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Abstract

The management of hyperthyroidism in pregnant patients has been a topic of raised 
clinical awareness for decades. It is a strong recommendation that overt hyperthyroidism 
of Graves’ disease in pregnant women should be treated to prevent complications. The 
consequences of hyperthyroidism in pregnancy are less studied than hypothyroidism, and 
a literature review illustrates that the main burden of evidence to support current clinical 
guidance emerges from early observations of severe complications in Graves’ disease 
patients suffering from untreated hyperthyroidism in the pregnancy. On the other hand, 
the more long-term consequences in children born to mothers with hyperthyroidism are 
less clear. A hypothesis of fetal programming by maternal hyperthyroidism implies that 
excessive levels of maternal thyroid hormones impair fetal growth and development. 
Evidence from experimental studies provides clues on such mechanisms and report 
adverse developmental abnormalities in the fetal brain and other organs. Only few 
human studies addressed developmental outcomes in children born to mothers with 
hyperthyroidism and did not consistently support an association. In contrast, large 
observational human studies performed within the last decade substantiate a risk of 
teratogenic side effects to the use of antithyroid drugs in early pregnancy. Thus, scientific 
and clinical practice are challenged by the distinct role of the various exposures associated 
with Graves’ disease including the hyperthyroidism per se, the treatment, and thyroid 
autoimmunity. More basic and clinical studies are needed to extend knowledge on the 
effects of each exposure, on the potential interaction between exposures and with other 
determinants, and on the underlying mechanisms.

Introduction

Hyperthyroidism is the clinical state that results from an 
excessive production of thyroid hormones in the thyroid 
gland (1, 2). It is a signature of the disease that the incidence 
of the different subtypes of hyperthyroidism varies with 
age (3). While toxic nodular goiter is the predominant 
cause of hyperthyroidism after the age of 50 years, the 
predominant cause of hyperthyroidism in patients 
younger than 50 years of age is Graves’ disease (GD) (3). 

Since GD predominantly occurs in female patients and 
in the reproductive time span, the management of the 
disease should consider the patient’s reproductive history 
and the possibility of a current or future pregnancy (1, 2). 

GD is an autoimmune disease caused by alterations 
in the immune system, and a key pathophysiological 
mechanism is the production of TSH-receptor 
autoantibodies (TRAb) (4). The disease was first described in 
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the 19th century, and considerations on the management 
in pregnant women, specifically, can be ascertained from 
the beginning of the 20th century with a main concern 
about adverse pregnancy outcomes in women suffering 
from severe, untreated hyperthyroidism (5). 

The use of antithyroid drugs (ATDs) for the treatment of 
hyperthyroidism was introduced in clinical practice in the 
1940s and is currently the recommended treatment for the 
hyperthyroidism of GD in pregnant women (6). Clinical 
guidelines indisputably state that overt hyperthyroidism 
caused by GD in pregnant women should be treated to 
prevent maternal and fetal complications, however, 
the management is challenged by the potential risk of 
severe side effects associated with the treatment (1, 2). 
Furthermore, a pertinent question is on the role of thyroid 
autoimmunity. Thus, the determination of causal factors 
for outcome of a pregnancy and offspring development 
in women suffering from the hyperthyroidism of GD is 
complex and hitherto not clarified in detail. 

In this review, we explore outcomes of hyperthyroidism 
in pregnancy with a focus on the underlying mechanisms 
and different exposures associated with the disease 
(hyperthyroidism per se, antithyroid drug treatment, and 
thyroid autoimmunity). We describe the hypothesis of 
fetal programming by maternal hyperthyroidism and 
supporting evidence from experimental and human 
studies, and we discuss methodological aspects and 
implications for scientific and clinical practice. 

