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Frequency-Domain Modal Analysis for
Power-Electronic-Based Power Systems

Shih-Feng Chou, Member, IEEE, Xiongfei Wang, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This letter presents two frequency-domain modal
analysis methods, ”peak-picking” and ”circle fit” methods, used
for current control interactions of grid-connected voltage source
converters (VSCs). Differing from the conventional resonance
mode analysis, the modal impedances are analyzed with their
Nyquist plots, instead of the magnitude-frequency response,
which leads to an accurate prediction on the damping behavior of
system. Experimental tests verify the theoretical modal analysis
methods.

Index Terms—Eigenvalue, impedance model, modal analysis,
resonances mode, voltage source converters (VSCs)

I. INTRODUCTION

A rapid increase in the number of renewable resources in
the current power systems are seen, where voltage source
converters (VSCs) are generally used as interfacing converters.
The multi-time scale control dynamics of VSCs bring the
challenge to analyzing grid stability [1]. To investigate these
dynamics, the impedance-based methods have been widely
used in the frequency-domain stability analysis in the power
system, where the stability can be determined by a minor
feedback loop composed by the ratio of equivalent impedances
[2]. However, the impedance-based analysis method merely
predicts the stability from the bus of interest, and fails to
provide a global view on the system oscillation modes, and
on the contributions of VSCs to the oscillation modes [3].

The influences of components to the harmonics in power
systems have been quantitatively analyzed with the concept
of resonance mode analysis in [4], which concludes that the
resonances occur at the singular points in the nodal admittance
matrix of the passive network of the system derived from the
eigenvalue analysis. Thus, the magnitude-frequency responses
of eigenvalues have been studied through sensitivity analysis
and quantified indices of passive components, such as partic-
ipation factors and eigenvalue sensitivities with respect to the
components, are given [5]. Then, this resonance mode analysis
was later implemented for the converter-based power systems,
e.g. in the traction networks [6], micro grids [7], and wind
power plants [8]. However, the VSCs were merely considered
as the harmonic sources in [8], and the other analyses in
[6] and [7] only focus on the magnitude-frequency responses
of the eigenvalues, while the phase-frequency responses were
overlooked, which are critical to the VSC-based systems [9].

In this letter, two frequency-domain modal analysis methods
introduced in [10], which are ”peak-picking” method in the
magnitude-frequency response and ”circle fit” method in the
Nyquist plot, are implemented to analyze the resonance modes
of VSC-based power systems, where this letter tends to draw

attention to the quality factor and the phase information of the
resonance modes, which indicates the damping characteristic
of the system but was left out in the conventional modal
analysis. In the studied cases, the current control interactions
of VSCs, which are the power sources, are analyzed in a 3-
bus test system. As the input admittance of the VSCs interacts
with the passive components in the network, not only the
magnitude-frequency responses of eigenvalues, but also their
quality factors are required to analyze the resonance modes.
Furthermore, the eigenvalues analyzed using the ”circle fit”
method show more insights than using the ”peak-picking”
method, where theoretical analysis is verified by case studies
and experimental results.

II. CONVENTIONAL RESONANCE MODE ANALYSIS

In the conventional resonance mode analysis method [4], the
relationship between voltages and currents has been described
by the nodal admittance matrix, [Yf ], at the given frequency,
f , which is expressed as

[Vf ] = [Yf ]−1 [If ] (1)

where [Vf ] represents the nodal voltage introduced by the
nodal current injection [If ]. Thus, the resonance occurs at the
frequency when [Y ] approaches singularity. To investigate the
singularity of [Y ], it can be diagonalized using the well-known
eigenvalue analysis given as

[Y ] = [L] [Λ] [T ] (2)

where [L] = [T ]
−1. Then, the modal voltage vector, [U ] =

[T ] [V ], and the modal current vector, [J ] = [T ] [I] can be
derived, and equation (1) can be simplified as

