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Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance

occurs between excitatory and inhibitory transmission that enables this sensitization to

form. In addition to neurons, the contribution of central glia, especially astrocytes and

microglia, to the pathogenesis of pain induction and maintenance has been identified.

This has led to the targeting of astrogliosis and microgliosis to restore the normal

functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly

defined as a reactive response of glial cells in response to insults to the central nervous

system (CNS). The role of glia in the peripheral nervous system (PNS) has been less

investigated. Accumulating evidence, however, points to the contribution of satellite glial

cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells

and their interaction with sensory neurons has become important for identifying the

mechanisms underlying pain signaling. This would, in turn, provide future therapeutic

options to target pain. Here, a viewpoint will be presented regarding potential future

directions in pain research, with a focus on SGCs to trigger further research. Promising

avenues and new directions include the potential use of cell lines, cell live imaging,

computational analysis, 3D tissue prints and new markers, investigation of glia–glia

and macrophage–glia interactions, the time course of glial activation under acute and

chronic pathological pain compared with spontaneous pain, pharmacological and non-

pharmacological responses of glia, and potential restoration of normal function of glia

considering sex-related differences.

Keywords: satellite glial cells (SGCs), pain, sensory ganglia, trigeminal ganglion (TG), dorsal root ganglion (DRG),

nociception, peripheral nervous system

INTRODUCTION

Chronic pain is a debilitating and common condition (1), and it has a substantial impact on affected
individuals, society, and the health-care system (2). It is generally accepted that pathological
chronic pain is caused by a maladaptive process that occurs when an imbalance is present between
excitation and inhibition signaling pathways underlying pain (3). Both functional and structural
alterations have been identified. Altered neuronal activity, manifested as sensitization of peripheral
primary sensory neurons in the sensory ganglia [e.g., dorsal root ganglia (DRG) and trigeminal
ganglia (TG)] and central sensitization of nociceptive neurons within the central nervous system
(CNS), including the spinal cord, trigeminal nucleus, brain stem, and cortex, has been reported

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://doi.org/10.3389/fpain.2021.646068
http://crossmark.crossref.org/dialog/?doi=10.3389/fpain.2021.646068&domain=pdf&date_stamp=2021-03-10
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gazerani@hst.aau.dk
https://doi.org/10.3389/fpain.2021.646068
https://www.frontiersin.org/articles/10.3389/fpain.2021.646068/full


Gazerani SGC’s Future in Pain Research

(4). Treatment of chronic pain is complicated and often results
in inadequate response or side effects. Attempts are ongoing
for a better understanding of pain processes, mechanism-based
treatment and targeting, implications of multidisciplinary pain
management, and patient-centered strategies (5).

Generally, there has been increasing interest in the role of the
non-neuronal components of the nervous system (glial cells) in
the health and diseases of the nervous system (6–8). These cells
have been markedly recognized to contribute to the development
or maintenance of abnormal neuronal excitability (9). In this line,
accumulating evidence supports the contribution of glial cells in
the initiation or maintenance of chronic pain (10). Major glial
residents in the CNS, namely, astrocytes andmicroglia, have been
the subject of extensive research, and their important role in
the pathogenesis of persistent pain is becoming definitive (11–
13). Cross talk between astrocytes, microglia, and neurons has
been suggested to promote pathological chronic pain or pain
chronification, i.e., transition from acute to chronic pain (14).
Interestingly, in the context of pain, gliopathy (e.g., astrogliosis
and microgliosis) seems to play distinct roles (10, 15). Gliosis
is non-specifically defined as a reactive response of glial cells in
response to insults to the CNS. Differences in the response of
microglia and astrocytes depend on the type of pain (16), the time
course of insult (17), and sex (18). Excellent reviews are available
to comprehend the role of astrocytes and microglia in chronic
pain (10, 19–24). Recently, the potential role of other central glia,
oligodendrocytes, has also been investigated, and current findings
collectively support their participation in the central pain process
and contribution to persistent pain (25). Targeting central glia
to reverse chronic pain or to prevent its development has also
emerged (26, 27).

