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Nonlinear Grey-box Identification of Sewer Networks with the
Backwater Effect: An Experimental Study

Krisztian Mark Balla1,2, Graduate Student Member, IEEE, Casper Houtved Knudsen1, Adis Hodzic1,
Jan Dimon Bendtsen1, Member, IEEE, Carsten Skovmose Kallesøe1,2, Member, IEEE,

Abstract— Real-time control of urban drainage networks
requires knowledge about stored volumes and flows in order
to predict overflows and optimize system operation. However,
using flow sensors inside the pipelines means prohibitively high
installation and maintenance costs. In this article, we formulate
two nonlinear, constrained estimation problems for identifying
the open-channel flow in urban drainage networks. To this
end, we distribute cost-efficient level sensors along the pipelines
and formulate the estimation problems based on the spatially-
discretized kinematic and diffusion wave approximations of the
full Saint-Venant partial differential equations. To evaluate the
capabilities of the two models, the two approaches are compared
and evaluated on modeling a typical phenomenon occurring
in drainage systems: the backwater effect. An extensive real-
world experiment demonstrates the effectiveness of the two
approaches in obtaining the model parameters on a scaled water
laboratory setup, in the presence of measurement noise.

I. INTRODUCTION

Urban Drainage Networks (UDNs) are large-scale systems
where sewage is transported in open-channel conduits to-
wards the root of the network, where it is treated before being
discharged to the environment. In this article, we focus on
pumped systems where the sewage is pumped to overcome
the elevation and levelness of the landscape, then allowed
to flow by gravity towards the next collection pit in line
[1]. In order to control the volumes in UDNs, the flows and
stored volumes are essential to know to schedule unavoidable
overflows and regulate the inlet to the treatment plant [2].

Transport in UDNs is a complex process due to its
nonlinear nature and to the large time-delays imposed by
long travel times between wastewater pumping stations.
The transport processes are modeled by Partial Differential
Equations (PDEs), where the level and flow of water appear
as independent variables. However, these PDEs are often too
complex to solve in real-time applications and require the
precise network dimensions or a High Fidelity (HiFi) model
of the UDN [3], [4].

Some papers report on using the full dynamic PDEs in
control of UDNs [5] and modeling of open-channel water
infrastructures, e.g., irrigation canals and river systems. How-
ever, using full-PDE models requires a HiFi simulator or
installing several flow sensors along the pipelines, resulting
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in high installation and maintenance costs. To overcome the
difficulties with model complexity, some research proposes
to use reduced sewer models, relying on the physical at-
tributes (pipe dimensions, friction, slope) of sewer pipes
[6]. The most common approximations of the original PDEs
are the Kinematic Wave (KW) and Diffusion Wave (DW)
methods [7], where the original model is simplified by
omitting several physical phenomena in the model [8]. The
most common phenomena of this type is the backwater
effect, which is a local flow reversal that occurs inside the
pipelines when the capacity is overloaded and water volumes
are accumulating [4].

Linearizing PDEs around operating points has been exten-
sively used in slowly-varying water applications such as river
control, but also in UDNs by means of transfer functions
capturing the backwater effect in [9], and by state-space
models in [10]. Furthermore, due to its simplicity, delay-
models have been used in predictive control in many UDN
applications as well [11]. Data-driven modelling has been
reported in [12] and [13], where KW approximation-based,
grey-box modelling and black-box approaches have been
extensively used to model the gravity-driven sewer flows.

In this article, experiments are carried out for both the
KW and DW approximations of the full PDEs to compare
the model performance in system identification. In contrast
to methods relying on flow measurements and HiFi models,
we consider level sensors distributed along the network and
utilize flow estimation techniques to show the identifiability
of the KW- and DW-based models. Our approach is data-
driven, yet the models rely on the hydraulics of the network,
familiar to operators in the open-channel, water infrastruc-
tures industry. Furthermore, the proposed technique using the
physically-based process models carries an advantage that it
only requires data collection under nominal operation, unlike
conventional data-driven methods.

