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Reduced-Order Aggregate Model for Large-scale
Converters with Inhomogeneous Initial Conditions

in DC Microgrids
Rui Wang, Student Member, IEEE, Qiuye Sun, Senior Member, IEEE, Pengfei Tu, Member, IEEE, Jianfang

Xiao, Member, IEEE, Yonghao Gui, Senior Member, IEEE, Peng Wang, Fellow, IEEE

Abstract—In practical microgrids, the inhomogeneous initial
values are widely appeared due to soft-starting operation. If tra-
ditional model order reduction approaches are applied, the input-
output maps error between the original system and reduced-
order system is large. To address this problem, this paper
proposes a reduced-order aggregate model based on balanced
truncation approach to provide the preprocessing approach for
the real-time simulation of large-scale converters with inhomoge-
neous initial conditions in DC microgrid. Firstly, the standard lin-
ear time-invariant model with inhomogeneous initial conditions is
established through non-leader multiagents concept. To end this,
it is convenient for scholars to build complex system modeling
with switched topology. Furthermore, the full system is divided
into two components, i.e., the unforced component with non-
trivial initial conditions and forced component with null initial
conditions. Moreover, this paper presents an aggregated approach
that involves independent reducing component responses and
combining reducing component responses. Based on this, the
input-output maps error is reduced. Then, the approximated
error estimate of the reduced-order aggregate model regarding
large-scale converters in DC microgrid is first provided, which
provides prior knowledge and theoretical basis for DC microgrid
designers. Finally, the simulation results illustrate the accuracy
of the proposed approach.

Index Terms—large-scale converters, inhomogeneous initial
conditions, reduced-order aggregate model, balanced truncation
approach.

I. INTRODUCTION

H IGH penetration of renewable energy sources has in-
creased the number of power electronics converters in

DC microgrids [1]. Scalable models with limited compu-
tational complexity are critical to model and analyze the
dynamic characteristics of large numbers of converters in
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the real-time simulation aspect [2]. Although model order
reduction approaches have been widely used for the system
consisting of large-scale converters, the initial values require-
ment is always ignored, or it is avoided through making the
restrictive assumption that the initial values are zero [3]-[4].
Due to the soft-starting operation, there is no doubt that the
system initial values are not always zero [5]. If initial values
are wrongly ignored, the input-output maps error will be large,
which is difficult for real-time simulators to adopt this reduced
order model. To address this problem, this paper proposes a
reduced-order aggregate model based on balanced truncation
approach to provide the preprocessing approach for the real-
time simulation of large-scale converters with inhomogeneous
initial conditions in DC microgrids.

For power system consisting of large-scale convert-
ers, there are three main equivalent modeling approaches,
i.e., impedance-based approach, transfer function based ap-
proach and state-space based approach [6]-[11]. Therein, the
impedance-based approach paid more attentions on interactive
stability assessment, which was not suitable for real-time sim-
ulation [6]-[7]. Although the transfer function based approach
was applied to real-time simulation, it was difficult for the
system with numerous converters to obtain the full order model
[8]. To sum up, the state-space based approach became an
advisable choice for real-time simulation [9]-[11]. For AC
microgrids, the state-space function model of the converters
without voltage/current cascaded controller was established
in [9]. Moreover, the full order state-space function model
regarding the small-scale microgrid was built in [10]. For DC
microgrids, the state-space function model of the converters
with plug-and-play (PnP) regulator and V −I droop controller
was built in [11]. Nevertheless, for numerous converters, the
high order state-space function model should be established
[8]. Detailed representations of large-scale converters yielded
more accurate conclusions but demand high calculative bur-
den, calling thus for the rapid development regarding model
order reduction approaches [12].

