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Regression models for interval censored
data using parametric pseudo-observations
Martin Nygård Johansen1* , Søren Lundbye-Christensen1,2, Jacob Moesgaard Larsen3,2

and Erik Thorlund Parner4

Abstract

Background: Time-to-event data that is subject to interval censoring is common in the practice of medical research
and versatile statistical methods for estimating associations in such settings have been limited. For right censored
data, non-parametric pseudo-observations have been proposed as a basis for regression modeling with the possibility
to use different association measures. In this article, we propose a method for calculating pseudo-observations for
interval censored data.

Methods: We develop an extension of a recently developed set of parametric pseudo-observations based on a
spline-based flexible parametric estimator. The inherent competing risk issue with an interval censored event of
interest necessitates the use of an illness-death model, and we formulate our method within this framework. To
evaluate the empirical properties of the proposed method, we perform a simulation study and calculate
pseudo-observations based on our method as well as alternative approaches. We also present an analysis of a real
dataset on patients with implantable cardioverter-defibrillators who are monitored for the occurrence of a particular
type of device failures by routine follow-up examinations. In this dataset, we have information on exact event times as
well as the interval censored data, so we can compare analyses of pseudo-observations based on the interval
censored data to those obtained using the non-parametric pseudo-observations for right censored data.

Results: Our simulations show that the proposed method for calculating pseudo-observations provides unbiased
estimates of the cumulative incidence function as well as associations with exposure variables with appropriate
coverage probabilities. The analysis of the real dataset also suggests that our method provides estimates which are in
agreement with estimates obtained from the right censored data.

Conclusions: The proposed method for calculating pseudo-observations based on the flexible parametric approach
provides a versatile solution to the specific challenges that arise with interval censored data. This solution allows
regression modeling using a range of different association measures.
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Background
In medical research, the outcome is often an event such
as death, occurrence of a disease, or a treatment-related
event during a follow-up period. Some individuals will
be event-free throughout follow-up, but the event may
occur after the end of follow-up. This kind of incomplete
follow-up is called right censoring and methods for deal-
ing with this form of censoring are used very frequently in
the medical literature. Right censored data thus consist of
a mixture of exactly observed event times and censoring
times. In other situations, the exact event times are never
observed and the event status is only evaluated at cer-
tain time points, examination times, and the data are then
said to be interval censored. This phenomenon occurs fre-
quently when for example a specific group of individuals
is monitored by routine examinations for a medical con-
dition. In such cases, event times are known only to lie
within a time interval from the last examination with-
out the event to the first examination after the event has
occurred. In practice, data can also consist of a mixture
of right and interval censored data, e.g. when data are
gathered from different sources. A standard assumption
when analyzing interval censored data is that the exam-
ination times are independent of the event risk. In that
case one can in the analysis ignore the distribution of the
examination times, and treat the examination times as
fixed. We will also assume that the examination times are
independent of the event risk.
Interval censoring has posed a challenge to the med-

ical research community that has proven hard to over-
come and as a consequence it has become quite common
to impute an event date using either the midpoint of
the interval or the time of the first examination time
where the event is observed to have occurred. Regres-
sion models for interval censored data has traditionally
mostly been concerned with basic parametric regression
models where inference can be performed by standard
maximum likelihood methods and in which the estima-
tors converge at a rate of

√
n. Parametric models are

easily fitted using most common statistical software but
each distributional family imposes rather strict assump-
tions on the shape of the hazard function and it is our
impression that their use in applications has diminished in
recent years; most likely due to reluctance to impose such
assumptions, although covariate adjustment is straight-
forward in parametric models. A parametric approach
that can accomodate different distributional characteris-
tics is the piece-wise exponential proportional hazards
model or equivalently a Poisson log-linear model where
the hazard is assumed constant in some set of inter-
vals of the follow-up time [1]. When events are plen-
tiful the follow-up intervals can be made small enough
to give a reasonable fit to practically any shape of the
hazard function but when the data is more sparse with

few events or the hazard has a more complex shape during
follow-up the piece-wise exponential model has obvious
limitations [2].
As an example of an interval censored dataset, we con-