Glial cells of the peripheral nervous system (PNS) have also
been investigated in the context of chronic pain pathology
and targeting (28–30). These cells include satellite glial cells
(SGCs), Schwann cells (SCs), and enteric glial cells (EGCs). The
latter two cell types are less investigated than SGCs. Within
ganglia, SGCs surround the cell bodies of neurons very closely
and create a unique structure, a unit of neuron–SGC, which
is not found in other parts of the nervous system (31). In
different painmodels with a neuropathic or inflammatory nature,
SGCs have been shown to undergo alterations in structure and
function (31, 32). Consequently, the neuronal activity of sensory
ganglia neurons is affected, which is reflected in hyperactivity of
neurons, neuron–SGC coupling, elevated responses to adenosine
triphosphate (ATP), release of cytokines, and downregulation
of potassium channels (32). It is proposed that this increase in
neuronal activity is linked to the development of chronic pain.
A distinct pattern is seen in SGCs following insult to the PNS.
A recent review summarized common changes that occurred
in SGCs in four major pain models: systemic inflammation,
postoperative pain, diabetic neuropathy, and postherpetic pain
(32). SGC alterations have been documented in response to both
injury and inflammation. These cells, therefore, have become
another potential target for therapeutic purposes, i.e., for the
prevention or treatment of chronic pain. An argument has been
formed around preference in targeting these cells, as SGCs are
located outside the blood–brain barrier (BBB), which might

offer a better potential for blocking pain transmission at the
periphery. Considering that these cells seem first to respond
to injury or inflammation prior to central glial cells, they may
also offer potential for minimizing the risk of chronification
and transition from peripheral to central sensitization (15, 33).
Elegant reviews are available to deepen the knowledge of what
has been investigated and found in exploring the roles of SGCs
in pain (32, 34–37) or its targeting (27). The purpose is therefore
not to provide a comprehensive systematic review of the current
literature on the role of glial cells in pain, since several excellent
reviews are already available, where the readers are referred to
(10, 19–24, 32, 34–37). Instead, this paper aims to provide a
viewpoint on potential future directions and avenues to stimulate
further interest and to form scientific hypotheses with a focus
on peripheral glia, mainly SGCs. Further investigation of glia in
relation to pain and its targeting is not only a truly fascinating
field of science but also highly valuable in understanding pain
mechanisms and mechanistic-based optimized targeting.

FUTURE DIRECTIONS FOR SATELLITE

GLIAL CELLS IN PAIN RESEARCH

Satellite Glial Cells’ Characterizations by

Aid of Novel Tools
Historically, SGCs were considered cells that share some
common features with astrocytes; hence, the expression of some
proteins that were known for astrocytes was expected in these
cells, such as glial fibrillary acidic protein (GFAP), glutamine
synthetase, glutamate aspartate transporter, and connexin 43 gap
junction (31, 38). However, it was determined that these cells have
their own morphology and characteristics that are unique, and
differences might exist between SGCs that are located in the DRG
and those located in the TG. Heterogeneity was also observed in
terms of the morphology and distribution of these cells within
sensory ganglia around different neuronal populations, e.g., with
different sizes (39). These observations highlighted the fact that
the characterization of these cells in the TG and DRG under
physiological and pathological pain with different natures (e.g.,
neuropathic and inflammatory) is valuable. This is crucial when
pain conditions in humans are modeled in laboratory animals
and to test potential targets for pain. It has gradually become
evident that accurate information on SGC and macrophage
morphology and function will facilitate research on the roles of
these cells in pain and as potential therapeutic targets (15, 28).
Perhaps one of the limitations that have slowed down the process
has been the lack of proper methods or tools to facilitate dynamic
visualization of these cells.