The hypothesis of fetal programming

Fetal programming is a concept within reproductive 
epidemiology that links exposures during fetal life with the 
later development of disease in the offspring. It has been 
described in relation to different maternal diseases and 
different mechanisms have been proposed, however, the 
overall hypothesis is analogous irrespective of the specific 
exposure and outcome (7). The concept is also known as 
‘fetal origin of adult diseases’ (8), and the basic idea is that 
disturbances during fetal life can cause permanent alterations 
in the offspring that at a later point in time might predispose 
to the development of adverse outcomes. Many aspects are 
yet to be clarified considering the mechanisms, but growing 
evidence is linking the concept to epigenetic alterations 
(9). Different study designs are used to investigate the 
hypothesis. Experimental evidence is a classic determinant 
of causality as brought forward by Bradford Hill in the 
1960s (10). In addition to such results, the main burden 
of evidence develops from observational human studies. 

The determination of causality in observational studies is a 
difficult task, and it is a challenge to distinguish the exposure 
of interest from other prenatal exposures and from the role 
of postnatal exposures during development (7). 

Considering fetal programming by maternal thyroid 
disease, the role of thyroid hormones during fetal 
development is a key mechanism (7). Thyroid hormones 
are important developmental factors (11). The fetal 
thyroid gland is increasingly able to synthesize thyroid 
hormones in the second half of a pregnancy, which 
emphasizes the importance of maternal thyroid hormones 
in the early pregnancy. Furthermore, the importance of 
maternal thyroid hormones in later pregnancy after the 
onset of fetal thyroid hormone production is evident 
from the measurement of thyroxine (T4) in cord blood 
from newborns with a defect in thyroid hormone 
synthesis (12). Thus, maternal thyroid function remains 
important to the fetus throughout the pregnancy. The 
transport of thyroid hormones from the mother to the 
fetus during a pregnancy and physiological alterations 
affecting maternal thyroid function should be considered. 
In the early pregnancy, the pregnancy hormone human 
chorionic gonadotropin (hCG) stimulates the maternal 
thyroid gland to an increased production of thyroid 
hormone, potentially balancing the extra need of thyroid 
hormones to supply both the mother and the fetus (13). 
Yet, another mechanism in the early pregnancy that 
tends to balance the effect of hCG is the type 3 deiodinase 
(DIO3) in placenta (13). This enzyme inactivates thyroid 
hormones by catalyzing the conversion of T4 to reverse 
T3 (rT3) and T3 to T2. Activity of DIO3 in placenta is 
apparent from the early pregnancy weeks in rats and in 
humans and is evident from the high rT3/T3 ratio seen in 
pregnant women (13). The activity of DIO3 is considered 
part of the reason why athyreotic women need a 50% 
increase in their Levothyroxine dose by the time they 
become pregnant (14). Thus, the activity of DIO3 is likely 
to explain the higher maternal TSH in the early pregnancy 
prior to the hCG-peak (13, 15). In line with this thought, 
patients with DIO3 containing hemangiomas present 
with consumptive hypothyroidism and a high rT3/
T3-ratio (16). These findings suggest a delicate balance 
under strict hormonal control and propose clinically 
important impact of slight imbalance. 

Considering outcomes of maternal thyroid disease 
in pregnancy, the focus has especially been turned to 
hypothyroidism. The hypothesis of fetal programming 
by maternal hypothyroidism is biological plausible 
from experimental evidence and from the description of 
cretinism with profound mental and physical deficits in 
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children born to mothers with severe hypothyroidism 
caused by iodine deficiency (7). Consequently, clinical 
guidelines unanimously state that overt hypothyroidism 
in pregnant women should be treated, whereas the 
management of smaller abnormalities in thyroid function 
such as subclinical hypothyroidism, and the entity of 
isolated low T4 (hypothyroxinemia) is unclarified (1, 17). 
Turning from lack of maternal thyroid hormone to excess, 
it is similarly a strong and consistent recommendation that 
overt hyperthyroidism caused by GD should be treated in 
pregnant women (1, 2). However, the hypothesis of fetal 
programming by maternal hyperthyroidism (Fig. 1) has 
gained less attention (1). It is likely that the association 
between thyroid activity and adverse outcomes of pregnancy 
and child development is u-shaped. Such dependency is 
seen for other prenatal exposures for example, maternal 
hemoglobin concentration in pregnancy and outcomes of 
pregnancy as well as environmental factors for example, 
iodine and iron intake (18). This offers a path to follow for 
describing the influence of maternal thyroid dysfunction 
on pregnancy outcomes.