Model order reduction approaches regarding state-space
function were widely researched in the real-time simulation
aspect [12]-[26]. From the timescale and physical property
viewpoint, the singular perturbation approach was proposed
to reduce model order [12]. Although this approach was
much intuitive to construct in dynamical models consisting
of multiple timescales, the detailed physical representation of
small-perturbation parameter ε was difficult for scholars to
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obtain [13]. To sum up, another series of mathematic model
order reduction approaches were proposed in turn, such as
slow-coherency method, Krylov-subspace method, Gramian-
based method and so on [14]-[16]. Additionally, model order
reduction approaches were applied to different fields [17]-[26].
For wireless power transfer systems, dynamic phasor-based
reduced-order models were proposed in [17]. For fast power
system simulations, an adaptive nonlinear model reduction
approach was proposed in [18]. For Li-Ion batteries, reduced-
order electrochemical models were presented in [19]. For
complex wind farms, a trajectory piecewise-linear approach
was applied to reduce model order in [20]. For large sparse
small-signal electromechanical stability power systems, the
system parameter preserving model order reduction approach
was designed in [21]. For islanded droop-controlled micro-
grids, inter-inverter oscillations based reduced-order models
were proposed in [22]. For the DC microgrid with large-
scale converters, a reduced-order method based on quadratic
eigenvalue problem (QEP) theorem was proposed in [23]-[24],
which effectively simplified the stability analysis. Moreover,
a power-flow model based on Kron reduction was derived to
analyze the power-flow of the large-scale DC microgrid, thus
obtaining the analytic existence condition for feasible power-
flow by using nested interval theorem [25]. Furthermore, one
singular perturbation approach was proposed to reduce the
model order through multiple timescales [26]. However, the
foresaid pieces of literature always ignored initial values or
made the restrictive assumption that the initial values were
zero. Due to the soft-starting operation, the above assump-
tion will no longer hold, which results in huge input-output
response errors based on traditional model order reduction
approaches. Since one perfect reduced-order model ought to
exist one reduced state-space vector and mimic the simulated
input-output response with the desired accuracy while requir-
ing one lower computational burden [12]. To this end, for
eliminating the impact of inhomogeneous initial conditions,
this paper proposes a reduced-order aggregate model based
on balanced truncation approach to provide the preprocessing
approach for the real-time simulation of large-scale converters.
Undoubtedly, the proposed model order reduction approach
can also be extended into other fields, such as AC microgrids,
AC/DC hybrid microgrids and so on. The main advantages of
this paper are shown as follows:

1) The standard linear time-invariant model with inhomo-
geneous initial conditions is established through non-leader
multiagents concept. Based on this, it is convenient for schol-
ars to build complex system modeling with switched topology
or “plug and play” feature;

2) For the foresaid system, the reduced-order aggregate
model based on balanced truncation approach is presented to
provide preprocessing for the real-time simulation. With these
efforts, the errors between the output variables of the full order
model and the output variables of the reduced order model are
reduced;

3) Utilizing the mathematical theorem, the approximated
error estimate of the reduced-order aggregate model regarding
large-scale converters is provided in this paper. Based on this,
the prior knowledge and theoretical basis can be provided for
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Fig. 1: The topological structure of the dc microgrid consisting
of various DGs.

DC microgrid designers.
The remainder of this paper is shown as follows. The

full-order state-space model based on non-leader multiagent
concept is built in Section II, which is consisting of inho-
mogeneous initial conditions. Furthermore, the reduced-order
aggregate model based on balanced truncation approach is
proposed to provide preprocessing for the real-time simulation
in Section III. And in Section IV, the approximated error
estimate of the reduced-order aggregate model regarding large-
scale converters is provided through mathematical theorem. In
Section V, the simulation results are provided to verify the
effectiveness of the proposed reduced-order aggregate model.
Finally, the conclusion is given in Section VI.