U1

U2

...
UN

 =


λ−1
1 0 0 0
0 λ−1

2 0 0

0 0
. . . 0

0 0 0 λ−1
N




J1
J2
...
JN

 (3)

where the inverse of the first eigenvalue, λ−11 , has been
called the modal impedance of mode 1, Zm,1, describing
the relationship between U1 and J1. Since [Λ] is a diagonal
matrix, the other modal currents have no influence on U1.
Thus, in the studied frequency range, the smallest eigenvalue
has been named the ”critical resonance mode”, which means
a small modal current J can introduce a large modal voltage
U . Following this concept, the study in [5] has concluded that
attention should be paid to the magnitude of eigenvalues.
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Fig. 1. Modal analysis with (a) Magnitude-frequency plot (b) Nyquist
plot (c) Parallel RLC circuit.
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Fig. 2. (a) 3-bus test system configuration with two voltage source
converters (b) The nodal admittance network representation.

III. FREQUENCY-DOMAIN MODAL ANALYSIS METHODS

A. Peak-Picking Method

In essence, this analysis method is called the ”peak-picking”
method reported in [10], where in the studied frequency range,
the resonance frequency ωr is identified from the peak value
of modal impedance as shown in Fig. 1 (a), and the half power
points can be identified at each side of the peak with the value
of |Zm|√

2
at ω1 and ω2, where the bandwidth ∆ω = ω2 − ω1.

Then, the quality factor, Q, can be estimated as

Q ≈ ωr

∆ω
(4)

where the system is underdamped with higher Q. Yet, Q is
estimated by the half power points, which are only related
to the peak eigenvalue |Zm (ωr)|. The method is simple but
might be affected by measurement errors [10].

B. Circle Fit Method

Alternatively, Zm can be plotted in a Nyquist plot as the
schematic diagram shown in Fig. 1 (b), which the method is
called the ”circle fit” method. The modal impedance Zm is the
linear combination of the admittances in (2), which may have
multiple resonance frequencies. Yet, in the studied frequency
range around a resonance frequency ωr, the orthogonality of
Zm can be used to simplify the system as a second-order
system [10], i.e. a parallel RLC circuit shown in Fig. 1 (c).
Thus, Zm can be derived as

Zm =
V

I
=

1

C

s

s2 + 1
RC

s+ 1
LC

=
1

C

s

s2 + 2αs+ ω2
r

(5)
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Fig. 3. VSC circuit diagram with its control system.
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Fig. 4. Control block diagram.

where Q is equal to ωr/2α, and it can be changed by
the different values of R without changing the resonance
frequency, ωr. Therefore, the value of |Zm (ωr)| may also be
influenced by Q. Then, by replacing s with jω, the ratio of
the imaginary part to the real part of Zm, which is also tan γ,
can be derived as

tan γ =
Im (Zm)

Re (Zm)
=
ω2
r − ω2

2αω
(6)

where the unknown variables, i.e. α and ω2
r , can be solved by

arbitrarily choosing two points on the plot shown in Fig. 1 (b).
It is worth mentioning that the estimated Q in (4) is always
positive. However, as the input admittances of VSCs have a
negative-resistance characteristic in a wide frequency range,
i.e. −R in Fig. 1 (c), the Q with negative value can only
be derived from (6). Note that negative Q factor generally
exists in the system containing active components, e.g. current
amplifier [11], where the VSCs serve as the active device in
the power system. Furthermore, the negative Q in (6) indicates
the existence of right half plane poles in Zm, which Zm is also
the closed loop gain from J to U as shown in (3).