The remainder of the paper is structured as follows. Sec-
tion II introduces the KW and DW approximation principles
of the original PDEs. In Section III, we formulate the system
identification problem for both cases, whereupon Section IV
describes the case study laboratory setup. The results are
provided in Section V, where sensor and estimation data
from the experiments are utilized. This is followed by Section
VI, where conclusions and future research directions are
provided.

a) Nomenclature: Throughout the paper, all quantities
mentioned are real values. Boldface letters are used for
sets, such as s = {s1, ...sn} as well as for vectors x =



(x1, ...xn)ᵀ ∈ Rn. In case of vectors, <,≤,=, >,≥ denote
element-wise relations. Moreover, for a vector x ∈ Rn,
||x|| =

√
xᵀx denotes the Euclidean norm.

II. MODELING
Open-channel flow in UDNs is typically modelled by the

shallow water equations, which are given in uni-directional
form by the Saint-Venant (SV) PDEs [1]. These PDEs
describe the mass balance and the momentum conservation
of the fluid, shown in (1a) and (1b), respectively:

∂Ax,t
∂t

+
∂qx,t
∂x

= d̃x,t, (1a)

1

gAx,t

(
∂qx,t
∂t

+
∂

∂x

( q2x,t
Ax,t

))
+
∂hx,t
∂x

+

Kinematic wave︷ ︸︸ ︷
Sf |x,t−Sb︸ ︷︷ ︸

Diffusion wave

= 0, (1b)

where Ax,t is the wetted area, qx,t is the open-channel
flow inside the pipes, hx,t is the water level and d̃x,t =
dx,t/δx represent lateral inflows per unit length, where dx,t
is the lateral inflow, hereinafter referred to as disturbance.
Moreover, all variables mentioned are functions mapping
from (0, L)×R+ → R+, where L represents the total length
of the pipe. The gravity constant is denoted by g and the full
dynamic SV-based PDEs are parametrized by the Sb slope
and the Sf |x,t friction terms. Note, that Sb is independent
of the spatial and temporal coordinates, as we assume that
the slopes of the modelled pipe segments are close to being
constant throughout the pipe length. Moreover, different
approximations to the SV-based PDEs exist, depending on
which terms are neglected in (1b). In this study, we focus
on the Kinematic and Diffusion wave approximations.

Assumption 1: It is assumed that semi-filled pipe seg-
ments with a given geometry are sufficiently well-
approximated with a rectangular pipe shape. Hence, the
wetted area Ax,t and perimeter Px,t are approximated as:

Ax,t(hx,t) ≈ whx,t, (2a)
Px,t(hx,t) ≈ w + 2hx,t, (2b)

where w is the width of the pipe. Note, that the accuracy
of the linear approximation varies according to the operating
level inside the pipes, i.e., how full the pipe segment is.

In the following, the KW and DW reduction of the SV-
based PDEs and the geometry simplifications are considered.

A. Kinematic wave approximation
When approximating the full SV-based PDEs with kine-

matic waves, we assume uniform, quasi-steady flow and
neglect the physical phenomena such as the backwater effect
by keeping only the Sf |x,t friction and Sb slope terms in
(1b). Hence, the gravitational and friction forces acting on
the fluid are equal.

In order to relate the friction to flows qx,t and water levels
hx,t, x ∈ (0, L), we utilize the Manning formula [14]:

Sf |x,t = n2
P

4/3
x,t

A
10/3
x,t

q2x,t, (3)

where Px,t is the wetted perimeter and n is the Manning
friction factor. Using Assumption 1, the friction term in (3)
is rewritten as:

Sf |x,t = n2
(w + 2hx,t)

4/3

(whx,t)10/3
q2x,t. (4)

Then, isolating qx,t and inserting back into the SV-based
PDEs for a square pipe, the KW approximation yields PDEs
of first-order in the form:

w
∂hx,t
∂t

+
∂qx,t
∂x

=
dx,t
δx

, (5a)

qx,t =

√
Sb
n

(whx,t)
5/3

(2hx,t + w)2/3
. (5b)

Note that qx,t only depends on hx,t, implying that the
mapping from level to flow is injective.

