 + mk)n(n− 1) bits.

The same assumption, that t is much larger than s, is made for the re-
organizing pairs and the random elements in the kernel of ψ. This means
that the amortized cost of producing a reorganizing pair is (l + l′)n vector-
authentications and to obtain [r] for r ∈ ker(ψ) costs n authentication amor-
tized.

Regarding the communication for obtaining a single multiplication triple
we ignore the vectors sent in the construction since the authentication is much
more expensive. Besides authentication we make τ1τ2

2 n(n− 1) calls to F k,1
ROT.

We authenticate 3τ1τ2
2 n vectors in the construction. Furthermore, we need

(τ2− 1)τ2
2 elements from FRanKer and 2 reencoding pairs for the construction

of the triple. The cost of the remaining steps is not close to be as costly, so we
ignore these.

In [16] it is suggested to use τ1 = τ2 = 3. The cost of preparing a multi-
plication gate using these parameters is that of producing 3 reencoding pairs
(2 for the preprocessing and 1 for the online phase), 18 authenticated ele-
ments in the kernel of ψ and the multiplication triple which yields 27 calls to
F k,1

ROT and 3 · 27 authentication of vectors. Thus using m = 3.1k from Table
D.3 in order to obtain security s ≥ 64 and ignoring the calls to F k,1

ROT the
communication becomes

3 · (3.12 + 3.1)k2n(n− 1) + 18 · 3.12k2n(n− 1) + 3 · 27 · 3.1 · k2n(n− 1) bits

= 462.21 · k2n(n− 1) bits.

Similarly, in order to obtain s ≥ 128 we use m = 3.21k from Table D.3 and the
communication becomes 486.03 · k2n(n− 1) bits.

References

[1] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Ad-
vances in Cryptology — CRYPTO ’91. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1992, pp. 420–432.

134



References

[2] Z. Beerliová-Trubíniová and M. Hirt, “Perfectly-secure MPC with linear commu-
nication complexity,” in Theory of Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 213–230.

[3] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-homomorphic en-
cryption and multiparty computation,” in Advances in Cryptology – EUROCRYPT
2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 169–188.

[4] A. R. Block, H. K. Maji, and H. H. Nguyen, “Secure computation based on leaky
correlations: High resilience setting,” in Advances in Cryptology – CRYPTO 2017.
Cham: Springer International Publishing, 2017, pp. 3–32.

[5] A. R. Block, H. K. Maji, and H. H. Nguyen, “Secure computation with constant
communication overhead using multiplication embeddings,” in Progress in Cryp-
tology – INDOCRYPT 2018. Cham: Springer International Publishing, 2018, pp.
375–398.

[6] R. Canetti, “Universally composable security: a new paradigm for cryptographic
protocols,” in Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence, 10 2001, pp. 136–145.

[7] I. Cascudo, “On squares of cyclic codes,” IEEE Transactions on Information Theory,
vol. 65, no. 2, pp. 1034–1047, 02 2019.

[8] I. Cascudo, R. Cramer, C. Xing, and C. Yuan, “Amortized complexity of
information-theoretically secure MPC revisited,” in Advances in Cryptology –
CRYPTO 2018. Cham: Springer International Publishing, 2018, pp. 395–426.

[9] I. Cascudo, I. Damgård, B. David, N. Döttling, R. Dowsley, and I. Giacomelli,
“Efficient uc commitment extension with homomorphism for free (and applica-
tions),” in Advances in Cryptology – ASIACRYPT 2019. Cham: Springer Interna-
tional Publishing, 2019, pp. 606–635.

[10] I. Cascudo, I. Damgård, B. David, N. Döttling, and J. B. Nielsen, “Rate-1, linear
time and additively homomorphic uc commitments,” in Advances in Cryptology –
CRYPTO 2016. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 179–
207.

[11] I. Cascudo and J. S. Gundersen, “A Secret-Sharing Based MPC Protocol for
Boolean Circuits with Good Amortized Complexity (full version),” Cryptology
ePrint Archive, Report 2020/162, 2020, https://eprint.iacr.org/2020/162.pdf.

[12] I. Cascudo, J. S. Gundersen, and D. Ruano, “Squares of matrix-product codes,”
Finite Fields and Their Applications, vol. 62, p. 101606, 2020.

[13] I. Damgård, R. Lauritsen, and T. Toft, “An empirical study and some improve-
ments of the minimac protocol for secure computation,” in Security and Cryptog-
raphy for Networks. Cham: Springer International Publishing, 2014, pp. 398–415.

[14] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Advances in Cryptology – CRYPTO 2012.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–662.

[15] I. B. Damgård and S. Zakarias, “Constant-overhead secure computation of
boolean circuits using preprocessing,” in Theory of Cryptography. Berlin, Hei-
delberg: Springer, 2013, pp. 621–641.

135

https://eprint.iacr.org/2020/162.pdf


References

[16] T. K. Frederiksen, B. Pinkas, and A. Yanai, “Committed mpc,” in Public-Key Cryp-
tography – PKC 2018. Springer International Publishing, 2018, pp. 587–619.

[17] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti, “On the com-
plexity of additively homomorphic uc commitments,” in Theory of Cryptography,
E. Kushilevitz and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 542–565.

[18] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl, “A unified approach to
MPC with preprocessing using OT,” in Proceedings, Part I, of the 21st International
Conference on Advances in Cryptology – ASIACRYPT 2015 - Volume 9452. Berlin,
Heidelberg: Springer-Verlag, 2015, p. 711–735.

[19] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 830–842.

[20] E. Larraia, E. Orsini, and N. P. Smart, “Dishonest majority multi-party compu-
tation for binary circuits,” in Advances in Cryptology – CRYPTO 2014. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 495–512.

[21] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new approach to prac-
tical active-secure two-party computation,” in Advances in Cryptology – CRYPTO
2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 681–700.

136





JA
R

O
N

 SK
O

VSTED
 G

U
N

D
ER

SEN
O

N
 TH

E IN
TER

A
C

TIO
N

 B
ETW

EEN
 LIN

EA
R

 C
O

D
ES, SEC

R
ET SH

A
R

IN
G

, A
N

D
 M

U
LTIPA

R
TY C

O
M

PU
TATIO

N

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-826-1


	Omslag_Jaron_Skovsted_Gundersen.pdf
	PHD_Jaron_Skovsted_Gundersen_TRYK.pdf
	master.pdf
	Kolofon_Jaron_Skovsted_Gundersen.pdf

	Omslag_Jaron_Skovsted_Gundersen
	Blank Page
	Blank Page
	Tom side