IV. NODAL ADMITTANCE MATRIX CONSIDERING VSCS’
INPUT ADMITTANCES

Fig. 2 (a) illustrates a 3-bus test system composed by two
grid-connected VSCs. The transmission lines between buses
are named as Line 1, Line 2, and Line 3, where VSC 1 and
VSC 2 are connected at Bus 1 and Bus 3, respectively. Then,
the circuit diagram and the control system of the individual
VSC are shown in Fig. 3. Since the current control loop is
of concern in this work, where the dc sides of VSCs are
connected to ideal dc voltage sources to eliminate the influence
of dc bus control dynamics, and the VSC connected to the
point of common coupling (PCC) through an LCL-filter. The
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filter capacitor voltage, vc, and converter side current, io
are measured for the current controller (CC), which uses the
proportional-resonant (PR) controller to regulate io in the αβ-
frame. Then, the angle, θ, derived from the phase-locked loop
(PLL) and the dq- to αβ-frame transformation are used to
generate the current commands in the αβ-frame, irefo , from
irefd and irefq . By setting the bandwidth of the PLL low
and assuming vo = vrefo to neglect the frequency-coupling
dynamics of PLL [2] and the non-linearity of pulse-width
modulation, the control block diagram is then as illustrated
in Fig. 4, where the blocks from G1(s) to G6(s) represent the
open-loop transfer functions from vPCC and vo to vc , io,
and iPCC, respectively [12]. For the remaining blocks, Gc(s)
and Gg(s) represent the CC and capacitor voltage feedforward
controller, where Gd(s) describes the total system time delay,
and their forms are given as

Gc (s) = Kp +
2Krs

s2 + ω2
1

Gg (s) = 1

Gd (s) = e−1.5Tss (7)

where Ts represents the sampling period, and ω1 = 2πf1,
where f1 is the fundamental frequency. To simplify the no-
tation, the ”s” operator is omitted in the following transfer
functions. Thus, the input admittance of the VSC can be
derived as the ratio of iPCC to vPCC and given as

yclg =
iPCC

vPCC
= G4 +

G3G6GgGd −G2G3GcGd

1 +G1GcGd −G5GgGd
(8)

where the s-domain expression in (8) is only used for the
theoretical analysis purpose, which may not be derived in the
frequency scan analysis. Since the VSC can be modeled as
a current source in parallel with the admittance yclg [9], the
network in Fig. 2 (a) can then be illustrated as Fig. 2 (b), where
the transmission lines are modeled as admittances, y12, y23,
and y31. Furthermore, considering the actual voltage source in
Fig. 2 (a), the admittance yg is included to represent the grid
impedance. Thus, the nodal admittance matrix can be derived
as

[Y ] =

 yclg1 + y12 + y31 −y12 −y31
−y12 yg + y12 + y23 −y23
−y31 −y23 yclg2 + y23 + y31

 (9)

where it indicates that the input admittance of VSCs may also
affect the analysis result when performing frequency scan anal-
ysis on a network containing VSCs, and the negative-resistance
characteristic is then introduced to the nodal admittance matrix
by yclg1 and yclg2, where the matrix is used for modal analysis
with case studies.

V. CASE STUDIES AND EXPERIMENTAL VERIFICATION

To reveal the influence of the Q factor in the modal analysis,
different cases based on the system diagram in Fig. 2 (a)
are tested in this section using the frequency-domain modal
analysis and experimental verifications, where the system
parameters used are listed in Table I, and the impedances of
lines 1, 2 and 3 are considered as ideal components in the
theoretical analysis.

TABLE I. Parameters used in experiment and case studies.

Symbol Parameter Description Value

vg Grid voltage 400 Vrms

P1,P2 Output power of VSCs 3.5 kW
f1 Fundamental frequency 50 Hz
Ts Sampling period 100 µs
L1 Converter side inductor 3 mH
L2 Grid side inductor 1 mH
Cf,1 Filter capacitor of VSC 1 10 µF
Cf,2 Filter capacitor of VSC 2 15 µF
y12 Impedance of line 1 1 mH
y23 Impedance of line 2 4 mH
y31 Impedance of line 3 2 mH
yg Grid impedance 1.5 mH
Kr Resonant gain in CC 1000 Ω/s
Kp,1 Proportional gain in CC of VSC 1 23.5 Ω