II. STATE-SPACE FUNCTION MODEL OF LARGE-SCALE
CONVERTERS WITH INHOMOGENEOUS INITIAL

CONDITIONS

The classical topological structure of the DC microgrid con-
sisting of various distributed generators (DGs) is depicted in
Fig. 1. Meanwhile, this structure will be changed accordingly
to assume the presence of the number of DGs [11]. According
to Kirchoff’s voltage and current laws, the model of DGs is
obtained as follows:

Cfi
dVi

dt
= Ifi −

Vi

RLi
+
∑ Vj − Vi

Rij
(1)

Lfi
dIfi
dt

= V0i − Vi −RfiIfi (2)

where Vi and Vj represent the interfaced voltage of the ith

agent and jth agent, respectively. Rfi, Lfi and Cfi represent
the RLC filter of the ith DG, respectively. V0i and Ifi represent
the output voltage and current of the ith DG, respectively.
RLi represents common resistor load. Rij represents the line
resistance between the ith agent and the jth agent. Therein,
the multiagent concept can be found in AC microgrids [27].
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Based on this, the state-space function of the DC microgrid
can be obtained as follows:

d

dt
x̄i (t) = Āiix̄i (t) +

∑
Āij (x̄i (t)− x̄j (t))

+B̄iiūi (t) (3)
ȳi (t) = C̄iix̄i (t) (4)

where x̄i, ūi and ȳi are the state variable, input variable
and output variable of the ith agent, respectively. Therein,
x̄i (t) = (Vi, Ifi)

T , ūi (t) = V0i, ȳi (t) = miIfi, and mi is the
V − I droop coefficient, which is introduced in the following
section. Furthermore, Āii =

[
− 1

CfiRLi
, 1
Cfi

;− 1
Lfi

,−Rfi

Lfi

]
,

Āij =
[
− 1

CfiRij
, 0; 0, 0

]
, B̄ii =

[
0, 1

Lfi

]T
and C̄ii = [0,mi].

The power loss has been reflected through RLC filter circuit
Rfi and line impedance Rij . To this end, they are embedded in
system model. Meanwhile, the influence of branch has been
embedded into the system model through Rij . In order to
achieve the power sharing among various DGs and stability
operation, the zero controller and primary controller are em-
bedded into the interfaced converter, i.e., plug and play (PnP)
controller and V − I droop controller [11], [28]. According to
the literature [28], the PnP controller is shown as follows:

ūi (t) = ni,1Vi + ni,2Ifi + ni,3

∫ t

0

(Vref,i − Vi) dt (5)

where ni,1, ni,2 and ni,3 represent PI controller coefficients
of the ith DG, respectively. Vref,i represents the reference
voltage of the ith DG. Based on the literature [28], the zero
controller is asymptotically stable, if the parameters of the zero
controller satisfy the following constraint conditions.

ni,1 <

(∑ 1

Rij
+

1

RLi

)
× (Rfi − ni,2) + 1 (6)

ni,2 <
Lfi

Cfi

(∑ 1

Rij
+

1

RLi

)
+Rfi (7)

ni,3 ∈ (0, (ni,1 − 1) (ni,2 −Rfi) /Lfi) (8)

Furthermore, the V − I droop controller is adopted as the
primary controller to achieve power sharing among various
DGs and voltage regulation. And the detailed V − I droop
controller is provided as follows:

Vrefi = V ∗
i −miIi (9)

where V ∗
i represents the output voltage of the ith DG when un-

loading. mi is the V −I droop coefficient of the ith DG, which
can be chosen based on the literature [11] to ensure controller
asymptotical stability. In order to remove the integral item
ni,3

∫ t

0
(Vref,i − Vi) dt, define z̄i (t) =

∫ t

0
(Vrefi − Vi) dt,

np
i = [ni,1, ni,2], ni

i = ni,3 and A∗
i = [−1,−mi]. To this

end, the following function can be provided:

ūi (t) = np
i x̄i (t) + ni

iz̄i (t) (10)
d

dt
z̄i (t) = A∗

i x̄i (t)+V ∗
i (11)