A recent study (40) focused on the characterization of
SGCs and macrophages in the DRG. The authors applied the
method of specific gene expression or deletion and examined
Ca2+ dynamics in these cells. Both immunohistochemistry
and 2-photon Ca2+ imaging have been used to characterize
SGCs in the DRG in the available and most commonly used
genetically modified mouse lines that are used to study astrocytes
or microglia. Interestingly, findings from this study pointed
out that the majority of lines used in studying astrocyte
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functions were not efficient in studying SGCs in the DRG, with
the exception of two mouse lines. The authors used mouse
lines of S100β-eGFP, ALDH1L1-eGFP, GFAP-Cre::GCaMP6f,
GLAST-CreERT2::GCaMP6f, Cx30-CreERT2::GCaMP6f, and
Cx43-CreERT2::GCaMP6f for SGCs in the DRG and similar lines
for astrocytes in the visual cortex (40). The double transgenic
line Cx43-CreERT2::GCaMP6f permitted inducible GCaMP6f
expression in more than 90% of DRG SGCs (92.6%), where the
expression of GCaMP6f in neurons was only 4%. It remains to
be determined whether GCaMP6f is expressed in other cells
within the DRG, such as endothelial cells, fibroblasts, or SCs
(40). Interestingly, not only was the expression of Cx43 found
to be very stable, but also it was upregulated after injury insult
in the PNS (40). Hence, it seems that this mouse line can be
a useful tool in pain research focused on PNS and pain. The
results from this study (40) also demonstrated that the knock-in
CX3CR1-eGFP mouse line presents specific eGFP expression
in the majority of microglial cells and macrophages in both
the DRG and the visual cortex. Therefore, this line can be an
option when studying specific targeting of SGCs in the DRG.
These two validated mouse lines (Cx43-CreERT2::GCaMP6f
and CX3CR1-eGFP) could be used as proper tools for further
investigation of SGCs in the DRG under healthy and painful
conditions (40). This direction presents new avenues toward the
development and application of research tools to enable progress
in research on SGCs in relation to pain. For example, it has been
proposed that genetically encoded animals can allow studying
sensory neuron–SGC interactions (41, 42). This would provide
potential for studying the specific roles of target genes that are
expressed in SGCs following pathological pain. This approach
has similarly been proposed for investigating the roles of SCs in
neuropathic pain (30).

Another attempt is to properly isolate SGCs to characterize
them and study their function (43). This approach has been
used to examine whether isolation would dramatically change
the natural milieu that SGCs normally experience in vivo. A
contradiction exists in the literature, but cell-based platforms
have been used for the characterization of SGCs (44–47) and
their function (48, 49). Recent studies have shown that the
transcriptomes of SGCs can be determined under normal and
pain conditions (50). Next-generation RNA sequencing by Jager
et al. (50) provided the first evidence on the state of SGCs
under normal conditions and following peripheral nerve injury.
Findings from this study show similarities between naïve SGCs
and astrocytes, being enriched in genes associated with the
immune system and cell-to-cell communication. Data from this
study (50) show that 3 days following injury, several genes linked
to cholesterol biosynthesis are downregulated in SGCs, and this
pattern was also present 14 days postinjury. SGC transcriptional
analysis, however, shows a signature that 14 days postinjury, a
higher expression of genes associated with MHCII and migration
of leukocytes is present. Access to the full transcriptome has been
offered by the authors (on the gene omnibus database) (50) and
can serve as an important and valuable tool to understand cell
function and regulation of different gene products. This study
is also the first to provide evidence that postinjury perineuronal
proliferating cells are not SGCs but macrophages.

Transcriptomics, focused on the characterization of individual
cells, is increasingly used (51). This approach is valuable because
single-cell RNA sequencing allows analysis of subtypes of SGCs
and comparison of these cells in different sensory ganglia in one
species or comparison between species, for example, between
rodents and humans. This line of research will be particularly
important when researchers are focused on pain conditions that
are specific to one type of sensory ganglia, for example, dental
pain, headache, and other types of orofacial pain that need a focus
on SGCs in the TG (52, 53).

