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ABSTRACT The Covid-19 pandemic has abruptly changed well-established mobility patterns, as the need
for social distancing and lockdown orders have driven citizens to reduce their movements and avoid crowded
mass transit. In this context, we look at the case of New York City’s bike sharing system, one of the largest
in the world, to gain insights on the socio-economic variables behind urban mobility during a pandemic.
We exploit several sources of Smart City data to analyze the relationship between bike sharing, public
transport, and other modes of transportation, deriving interesting insights for future urban planning, both
city-wide and at the neighborhood level. The New York City case study shows some of the most important
trends during the lockdown, and the combination between mobility and socio-economic data can be used to
understand the consequences of the pandemic on different communities, as well as the future directions of
expansion and management of the bike sharing system and urban infrastructure.

INDEX TERMS Bike sharing, Covid-19, smart city, urban mobility, urban planning.

I. INTRODUCTION
The Covid-19 pandemic that struck the world at the end
of 2019 has fundamentally altered social practices and
spaces in ways that we still do not fully understand: the
current necessity for social distancing might still shape
mobility patterns long after the end of the lockdown,
and its ripples could have long-term, or even permanent,
effects on urban planning and mobility [1]. In the longer
term, the effect of climate change and the transition to
a low- or zero-carbon economy mean that city planners
must shift to sustainable solutions, encouraging both mass
transportation and cycling as environmentally friendly and
socially equitable alternatives to the use of private cars [2].

However, public transportation can be dangerous during
a pandemic, as the virus can easily spread when crowds
are in close contact in enclosed spaces such as buses and
subways [3]. The recent public transport operator guidelines1

published by the Union Internationale des Transports Publics
(UITP), a Belgium-based international non-profit advocacy
organization for public transport, call for a reduction of

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .
1https://www.uitp.org/management-covid-19-guidelines-public-

transport-operators

service as a possible countermeasure. Several cities are
then looking at cycling as a healthy [4] and environment-
and social distancing-friendly solution [5]: Milan, the major
epidemic hotbed in Italy, is currently planning to reconvert
35 km of streets to be more bike-friendly, with 30 km/h
speed limits and wide bike lanes,2 and many other cities are
considering similar initiatives.

Even before the Covid-19 pandemic, the growth of bike
sharing services from a few small experiments in the
1960s [6] to an almost ubiquitous presence in urbanized
environments was altering the shape of urban mobility. Natu-
rally, as bike sharing affects the ridership on public transit
and the use of private cars, the pre-existing infrastructure
and socio-economic landscape also affects its shape. Bike
sharing stations tend to serve richer and more central areas,
while providing limited if any coverage to economically
disadvantaged neighborhoods [7]: the New York Citi Bike
system is heavily skewed towards wealthier areas, although
it is currently expanding towards poorer ones such as the
Bronx.3 At the same time, the diffusion of Covid-19 in

2https://www.theguardian.com/world/2020/apr/21/milan-seeks-to-
prevent-post-crisis-return-of-traffic-pollution

3https://www.citibikenyc.com/blog/major-citi-bike-expansion-map-
revealed
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NewYork is strongly correlatedwith lowmedian incomes [8],
ethnic group, and the type of occupation of its residents.
Essential workers are exposed to a higher infection risk, and
also often have jobs with lower incomes [9], exacerbating
socio-economic divisions.

The interplay of bike sharing services and mass transit in
urban mobility is another interesting factor, which can greatly
expand the potential of both modes of transportation [10].
A survey on transportation mode shifts in Washington DC
and Minneapolis (MN) shows an interesting pattern among
commuters and leisure riders [11]: while theWashington bike
sharing system substantially decreased the use of all other
modes of transportation, including buses and light rail, among
its users, in Minneapolis a majority of bike sharing users
reported a reduced car use, but bus and light rail usage did
not significantly decrease, and a large minority actually used
mass transit more often, along with walking. The likeliest
cause of this trend is the different nature of the mass transit
networks of the two cities: while Washington DC has a per-
vasive metro network with multiple transfer hubs, connecting
most destinations within a very short distance, the sparse
Minneapolis public transportation network requires users to
walk to their destination. Bike sharing can then fulfill this
need for a last-mile transportation option. Further evidence
for this pattern is given by congestion data analysis [12],
which shows that bike sharing systems have a stronger effect
on congestion in larger cities, where they can better integrate
with mass transit, and at rush hour. To the best of our
knowledge, the effect of Covid-19 on the coexistence of bike
sharing systems and mass transit is still unknown.

The natural and built environment plays a large role in
the use of bike sharing [13] and of cycling as a mode of
transportation in general, as does urban and traffic planning:
in particular, the creation of bike lanes physically separated
from car traffic and the integration of bike sharing with
mass transit need to be considered. The presence and design
of bike lanes can improve safety and reduce dangerous
behavior [14] from cyclists andmotorists: Northern European
countries such as the Netherlands and Denmark have seen
a sharp decline in cycling injuries and deaths thanks to
their cycling-friendly urban planning and traffic laws. The
experience from these countries [15] shows that urban
design plays a key role in encouraging cycling as a mode
of transportation, not just bike sharing use. In particular,
the perceived comfort and safety of sharing the road with cars
affects the gender gap in cycling behavior [16], as women feel
generally less safe than men: the introduction of physically
separated bike lanes can significantly decrease this gap. North
America is currently lagging behind Europe in this regard,
although cities like Portland have started implementing
cycling-friendly policies and have seen significant increases
in bike commuting [17]. Age also plays a role in bike
sharing usage: older Millennials in their thirties [18] make
up a disproportionate amount of total rides, while Boomers
born before 1964 make far fewer trips per person. This
is intuitively plausible, as older people might not be as

fit, but the combined effects of employment, environmental
consciousness, and economical means are complex and need
to be studied further.