According to (3)-(4) and (7)-(8), the total state-space func-
tion model of DC microgrid, which is based on non-leader

multiagent concept, is estimated as follows

ẋi (t) =
(
Aii +

∑
Aij

)
xi (t)−

∑
Aijxj (t)

+Biiui (t) xi(0) = xi0 (12)
yi (t) = Ciixi (t) (13)

where Aii =

[
Āii + B̄iin

p
i B̄iin

i
i

A∗
i 0

]
, Aij =[

Āij 02∗1
01∗2 0

]
, Bii =

[
np
i

ni
i

]
, Cii =

[
C̄ii

0

]T
,

xi =
(
x̄T
i (t), z̄

T
i (t)

)T
, ui = ūi, yi = ȳi. Thus, the

standard linear time-invariant model with inhomogeneous
initial conditions is established through non-leader multiagents
concept.

Remark 1: Each subsystem can be regarded as one agent.
Therein, it is convenient for scholars to obtain the state matrix
Aii, input matrix Bii and output matrix Cii for each agent.
Furthermore, the coupling relationship between two agents can
be reflected through

∑
Aij . Finally, the overall state-space

function is provided through each agent. It is through intro-
ducing the non-leader multi-agents concept, that the system
modeling process can be easier to understand and operate.
Although the modular model look the same, the parameters of
the state matrix Aii, input matrix Bii and output matrix Cii

for each agent are different. The real system structure, such as
common resistor load RLi, RLC filter and so on, is reflected
through detailed parameters. For example, the overall load in
one DC microgrid is represented as RLi.

Based on this, the full-order state-space function is shown
as follows:

ẋ(t) = Ax(t) +Bu(t) x(0) = x0 (14)
y(t) = Cx(t) (15)

where A ∈ R3N×3N , B ∈ R3N×N , C ∈ RN×3N , and N
represents the number of the DGs in the DC microgrid. If the
parameters of the zero and primary controllers satisfy the fore-
said constraint conditions, the DC microgrid is asymptotically
stable. Due to soft-starting operation, it is impossible in the
practical system that x0 = (Vi0, Ifi0, z̄i0(t))

T = (0, 0, 0)T .
Remark 2: Unfortunately, the traditional model order re-

duction approach is not suitable for the system with x0 ̸= 0,
which is shown in (14)-(15). For example, consider the two-
dimensional linear time-invariant system with inhomogeneous
initial conditions

ẋ(t) =

[
−0.5 0
0 −0.5

]
x(t) +

[
0.01 0
0 1

]
u(t)(16)

y(t) =

[
1 0
0 1

]
x(t) x(0) =

[
1
0

]
(17)

The Hankel singular values of the system are λ1 = 1,
λ2 = 0.01, respectively. Since λ2 ≪ λ1, the one-dimensional
reduced order model is provided [16]:

ẋr(t) = −0.5xr(t) +
[
0 1

]
u(t) (18)

yr(t) =

[
0
1

]
xr(t) xr(0) = 0 (19)

Especially, ∥y(t)− yr(t)∥L2(0,∞) = 1 with trivial input
u = (0, 0)T is found through simulation verification, which
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Fig. 2: The error between the output of the full order model
and the output of the reduced order model in example.

is shown in Fig. 2. To this end, the norm of the output
error between the original system and reduced-order system
is constantly equal to the unit, which is not accepted for real-
time simulations.

III. REDUCED-ORDER AGGREGATE MODEL BASED ON
BALANCED TRUNCATION APPROACH

For large-scale converters, it is exorbitantly expensive to
apply the resulting mathematical models (14)-(15) with high
order to the real-time simulation. To this end, it is advisable to
reduce the dimension of large original systems for low compu-
tational burden. For the linear state-space systems researched
in this paper, the balanced truncation method is superior to
the state truncation in terms of approximation error, which is
found in the literature [29]. Based on this reason, the balanced
truncation approach is chosen in this paper to achieve model
order reduction. In this section, two model order reduction
approaches without/with inhomogeneous initial conditions are
introduced for large input-output systems, which are based on
balanced truncation.