Hyperthyroidism and fetal brain development

Thyroid hormones regulate numerous processes 
during early brain development including neuronal 
proliferation, migration, differentiation, synaptogenesis, 
and myelination (19). In addition to the development of 
brain structures, they also play a role in the regulation 
of the neurochemical environment. It sounds reasonable 
that the lack of thyroid hormones might disturb these 
processes, whereas it is less clear how an excessive 
production of thyroid hormones associated with 
hyperthyroidism could affect fetal development. We 
searched the PubMed database for original, experimental 
studies on fetal outcomes of maternal hyperthyroidism 
in pregnancy up until October 1, 2020, and this search 
identified 52 publications. By contrast, a search for 
hypothyroidism identified 247 publication, which 
illustrates the predominant focus on this entity. 

After review of the search results, we identified nine 
studies (20, 21, 22, 23, 24, 25, 26, 27, 28) that investigated 
the impact of maternal hyperthyroidism on fetal brain 
development in experimental animals (Table 1). Notably, 
all the studies reported one or more abnormal findings in 
the offspring after exposure to maternal hyperthyroidism. 
However, the findings were diverse. All studies used T4 for 
the induction of maternal hyperthyroidism, but the method 
of T4 administration differed between the studies and the 
timing of outcome assessment in the offspring ranged from 
gestational day 21 up until the third postnatal month (Table 
1). It is beyond the scope of this review to describe and discuss 
details regarding the design and methodology of studies in 
experimental animals. However, some considerations seem 
important to highlight when interpreting and including 
evidence from experimental studies in a clinical context. 
First, the age of an experimental animal and the duration 
of a pregnancy are not interchangeable with humans 
(29, 30). Whereas the human pregnancy is on average 40 
weeks, the length of a pregnancy is 22 days in rats and 19 
days in mice (29). Furthermore, disparities exist regarding 
the postnatal age as compared to humans and among 
experimental animals, for example, rats and mice. Thus, 
the lifespan of laboratory rat is about 3 years, whereas it is 
about 2 years for laboratory mice (30). Considering these 
life spans in relation to human age, an age of 1/3/6 months 
in rats approximate 9/15/18 years of age in humans and 
an age of 1/3/6 months in a mice approximate 14/23/34 
years of age in humans (30). Secondly, the timing and 
duration of the various neurodevelopmental stages are not 
completely synchronous in humans and in experimental 
animals (29). Furthermore, the structural and functional 
properties of different brain regions and organs are not 
identical. For example, the placentas of humans and rats 
show anatomical similarities with a discoid shape and 
hemochorial type of fetal-maternal interface, however, 
disparities exist regarding the histological structure and 
the function of the yolk sac (31). Finally, important 
considerations are on the assessment of brain development 
in humans and in experimental animals, respectively (32). 

Figure 1
The hypothesis of fetal programming by maternal 
hyperthyroidism.
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A commonly used marker in humans is the 
intelligence quotient (IQ). It is a standardized measure 
based on a subset of tests (33). Alternative markers of brain 
development in humans include structural abnormalities 
in the brain assessed using for example brain scans of the 
child at a certain age (34). Furthermore, information on 
diagnosis of neurodevelopmental diseases in the child can 
be used as a proxy for impaired brain development (7). As 
opposed to this, the assessment of brain development in 
experimental animals such as rats and mice commonly 
relies on histopathological examination and evaluation 
of gene expression and in addition to these markers, the 
performance of the animal in different test (e.g. maze) 
can be evaluated (Table 1). However, no measure of brain 
development in an experimental animal directly translates 
to IQ in humans (32). Furthermore, it is important to 
notice that many methodological considerations exist 
when the role of maternal thyroid disease in relation to 
fetal brain development is assessed in humans and in an 
experimental design. In humans, the risk of confounding 
is a particular concern in observational designs (7), and 
in experimental animals it has recently been discussed 
that the currently available models may not be sensitive 

enough to detect the neurodevelopmental abnormalities 
associated with different degrees of abnormal maternal 
thyroid function (32). 