In addition, due to the nature of translational gaps between
human glia and glia in rodents (54), the identification of
human sensory ganglion cells would reveal similarities and
differences and hence provide a more accurate understanding
based on transcriptome profiling. Some attempts have already
been initiated (55, 56). Having access to human sensory ganglia
(healthy and pain patients) for research would close the gaps in
the findings obtained from rodent models (32). A study in 2018
(55) examined the transcriptomic analyses of DRGs obtained
from human donors and mouse tissues, including DRGs. This
study has also created an online, searchable repository to provide
access to data on cross-species analysis of DRGs. This would be
highly valuable to speed up the screening of valuable targets for
therapeutic purposes (55). This indeed also emphasizes an urgent
need to access databases for researchers working in SGC-related
pain research.

Extracellular vesicles (EVs) are released by cells into the
extracellular space. EVs are secreted by a range of cell types,
can be isolated, and can be characterized. Their roles in the
nervous system (e.g., in cell–cell communication) under health
and disease have been reviewed recently (57). Proteomic profiling
of EVs shed from SGCs has been reported (45), and the
findings have revealed differentially regulated proteins when
SGCs are stimulated by lipopolysaccharides (LPSs; mimicking
inflammation). These proteins include junction plakoglobin and
myosin 9, which can be considered markers of SGC responses
under inflammatory conditions.

An elegant recent review (58) summarized the ncRNAs in
neuropathic pain within the PNS and the CNS. The findings
cover both neuronal and non-neuronal cell sources of these
molecules and, interestingly, those related to SGCs in the
TG and DRG. For example, NONRATT021972 and uc.48+
upregulate the ionotropic purinoreceptor P2X7 in SGCs (59, 60).
Interestingly, inhibition of uc.48+ has been shown to reduce
mechanical hypersensitivity in a ratmodel of trigeminal neuralgia
by inhibiting the expression of the P2X7 receptor in trigeminal
SGCs (61).

ncRNAs’ roles in pain are not limited to neuropathic pain. A
recent study (62) provided information on the role of lncRNA
X inactivate-specific transcript (XIST) in inflammatory pain.
In this study, a complete Freund’s adjuvant (CFA) model of
inflammatory pain was established in rats, where high expression
of XIST and voltage-gated sodium channel (VGSC) 1.7 (Nav1.7)
was observed in the DRG. When the authors applied XIST
inhibition, pain behavior (reflected on mechanical withdrawal
threshold) and SGC expression of GFAP, inflammatory cytokine
levels of interleukin-6, and tumor necrosis factor-α were
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diminished (62). In contrast, downregulation of XIST increased
the mechanical pain threshold and decreased the expression of
miR-146a. To identify the role of XIST, the authors ran an in vitro
test and identified that XIST acted as a sponge ofmiR-146a, which
targeted Nav1.7 and concluded that based on these observations,
XIST can regulate SGCs in the DRG under inflammatory pain
condition and hence can be a future therapeutic target (62).

Therefore, the identification of signatures or biomarkers in
SGCs can offer a further characterization of these cells under
health and pathological pain conditions. The literature presents
some data available for both the DRG (50) and TG (45, 63).
lncRNAs and circRNAs and the computational construction
of interaction networks between lncRNAs/circRNAs–
miRNAs–mRNAs can provide new directions and potential
therapeutic targets.