A. Model order reduction approach with homogeneous initial
conditions

Firstly, the basic model order reduction approach is intro-
duced for the DC microgrid without soft-starting operation
in this subsection. Consider the DC microgird (20)-(21) with
homogeneous initial conditions:

ẋ(t) = Ax(t) +Bu(t) x(0) = 0 (20)
y(t) = Cx(t) (21)

Since the DC microgrid (14)-(15) is stable and in that
case, the Lyapunov (22) and (23) have a unique positive
semi-definite solution [16]. Thus, the reachability Gramian P
and the observability Gramian Q of the DC microgrid are
the unique positive-definite ways to the Lyapunov functions,
which are shown in (22)-(23). Meanwhile, it is convenient for
scholars to obtain P and Q through Matlab.

AP + PAT +BBT = 0 (22)
ATQ+QA+ CTC = 0 (23)

The process of the balanced truncation approach is shown as
follows: Firstly, define that U and L represent Cholesky factors
of P and Q, respectively, e.g., P = UUT and Q = LLT .
Secondly, compute the singular values decomposition (SVD)

of UTL = G
∑

H where
∑

= diag(λ1, λ2, ..., λn). The
values {λi}n1 represent the Hankel singular values regarding
the DC microgrid (20)-(21). There is no doubt that only one
part of the SVD with the large characteristic roots, which are
beyond the preset threshold value, should be provided with
their associated left/right singular vectors. Thirdly, for one
preset reduction order r, Let’s

Vr = UGrΣ
−0.5
r (24)

Wr = LHrΣ
−0.5
r (25)

where Gr and Hr represent the leading r columns of G
and H , respectively. Σr = diag(λ1, λ2, ..., λr), λr > λr+1.
The mismatch value between original system and reduced-
order system is embedded into order reduction process, which
determines the order of the reduced-order system through λr

and λr+1. Once the mismatch value is set through power
engineers, the order of the system will be determined [3]-[4].
Finally, the state matrix, input matrix and output matrix of
the order-r reduced model for the DC microgrid are obtained
through balanced truncation approach, which are shown as
follows:

Ar = WT
r AVr (26)

Br = WT
r B (27)

Cr = CVr (28)

Based on this, the order-r reduced state-space model of the
DC microgrid is shown as follows:

ẋr(t) = Arxr(t) +Brur(t) xr(0) = 0 (29)
yr(t) = Crxr(t) (30)

Remark 3: There is no doubt that the original system inher-
ent characteristics can be reserved. Therein, the DC microgrid
is asymptotically stable. Furthermore, the input-output maps
error between the original system and reduced-order system
satisfies equation (31) [16].

∥y(t)− yr(t)∥L2
≤

(
2

n∑
i=r+1

λi

)
∥u (t)∥L2

(31)

where ∥X∥L2

∆
=
(∫∞

0
X(t)

T
X(t)dt

)0.5
represents the norm

in the function space Ln
2 of square Lebesgue integrable func-

tions X : [0,∞) → Rn. Because the Hankel singular values
are computed consecutively, the number of r is chosen based
on the preset error estimation.

B. Model order reduction approach with inhomogeneous ini-
tial conditions

In practice, it is impossible that each converter is started
without consideration of the soft-starting operation. Based on
this, the reduced-order aggregate model based on balanced
truncation approach for DC microgrids with inhomogeneous
initial conditions is proposed to provide preprocessing for the
real-time simulation in this subsection. The output variable
y(t) of the DC microgrid (14)-(15) can be rewritten through
utilizing the Duhamel formula, which is shown as follows:

y (t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu (τ) dτ (32)
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Define

yx0→y (t) = CeAtx0 (33)

yu→y (t) =

∫ t

0

CeA(t−τ)Bu (τ) dτ (34)

where eAt represents the matrix exponential. For (33),
yx0→y (t) represents the response from the initial condition
x0 with zero input variable to system output variable, i.e.,
u(t) = 0. For (34), yu→y (t) represents the response from
the input variable u(t) with homogeneous initial conditions
to system output variable, i.e., x0 = 0. As a result, since
(32) can be linearized into (33) and (34), which satisfies
the linearity of the underlying dynamics, the output variable
y(t) is the superposition of yx0→y (t) and yu→y (t), i.e.,
y(t) = yx0→y (t) + yu→y (t). In order to derive the proposed
model order reduction approach in detail, the initial value x0

is rewritten as follows:

x0 = A0ξ0 (35)