Disparities between neighborhoods and income groups are
not limited to bike sharing service availability, particularly
during this pandemic: analyses of mobility patterns through
mobile phone records show that richer Americans tend to
work at jobs better suited to social distancing [9], resulting in
a sharper drop in commuting, while jobs that involve physical
proximity and cannot be performed remotely often have
lower wages, increasing the risk of infection of economically
disadvantaged neighborhoods [19]. Finally, the available
data on the people leaving New York City to avoid the
epidemic also parallels these inequalities, as the inhabitants
of downtown Manhattan left the city in far greater numbers
than citizens of the outer boroughs [20].

The combination of these social trends with the threat of
climate change and the effect of the current pandemic will
have a crucial importance in defining the shape of the cities of
the future. The promise of the Smart City paradigm involved
using open data to improve services and help citizens [21],
and major cities are now in a position to deliver on it. In this
work, we present New York City as a case study, analyzing
ridership statistics from the Citi Bike bike sharing system
(which can also serve as a proxy for general patterns in
cyclist mobility) along with public transport data and other
socio-economic factors, highlighting how spatio-temporal
graph-based analyses can be used for resilient urban planning
with social distancing-compatible mobility. We focus on the
month of March 2020, during which the city transitioned
from its first confirmed case on March 1 to a full lockdown
fromMarch 20 onwards. Our data analysis uses several public
datasets in conjunction with the bike sharing data to provide
a full picture of mobility patterns: the promise of improving
services through the use of Smart City open data is not
new [22], but the Covid-19 pandemic is requiring a response
on an unprecedented scale,

The rest of this paper is divided as follows: in Sec. II,
we present a spatio-temporal analysis of the Citi Bike bike
sharing system data, discussing the changes in the mobility
patterns of users as the pandemic progressed and comparing
the patterns in bike sharing usage with those in other
forms of public transport, as well as considering several
socio-economic features as explanatory variables. Sec. III and
Sec IV exploit the connectivity transition and heat diffusion
graph analysis techniques to examine these patterns in depth,
operating both at the local and at the system-wide level.
Finally, we conclude the paper with a discussion on the
significance of these results in Sec. V, making considerations
on how data analysis in a Smart City framework can help
inform urban planning decisions, as well as on the possible
policy consequences of our analysis.4

4The code for the data analysis we performed is available at URL
https://github.com/FrancescoPase/bikesharing
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II. SPATIO-TEMPORAL ANALYSIS
In order to analyze the ridership data from the Citi Bike
system, we divided the month of March 2020 in 4 weeks.
Since mobility patterns during the week are significantly
different from the ones in the weekend, we mainly considered
weekdays. The working weeks we considered go from
March 2 to March 6, from March 9 to March 13, from
March 16 to March 20, and fromMarch 23 to March 27. This
division neatly fits the timeline of the pandemic in New York
City, as it progressed from the first confirmed cases in the
first week to partial closures during the second week, then to
the shut down of public schools and restaurants in the third
week, and finally to the full shutdown and shelter-in-place in
the last week. We provide a short timeline of the major events
in March:
• On March 1, mayor Bill De Blasio announced the first
case of Covid-19 in the city, a health-care worker who
had visited Iran in February.5

• On March 7th, governor Andrew Cuomo declared a
state of emergency, and commuter guidelines asked sick
individuals to avoid densely packed public transport.6

• On March 11, the City University of New York and
State University of New York systems were closed by
governor Cuomo, moving all classes online from the
following week.7 The first fatality in the city occurred,
an 82-year-old woman from Brooklyn.8

• On March 12, governor Cuomo announced a ban on
public gatherings of more than 500 people, cutting
capacity of smaller events by 50 percent and ordering
Broadway theaters to shut down.9

• On March 16, all public schools closed down by order
of the governor, and bars and restaurants were closed by
the mayor the following day.10

• On March 20, the PAUSE order effectively imposed a
statewide shutdown and shelter-in-place. By this time,
there were almost 20 000 confirmed cases in New York
City, and the number would reach 60 000 by the end of
the month.11

Fig. 1 summarizes these events graphically, along with the
plot of the confirmed cases and deaths over the month of
March, using data from the New York City Department of
Health.12

A recent study [8] shows that the number of Covid-19
cases, and the fraction of positive tests, can be mostly

5https://www.nytimes.com/2020/03/01/nyregion/new-york-coronvirus-
confirmed.html

6https://www.nytimes.com/2020/03/07/nyregion/coronavirus-new-york-
queens.html

7https://www.nytimes.com/2020/03/11/nyregion/coronavirus-new-york-
update.html

8https://www.nytimes.com/2020/03/14/nyregion/coronavirus-ny.html
9https://www.governor.ny.gov/news/during-novel-coronavirus-briefing-

governor-cuomo-announces-new-mass-gatherings-regulations
10https://www.nytimes.com/2020/03/15/nyregion/new-york-

coronavirus.html
11https://www.nytimes.com/2020/03/20/us/ny-ca-stay-home-order.html
12https://www1.nyc.gov/site/doh/covid/covid-19-data.page

FIGURE 1. Timeline of confirmed cases and deaths on a logarithmic scale,
with major events. The shading indicates the weekdays in the four weeks
we consider.

FIGURE 2. Confirmed Covid-19 cases by zip code per 1,000 residents as
of June 2, 2020.

explained by occupation, and that the statistical impact
of commuting habits is limited. This suggests that while
wealthier, white collar neighborhoods were able to quarantine
themselves effectively, essential workers in close contact
with each other and the public were possible vectors for the
infection instead. As Fig. 2 shows, the outer boroughs have
a much higher prevalence of Covid-19. While most of the
highly affected areas in the Bronx and Queens are outside
the bike sharing network’s coverage, we can see that the
prevalence in lower Manhattan and downtown Brooklyn is
much lower, while it increases in poorer neighborhoods.