sider a group of patients with an implantable cardioverter-
defibrillator (ICD), which is a kind of pacemaker that can
protect against slow heart rhythm but also fast arrhyth-
mias, which otherwise can result in hemodynamic com-
promise with loss of consciousness and cardiac arrest. The
fast arrhythmias can be treated by fast pacing or deliv-
ery of a high voltage shock that restores the heart rhythm
to normal. The ICD is placed in the subcutaneous tissue
on the front of the chest below the left collarbone and is
connected to the inside of the heart through a large blood
vessel. The ICD lead gives the ICD the ability to continu-
ously monitor the heart rhythm and if needed deliver the
high voltage shock inside the heart. The ICD lead is the
most sensitive part of an ICD system and is the part with
the highest risk of failure either due to insulation failures
or conductor fractures. The particular lead investigated is
prone to a rather unique type of insulation failure because
of a design flaw where the inner conductors over time
work their way through the outer insulation. Such outer
insulation failures, called externalizations, may be electri-
cally silent at normal ICD follow-up and require dedicated
fluoroscopic/X-ray imaging to be detected. The ICD is at
risk of failing from such externalization events through-
out follow-up, but patients can also have their ICD leads
removed (extracted) for other reasons during follow-up,
which obviously precludes an externalization event. We
consider externalization as the event of interest and we
are interested in estimating the association between the
amount of slack in the lead body inside the heart and the
time to externalization, sincemore lead slack puts the con-
tinuously moving lead body under more physical stress. In
this setting, we have a combined competing risk of death
or extraction of the ICD leads. To assess the association
between lead slack and externalization, we are interested
in comparing the cumulative risk of externalization at one
or more time points.
In this application, interest lies in assessing the effect

of the exposure on the cumulative risk of developing
the outcome in the presence of the competing risks but
existing methods are not well-equipped for this type
of situation. However, in the right censored competing
risk setting, pseudo-observations have been proposed [3]
as a modeling approach which enables effect estimation
on a number of different scales other than the haz-
ard scale such as the cumulative incidence scale. This
method is based on a transformation of the potentially
censored time-to-event data into a set of complete data
on which regression can be performed using generalized
linear models to estimate the relevant effect parame-
ters. When the aim is to model some function of the
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cumulative incidence, the transformation is based on the
non-parametric Aalen-Johansen estimator of the cumula-
tive incidence function.
A non-parametric estimator of the survival function

based on interval censored data has been proposed by
both Peto and Turnbull [4, 5]. The resulting Peto-Turnbull
estimator is a piece-wise constant curve with relatively
few jumps. A natural way to apply the pseudo-observation
approach to interval censored data therefore seems to be
to perform a transformation of the data based on the Peto-
Turnbull estimator similarly to the pseudo-observation
approach based on the Aalen-Johansen estimator. This
approach has been investigated by Kim and Kim [6] in a
competing risk setting. However, the asymptotic proper-
ties of the resulting pseudo-observations are unclear since
the theory for pseudo-observations has been developed
only for estimators with parametric

√
n convergence rate

[7], whereas the Peto-Turnbull estimator has slower n1/3
convergence rate [8].
Royston and Parmar [9] have proposed a flexible para-

metric model which is applicable to both right censored
and interval censored data. This is a regression modeling
framework where the log cumulative hazard function is
estimated using a restricted cubic spline in log time. In the
most simple form with no covariates this approach pro-
vides a way to model the cumulative incidence function
and when covariates are included the model can be for-
mulated as either a proportional hazards or a proportional
odds model.
As in our example above, the event of interest in inter-

val censored data is often a non-fatal event, so methods
for handling interval censoring should accomodate death
as a competing risk. For the remainder of this article, we
consider only competing events for which the event time
is exactly observed and refer to competing events as death
for ease of terminology. In a competing risk setting with a
right censored event of interest, we can model the cause-
specific hazard functions separately by considering only
the time to whatever event occurs first. But when the
event of interest is interval censored, we are only observ-
ing the event if there is an examination after the event
has occurred but before the individual is censored or dies.
Hence, there might be some events of interest which are
unobserved in the data. Because of this circumstance, the
inference needs to take into account that the event of
interest might or might not have occurred in the inter-
val between the last examination time without the event
of interest and time of death or censoring. To accomo-
date this, the data could be considered in an illness-death
model [10] where the risk of death is also modeled after an
event of interest has occurred.
Recently, an elegant approach to calculating pseudo-

observations for interval censored data was proposed by
Sabathé et al. [11] specifically for an illness-death model.