Although the findings are diverse, evidence suggests 
that maternal hyperthyroidism in pregnancy may impair 
fetal brain development in experimental animals (Table 1) 
via alterations in the development and organization of 
neurons, in the neurochemical environment, and altered 
expression of different proteins in the brain. However, the 
human brain is more complex and slight developmental 
skewness may cause disturbances that are detectable in 
humans only. 

So, what do we know from human studies about 
brain development in children born to mothers with 
hyperthyroidism? Few studies addressed outcomes of 
brain development in the child in relation to maternal 
hyperthyroidism. In contrast, the number of studies that 
addressed the association between insufficient levels of 
maternal thyroid hormones and child brain development 
is considerable (1, 17). A recent systematic review and 
meta-analysis identified nine observational studies on 
the association between maternal hyperthyroidism 
in pregnancy and neurodevelopmental diseases in 

Table 1 Experimental studies on maternal hyperthyroidism in pregnancy and brain development in the offspring.

Author Year Animal
Induction of 
hyperthyroidism

Outcome 
assessment Findings in the offspring

Evans et al. (20) 2002 Rats s.c. infusion (T4) Gestational day 21 Increased expression of different 
neuronal cytoskeletal proteins in 
the brain

Zhang et al. (21) 2008 Rats s.c. infusion (T4) Postnatal months 
1–3

Altered morphology of hippocampal 
neurons and impaired ability to 
cope with stress

Zhang et al. (22) 2010 Rats s.c. infusion (T4) Postnatal months 
1–3

Aberrant organization of 
hypothalamic stress related regions 
in the brain

El-Bakry et al. (23) 2010 Rats Intragastric 
administration (T4)

Postnatal weeks 
1–3

Histopathological effects in different 
brain regions and accelerated 
skeletal features

Ahmed et al. (24) 2010 Rats Intragastric 
administration (T4)

Postnatal weeks 
1–3

Increased excitability and synaptic 
transmissions in cerebrum, 
cerebellum and medulla oblongata

Ahmed et al. (25) 2012 Rats Intragastric 
administration (T4)

Postnatal weeks 
1–3

Impaired development of neurons in 
different brain regions and excess 
oxidative stress

Strobl et al. (26) 2017 Mice Intraperitoneal 
administration (T4)

Postnatal day 18 Abnormal axons and synapses in 
thalamocortical neurons and in 
visual cortex

Laureano-Melo  
et al. (27)

2019 Mice s.c. infusion (T4) Postnatal day 70 Alterations in hippocampal 
serotonergic and GABAergic 
systems and increased anxiolysis

Salami et al. (28) 2019 Rats Added to drinking water 
(T4)

Postnatal days 5, 
10, 20

Increased expression of 
hippocampal apolipoprotein D and 
increased oxidative stress

T4, thyroxine.
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the offspring including attention deficit hyperactivity 
disorder, autism spectrum disorder, epilepsy, and 
schizophrenia (35). Most of these studies were register-
based studies, which are typically large, but are hampered 
by the fact that the assessment of exposure in pregnancy 
is indirectly performed from hospital diagnoses 
and/or redeemed prescriptions of drugs. For each of the 
different outcomes, only two individual studies were 
included in a meta-analysis, and the combined measures 
showed a significant association between maternal 
hyperthyroidism and ADHD and epilepsy in the child 
(35). In another study (36), using a case-cohort design, 
the assessment of maternal hyperthyroidism was made 
from the measurement of thyroid function parameters in 
stored blood samples from the early pregnancy. In this 
study, a risk of epilepsy in the child was corroborated, 
but no association between maternal hyperthyroidism 
and ADHD in the child was seen (36). Notably, high 
circulating levels of thyroid hormones in patients with 
generalized resistance to thyroid hormone (mutation 
in the thyroid receptor β-gene) have been associated 
with a high occurrence of ADHD (37), providing a clue 
toward an association between hyperthyroidism and 
brain development. Furthermore, parallel observations 
in human and in rats have shown that fetal exposure 
to high maternal thyroid hormone levels is associated 
with persistent central resistance to thyroid hormones 
in adulthood, likely mediated via increased expression of 
the DIO3 in the brain (38). Hence, mechanisms of fetal 
programming may include offspring alterations in the 
hypothalamic-pituitary-thyroid hormone axis. 