Fig. 3 shows a heat map of the ridership data of the
subway (above) and the Citi Bike system (below) in the
first week of March, from the publicly available data on
the Metropolitan Transportation Authority (MTA)13 and Citi
Bike14 websites. It is easy to see that, while the subway
serves an order of magnitude more users than the bike sharing
system, the patterns of activity are similar. Lower Manhattan
and downtown Brooklyn see the highest activity, while less
densely populated areas have less traffic. Traffic follows
a bimodal pattern during the day, peaking at rush hour in

13http://web.mta.info/developers/turnstile.html
14https://www.citibikenyc.com/system-data
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FIGURE 3. Heat map of subway and bike sharing rides during the first
week of March. Color values refer to the average number of daily rides.

the morning and the late afternoon. As we will discuss
below, both the spatial and temporal patterns were profoundly
altered in less than a month by the effects of the Covid-19
pandemic. Interestingly, as Fig. 4 shows, during the last week
of March the two systems diverged: while the decrease in the
metro rides was uniform across the whole examined area as
traffic decreased by almost 90%, the areas with fewer rides
in the bike sharing system were less affected, leading to a
smaller decrease and a more uniform map.

We first analyze the variation in the number of bike
sharing rides: while the general trend shows a reduction of
approximately 60% from the first to the last week, the patterns
show several interesting features, as shown in Fig. 5. The first
noticeable result is that ridership did not decrease from the
first to the second week: in fact, it slightly increased, although
the effects of bad weather on March 3 and March 6 might
account for the difference: the increase in ridership was
consistent with what would otherwise be expected based
on the increase in temperature. During weekdays, the usage
of the system peaks at rush hours in the morning and
afternoon, as thousands of commuters use bike sharing to
get to and from work. The most significant change happens

FIGURE 4. Heat map of subway and bike sharing rides during the last
week of March. Color values refer to the average number of daily rides.

FIGURE 5. Hourly rides between Monday, March 2, and Sunday, March 29.
Weekdays are shaded in light gray, while rainy hours are shaded in dark
blue.

between the second and third week, coinciding with the
period between the ban of public gatherings and the closure
of public schools: on average, the number of daily rides
decreases approximately by half, and the rush hour peaks are
far less prominent, making the hourly patterns more similar to
a weekend than a standard weekday. The last week continues

187294 VOLUME 8, 2020
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this trend, as the peak in themorning almost disappears, while
total rides decrease even further. The data from Beijing [23]
confirm that this pattern is not limited to New York City, but
might be more general in the use of bike sharing systems
during the pandemic.

We model the bike sharing system as a graph, with the
docking stations as nodes and the rides between them on
a given day as edges. We first introduce some basic graph
theory definitions and notation. Given a weighted graph G,
we define its set of vertices V , the set containing the edges
of the graph E ⊆ V × V , and the weighting function ρ :
E 7→ R, which in our case indicates the number of rides
between the two stations. The number of nodes is V = |V|,
and the number of edges is E = |E |. We can thus represent
missing edges, i.e., the pairs of stations which had no rides
between them in the considered period, by assigning them a
weight of 0. Let us then introduce the weighted adjacency
matrix W ∈ RV×V , where Wij = ρij ≥ 0 indicates the
weight associated to the edge connecting nodes i and j. The
unweighted degree of a station is defined as the number
of other stations it is connected to by at least two trips,
i.e., ui =

∑V
j=1 I (ρij ≥ 2), where I (·) is the indicator

function, equal to 1 if the condition is true and 0 otherwise.
We now define the weighted degree of a node i as di =∑V

j=1Wij and the weighted degree matrix D ∈ RV×V as the
diagonal matrix D = diag(d1, . . . , dV ). As D is computed
on the weighted adjacency matrix, it does not represent the
number of connections of each node, but rather the total traffic
flowing to and from that node.

FIGURE 6. Degree of each station in the four considered weeks, sorted
according to their degree in the first week.

We can then sort all stations by their degree and get
the unweighted degree distribution, counting the number of
incoming and outgoing edges to and from the stations in
increasing order. Changes in this distribution allow us to
see how the connectedness of the system changes. Fig. 6
shows the degree of each station in the four weeks, sorted
by the value in the first one: this way, we can see not only

FIGURE 7. Aggregated weekday degree per station, normalized by the
values in the first week.

how connections changed, but also what stations increased or
decreased their connectivity. As the figure shows, the degree
gradually decreases for most stations, but some stations have
a sharper decline: the ‘‘hub’’ stations, which riders use to
travel to and from more than 100 other stations, are used less
over time. As we will discuss later, these ‘‘hub’’ stations are
often placed close to major bus stops and subway and railway
stations. Along with the disappearance of the rush hour traffic
peaks, this can lead us to the conclusion thatmost of the traffic
on these stations was due to mixed-mode commuting, which
was disrupted by the lockdown in the third and fourth week.

Traffic pattern variations have a strong geographical
component, as we see in Fig. 7: the ‘‘hub’’ stations we
mentioned above are mostly located in downtownManhattan,
and they experience a far sharper decline than those in
the outer boroughs. This figure and the following one are
normalized by station, i.e., the color of each station is
normalized by its degree in the first week, to avoid that the
dynamic range of high-traffic stations flattens the variations
for lower-traffic ones. For this reason, the value in the first
week is 1 for all stations. As the figure shows, stations

VOLUME 8, 2020 187295
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FIGURE 8. Aggregated weekday traffic per station, normalized by the
values in the first week.

at the edge of the bike sharing system coverage, in the
eastern part of Brooklyn and in the Astoria neighborhood,
maintain more connections, and sometimes actually increase
their degree. The same goes for the total traffic, shown
in Fig. 8: while the drop in downtownManhattan and western
Brooklyn is significant, upper Manhattan, Astoria and the
rest of Brooklyn see small decreases or even increases in the
daily weekday traffic. The socio-economic features of these
neighborhoods can partially explain this difference: their
inhabitants are often working class, with manual jobs that are
ill-suited to remote working. In this case, the bike sharing
service can serve an important function, as it enables safe
mobility within the city for already disadvantaged categories.