Computational Modeling of Satellite Glial

Cells’ Behavior Within the Sensory Ganglia
Another path that researchers started exploring is the potential
of computational modeling. For example, a group of researchers
(64) have tried to investigate and determine the characteristics
of intercellular communication between sensory neurons in
the DRG and SGCs by applying ATP. Researchers of this
study have proposed that the neural engineering approach
provides a physiologically constrained computational model
that can be used for several purposes, in addition to
physiological communication of neurons and SGCs (64), for
example, understanding of various factors that control this
communication, such as changes in receptor expression or
activity, e.g., Kir 4.1 current density that occurs in SGCs under
pain. Perhaps by expansion in the use of artificial intelligence
in neural engineering, this field can also benefit from further
advancement to deepen the knowledge on predictive parameters
affecting SGC–neuron interactions in relation to pain. Such an
attempt has been presented for neuron–astrocyte interactions
(65). Biocomputational modeling can potentially provide a
platform to test hypotheses about SGC–neuron interactions
or SGC–SGC interactions and parameters influencing those
interactions within the sensory ganglia.

Satellite Glial Cells’ Role in Nerve Repair
Research on nerve repair has long focused on sensory neurons
and their signaling alterations after injury in addition to SCs
that insulate axons (66–68). Only recently have sparks been
raised about the contribution of SGCs that envelop the neuronal
soma. Evidence started to accumulate supporting their roles in
nerve repair. A recent study (69) provided results indicating
that the synthesis of fatty acids in SGCs promotes sensory
neuron repair after injury and results in regeneration. In this
study (69), first, the researchers identified a new marker in
SGCs via transcriptional profiling, which is called Fabp7/BLBP
(fatty acid binding protein 7/brain lipid-binding protein). Upon
nerve injury, alterations in gene expression were observed
in SGCs that were mainly related to fatty acid synthesis
and peroxisome proliferator-activated receptor alpha (PPARα)
signaling. Based on this observation, researchers (69) modeled
the injury condition, where deletion of fatty acid synthase (Fasn)

resulted in the absence of axon regeneration. To reverse this
condition, they applied fenofibrate, which is a PPARα agonist,
and axon regeneration returned in mice lacking Fasn in SGC.
These findings (69) demonstrated that fatty acid synthesis in
SGC is a crucial step in nerve repair in adults after peripheral
nerve injury. In the context of pain, this can offer a new
direction in regenerative responses after nerve injury promoted
by SGCs. Interestingly, astrocytes have been identified as essential
for the development and function of axons in vivo, and lipid
metabolism in these cells has been found to be a critical
step in this process (70). Therefore, the authors of this study
(69) have suggested further investigations to identify how lipid
metabolism in SGCs influences axon regeneration, for example,
via a paracrine effect or other mechanisms. In addition, they
left open questions for further investigation of the potential
effects of fenofibrate on centrally projecting sensory axon growth
(69). The clinical implication of fenofibrate to yield beneficial
neuroprotective effects has already been discussed for diabetic
retinopathy (71) and brain trauma (69, 72). Considering the
complexity of the changes that occur after peripheral nerve
injury and the involvement of several cell types, it has been
suggested to investigate interactions between SCs, fibroblasts, and
macrophages in addition to sensory nerves and SGCs (73). This
would facilitate a better understanding of cell-specific roles in
repair phenomena following peripheral nerve injury. In addition,
much remains to be investigated in relation to myelinating
and non-myelinating forms of SCs (74). Identification of cell–
cell interactions might be achievable by new high-resolution
live imaging techniques (75) to characterize dynamic changes
in neuropathies over time, e.g., changes in SGCs of damaged
nerves or development of new SGCs, and identification of
acute vs. chronic responses for event time-course analyses. In
addition, it has been demonstrated that macrophages interact
with SGCs within sensory ganglia (76). Therefore, the interaction
of SGCs with other cells is valuable to consider in future
studies and how the interaction may influence the overall
neuronal response.

It has been shown that transplantation of SCs might be a
promising method to promote neural repair. SCs from rats were
cultured andmicroencapsulated in a research study (77) and then
administered to rats that underwent chronic constriction injury
(CCI). Data showed that microencapsulated SC transplantation
could block the expression of the purinergic receptor P2X3 in the
DRG and diminish the behavioral components of a neuropathic
pain model (77). It is not yet known whether such a method can
be applicable for SGCs considering that fatty acid synthesis in
SGCs has been identified as a crucial step in nerve repair in adults
after peripheral nerve injury (69).