To obtain a model structure more amenable to system
identification, the PDEs in (5a) and (5b) are reduced to a
system of finite-dimensional Ordinary Differential Equations
(ODEs) by discretizing each pipe spatially as shown in Fig.
1.

x=0 x=L

dδx,t dL,td3δx,td2δx,t

q0,t qL,tqδx,t q3δx,tq2δx,t

δx

Fig. 1. Flow balances for a pipe discretized into Nx = 4 sections.

Note that for each segment, the flow balance incorporates the
lateral inflows dx,t, the boundary flows q0,t, the discharge
flow qL,t and the section flows qx,t. The section flows are
generated by the water level in each pipe segment.

For the spatial discretization, we apply the backward Euler
method with a spatial step size of δx, such that:

dhx,t
dt

= θ1(qx−δx,t − qx,t + dx,t), (6a)

qx,t = θ2f(hx,t, θ3), (6b)

where the nonlinear map f : R+ → R+ is given by:

f : (hx,t, θ3) 7→
h
5/3
x,t

(hx,t + θ3)2/3
, ∀ x ∈ (0, L), (7)

and the physical constants along with the spatial step δx are
gathered in parameters, where:

θ1 ,
1

wδx
, θ2 ,

√
Sbw

5/3

22/3n
, θ3 ,

w

2
. (8)

Note that the parameters θ1, θ2, θ3 are positive, given that
the physical constants and the spatial steps are positive.

In order to obtain a model with water levels as states, the
qx,t flows in (6a) are substituted with water levels from (6b).
For ease of notation the time index t is omitted. Then, the



reduced KW-based model is given by a set of Nx ODEs,
each representing a section of length of the pipe:

dh1
dt

= θ1(q0 + d1)− θ1θ2f(h1, θ3), (9a)
...

dhn
dt

= θ1dn + θ1θ2
(
f(hn−1, θ3)− f(hn, θ3)

)
, (9b)

...
dhNx
dt

= θ1(dNx − qNx) + θ1θ2f(hNx−1, θ3), (9c)

where the flow q0 at x = 0 is considered as a controlled
input. As the section flows depend only on the water levels in
the corresponding segments, the discharged flow is calculated
directly from the level in the last segment:

qNx = θ2f(hNx , θ3), (10)

where hNx is the water level in the last pipe segment.

B. Diffusion wave approximation

Unlike the KW-based model, the DW approximation does
not neglect the term ∂hx,t/∂x in (1b). Hence, the momentum
equation of the SV-based PDEs becomes:

∂hx,t
∂x

= Sb − Sf |x,t. (11)

In case of the DW approximation, the friction term is given
by the open-channel Darcy-Weisbach formula [1]:

Sf |x,t = k
Px,t

8A3
x,tg

q2x,t, (12)

where k is the Darcy-Weisbach friction factor and g is the
gravitational acceleration.

To show the structure of the DW-based model, first we
spatially discretize the SV-based PDEs in (1). We use the
backward Euler method for discretizing ∂qx,t/∂x in (1a) (as
for the KW-based model) and the forward Euler method for
∂hx,t/∂x in (1b). Then, the SV-based PDEs are reduced to
a system of finite-dimensional, first-order ODEs:

δxw
dhx,t
dt

= qx−δx,t − qx,t + dx,t, (13a)

hx+δx,t − hx,t = z − r(qx,t, hx,t), (13b)

where z , δxSb defines the elevation difference between
the equal-sized, non-overlapping segments δx and the pipe
resistance rx(qx,t, hx,t) , δxSf |x,t due to friction. Applying
Assumption 1, the resistance function becomes:

rx(qx,t, hx,t) = k
δx

8g

w + 2hx,t
w3h3x,t

q2x,t. (14)

The flows qx,t between pipe segments are expressed similarly
to the section flows in the KW-based model. The inverse
of the resistance function r(qx,t, hx,t) is used to solve the
momentum equation in (13b), such that:

qx,t = r−1x (hx,t + z − hx+δx,t). (15)

As opposed to the KW-based model, the pipe flows qx,t are
not only a function of the local water levels hx,t, but also

the water level one spatial step forward and the elevation
between the neighboring sections, as depicted in Fig. 2.

x=0 x=L

dδx,t

dL,t

d3δx,t

d2δx,t

q0,t

qL,t

hδx,t

hL,t
h3δx,t

h2δx,t

z

δx

Fig. 2. Discretized pipe, indicating level differences generating the flow.