We can also look at the comparison between traffic patterns
for the subway and the bike sharing system: Fig. 9 shows
the relative subway ridership over the last three weeks of
March, mirroring Fig. 8. A glance at the two figures show an
important distinction: the decline of subway ridership is much
more uniform, affecting the outer boroughs almost as much as
downtown Manhattan, while users of the bike sharing system
in Astoria and Brooklyn actually increased. As bike sharing

FIGURE 9. Heatmap of subway traffic by zip code during the same days
of previous analysis, relative to the first week.

rides from these areas also got longer, and several trips were
between stations served by a subway line, we can hypothesize
that some habitual subway users decided to switch to cycling
due to the risk posed by the pandemic. If we assume that
cyclists overall follow the Citi Bike system demand patterns,
we can conclude that citizens autonomously chose to cycle
evenwithout significant incentives, making cycling a fallback
option for urban mobility in the pandemic. Naturally, this
topic deserves more research, but it should provide further
justification for more bike-friendly urban planning: if cycling
is encouraged as a safe and healthy alternative, disruption
from future epidemic waves can be minimized without

187296 VOLUME 8, 2020
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FIGURE 10. Traffic flows normalized by the average traffic flow per
station.

extraordinary measures. A more comprehensive analysis of
the differences in ridership between the subway and the bike
sharing system can be found in [24].

Finally, we analyze how traffic shifts in the bike sharing
system in each week, looking at the system-wide patterns
instead of the station-level variation. Fig. 10 shows the traffic
at each station, normalized by the average traffic during
each week. We can see that the traffic expands to more
stations in upper Manhattan and Brooklyn, but the changes
in Astoria and most of Brooklyn that we discussed above are
dwarfed by the difference in traffic, i.e., while the traffic in
downtown Manhattan decreased sharply and the traffic in the
outer boroughs increased, the system is still heavily skewed
towards the former. However, it is interesting to note that the
red dots in the map for the first week, which correspond to
Grand Central Station, Pennsylvania Station and the Union
Square subway station, i.e., the busiest mass transit exchanges
in Manhattan, disappear in the later weeks. This provides

FIGURE 11. Traffic flows normalized by the average traffic flow per
station during the first weekend.

further evidence for the decrease in mixed-mode commuting.
As the comparison with Fig. 11 shows, the traffic during the
last weeks becomes in some ways similar to weekend traffic
in normal conditions, with increased load on riverfront and
peripheral stations and a significantly decreased importance
of mass transit exchanges. In support of this observation,
we performed a simple quantitative comparison between
spatial traffic distributions during the weekdays of the first
and last weeks, and during the first weekend of March. Let us
define with fk,n ∈ RV the vector containing flow information
for each station between the k-th and n-th (included) days
of March, where V indicates the number of graph nodes.
With this notation, f2,6i indicates the aggregate number of
trips arriving or departing from station i between the 2nd and
the 6th of March. Given the variable number of rides and
days considered (weekends contain just two days), we divided
the vectors by the average traffic of the considered period
over the whole system, obtaining f̄k,n = fk,n∑V

i=1 f
k,n
i
. With this

notation, the vectors associated to the weekdays of the first
week, the first weekend, and the weekdays of the last week
are f̄2,6, f̄7,8, and f̄23,27, respectively. In order to evaluate
the traffic ‘‘dissimilarity’’ between two considered periods,
denoted with L2(f̄k,n, f̄k

′,n′ ), we simply look at the Euclidean
norm of the difference vectors, that is L2(f̄k,n, f̄k

′,n′ ) =∣∣∣∣f̄k,n − f̄k
′,n′
∣∣∣∣
2. Smaller values of L2 reflect a higher

similarity between traffic patterns during two different time
windows. In our analysis we found L2(f̄2,6, f̄23,27) = 20.8,
L2(f̄7,8, f̄23,27) = 14.53, L2(f̄7,8, f̄2,6) = 19.28, which
indicates that spatial traffic distribution in theweekdays of the
last week is more similar to the first weekend than to the first
weekdays. This is confirmed by the fact that the first weekend
is more similar to the weekdays of the last than those of the
first week of March.
In the last two weeks, many stations close to the city parks

see increases in relative traffic, suggesting that leisure trips
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do not decrease as much as commuting; the main traffic hubs
are a previously low-traffic station on the Hudson riverfront,
and another one close to the Queensboro Bridge. In general,
stations closer to bridges see an increased traffic, giving
further proof of the increased inter-borough bike sharing
traffic: the station at the Brooklyn foot of the Williamsburg
bridge also had especially high ridership. To a lesser extent,
so did the Manhattan foot of the Brooklyn Bridge. In normal
conditions, only 2-4% of daily trips are across the East River,
but this percentage increased to over 5% in the second week
of March, and to over 6% in the later weeks. This pattern
has remained consistent after the end of March, and the
percentage of bridge crossings has reached 9% on one day
in late May.

III. CONNECTIVITY ANALYSIS
In this section, we analyze the changes in the connectivity
of the bike sharing graph, finding regional patterns and
examining how they change over the course of the month.
Connectivity analysis is a significant research subject in net-
work science, and connectivity-related metrics have already
been used for the analysis of transportation systems [25].
Dock-based bike sharing is particularly suited to this
approach [26], since the trips are constrained to start and end
at the docking stations, which hence represent fixed nodes
in the connectivity graph. The use of graph analysis in bike
sharing system evaluation and optimization is a growing field
of research [27].

The Combinatorial Laplacian Matrix L = D −W [28] is
an important graph property carrying information on graph
topology and connectivity. We can use the eigenvalues of
L to draw some preliminary judgments on the system’s
behavior. As L is real, symmetric and positive semidefinite,
its eigen-decomposition can be found, and it has non-negative
eigenvalues λi ≥ 0 ∀i ∈ {0, . . . ,N − 1}. If the network is
connected, as in our case, the eigenvalue λ0 is equal to zero,
and its associated eigenvector is the constant vector. At this
point, it is interesting to observe the spectra of the different
graphs in Fig. 12. As we can see, the spectra associated to the
first two weeks have larger eigenvalues than the ones for later
weeks.