25 Ω
28 Ω

Kp,2 Proportional gain in CC of VSC 2 15.5 Ω

A. Peak-Picking Method

First, the system is tested with Kp,1 = 23.5 Ω, the
bus voltages are measured and shown in Fig. 5. Then, the
spectrum of VBus,1 is derived by applying the fast Fourier
transform to the voltage waveform in the Channel 1 of Fig. 5
illustrated in Fig. 6. With the system parameters in Table I,
modal impedances, Zm, are plotted with magnitude-frequency
responses in Fig. 7 (a), where three resonant modes can be
identified by Zm,1, Zm,2, and Zm,3, but only Zm,1 and Zm,2

are discussed in the following part. The Q factors are estimated
using the method specified in section III-A as 12.8 for Zm,1

at 2050 Hz and 8.1 for Zm,2 at 440 Hz. However, even
though the Q factor at 2050 Hz is larger than the one at
440 Hz, the largest harmonic voltage is observed at 440 Hz
like shown in Fig. 6 since |Zm,2| at 440 Hz is much higher
than |Zm,1| at 2050 Hz. Then, when Kp,1 is increased to
25 Ω, the bus voltages are shown in Fig. 8, where |Zm| is
plotted in Fig. 10 (a). The Q factor of Zm,1 increases to
34.3. In this case, even if |Zm,2| at 450 Hz is still higher
than |Zm,1| at 2055 Hz. The magnitude of harmonic voltage
at 2055 Hz reaches the one caused by Zm,2 at 450 Hz, which
shows the influence of the Q factor to the resonance. To further
investigate these resonance modes, Kp,1 is increased to 28 Ω,
where the waveform shown in Fig. 11 is saved before the VSC
is tripped, and the resonance becomes noticeable in VBus,1,
and the largest resonance voltage occurs at 2070 Hz as shown
in Fig. 12. However, the magnitude of the modal impedance
Zm,1 plotted in Fig. 13 (a) is not the largest one, and the Q
factor estimated with magnitude-frequency plot with a value
of 28.1 is even lower than the one in Fig. 10 (a), which is
because the ”peak-picking” method with magnitude-frequency
response ignores the phase information and leads to a wrong
estimation.

B. Circle Fit Method

With the method specified in section III-B, the resonance
frequency ωr and Q factor are derived in Fig. 7 (b) and
Fig. 10 (b) for the cases of Kp,1 = 23.5 Ω and Kp,1 =
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Fig. 5. Experimental waveforms of bus volt-
ages in Fig. 2 with Kp,1 = 23.5 Ω.
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Fig. 6. FFT spectrum of VBus,1 in Fig. 5.
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Fig. 7. Modal impedances, Zm, of the case
in Fig. 5 (a) Magnitude-frequency plot (b)
Nyquist plot.
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Fig. 8. Experimental waveforms of bus volt-
ages in Fig. 2 with Kp,1 = 25 Ω.
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Fig. 9. FFT spectrum of VBus,1 in Fig. 8.
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Nyquist plot.
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Fig. 11. Experimental waveforms of bus volt-
ages in Fig. 2 with Kp,1 = 28 Ω before VSC
tripped.
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Fig. 12. FFT spectrum of VBus,1 in Fig. 11.
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Fig. 13. Modal impedances, Zm, of the case
in Fig. 11 (a) Magnitude-frequency plot (b)
Nyquist plot.

25 Ω, respectively. The numerically calculated values of
ωr and Q show more accurate results compared with the
values estimated in section V-A, where the Nyquist plots
with clockwise direction lead to positive Q. However, in
Fig. 13 (b), two points, Zm1@2092Hz = −40.86 + 7.94jΩ
and Zm1@2095Hz = −37.89 + 2jΩ, are used to calculate
the ωr and Q with equation (6). The negative Q factor with
value -24.7 is then numerically derived with counterclockwise
Nyquist plot, which cannot be estimated in section V-A.
Therefore, the phase information should also be investigated
for assessing the singularity in the power electronic based
power systems.

VI. CONCLUSIONS

In this letter, the 3-bus test system with VSCs as power
sources is analyzed applying the frequency-domain modal
analysis considering the input admittance of VSCs in the nodal
admittance network to derive the modal impedances. To ana-
lyze the mode shape, two things should be considered: 1) The
Q factor is as important as the magnitude of modal impedance
in modal analysis. 2) The negative value of the Q factor depicts
that the studied system is active, where the Nyquist plot can
be used to numerically calculate the resonance frequency and
Q factor. The case studies and experimental results validate
the theoretical modal analysis.
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