Other outcomes of human fetal neurodevelopmental 
(child IQ and brain scans) are similarly rarely investigated 
in relation to maternal hyperthyroidism in pregnancy, 
but studies within different birth cohorts have evaluated 
the association between levels of TSH and free T4 in 
pregnancy and child IQ as well as child cortex and gray 
matter volume (33, 34). The findings are not consistent, 
and many determinants are to be considered, but results 
provide clues of a possible u-shaped association. 

Hyperthyroidism and other outcomes of 
fetal development

The critical role of thyroid hormones during brain 
development is an important concern, but the 
consequences of a disturbance in maternal thyroid 
function in pregnancy may extend beyond fetal brain 
development. Thyroid hormones are developmental 

factors and regulate numerous processes in many organs. 
Considering the hypothesis of fetal programming by 
maternal hyperthyroidism (Fig. 1), one may speculate on 
other outcomes of fetal development that are not related 
to the brain. From the literature search, we identified 
seven experimental studies (Table 2) that evaluated 
outcomes of maternal hyperthyroidism in pregnancy in 
relation to the development of other organ systems in the 
offspring not related to brain development (39, 40, 41, 42, 
43, 44, 45). The studies were predominantly performed 
in rats, and  the timing and type of outcome differed 
(Table 2). Thus, the studies assessed the development of 
genital organs, the cardiovascular system as well as bone 
and cartilage. Notably, all studies reported at least one 
abnormal finding, however, it appeared that some of the 
alterations were reversible for instance in the development 
of the bone (Table 2). 

Considering human findings, only few studies 
investigated such other outcomes of fetal development. 
Studies from different birth cohorts have instigated blood 
pressure, BMI, total fat mass, and abdominal s.c. fat mass 
in children born to mothers with hyperthyroidism (46, 47, 
48). Overall, results did not point toward associations except 
that lower maternal TSH levels associated with lower child 
BMI, fat mass, and diastolic blood pressure in one of the 
cohorts, in which no association with clinically diagnosed 
hyperthyroidism was seen (46). On the other hand, 
maternal hyperthyroidism as well as hypothyroidism has 
been associated with alterations in maternal body weight 
(48). Thus, it is a methodological challenge to distinguish 
the role of maternal thyroid disease from other BMI-related 
factors in the evaluation of fetal outcomes. 

Hyperthyroidism and 
pregnancy complications

From the experimental and human studies reviewed 
previously that addressed the role of maternal 
hyperthyroidism in pregnancy in relation to fetal 
brain development and the development of other 
organ systems, it seems as if the strong and consistent 
clinical recommendation on treatment of overt 
hyperthyroidism caused by GD in pregnant women 
relies on other determinants. Thus, the main concern 
related to hyperthyroidism in pregnant women and 
the recommendation for treatment relate to the risk of 
complications during the pregnancy and/or at birth of the 
child and to a lesser extent on the evidence considering 
more long-term outcomes in the child. 
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It has been clinically recognized for more than a 
century that maternal hyperthyroidism can seriously 
complicate a pregnancy (5). The evidence in humans arises 
from clinical case studies, and the description of pregnancy 
complications in women referred to a hospital for the 
management of Graves’ hyperthyroidism in pregnancy. 
These reports from 1929 and onwards have substantiated 
a focus on the adverse effects of untreated or insufficiently 
treated hyperthyroidism in pregnant women with GD 
(5, 49, 50, 51). Thus, it has been consistently shown that 
women who remained overtly hyperthyroid in pregnancy 
had a higher risk of pregnancy loss, preterm birth, low 
birth weight of the child, preeclampsia, and maternal 
heart failure. These early observations have later been 
corroborated in large observational studies including non-
exposed controlled groups (52, 53, 54). On the other hand, 
subclinical hyperthyroidism has not been associated with a 
risk of pregnancy complications and no recommendation 
of treating this entity is proposed in clinical guidelines (55).