An increased number of studies are becoming available to
present the responses of SCs, in particular to nerve injury and
contributions to neuropathic pain (30, 78). An emerging line
of investigation related to SCs in pain is the identification
and characterization of different roles of myelinating and non-
myelinating SCs in neuropathic pain. There is also interest in
drugs that can target SCs in addition to the possibility of SC
transplantation as potential future options in the treatment of
neuropathic pain (30).
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Recently, a specialized type of peripheral glial cell was
discovered in the skin (79), where it produces a mesh-
like network that plays an essential role in sensing noxious
stimuli to thermal and mechanical stimuli. These glial cells
are closely associated with unmyelinated nociceptors and
convey nociceptive information to the nerve; hence, they
are called nociceptive SCs. Further investigation is expected
to emerge on these cutaneous SCs and their role, now
that they have been found to be able to initiate pain-like
behavior (79).

Functional Roles of Satellite Glial Cells
A general view is that activation of glial cells contributes to
the development of pain due to the release of proinflammatory
cytokines and chemokines and other substances and factors
that drive pain signaling, such as glutamate, calcitonin gene-
related peptide, and substance P (80). However, since glial cells
also release anti-inflammatory substances, one can consider that
beneficial effects might also be present, for instance, to reverse
neurotoxicity and pain (80). Considering this side of the coin,
we might be able to promote the protective function. This is
particularly interesting, as glial inhibitors per se have not been
successful in alleviating pain, mainly because the normal activity
of glia must remain reserved, as they have critical roles with
the PNS and CNS. This is not an easy path in the production
of glia-associated drugs because the way that glial cells behave
is complex and depends on numerous factors, such as the
type of stimuli, location, and length of stimuli. Information on
SGCs is very limited in this area, but some literature exists
for microglia and astrocytes. The challenge is still to determine
whether and how the proinflammatory nature of SGC activation
can be prevented while its anti-inflammatory nature can be
promoted. It has been shown that activation of central glia
by LPS leads to the release of proinflammatory cytokines,
but when growth factors or anti-inflammatory cytokines are
applied, glial cells release factors that can promote neuronal
survival (80).

This field needs further in vitro research (e.g., rodent and
human cell cultures), in vivo research (e.g., transplantation of
human glia in rodents), and translational research in humans
[e.g., by application of positron emission tomography (PET)
technique and tracers (81, 82), to follow glial activation at
different time points and in response to different stimuli
or in pain patients with acute or chronic pain conditions].
Eventually, by better understanding the molecular mechanisms
behind the role of glia in pain, proper, and safer therapeutic
agents might be developed. Focusing on central glia in this
line does not necessarily close the field for more research
in peripheral glia, including SGCs. In addition, considering
different pain conditions, one can reserve possibilities for the
activation of SGCs in the TG that contributes to orofacial
and craniofacial pain conditions vs. their activation in the
DRG that relates to pain in other body regions, even
though overlap occurs, for example, in diabetic neuropathy
manifested in the feet and eye (83) or musculoskeletal
pain (84).

Sex-Dependent Characteristics and

Function of Satellite Glial Cells
Considering that pain is a sexually dimorphic phenomenon (85)
and that some painful conditions are predominant in one sex
(e.g., migraine in females) or only exist in one sex (e.g., pelvic pain
due to endometriosis in females), it is important to include this
aspect in further glial-associated pain research (86). A number
of reports propose that pathological pain in males is regulated
by microglial signaling (21, 87); however, astrocyte signaling
seems not to show a sex-dependent nature in inflammatory and
neuropathic pain models (18).