We can also note a small change in the second smallest
eigenvalue λ1, known also as the algebraic connectivity of
the graph. This particular quantity has been the subject of
intense investigation, as it is generally considered to represent
graph connectivity [29]. The first week’s graph has λ1 =
1.57, while λ1 = 1.77 in the last week, suggesting a slight
transition towards a more robust network structure [30].
We can spot the same behavior if we look at the Global
Clustering Coefficient (GCC), often used in the cluster
analysis of bike sharing systems [31], which we define as

α(t) =
# of closed triplets in week t
Total # of triplets in week t

t ∈ {1, 2, 3, 4}, (1)

and indicates the fraction of triplets of nodes which are closed
(e.g., they form a 3-clique) within week t graph. Intuitively,

FIGURE 12. Spectra of the four different graphs (a); First 100 eigenvalues
of the respective spectra (b).

it can provide a global connectivity measure by looking at
how nodes are connected to each other, even if they are far
apart in the network. We found α(1) = 0.0042, α(2) =
0.0051, α(3) = 0.008 and α(4) = 0.0079. This result
is coherent with the intuition on the Laplacian spectra: the
graph transitioned towards a better global connectivity, losing
local density but preserving longer connections. While λ1
and the GCC carry global information on the graph structure,
we can investigate local connectivity by looking at the Local
Clustering Coefficient (LCC) [32]. Given a node i, we define
its local clustering coefficient as

γi =
2
∣∣ejk : j, k ∈ Ni, ejk ∈ E

∣∣
ki(ki − 1)

, (2)

where Ni is the set containing i’s neighbors and ki =
∣∣Ni∣∣.

The LCC basically counts how strongly i’s neighbors are
connected to each other. In order to have general information
on local connectivity, we use the average LCC, denoted as

γ̄ (t) =
1
V

∑
i∈V

γi(t) t ∈ {1, 2, 3, 4}, (3)

where we have again introduced the time dependency t to
indicate the reference week the graph is associated to. Week
1 presents γ̄ (1) = 0.418, inweek 2 γ̄ (2) = 0.430, whileweek
3 has γ̄ (3) = 0.311, and for the last week γ̄ (4) = 0.246. The
sharp decline in the third and fourth week reflects the changes
due to the Covid-19 mobility restrictions: as we noted in
the previous section, the network becomes sparser, i.e., trips
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to and from neighboring stations with strong connections
to each other make up a lower percentage of the overall
total.

During the last week of March, the graph is sparser with
lower local density and a more balanced structure. This
is again due to the fact that longer rides remained active,
whereas many shorter paths almost disappeared. Particularly
in downtownManhattan, different ‘‘hub’’ stations present lots
of connections (high degree) with many other nodes: usually,
these stations correspond to major mass transit exchanges
such as Penn Station and Grand Central Station.

We then consider network communities, which should
represent crowded New York City areas where people use
the bike sharing service to make short trips within a specific
region. In particular, we spot several differences in the
makeup of the city’s communities when transitioning from
the first to the last week of March. In order to extract
such communities, we adopted the well-known Louvain
algorithm [33], which takes into account edge weights and
tries to find the partition that maximizes modularity. The
algorithm does not use a fixed number of clusters, but finds
the best partition in terms of modularity, which we then
analyze: the clusters are depicted in Fig. 13. Aside from a
few low-traffic stations, the clusters have sharp geographical
edges. As we approach the end of March, the changes in
the system mobility generate a new community partition.
If we analyze the first two weeks, we can notice a clear
subdivision of Manhattan into three clusters representing
Lower Manhattan (LM) (blue), Midtown Manhattan (MM)
(gray) and Upper Manhattan (UM) (yellow). Specifically,
if we look at the partition for the first week, we notice that
14th St. defines a rough boundary between the LM and MM
clusters, while 42nd St. does likewise between MM and UM.
It is interesting to note that Grand Central Station (gray) lies
exactly along this boundary, thus being an important bridge
between the yellow and gray areas. The other two identified
clusters define the Astoria (AS) region, grouped together with
Williamsburg/Bushwick (WB) (green), and Brooklyn (BR)
(red). However, the situation changed during the last two
weeks, generating a new division of the Manhattan area. In
the third week, the cluster containing the UM region (yellow
in the first two weeks, gray in the last two) covers the same
area as in the first two weeks, but MM and LM are divided by
a North-South axis along the island instead of an East-West
one across it as in the first two weeks. The line between
the Eastern (yellow) and Western (blue) clusters is along the
blocks between 5th and 6th Avenues. Given the lockdown
restrictions, user mobility has clearly transitioned towards
longer trips along the island on the North-South axis, often
along the river front. In the outer boroughs, the algorithm has
grouped together WB and BR (red), leaving AS as a separate
cluster (green). There are limited changes between the third
and fourthweeks: the onlymajor change is that the yellow and
blue clusters extend almost to Central Park in the fourth week,
indicating that the blocks in MM have a stronger connectivity
with LM than with UM.

FIGURE 13. Clusters in the weighted graph representing traffic in the Citi
Bike network across the four considered weeks.

In order to assess the quality of the partitions, we use a
standard metric, the coverage [34]. We first define the total
sum of weights ρ:

ρ =
∑

(i,j)∈E
ρij. (4)

The output of a clustering algorithm is a partition P of
graph vertices such that each set in the partition identifies
one community (or class). We can define a cluster function
C : V 7→ P , such that Ci is the cluster to which node i
belongs. In order to assess the quality of the found partitions,
we compute their coverage θ , defined as the fraction of the
total weight covered by the intra-cluster edges:

θ (P) =
∑

(i,j)∈E

ρijδCiCj

ρ
, (5)

where δxy is the Kronecker delta function, i.e., δxy = 1
if x = y and 0 otherwise. By adopting this metric, it is
interesting to see how the previously described transition
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towards a new graph partition has smoothly occurred. Let’s
now define θ (Pi) as the coverage of the i-th week partitions,
we obtain:

θ(P1) = 0.713 θ (P2) = 0.683

θ(P3) = 0.718 θ (P4) = 0.737

Although the values are not very different, we can see
that between the first and second week, clusters remained
qualitatively the same but coverage decreased: as coverage
tends to decrease slightly as traffic increases, and the patterns
for the first two weeks are similar, this drop can be explained
by the slightly higher ridership in week 2. The clustering
changes between the second and the third week, as the
lockdown goes into full effect: the coverage increases again
for the new configuration. In the last week, the clusters still
follow the new partition, but the coverage increases again.