This approach is based on modeling the three transition
intensities either based on Weibull distributions or using
M-splines and applying a penalized likelihood approach
where more roughly shaped intensity functions are penal-
ized using the second derivatives of the three M-splines
squared. If the penalization parameters are all set to zero,
the method simplifies to a full likelihood approach. This
requires a high number of coefficients for each of the
three splines depending on the order and the number of
knots of the spline as well as three penalization parame-
ters to be chosen by the analyst. Due to this high num-
ber of parameters, the authors do not recommend using
their method in place of the traditional non-parametric
pseudo-observation approach for data without interval
censoring.
For right censored competing risk data, we have recently

shown that in some situations calculating parametric
pseudo-observations based on a marginal flexible para-
metric estimator of the cumulative incidence function can
provide less variability in the effect estimates than that of
traditional non-parametric pseudo-observations [12].
In this article, we propose an extension of this approach

that applies to the interval censored setting and is targeted
directly at estimating associations between an exposure
and the event of interest. In the Proposed method section,
we describe the proposed method in more detail and in
the Simulation studies section we describe a simulation
study that compares our proposed method to the existing
methods. We present the results of these simulations in
the Simulation studies section and present an analysis of
the example data in the Application to ICD data section.
We conclude the article with a discussion and conclusion
in the Discussion section and Conclusion section.

Methods
Proposedmethod
We now give details on how the parametric pseudo-
observation approach can be extended to cover interval
censored settings with competing risks using an illness-
death model.
An illness-death model involves an event of interest and

the competing event death which gives three different
states; 0 where neither event has occurred, 1 where only
the event of interest has occurred, and 2 which is death
with or without having experienced the event of interest.
In the following, we will assume that all individuals are
initially in state 0 at time t = 0 and we let hkl denote the
hazard function describing transition from one state, k,
to another, l and similarly we let Hkl denote the cumula-
tive hazard function. To estimate the cumulative incidence
function of the event of interest, F01(·), we will use the
estimates of the transition-specific hazard functions and
the relationship between these and the transition-specific
cumulative incidence function,
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F01(t) =
∫ t

0
h01(u)S(u)du, (1)

where S(·) is the event-free survival function defined as

S(t) = exp
(
−H01(t) − H02(t)

)
.

Following the flexible parametric approach of Royston
and Parmar [9] that generalizes a Weibull model, we esti-
mate the transition-specific hazard functions by modeling
the transition-specific log cumulative hazard functions
using restricted cubic splines in x = ln(t). According to
Royston and Parmar [9], a natural cubic spline with m
internal knots, ξ1, . . . , ξm, and external knots ξmin, ξmax
can be expressed as

s(x; γ ) = γ0 + γ1x + γ2v1(x) + · · · + γm+1vm(x),

where vj(x) = (x−ξj)
3+−λj(x−ξmin)

3+−(1−λj)(x−ξmax)
3+.

Hence, we are assuming the model

ln (Hkl(t)) = skl(x; γkl)
= γkl,0 + γkl,1x + γkl,2vkl,1(x) + · · ·
+ γkl,m+1vkl,m(x),

for going from state k to state l. For simplicity, we assume
that the number of knots is m for all three splines. The
model, hence, contains m + 2 spline coefficients, γkl =
γkl,0, . . . , γkl,m+1, for each transistion and corresponding
spline knots ξkl,min, ξkl,1, . . . , ξkl,m, ξkl,max. Based on the
spline coefficients, γ01, γ02, and γ12, we can express the
transition-specific hazard function as

hkl(t) = dskl(x; γkl)
dt

· exp (skl (x; γkl))

= 1
t

· dskl(x; γkl)
dx

· exp(skl(x; γkl)).

The derivative of skl(x; γkl) is

dskl(x; γkl)
dx

= γkl,1 +
m∑
j=2

{
γkl,j ·

(
3(x − ξkl,j)

2+

− 3λkl,j(x − ξkl,min)
2+

− 3(x − ξkl,max)
2+
)}

.