The literature shows that following peripheral nerve injury,
proliferation, and morphological changes occur in microglia in
males and females (85). However, only in male animals has the
functional role of microglia been observed, which is proposed to
drive neuropathic pain (88, 89).

We still do not know whether any sex-related characteristics
or functional responses exist in the activation of SGCs following
PNS insult. Further research can present the value and
importance and whether any natural protective mechanism or
susceptibility might exist in either sex related to SGCs and
whether this can be manipulated or targeted for pain control.

Satellite Glial Cells in Sympathetic and

Parasympathetic Ganglia
The behavior of SGCs in the sympathetic ganglia has rarely been
investigated (32, 90); hence, the role of these cells is not yet clear.
A study from 2004 (91) reported that sciatic nerve transection
resulted in changes in both the DRG and lumbar sympathetic
ganglia, where neuroinflammatory responses were evident in
both ganglia, and interestingly, some markers were more affected
in the sympathetic ganglia than in the DRG, such as GFAP
reactivity, macrophage reactivity, and T cell responses (91).

Another study examined the recruitment of T-lymphocytes
and macrophages into lumbar sympathetic ganglia and DRG in a
rat model of spinal nerve ligation (SNL), where different patterns
of response were found. The authors suggested that this pattern
difference between these ganglia may provide information about
contribution of macrophages in neuronal insult and post injury
hyperexcitability (92). Another study (93) demonstrated that
when the sympathetic nerves in the superior cervical ganglia were
damaged, SGCs became activated and underwent alterations
consisting of coupling, higher sensitivity to ATP, and less
responsiveness to acetylcholine. Interestingly, in this study, SGCs
of the TG were not affected (93).

Glial coupling is not limited to autonomic ganglia and has
also been studied in sensory ganglia (41, 94). Coupling is
defined as the formation of connectivity between SGCs that can
be observed as an elevated number of gap junctions between
these cells, which was reported in response to peripheral nerve
injury (37). Next, electrophysiological methods and dye injection
were applied to confirm the initial observations that higher
coupling occurred postinjury. This finding has been reported
consistently in the literature in several pain studies in which
both inflammatory and neuropathic models were applied (95,
96). Consequently, it was reported that gap junction blockers
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such as carbenoxolone, meclofenamic acid, and palmitoleic acid
could diminish coupling between SGCs and reduce pain in
experimental animal models (97). Collectively, evidence supports
the notion that enhancement of SGC coupling through gap
junctions is associated with the development and maintenance
of neuropathic pain (37).

Among connexins, connexin 43 (Cx43), a gap-junction
protein that is expressed in activated SGCs (98), has been
investigated rather extensively. This has gained attention because
connexins could be targeted to block pain. Connexin proteins
are presented with 20 subtypes and, among other roles,
function as gap junctions between cells. Recent studies highlight
the role of connexins in the induction and maintenance of
chronic pain, where their modulation has resulted in pain
amelioration in several chronic pain models (99). Interestingly,
chemotherapy-induced neuropathic pain, for example, following
the administration of oxaliplatin and taxol, has been linked to
SGC activation, with a proposed mechanism involving coupling
by gap junctions (100). This has also been shown in vitro
(101). Blocking gap junctions, for example, by administration
of carbenoxolone, which blocks connexin 43, has been shown
to reduce chemotherapeutic-induced hypersensitivity in animal
models of pain (100).

Collectively, and based on limited available data (102),
research on SGC activation, coupling, and their influence
on neurons within autonomic ganglia (sympathetic and
parasympathetic) and sensory ganglia—in relation to pain—will
continue to emerge (32, 103). Further investigation would also
help identify the exact underlying mechanisms of gap junctions
and inhibitors in pain control (90). Drug-induced peripheral
neuropathy, as has been seen with chemotherapeutic agents, can
also be studied further, and research should examine the role of
SGCs in limiting the side effects of these agents.