FIGURE 14. Color map representing the first week flow over the last
week flow between pairs of NYC areas. The diagonal elements contain
internal flows.

To conclude this section, we performed one last analysis.
We denote the directed flow (number of rides) between two
groups of stationsM and N during week t as:

−−→ρMN (t) =
∑

(i,j)∈M×N

−→ρij(t), (6)

where −→ρij indicates the unidirectional traffic from station
i to station j, without considering incoming traffic from
j to i. In the directed graph, we can have −−→ρMN (t) 6=
−−→ρNM (t). We chose 6 geographical areas by taking the 5
clusters identified during week 1 and splitting the cluster
containing the AS and WB areas to separate them, thus
P = {UM ,LM ,MM ,BR,WB,AS}. We then computed each
combination of −−→ρMN (t) ∀M ,N ∈ P with t = 1 and
t = 4, including intra-cluster flows (i.e., ρMM (t), which is
equivalent to the undirected version). In the end, we computed
the ratio between the flows in the first and last week,

−−→ρMN (1)
−−→ρMN (4)

,
and reported it in Fig. 14. First of all, we can observe that
Manhattan is the most affected region, having reduced its
rides by an important factor, both within the island and
towards the outer boroughs. The only exception isWB, which

maintains its connections with UM and MM. Furthermore,
the ratio between WB and BR is almost one, whereas flows
between AS and WB experience a reduction, but still lower
than for Manhattan. These results explain the new clustering
in the outer boroughs, as the relatively increased connections
between WB and BR cause them to be grouped in a single
cluster.

FIGURE 15. Color map representing the empirical CDF of the daily trips
duration distribution together with their medians (in blue).

The duration of the trips intuitively matches the results of
the previous analyses, which showed a sparser graph with a
larger number of long-distance connections: Fig. 15 shows
the CDF of trips duration as a color map. Aside from a few
variations, which match almost perfectly with rainy days,
the average and median trip duration steadily increase: the
average grows from about 12 minutes in the first week to
almost 20 minutes in the fourth, while the median is lower
but also increased from its initial value in the first week.
Furthermore, as traffic sharply decreases only in downtown
Manhattan, increasing the relative importance of the outer
boroughs, this change in the trip duration distribution reflects
the change in the usage of the bike sharing system: as
short trips downtown become less frequent, longer trips
connecting different boroughs make up a larger share of
the whole. We also note that the bridges on the East River
have experienced increased flows, indicating a stronger
inter-borough flow of bike sharing rides.

IV. HEAT DIFFUSION ANALYSIS
In order to track changes in mobility patterns before and
after the city-wide lockdown, we exploit graph diffusion
processes. As mentioned in the previous section, edges in our
graph reflect rides made by bike sharing users throughout the
city: thus, the topological structure of the graph lets mobility
patterns emerge. The idea behind this analysis is to identify
different nodes (i.e., stations) as sources of a diffusion process
and see how it evolves over time. In particular, we analyze
heat propagation to see how different nodes diffuse heat in
their local neighborhoods and use it to characterize users
movements around the city, when starting (or arriving)
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at the source stations. A similar approach was used by
Donnat et al. [35] to find structural node embeddings for the
nodes of general graphs.

To properly define and compute such processes, we draw
from the graph signal processing community the tools to
analyze and process signals defined over the nodes of a
graph [36]. Let us define a signal f(t) = (f1(t), . . . , fN (t)) ∈
RN as a time-varying vector whose components refer to
the nodes of the graph. In our analysis, it represents the
‘‘temperature’’ of a particular node, which will evolve
in time according to the well known heat equation that,
in turn, accounts for the intensity of traffic between nodes.
By exploiting the Laplacian Matrix L, we can define the
graph heat process as

∂f(t)
∂t
= −Lf(t), (7)

which leads to the solution

f(t) = e−Lt f(0), (8)

where f(0) is the initial condition. In our analysis, we use as
initial condition a simple function f(0) = Cδi and δi is the
N -dimensional vector with value 1 in the i-th component and
zero otherwise. In our analysis, C = 100. Eq. 7 represents
a dynamical linear system evolving on the graph, thus it
can be properly analyzed by looking at its eigenvalues and
eigenvectors. In short, at each time instant, the quantity fi(t),
i.e., the value of the signal on node i, is spread among node
i’s neighbors with an intensity that is linearly proportional
to the values of f(t) on those neighbors and to the weights
assigned to the respective edges, i.e., the intensity of traffic
between the nodes. In this way, when hub-like nodes are
heated at time 0, heat will immediately reach local clusters
almost uniformly. The consequence of this is that during the
first week, the evolving process gets stuck in well-connected
clusters thus taking more time to jump into other parts of the
network. On the contrary, during the last week, long-distance
routes are almost preserved if not increased, thus making it
easier to quickly reach the corners of the network, whereas
the local connections within clusters are reduced.

Given the structure, the solution has a simple form and a
well defined asymptotic behavior:

f(t) = Ue−3tUT f(0)→ lim
t→∞

f(t) = u0uT0 f(0), (9)

where 3 is the diagonal matrix containing the Laplacian
eigenvalues, and U is the matrix containing its eigenvectors,
with u0 being the zero eigenvector (i.e., that associated to the
zero eigenvalue). The necessary time to reach the asymptotic
solution is hard to compute but is dominated by the first
non-zero eigenvalues (the last components to vanish).