We consider a setting where the time to the event of
interest can either be observed exactly (right censored) or
interval censored but the time of death is always observed
exactly (right censored). Estimation of the spline coef-
ficients is performed using maximum likelihood meth-
ods and the contributions to the likelihood function,
L(γ01, γ12, γ02), take different forms according to the event
trajectory of each individual. These trajectories are deter-
mined by the occurrence and timing of the event of
interest and death as described by Touraine et al. [13]

Maximum likelihood estimation
The observed trajectory of an individual can be described
by the observed event status and observation time for both
the event of interest, (d1, t1), and death, (d2, t2), as well
as a time of the last examination time without the event
of interest if any such has occurred, l1. This last negative
examination time might be at time l1 = 0 if no nega-
tive examinations have occurred. For individuals with an
interval censored event of interest, the event of interest is
then known to occur in the interval (l1, t1). For individu-
als with an event of interest for which the time is observed
exactly, l1 is not defined and for individuals with right cen-
sored data but no event of interest, we let l1 denote the
time point at which follow-up ends for that individual.
We now describe the contributions to the likelihood func-
tion for each trajectory. For the i’th individual, we use the
following notation.

d1i indicates an observed event of interest (either
exactly observed or interval censored)
l1i is the last known negative time point (potentially
at time zero)
t1i is the observation time for the event of interest
(either the exact time or the first positive examina-
tion time)
d2i indicates a competing event (exactly observed)
t2i is the observation time for the competing event

For short, we will denote each individual’s contribution to
the likelihood function as Li.
Trajectories 1 and 4
For an individual with the event of interest observed at

time t1i exactly, followed by death or censoring at time t2i,
the contribution is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))
exp(−H12(t1i))

h12(t2i)d2i .

Trajectories 2 and 5
For an individual with an examination without the event

of interest or right censoring of the event of interest at
time l1i followed by death or censoring at time t2i, the
contribution is

Li = S(t2i)h02(t2i)d2i +
∫ t2i

l1i
S(u)h01(u)

exp(−H12(t2i))
exp(−H12(u))

h12(t2i)d2i du.

Trajectories 3 and 6
For an individual with an interval censored event of

interest occurring between time l1i and t1i followed by a
death or censoring at time t2i, the contribution is

Li =
∫ t1i

l1i
S(u)h01(u)

exp(−H12(t2i))
exp(−H12(u))

h12(t2i)d2idu.

The likelihood function obtained by multiplying the rele-
vant contributions for each individual can be maximized
numerically by using e.g. the Newton-Raphson algorithm.
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The contributions corresponding to each of the six trajec-
tories are given in the Appendix [see Additional file 1].

Initial values
For likelihood maximization in practice, it is worth con-
sidering how to provide initial values for the parameter
vector (γ01, γ02, γ12) in order to achieve convergence in
as few iterations as possible. We propose the following
approach using midpoints for interval censored events of
interest.
Modeling the transition from state 0 to 1 can be done

by fitting a flexible parametric model with the spline
knots chosen for this transition and using the midpoints
between l1i and t1i for interval censored events of inter-
est. From this fitted model we can calculate a predicted
survival function to estimate 1 minus the cumulative inci-
dence of the event of interest. For each individual that has
not had an observed event of interst, we can then estimate
the probability that they had an unobserved event of inter-
est in the interval between their last negative examination
time, l1i, and their end of follow-up time, t2i, as the differ-
ence in predicted survival between these two time points.
We can then randomly assign these individuals as hav-
ing had or not having had an unobserved event of interst
based on their individual probabilities and then temporar-
ily consider some of them as if they had an event of interest
at themidpoint of the interval from l1i to t2i. This allows us
tomore accurately estimate the remaining two transitions.
The transitions from state 0 to 2 and from 1 to 2 can

now be modeled, again using flexible parametric models
with the relevant knots, using the updated event and sta-
tus variables and imposing delayed entry at the time of the
event of interest for the transition from state 1 to 2.