It remains a pertinent question how the thyroid 
autoimmunity itself, via the presence of TRAb in GD 
patients, potentially affects the outcome of a pregnancy. 
A main clinical focus regarding TRAb exists in the 
second half of pregnancy after the onset of fetal thyroid 
hormone production, which introduces the risk of fetal 
and neonatal hyperthyroidism caused by TRAb from the 
mother. However, the distinct roles of high maternal 
thyroid hormone levels as compared to high levels of 
TRAb remain to be elucidated concerning pregnancy 
complications and the hypothesis of fetal programming. 

Antithyroid drug treatment

Another determinant considering outcomes of maternal 
hyperthyroidism in pregnancy is potential side effects 
to the treatment. As recently reviewed in detail, a major 
focus and concern is on the risk of teratogenic side effects 
with the use of ATDs in early pregnancy (56). This focus 
has emerged from a series of large, observational studies 
published in the 2010s that reported a risk of birth 
defects after early pregnancy exposure to Methimazole 
(MMI), and lately also after Propylthiouracil (PTU). 
However, the pattern and severity of malformations 
strikingly differed between MMI and PTU exposure 
with the most severe malformations observed after early 
pregnancy treatment MMI. Thus, the recommendation 
is to use PTU in early pregnancy and to shift from MMI 
to PTU already when pregnancy is planned or as soon 
as it is detected (1, 2). 

Even when several large observational studies point 
toward an association, one may yet speculate on the 
underlying mechanisms and determinants of causality. 
Only few studies so far included data to evaluate the 
existence of a biological gradient from the dose of 
the drug, but a large study from Korea showed that a 
higher cumulative dose of MMI was associated with a 
higher risk of birth defects (57). Further clues to causal 
determinants may arise from experimental evidence 
(10). Thus, we searched for experimental studies that 
investigated the risk of malformations after prenatal 
exposure to ATDs. We identified four studies (Table 3) 

Table 2 Experimental studies on hyperthyroidism in pregnancy and development of other organs in the offspring.

Author Year Animal
Induction of 
hyperthyroidism

Outcome 
assessment Findings in the offspring

Ariyaratne  
et al. (39)

2000 Rats s.c. injection (T3) Postnatal days 
7–21

Increased differentiation of adult Leydig 
cells in testis

Chattergoon  
et al. (40)

2012 Sheep Added to growth  
media (T3)

Gestational day 
100

Suppressed mitotic activity in 
cardiomyocytes

Lino et al. (41) 2014 Rats Added to drinking  
water (T4)

Gestational days 
18 and 20

Cardiac hypertrophy and altered 
expression of cardiac renin-
angiotensin system components

Lino et al. (42) 2015 Rats Added to drinking  
water (T4)

Postnatal day 90 Altered expression of cardiac renin-
angiotensin system components and 
worse recovery after ischemic insult

Karaca et al. (43) 2015 Rats s.c. injection (T4) Gestational day 20 Higher expression of vascular 
endothelial growth factor and 
increased angiogenesis and apoptosis

Maia et al. (44) 2016 Rats Orogastric 
administration (T4)

Postnatal days 0, 
21, 42

Reversible reduced growth and 
reversible increased percentage of 
trabecular bone tissue

Ribeiro et al. (45) 2018 Rats Orogastric 
administration (T4)

Postnatal days 0 
and 20

Reduced endochondral bone growth 
and reduced proliferation rate in the 
cartilage