Therefore, we analyze how heat diffusion patterns have
changed from the first to the last week of March for different
source stations. We report here three significant analyses,
shown in Fig. 16:

1) Grand Army Plaza & Plaza St. West: This station
is located in Brooklyn, close to Prospect Park, and

FIGURE 16. Heat Diffusion process starting from three different stations.
All snapshots are taken at time t = 3 s. Colors of nodes represent their
fictitious temperatures, which change as heat propagates through the
network.

presents an opposite behavior with respect to the
majority of stations. Indeed, its unweighted degree
went from 69 to 94, thus being more connected
to the rest of the graph during the last week of
March. Moreover, its flow increased by ∼ 42%, going
from 55 to 78 trips per day. It is also possible to observe
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how the heated area has increased, reaching several
nodes in WB and a couple in LM.

2) Pier 40 at Hudson River Park: This station
in Lower Manhattan experienced a small increase
in its unweighted degree (from 144 to 149) and in
the number of daily trips (from 168 to 182). While
the increase in the activity is small, the diffusion
process changes dramatically. In week one, heat is
quickly spread almost uniformly, and just concentrates
in south Lower Manhattan (around Battery Park).
On the other hand, during the last week of March,
many nodes maintain a high temperature, and the
flow mainly spreads along the banks of the Hudson
River. Moreover, if we compute the LCC and denote
this particular station as P40, we find γP40(1) = 0.48
and γP40(4) = 0.25, thus indicating that the station’s
neighborhood becomes sparser than the system as a
whole, justifying the new yellow cluster that emerges
in Fig. 13.

3) N 12th St & Union Ave.: In this particular station,
located in Williamsburg next to McCarren Park, traffic
flow and unweighted degree both decreased, by∼ 31%
and ∼ 9% respectively. This makes the heat diffusion
plot appear counterintuitive, as the area reached by
the diffusion algorithm has grown, and heat flow can
quickly reach several stations in Manhattan. This can
be explained by the fact that, although traffic in general
has decreased, and users reach fewer stations overall,
the relative importance of longer trips has increased,
and while the distribution of trips in the first weeks
was heavily skewed towards close stations, it becomes
more uniform in the later weeks. Again, we can observe
a significant difference in the LCC, decreasing from
γN12(1) = 0.39 to γN12(4) = 0.13, thus making it
easier for this node to spread the diffusion to further
stations (i.e., longer trips are still maintained).

We remark that the stations chosen here have good
connectivity during the whole month and are located in
different regions of the considered area. The Brooklyn
station’s heat diffusion pattern is another hint on how the
graph structure has evolved preferring long-distance routes
and being less dense in local communities. In the fourth
week, it is easier for heat flow to reach further stations with
a non-negligible amount of energy not because connections
are stronger overall (they decrease by about 67% over the
whole graph), but because the origin node has fewer strong
connections with close-by nodes, while connections to other
stations further away are preserved, and in some cases
even get stronger. In other words, while the overall traffic
decreases, longer trips are still performed with the same,
or even increased, frequency. In order to visualize this, Fig. 17
shows the subgraphs containing the Grand Army Plaza &
Plaza St. West and N 12th St. & Union Ave. stations (in red)
and their neighbors (in black) during the first and last week
of March. Again, this analysis can graphically present similar
results, showing the sparser but enlarged topology of the two

FIGURE 17. Subgraph composed by the neighbors of the Grand Army
Plaza & Plaza St. West station during the first (a) and fourth (b) week of
March. Subgraphs for the N 12th St & Union Ave station in (c) and (d).

last week graphs, Fig. 17b and 17d, with respect to the graphs
for the first week, Fig. 17a and 17c.

V. CONCLUSION: SMART CITIES, BIKE SHARING
SYSTEMS, AND URBAN PLANNING
Over the past few years, bike sharing systems have filled an
important niche in urban mobility [37], and several studies
have focused on the analysis of the data these systems
generate, often correlating them with other Smart City
applications, to get insights on the citizens’ habits and needs
and to improve public services. Naturally, determining the
best directions for the expansion of the bike sharing system
is the first and foremost application of these analyses [38],
providing system planners with insights on where new
stations and additional capacity would be most needed, but
bike sharing data can also help researchers get insights on
deeper patterns in urban mobility and society.

The use of bike sharing data in Smart Cities [39] is not
in itself a new idea: this kind of analysis has already been
performed to assess the impact of bike sharing on public
transport in Helsinki [40], and several other works have tried
to glean insights about mobility patterns from bike sharing
trip data. However, the unprecedented impact of the Covid-19
pandemic and the subsequent lockdown has completely upset
the normal flow of citizens and commuters, and the shape
of the urban landscape after the reorganization that will
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inevitably follow the end of the pandemic is still unknown.
As commuters avoid mass transit and turn to private cars,
the risk of a ‘‘carpocalypse’’ congesting the city’s roads and
posing a danger to the safety of pedestrians and cyclists is
serious [41], and ways to avert it are still under discussion.
Although major cities already had strategies for unforeseen
events [42], also because of previous epidemics [43],
the scale of the Covid-19 pandemic is unprecedented.
No single policy intervention is enough to mitigate this
risk, and most proposed approaches involve interventions on
multiple fronts [44]. These include the protection of transit
workers and users by increasing safety measures such as
masks and frequent surface disinfection, the encouragement
of alternative transportation modes that do not increase
traffic [45], such as walking or cycling, the promotion of
remote work and the staggering of work hours to reduce the
congestion at rush hour [46]. In general, the increased mode
share of car travel over short and long distances [47] needs
to be counteracted with policies at the societal level, as the
necessity of planning urban and long-distance mobility for
resilience to future pandemics [48] must always consider the
reality of climate change. The extreme fluidity of the situation
presents opportunities for a more sustainable urban planning
and mass transit organization: as cycling can play a central
role in the post-pandemic urban mobility, and its importance
as a daily mode of transportation has actually grown during
the pandemic due to the disruptions in mass transit schedules,
analyzing bike sharing data can give important inputs to this
redesigning process.

In this work, we presented an analysis of the bike
sharing data during the month of March 2020, observing the
changes in New Yorkers’ mobility patterns in response to
the pandemic and the countermeasures against it. The Citi
Bike data largely confirms the overall patterns observed by
social scientists, with wealthier neighborhoods in Manhattan
being more able to socially distance than poorer areas with
a high percentage of essential low-wage workers. We also
provided an analysis of the public policies that could shift the
mobility of the city towardsmore sustainable alternatives, and
of the complications arising from the pandemic and the risk
of future epidemics.