Parametric pseudo-observations for interval censored data
By maximizing the likelihood function described above,
we obtain parameter estimates (γ̂01, γ̂02, γ̂12)which can be
used to form an estimate, θ̂ IC , of the cumulative incidence.
Similarly, for each observation, i, we can obtain a leave-
one-out estimate θ̂ IC(−i) based on all observations except
the i’th with the same spline knots as for the full-sample
estimate. We can then define a set of parametric pseudo-
observations for interval censored data, θ IC1 , . . . , θ ICn , as

θ ICi = nθ̂ IC − (n − 1) θ̂ IC(−i), for i = 1, . . . , n. (2)

The pseudo-observations thus defined can be analyzed
using generalized linearmodels with a sandwich estimator
of the variance in the same way as both non-parametric
and parametric pseudo-observations for right censored
data [3, 12]. Let T1 denote the observation time for the
event of interest and D1 the corresponding event indica-
tor. To estimate the risk difference or the relative risk at
time t based on the suggested pseudo-observations and a

covariate vector for the i’th individual Zi = (Zi1, . . . ,Zip),
we can then express the model as

g (E [I(T1 ≤ t,D1 = 1)]) = β0 +
p∑

j=1
βjZij,

where g(·) is the relevant link function, g(x) = x for the
risk difference and g(x) = ln(x) for the relative risk, and
β = (β0, . . . ,βp) is the vector of regression coefficients.
Estimates of the regression coefficients can be obtained
solving the estimating equation

n∑
i=1

(
∂

∂β
g−1(βᵀZi)

)ᵀ
V−1
i

(
θ̂ ICi − g−1(βᵀZi)

)
= 0,

where Vi is a working covariance matrix that takes the
correlation between pseudo-observations at different time
points into account. In the case of just one time point, Vi
is an estimate of the variance.

Simulation studies
Data generation
We simulated datasets imposing a non-random binary
exposure, x, such that half of the individuals are exposed
and the other half is non-exposed and an administrative
censoring at time t = 5.
For the event of interest, we simulated realizations of

a random variable T01 ∼ Weibull(k01(x), b01(x)), with
scale parameters k01(0) = 0.06 and k01(1) = 0.12 and
shape parameters b01(0) = 0.5 and b01(1) = 0.4. These
parameters were chosen to give approximately the same
event rate that was observed in the ICD example already
introduced. We simulated time to death from a random
variable T02 ∼ Exp(λ02) with intensity λ02 = 0.1. Based
on these variables we define event indicators δ01 and δ02
according to which event occurs first if min(T01,T02) < 5.
Hence, all individuals enter the study at time t = 0 in state
0.
For individuals who experience the event of interest, we

simulate the transition from state 1 to state 2 as another
random variable T12 ∼ Exp(λ12) with λ12 = 0.4. The
time-to-event for this transition is then T01 + T12 with
censoring at t = 5 and the event indicator is δ12.
To mimic a practical setting with a mixture of right and

interval censored data, we consider the event of inter-
est for some individuals to be interval censored and for
the others to be right censored. This allocation follows a
Bernoulli distribution with probability parameter pic for
being interval censored. For individuals with interval cen-
soring of the event of interest, we simulate examination
times with amean interval length of	 and a random error
following a normal distribution with mean zero and vari-
ance σ 2.We continue adding examinations until either the
event of interest has occurred or the induvidual has died
or has been censored following an iterative formula for
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examination times,

ei+1 = ei + δi,

where δi ∼ N(	, σ 2). This gives rise to the variable l1i
which is the last known time with a negative status for
the event of interest and the variable t1i which is the
first known positive status. For individuals with an exactly
observed event of interest, we let l1i = t1i be the event
time, and for right censored individuals in which we do
not observe an event of interest will have li = t1i = t2i
which is the time of death or censoring.
For the simulations, we performed 1 000 repetitions of

datasets of sample size n = 250, where pic = 80% of the
events of interest are interval censored, and themean time
between examinations is 	 = 1 with σ 2 = 0.2.

Data analysis
In each dataset, we calculated three sets of pseudo-
observations for the event of interest based on three dif-
ferent approaches.

θE1 , . . . , θEn Potentially unobservable exact right
censored event times for all individuals.
These will serve as a way to measure the
empirically highest achievable precision.

θ IC1 , . . . , θ ICn Proposed method for taking interval
censoring into account.