Miscellaneous
In addition to pharmacological approaches as powerful tools
to study SGCs in pain research, it is also of great interest
to test non-pharmacological approaches, for example, whether
neuromodulation techniques that are used to alleviate pain of
different types could exert any effect on non-neuronal cells in
chronic pain.

Investigation of the effects of environmental factors on SGCs,
such as dietary control, microbiome, and other environmental
factors, such as stress, under health and pathological pain
conditions remains open.

The role of the SGC in the overall immune responses in
ganglia, for instance, pathogen defense against viral infection, is
becoming more evident. This avenue might not be directly linked
to pain research but will allow for further characterization of the
non-neuronal response of SGCs within PNS ganglia.

EGCs reside within the enteric nervous system (ENS) (104).
These cells have some common features with astrocytes from
the functional and structural points of view. EGCs regulate
ENS homeostasis, and violation of their normal function leads
to gastrointestinal disorders, such as functional gastrointestinal
disorders and inflammatory bowel diseases (105, 106). In
addition, EGCs have been identified to modify visceral pain

signaling via cross talk with neurons and immune cells. This
observation has potential in understanding the mechanisms
underlying chronic abdominal pain and its targeting (107, 108).
This direction of research is also proposing to expand further,
in particular in relation to an increasing amount of research on
gut microbiota and its interaction with the brain. In addition,
since enteric glia are affected by stress, they are considered to play
a substantial role in visceral hypersensitivity and the immune
response to stress (107).

CONCLUSION

In the past few years, several breakthroughs have been achieved
with a focus on glia and cross talk of glia with neurons
and other cells that have revolutionized pain research and
inspired implications for pain management in the future and
further research.

The development and availability of sophisticated technology
and tools (109) to study the molecular, genetic, morphological,
physiological, and pathological aspects of glia in vitro and in
vivo have definitely advanced the field. Translational research
has moved the field from experimental rodent models toward
human studies, although limited, but substantial achievements
have been made. Some clinical trials have attempted to use
available compounds with glial modulatory effects in humans
with various outcomes, such as vitamin D (110) and ibudilast
(111) in migraine patients, minocycline for lumbar radicular
neuropathic pain (112), and palmitoylethanolamide for the
treatment of different types of pain (113).

Investigation of human glia moves the field one step closer
to testing and potential application of strategies for prevention
and therapy of chronic pain, with fewer risks due to interspecies
gaps from preclinical to clinical stage. Realization of parameters
that can influence the complex behavior of glia has also advanced
formulation of testable hypotheses, for example, interactions
of SGCs with other SGCs, neurons, and macrophages that
collectively determine pain responses to nerve injury and
inflammation. Considering age and sex is gaining further
attention in studying glia in pain research.

Bioinformatics, neuronal engineering, complex modeling,
and dynamic and live assessment techniques together with
profiling these cells via quantitative methods such as mapping
the transcriptome and evaluating the responses of SGCs to
indirect environmental changes in the host that can influence
pain response and sensitivity have become more familiar to
researchers and have inspired drug designer and pharmaceutical
and non-pharmaceutical strategies tomaintain the protective and
positive functions of SGCs while shifting their negative influence
on pain toward pain relief.

In addition, finding the crucial role of SGCs in nerve repair
deserves further investigation. A focus on peripheral nerve
regeneration via the contribution of both SGCs and SCs sounds
logical. At a system level, one can also consider how much
knowledge can be obtained if information can be collected from
different types of glia within different systems, e.g., from both
PNS and CNS glia, considering the time course of acute and
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chronic pain and response to manipulating factors. This would
enhance the visibility of the big picture in the entire body system
to unmask some missing pieces.

These and several more dimensions, such as 3D tissue
prints, potential use of induced pluripotent stem cells (iPS
cells), and cell transplantation techniques, with a wide range
of research applications in this field, have become available
and should be further researched to not only advance the

fascinating science of glia but also to pave the way for potential
targeted therapy that can offer safer and efficient options for
pain patients.
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