Our analysis of mobility patterns provides evidence that
bike sharing, and cycling in general, can provide a flexible
and eco-friendly mode of transportation for shorter trips [49]
as users are wary to return to mass transit after the pandemic,
aiding the unavoidable transition to a greener mobility to
tackle the looming issue of climate change. Aside from
immediate considerations about the design and expansion of
the bike sharing system itself, we can make some broader
policy considerations to encourage the growth of cycling as a
primary mode of transportation in the urban environment.

Citi Bike’s Critical Workers program,15 which started at
the end of March, is a factor that is contributing significantly

15https://gothamist.com/news/citi-bike-promises-to-add-thousands-of-e-
bikes-this-summer-as-nyc-reopens

FIGURE 18. Traffic from Critical Workers Program users during the first
week of May, normalized by the average station flow.

to the effort towards making cycling more palatable to
commuters: 18 000 essential workers got a free subscription
to the service, and stations close to hospitals and health
care centers have become some of the most utilized ones
in the system. Indeed, even though the program has been
extended to general essential workforce, Fig. 18 shows that
even in May the stations with the highest traffic from users
of the program are close to the bigger Manhattan hospitals.
The total workforce traffic has increased each month since
the program started: while the program accounted for a
negligible percentage of the total number of trips over the
last few days of March, it made up ∼ 4.7%, ∼ 7.8% and
∼ 8.1% of the total traffic in the months of April, May and
June, respectively (data collected until the 23rd of June).
It is interesting to notice that, even though the program
had barely started in March, Fig. 10 showed an initial flow
transition towards those hot stations. These observations,
together with those on social distancing and mobility in the
outer boroughs, have to be considered in the development
of future stations and urban planning in general. Expanding
similar programs in the future, and making bike sharing more
affordable in general, might be a catalyst to the expansion
of the service’s importance as a mode of transportation after
the pandemic, but urban development needs to move in the
same direction: the integration between mass transit and
bike sharing might play a significant role in encouraging
this trend [50]. Bike sharing has the potential to increase
metro stations’ catchment area, and survey shows that as
many as 10% of total metro rides [51] follow the bike-
and-ride paradigm: as the risk of infection decreases, themass
transit system can gradually resume full operation, achieving
a greater synergy with the cycling infrastructure and reducing
the environmentally damaging reliance on private cars and
taxis.
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As we discussed in the introduction, bike sharing and
cycling in general are strongly dependent on the urban
environment: bike lanes can significantly increase bike
sharing traffic in an area [52], with the connectedness of
the bike lane network also playing a key role, allowing for
avoidance of roadway cycling, and increasing the ease of
travel between any two points in a city [53]. The use of bike
sharing data can also help design new bike lanes, as it can be
used as a proxy for cycling-based mobility as a whole [54].
If GPS data is available, wide detours taken by the users to
avoid dangerous roads and intersections can be identified,
giving important indications for policymakers and traffic
planners.

A specific example from New York’s Citi Bike is given
by the RFK Bridge, connecting northern Manhattan with the
Bronx and Queens, which does not have a bike lane, but only
a pedestrian path. While the Bronx was not yet served by
Citi Bike during March (the first Bronx station was installed
on May 7th, and Citi Bike has 36 stations in South Bronx
as of June 30, 2020, and growing), part of it can actually
link the Astoria neighborhood with the Upper East Side,
at the northernmost edge of the service coverage area. As we
discussed in Sec. II, cycling traffic between these two areas
increased during the Covid-19 pandemic, as did East River
crossings in general, but the route between them requires
either a long detour or going through pedestrian-only paths.
Adding a bike lane to the bridge would provide a direct link
between them, further encouraging commuters to cycle and
reducing congestion on public transit and road traffic.

Naturally, all the considerations above becomemore urgent
in light of the Covid-19 pandemic: the potential infection
risks of crowds and enclosed spaces have resulted in a
significant reduction of mass transit ridership, and as citizens
return to work the impact of transit users shifting to driving
on commuting times will be significant [55]. New York
City is responding to the crisis by limiting car traffic over
100 miles of streets through the Open Streets initiative16 and
instituting new bike lanes.17 While determining the effect
of these measures on public health and traffic congestion
needs further study, the absence of a second wave in the
city during the summer is certainly a positive sign. As we
discussed in the introduction, the expansion of the bike
sharing service to the outer boroughs18 is another positive
development, mitigating racial and class inequalities in the
availability of the service and allowing essential workers
access to the system. A comprehensive review of existing
policies on sharing systems and the issues facing Smart Cities
can be found in [56].

At the moment, bike sharing does not have the capacity
to handle all mass transit users [57]: the Citi Bike system
has about 15 000 bikes on the streets, and the maximum

16https://www1.nyc.gov/html/dot/html/pedestrians/openstreets.shtml
17https://www1.nyc.gov/office-of-the-mayor/news/342-20/mayor-

de-blasio-adds-12-more-miles-open-streets-nine-miles-new-temporary-
protected-bike

18https://www1.nyc.gov/html/dot/html/pr2020/pr20-021.shtml

registered number of daily rides was approximately 90 000,
while daily subway rides peaked at just over 6million in 2014.
If cycling and bike sharing are part of the city’s plans for
post-pandemic urban mobility, the capacity of the system
will need to be significantly increased, as well as reach the
whole city. Economic considerations also come into play,
as the cost of the bike sharing service must be low enough to
make it an enticing alternative for commuters. Furthermore,
an appropriate bike plan [58] can increase private bicycle use
along with Citi Bike ridership, making up for a significant
fraction of pre-pandemic subway rides and thus decreasing
both the risks for the health of the riders in case of future
epidemics and the traffic congestion in the city. Previous
studies [59] show that bike sharing can have a catalyst effect
on cycling, encouraging the development of infrastructure
and cycling in general.
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