θS1 , . . . , θSn Method for taking interval censoring into
account proposed by Sabathé et al.

For each set of pseudo-observations we fitted the same
generalized linear models with identity and log link func-
tions to estimate the risk, risk difference, and relative risk
of experiencing the event of interest before time t = 3 and
compared the resulting parameter estimates to true val-
ues which we obtained by calculating proportions of the
event of interest in a simluated dataset with 108 observa-
tions. If the estimation of spline coefficients for either the
full sample or one or more leave-one-out subsamples did
not converge or if the generalized linear regression model
gave unreasonable estimates (cumulative incidence not in
(0, 1), risk difference not in (−1, 1), relative risk not in
(10−1, 10)), we considered the results to be unvalid and
ignore them in the following. Based on the obtained esti-
mates, we then calculated the median bias, the empirical
standard error (empSE) and the confidence interval cov-
erage probability. We calculated confidence intervals for
the cumulative incidence on a logarithmic scale to acco-
modate the non-symmetrical nature of the cumulative
incidence scale. To compare the precision of the estima-
tion between the methods, we calculated a relative empSE
with the empSE of the θEi s as the reference value. We also
calculated the root mean squared error (RMSE) and the
average of the standard errors from the regression models
(modSE) [14, 15].

We generated data and performed all pseudo-
observation calculations except the θSi s as well as
regression modeling using Stata/MP version 16.1. To
calculate the θSi s we used R version 3.6.3 and the packages
SmoothHazard and pseudoICD.

Results
Simulation studies
To illustrate the three different estimation approaches, we
have shown the full-sample estimators on which each of
the compared approaches are based for a randomly cho-
sen simulated dataset in Fig. 1. The black curve in the
figure is the true cumulative incidence function based
on the simulated dataset with 108 observations. The
blue curve is the Aalen-Johansen estimator based on the
exactly observed event times, which shows that in this par-
ticular dataset, the cumulative incidence is slightly lower
than expected. Both the penalized likelihood estimator
(red curve) and the flexible parametric estimator (green
curve) follow the estimator based on the exact event times
reasonably well.
The results of the simulation study are shown in Table 1.

In the 1 000 datasets, there were on average 146 events
of interst but only 120 that we register when consider-
ing the data as interval censored. We focus mainly on the
estimates of absolute cumulative incidence of the event of
interest. The proposed method gave unvalid estimates in
about 5% of the 1 000 datasets while the method proposed
by Sabathé et al. never did.
Using the exactly observed data, the parametric pseudo-

observations perform very well and we obtain virtually
unbiased estimation of the true value of the cumula-
tive incidence function at time t = 3, which is 0.1236,
with an empirical standard error of 0.019 and cov-
erage probability close to the nominal value of 95%.
Analysing the interval censored data using our proposed
parametric pseudo-observations, we still get an unbi-
ased estimator but the empirical standard error is 37%
higher compared to using the exactly observed data due
to the added uncertainty inherent in the interval cen-
sored data. The coverage of this method is also rea-
sonably close to 95%. In terms of bias and coverage,
the method proposed by Sabathé et al. performs quite
similarly to our proposed method while the empirical
standard error of the cumulative incidence estimates is
slightly lower for the Sabathé et al. method. This might
be explained by the additional three penalization param-
eters which control the smoothness of the fitted M-
splines but must be provided explicitly or determined
from the data using an approximate likelihood technique
[13].
Estimating associations with the exposure gives small

biases for both the risk difference and relative risk using
either our proposed method or that of Sabathé et al. and
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Fig. 1 Full-sample estimators of the cumulative incidence function in one of the simulated datasets. Black curve: True cumulative incidence
function. Blue curve: Aalen-Johansen estimator on exact event times. Red curve: Penalized likelihood estimator used in the approach by Sabathé et
al. Green curve: Flexible parametric approach used in our proposed approach

the coverage probabilities are in good agreement with the
nominal value.