Note that the relation between section flows qx,t and water
levels hx,t is not one-to-one, as it was in the KW-based
model. Furthermore, the section flows are generated by the
elevation difference due to the pipe slope, as well as by the
level difference between the interconnected segments.

The spatial discretization of the DW-based model yields:

dhx,t
dt

= λ1(qx−δx,t − qx,t + dx,t), (16a)

qx,t = λ2
(
(hx,t + z − hx−δx,t)g(hx,t, λ3)

)1/2
, (16b)

where the nonlinear map g : R+ → R+ is given by:

g : (hx,t, λ3) 7→
h3x,t

hx,t + λ3
, ∀ x ∈ (0, L). (17)

Here, z is an extra model parameter and the physical con-
stants are collected in parameters, where:

λ1 ,
1

wδx
, λ2 ,

(
4gw3

kδx

)1/2

, λ3 ,
w

2
. (18)

Similarly to the KW-based model, the parameters
λ1, λ2, λ3 ∈ R+. Note that the parameters for the
KW and DW case only differ in θ2 and λ2.

To obtain a model with water levels as states, the qx,t
flows in (16a) are substituted with water levels from (16b).
For ease of notation the time index t is omitted. Then, the
reduced DW-based model is given by a set of Nx ODEs,
each representing a section of length of the pipeline:

dh1
dt

=λ1(q0+d1)−λ1λ2
(
(h1−h2+z)g(h1, λ3)

) 1
2, (19a)

...
dhn
dt

=λ1dn + λ1λ2

[(
(hn,t−hn+z)g(hn−1, λ3)

) 1
2 (19b)

−
(
(hn−hn+1+z)g(hn, λ3)

) 1
2

]
...

dhNx
dt

=λ1(dNx − qNx) (19c)

+ λ1λ2
(
(hNx−1−hNx+z)g(hNx−1, λ3)

) 1
2,

where in a similar manner to the KW-based model, the
boundary flows at the upstream and downstream end of the



channel are given by q0 and qNx , respectively. Unlike the
KW-based model, the boundary flow downstream cannot be
directly calculated from the water level in the last segment.
The DW-based model inherently incorporates the internal
connections between the connected elements at the Nx
and Nx+1 spatial steps, where Nx+1 corresponds to the
connected structure.

Remark 1: Hydraulic structures define the level-flow re-
lation at the boundary points of pipelines. These structures
are typically wastewater basins, weirs, gates or the receiving
water body, e.g., the sea.

The mathematical description of hydraulic structures dif-
fers for free [15] and submerged flow [4], hence the model
structure and parameters differ too. The outflow-level relation
for the two different cases are given by the function:

qNx =Gµf (hNx) for free flow (20a)
qNx =Gµs(hNx , hNx+1) for submerged flow (20b)

where hNx is the water level in the last segment of the
pipeline and hNx+1 in the hydraulic structure. Moreover, µf
and µs are vectors of structure parameters corresponding to
free and submerged flows, respectively. Models of hydraulic
structures corresponding to the most common elements in
UDNs are reported in [4].

C. Discrete system model

In this study, discrete-time system dynamics are utilized
for solving the system identification problems for both the
KW- and DW-based models. The dynamics of the KW-based
model described in (9) and (10) are given for one pipeline:

ĥ(tk+1) = F KW
θ

(
ĥ(tk), q0(tk),d(tk)

)
, (21a)

qNx(tk) = θ2f(hNx(tk), θ3), (21b)

where the numerical integration from tk to tk+1 is done by
the fixed-step 4th order Runge-Kutta method. Furthermore,
ĥ(tk) ∈ RNx is the vector of states, representing the
water levels in each of the Nx sections. The vector d(tk)
represents lateral inflow disturbances along the pipe line in
each segment. The dynamics are given by FKWθ : RNx ×
R+ × RNx → RNx . The outlet flows are given by (21b).