T3, triiodothyronine; T4, thyroxine.
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that investigated this exposure and outcomes in rats,  
mice, and frogs (58, 59, 60, 61). Notably, the findings 
were diverse and in contrast to the findings in 
humans. Thus, in an experimental setting, MMI 
revealed adverse outcomes in the offspring in one of 
the four studies, whereas PTU associated with birth 
defects in the offspring in two of the three studies 
that examined this type of drug exposure (Table 3). 
We can only speculate on possible explanations for 
this disparity between experimental and human 
findings. Considering the types of malformations 
observed in humans after exposure to ATDs (56), it 
may be speculated that the less severe malformations 
seen after PTU exposure are not detectable in the 
rat (e.g. preauricular sinus) and similarly with some 
of the malformations observed after MMI exposure 
(e.g. aplasia cutis). Furthermore, the morphological 
differences between the human and the rat placenta 
mentioned previously may influence the evaluation of 
toxicological effects (31). Rate of organ development 
in different animals and in comparison with humans 
as well as dose dependency may differ and influence 
the risk of developmental defects. Finally, in human 
studies it is often difficult to distinguish between the 
role of hyperthyroidism per se, the treatment, and the 
thyroid autoimmunity. This may also be the case in 
experimental animals since the treatment with ATDs 
may induce hypothyroidism. The opposite may also 
be the case and could challenge experimental studies 
on the role of maternal hypothyroidism per se. Thus, 
maternal hypothyroidism in an experimental animal 
is typically induced from treatment with ATDs. 
Consequently, interpretation of the findings is a 
difficult task in an experimental design as much as in 
observational human studies. 

Concluding remarks

It has long been recognized that overt hyperthyroidism 
of GD in pregnant women should be treated to prevent 
complications (Table 4). This review highlights that 
evidence on the adverse effects of untreated or insufficiently 
treated hyperthyroidism is predominantly obtained from 
early clinical observations. In these reports and subsequent 
larger observational studies, a higher risk of pregnancy 
complications has consistently been reported if the disease 
is left untreated. Thus, it is well-established and in line 
with current recommendations that the disease should 
be treated in pregnant women. On the other hand, it is 
noteworthy that the burden of evidence from experimental 
studies and from observational human studies on 
postpartum and long-term outcomes in the offspring 
is limited as compared to maternal hypothyroidism in 
pregnancy. The experimental evidence provides some 
clues on potential adverse effects in the fetus associated 
with maternal hyperthyroidism, indicating that perhaps 
the association between maternal thyroid hormone levels 
in pregnancy and fetal development is u-shaped. Still, 
many aspects remain unclarified regarding the underlying 
mechanisms. In experimental animals as well as in humans, 
difficulties exist on the distinction between the different 
exposures that constitute parts of the autoimmune entity 
of GD. Furthermore, methodological aspects on outcome 
assessment apply to both settings and adds to difficulties 
in the comparison of experimental and human findings. 
As discussed, this is apparent from the inconsistency 
between experimental and human findings considering 
teratogenic side effects to the use of ATDs. Nevertheless, 
to inform clinical practice it is crucial to encourage future 
studies, basic as well as clinical, to address the distinct 
role of hyperthyroidism per se, the treatment, and the 

Table 3 Experimental studies on antithyroid drug exposure in pregnancy and outcomes in the offspring.

Author Year Animal Antithyroid drug
Outcome 
assessment Findings in the offspring

Stanisstreet  
et al. (58)

1990 Rats MMI Gestational day 9.5 MMI was associated with abnormal development 
of rat embryos in vitro; more severely at higher 
concentrations

Benavides  
et al. (59)

2012 Mice MMI and PTU Gestational day 
10.5 and 18.5

PTU, but not MMI, was associated with neural 
tube and cardiac defects as well as fetal loss

Veenendaal  
et al. (60)

2013 Frogs MMI and PTU Nieuwkoop and 
Faber stage 45

PTU, but not MMI, was associated with cardiac 
and gut looping defects, abnormal ciliary 
function and abnormal expression of genes 
involved in left-right symmetry

Mallela et al. (61) 2014 Mice and 
rats

MMI and PTU Gestational  
day 18 or 20

PTU and MMI were not associated with 
histopathological abnormalities or external 
gross malformations

MMI, methimazole; PTU, propylthiouracil.
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autoimmunity (Table 4). To move forward from here, it 
seems crucial to determine the underlying mechanisms by 
each exposure and potential interaction between and with 
other maternal characteristics. Such focus can at the same 
time provide important guidance on potential targets and 
possibilities for new treatments with less severe side effects.
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