Application to ICD data
Our ICD dataset holds data on 377 patients who are
followed from the time of ICD implantation and for
a maximum of about 10 years. During follow-up we
have information on our event of interest, externalization

status, at each fluoroscopic examination time and on the
date of death or lead extraction if this occurred. The
dataset, hence, consists only of interval censored data for
the event of interest and right censored data for death or
lead extraction. We show the trajectory for each patient
in Fig. 2 where lines indicate an observation interval col-
ored black for intervals ending at a positive examination
and grey if we do not observe externalization and black

Table 1 Results of the simulations in the general set-up based on estimation of cumulative incidence, risk difference and the
logarithm of relative risk

Method Bias empSE Relative empSE modSE RMSE Coverage (95% CI) Valid est.

Cumulative incidence (true value: 0.1236)

Exact -0.002 0.019 1 (ref.) 0.019 0.019 95.5 (94.0 to 96.6) 999

IC -0.005 0.026 1.32 0.025 0.026 94.7(93.1 to 96.0) 942

Sabathé et al. -0.005 0.023 1.17 0.023 0.023 95.3(93.8 to 96.5) 1000

Risk difference (true value: 0.0673)

Exact 0.000 0.038 1 (ref.) 0.039 0.038 95.5 (94.0 to 96.6) 999

IC -0.005 0.059 1.52 0.052 0.059 94.2 (92.6 to 95.5) 953

Sabathé et al. -0.003 0.044 1.14 0.045 0.044 95.3 (93.8 to 96.5) 1000

Logarithm of relative risk (true value: 0.5590)

Exact 0.010 0.348 1 (ref.) 0.341 0.349 96.2 (94.8 to 97.2) 999

IC -0.025 0.456 1.31 0.454 0.456 95.8(94.3 to 96.9) 944

Sabathé et al. -0.014 0.414 1.19 0.409 0.415 96.6 (95.3 to 97.6) 1000

IC: The proposed method for calculating pseudo-observations for interval censored data
empSE: Empirical standard error, defined as standard deviation of parameter estimates
Relative empSE: Defined as empSE divided by empSE of parameter estimates using the exact method
modSE: Average model standard error
RMSE: Root mean squared error
CI: Confidence interval
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Fig. 2 Visualization of the interval censored real example dataset. A black line indicates an interval with an observed externalization, a grey line
indicates an interval with no observed externalization, black dots indicate deaths or lead extractions

dots indicate death or lead extraction times. We observed
37 externalization events and 106 cases of death or lead
extraction during follow-up.
We first estimated the cumulative incidence function for

the externalization event based on a competing risk model
using the non-parametric Aalen-Johansen estimator [16]
applied to themidpoints of the intervals. This is illustrated
by the solid step function in Fig. 3. The dashed and dot-
ted curves in the figure show the estimator based on the
flexible parametric approach by fitting splines with 3 and

4 knots, respectively, to the interval censored data in an
illness-death model. The three estimators seem to cap-
ture roughly the same shape of the cumulative incidence
function although the Aalen-Johansen estimator based on
midpoints shows a tendency to place the bulk of the events
around 2–3 years due to a high number of patients having
their first examination since implantation after roughly 5
years.
We then calculated parametric pseudo-observations for

externalization events based on splines with both 3 and 4
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Fig. 3 Estimated cumulative incidence of externalization. Solid curve: Aalen-Johansen estimator in a competing risk model. Dashed curve: Flexible
parametric estimator with 3 knots based on an illness-death model fitted on the full sample. Dotted curve: Flexible parametric estimator with 4
knots based on an illness-death model fitted on the full sample
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Table 2 Results of the generalized linear model regression analyses estimating the cumulative incidence, risk difference, and relative
risk at 5 years since ICD implantation in the ICD dataset

Method CIP (95% CI) Risk difference (95% CI) Relative risk (95% CI)

Crude Adjusted Crude Adjusted

IC, 3 knots 8.6 (5.9cc12.5) 9.2 (2.5 to 15.9) 9.1(2.4 to 15.9) 3.10(1.41 to 6.78) 3.07(1.20 to 7.86)

IC, 4 knots 8.2(5.6 to 12.1) 8.9(2.2 to 15.5) 8.8(2.0 to 15.5) 3.13(1.37 to 7.15) 2.92 (1.12 to 7.60)