The dynamics of the DW-based model described in (19a)
are given for one pipeline:

ĥ(tk+1) = F DW
λ,z

(
ĥ(tk), q0(tk), qNx(tk),d(tk)

)
, (22)

where the dynamics are given by FDWλ,z : RNx×R+×R+×
RNx → RNx . The discharged flow is given by (20a).

III. SYSTEM IDENTIFICATION

The system identification problem in both cases is given
by a finite-dimensional constrained Nonlinear Programming
(NLP) problem, where the boundary flows q0, qNx and the
disturbances d at ti, i = {0, ..., Nt} are known a priori.

Remark 2: The pumped inlet flows are estimated by
the polynomial expression of fixed-speed wastewater pumps
[16], and the outlet flows are estimated by mass conservation.
The flow estimation algorithm suitable for the application

and methodologies presented in this study is detailed in [16],
which the interested reader may refer to for more details.

Water levels in each sections of the gravity pipe are also
known a priori by means of sensor measurements, given by:

v = Ch+ ν, (23)

where C ∈ RN0×Nx is picking out all measured states v
from the states h. N0 denotes the number of level sensors
and ν ∈ NID(0, σ2) is white Gaussian measurement noise.

The input vector for the KW-based identification at time
instance ti is given by u(ti) ,

(
q0(ti),d

ᵀ(ti)
)ᵀ

, and the
corresponding output vector by y(ti) ,

(
vᵀ(ti), qNx(ti)

)ᵀ
.

The model parameters are given by θ , (θ1, θ2, θ3)ᵀ. Then,
the NLP problem for the KW-based model is given by:(

θ∗

ĥ(t0)∗

)
= argmin

θ,ĥ(t0)

Nt∑
i=0

(
qNx(ti)− q̂Nx(ti)

)2
(24a)

+ Ω||v(ti)− v̂(ti)||2

subject to dynamics in (21) and to inequality constraints:

0 < ĥ(ti) ≤ h, (24b)
0 < q̂Nx(ti) ≤ qNx , (24c)

0 < θ ≤ θ, (24d)

where (24b), (24c) and (24d) impose bounds on states,
outputs and parameters, respectively. Note that the upper and
lower bounds in each constraint are based on meaningful
physical values, e.g., the slope and width of the channel
must be within meaningful physical ranges and the water
levels and flows cannot be negative. Besides, Ω is a weighing
constant in (24a), scaling the water levels to flows.

Unlike the KW-based model identification, the inputs in
the DW-based model at time instance ti are defined by
u(ti) ,

(
q0(ti), qNx(ti),d

ᵀ(ti)
)ᵀ

, while the outputs are
y(ti) ,

(
vᵀ(ti)

)ᵀ
. Furthermore, we define the parameter

vector by λ , (λ1, λ2, λ3)ᵀ. Note that instead of using
the outflow model defined at the downstream boundary
of pipelines, described in (20a), the estimated discharged
flow qNx is used as an input. This is done in order to
avoid introducing extra µ parameters for hydraulic structures,
hence restrict the parameter space. Instead, the flow qNx is
estimated as stated in Remark 2. Then, the NLP problem for
the DW-based model is given by: λ∗

z∗

ĥ(t0)∗

 = argmin
λ,z,ĥ(t0)

Nt∑
i=0

||v(ti)− v̂(ti)||2 (25a)

subject to dynamics in (22) and to inequality constraints:

0 < ĥ(ti) ≤ h, (25b)

0 < θ ≤ θ, (25c)
0 < z ≤ z, (25d)

where similarly to the KW case, (25b) imposes bounds on the
states, and (25c) and (25d) on the parameters, respectively.