IC: The proposed method for calculating pseudo-observations for interval censored data
CIP: Cumulative incidence proportion
CI: Confidence interval

knots evaluated at 5 years after ICD implantation and esti-
mated the cumulative incidence at this time point as well
as the risk difference and relative risk comparing patients
with high lead slack to those with low lead slack. The
results of the regression analyses are shown in Table 2.
Using 3 knots for the splines, the estimated overall cumu-
lative incidence of externalization within 5 years since
ICD implantation is 8.6% (95% CI: [5.9 to 12.5]). In the
crude analysis, patients with a high degree of lead slack
have substantially increased externalization risk. In terms
of absolute difference in risk, patients with high slack
have a risk of externalization that is 9.2 percentage points
(95% CI: [2.5 to 15.9]) higher than that of patients with
low slack. On a relative scale, this difference corresponds
roughly to a 3-fold increase in externalization risk with an
estimated relative risk of 3.10 (95% CI: [1.41 to 6.78]). The
association between lead slack and externalization risk
might be confounded by factors such as the placement of
the lead and the age of the patient, and to account for such
potential confounding we have performed an analysis in
which we adjust for lead placement (apical or septal) and
age at implantation (above/below 65 years). Both the abso-
lute and the relative adjusted estimates of association are
quite similar to the crude estimates (see Table 2). If we use
4 knots instead of 3 for the splines, the estimated 5-year
externalization risk is slightly lower at 8.2 (95% CI: [5.6 to
12.1]) and the estimates of the association with lead slack
are rather consistent with the results based on 3 spline
knots.

Discussion
With the methods proposed in this article, we have pro-
vided a way to calculate pseudo-observations and hence
perform regression modeling in data consisting of both
right and interval censored data on an event of interest
which is subject to competing risks. We have shown by
simulations that this method gives unbiased estimates of
the cumulative incidence function in a realistic setting.
Our proposed method also provides confidence inter-
vals that have coverage probabilities close to the nomi-
mal value. Our method is a further development of an
approach for right censored competing risks data [12] and

compared to the recently proposed method by Sabathé et
al. [11] it requires relatively few parameters and does not
require any analyst choices apart from determining the
spline knots.
There are a number of considerations and assumptions

for the parametric pseudo-observations for right censored
data that also apply to the interval censored version. This
concerns the assumption of independent censoring as well
as the choice of number and positions of knots for the
splines. For the interval censored data, we have imposed
the additional assumption that the examination times are
independent of the risk of the event of interest.
The methods that we propose in this article are not

implemented in any standard software packages, but we
have provided a publicly available Stata syntax example on
GitHub [17].
A practical limitation of our method is that it is a very

computationally intensive task to estimate the spline coef-
ficients in each leave-one-out subsample of the dataset.
On a standard laptop running Stata 16.1, we experienced
a run-time for one sample of 250 observations of about
1h7m using 3 spline knots. Fortunately, this need only
be done once for each study. This is also the reason
for our limited number of repetitions in our simulation
study.
Although we allow that the event of interest is either

right or interval censored or a mix of both, we have only
considered the case where the time of the competing event
is exactly observed. If this is not the case and the com-
peting event is also interval censored, the situation is far
more complicated. This is unlikely to be the case when
death is the only competing event but it could be rele-
vant if other events can preclude the event of interest. Our
proposed methods do not cover this situation and are not
easily extended to do so.
A special case of interval censored data to which our

methods do apply is known as current status data in
which we only have one examination for each individual.
One example of such data is information from a system-
atic population screening for a specific condition. For a
non-congenital condition, a positive screening would pro-
vide information that the condition has occurred at some
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point prior to the screening but nothing more yielding
long intervals that reflect the uncertainty of the exact
occurrence time of the condition.

Conclusion
In this article, we have shown how the previously pro-
posed parametric pseudo-observations for right censored
data can be extended to cover a setting with both right and
interval censored data. Since interval censored data are
almost inevitably subject to the competing risk of death,
we have formulated themethods in an illness-deathmodel
that accommodates this circumstance. We have demon-
strated through simulations that the proposed method
performs well with no noteworthy bias and satisfactory
coverage probabilities for estimating the cumulative inci-
dence as well as absolute and relative associations with an
exposure.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12874-021-01227-8.

Additional file 1: Likelihood contributions for each individual trajectory.
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