The NLP problems in both cases are solved by using a
Gauss-Newton gradient-based method, detailed in [17].
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Furthermore, the auxiliary variable Nx, i.e., the number of
sections into which each pipeline is discretized into are fixed
in both NLP problems. Grid size selection can be evaluated
on Monte Carlo simulations for varying step sizes [12].

IV. CASE STUDY

The experimental setup for validating the proposed
methodologies is shown in Fig. 3. The setup represents a
scaled version of a typical gravity-driven sewer pipeline most
commonly found in real-life infrastructures. The proposed
setup consists of an open-channel pipeline, along which
N0 = 4 level sensors are installed. The inlet flow q0 is
pumped from an upstream tank, while the discharged flow
qNx is calculated from the mass balances of a downstream
tank. Auxiliary tanks are utilized as flow sources to pump the
disturbance in the middle point of the open-channel sewer
pipe. Note, that the disturbance enters the pipeline between
the second and third level sensor. Hence, the designed
flow event allows to create backflow in the middle of the
channel, which is captured by the second level sensor and
then propagates to the downstream tank. The level and flow
measurement data are obtained and locally managed at each
laboratory unit with a Codesys soft-PLC [18], and all local
modules are interfaced in real-time. The data used for system
identification is gathered over a three-hours long experiment
and sampled at T = 2[s]. Besides, both the KW and DW
models utilized in the system identification are built up of a
pipeline discretized into Nx = 8 sections.

V. EXPERIMENTAL RESULTS

Following the KW and DW model methodologies dis-
cussed in Section II, the two problems have been verified
on data extracted from the same experiment. The inlet flow
q0 and lateral inflow d is shown in Fig. 5 (a-b), where the
inlet pumps turn on and off with a fixed speed, while there is
a consecutive inflow event in the middle of the experiment.

In case of the KW-based model, the output vector y
includes the discharged flow qNx , hence the flow predic-
tion is tested against data. As shown in Fig. 4, the one-
step prediction of the KW-based model produces accurate
flows compared to the estimated discharge flow data. The
validation results show that the model is predicting precisely

the flow-dependant process delays both in the presence and
without the lateral inflows.

0 500 1,000 1,500 2,000
0

0.1

0.2

0.3

0.4

Time (2s)

Fl
ow

(l
/s

) Flow est. data KW model

Fig. 4. Identification and validation of discharged flow in the KW model.

Note that the discharged flow increases, when lateral inflow
is present along the pipe. This is due to mass conservation,
as extra volume is propagating down the channel.

The comparison of the one-step state prediction for the
KW- and DW-based models is shown in Fig. 5. Note that the
first sensor measurement (h1) is not affected by the backflow,
however, as the disturbance is applied to the system, the
sensor at the second position (h2) captures the water volumes
accumulating inside the pipes. This is shown in (e-f), where
the KW-based model assumes the downstream propagation
of the disturbance without affecting the upstream state, i.e.
h2. In contrast to that, the DW-based model finds the correct
z parameters, and due to the level difference in the segments,
accounts for the backflow. As shown in Fig. 5 (g-h-i-j), both
models are equally good at state prediction after the location
where the disturbance enters the channel.

VI. CONCLUSION
In this article, a comparison of two model structures

reduced from the Saint-Venant partial differential equations
has been presented to model open-channel, gravity-driven
flow processes with the backwater phenomena. To this end,
a grey-box approach has been proposed using level sensors
distributed along the pipeline and utilizing the spatially
discretized kinematic and diffusion wave approximations of
the full dynamic Saint-Venant equations. The constrained
nonlinear system identification problem has been solved for
both approaches, where data has been extracted from a scaled
laboratory setup built for control of water infrastructures.
The experimental results corroborate the feasibility of both
approaches and point out the capabilities of the diffusion
wave approach in capturing backflow inside the pipes.
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Fig. 5. System identification and validation results for the KW- (left) and the DW-based (right) modelling approaches.

In future work, the two methodologies will be tested on
real water infrastructures. Moreover, it will be interesting to
carry out stability and identifiability analysis, especially on
complex models as the diffusion wave. Applying the methods
in predictive control is also a matter of future work.
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