For some ξ0 ∈ Rn0 , in which the columns of A0 form
the basis for subspace of the related initial condition. Therein,
the detailed solving process of A0 is provided in Section 2
regarding the literature [3]. Based on this, the yx0→y (t) can
be rewritten, which is shown as follows:

yx0→y (t) = CeAtA0ξ0 (36)

To this end, the yx0→y (t) can be regarded as the response
of one dynamical system, which is shown in (37)-(38).

ẇ(t) = Aw (t) +A0v(t), w(0) = 0 (37)
yx0→y (t) = Cw (t) (38)

where v(t) = ξ0δ(t), and δ(t) represents the Dirac delta
distribution. Based on this, the parameter approximation prob-
lem for yx0→y (t) (the response to an initial condition with
unforced component) can be transformed into one model order
reduction problem for one dynamical system with homoge-
neous initial conditions.

Therefore, the proposed reduced-order aggregate model
based on balanced truncation approach can be obtained
through paralleled unforced component with nontrivial initial
conditions and forced component with null initial conditions.
Firstly, the balanced truncation approach, which is introduced
in Section III.A, is applied to the following dynamical system.

ẋ(t) = Ax (t) +Bu(t), x(0) = 0 (39)
yu→y (t) = Cx (t) (40)

According to balanced truncation approach, the correspond-
ing reduced-order model for forced component with null initial
conditions is provided as follows:

ẋr1(t) = Ar1xr1 (t) +Br1u(t), xr1(0) = 0 (41)
yr1 (t) = Cr1xr1 (t) (42)

where r1 represents the dimension of the proposed reduced-
order model for forced component. Similarly, the balanced
truncation approach can also be applied to the dynamical

system (37)-(38). To this end, the corresponding reduced-
order model for unforced component with nontrivial initial
conditions is provided through balanced truncation approach,
which is shown as follows:

ẋr2(t) = Ar2xr2 (t) +Br2u(t), xr2(0) = 0 (43)
yr2 (t) = Cr2xr2 (t) (44)

where r2 represents the dimension of the proposed reduced-
order model for unforced component. In the end, in order to
approximate the total output variable y(t) in (14)-(15) with
x0 = A0ξ0, the superposition of the output variable yu→y (t)
in (33) and yx0→y (t) in (34) with v(t) = ξ0δ(t) is reduced
in parallel. With these efforts, the final approximation of the
output variable yr(t) can be provided as follows:

yr(t) = yr1 + yr2 (45)

Under zero initial conditions, the unforced component will
be ignored, and the proposed model order reduction approach
will be the same as the traditional model order reduction
approach [16]. The system with zero initial conditions is one
particular case for this paper. This scenario illustrates that the
proposed approach in this paper can be suitable for different
cases, which is an important advantage. Due to the soft-
starting operation for DC microgrids, there is no doubt that
the power system initial values are not always zero [5]. If
initial values are wrongly ignored, the input-output maps error
will be large, which is difficult for real-time simulators of DC
microgrids to adopt this reduced order model. For this special
case, an improved model order reduction approach based on
the literature [4] is first applied in DC microgrids, which is an
important innovation. Meanwhile, the error bound theorem is
also first applied in power system. Before real-time simulation,
the errors between the output variables of the full order model
and the output variables of the reduced order model can be
provided through error bound theorem. If this error can be
accepted through DC microgrid designers, the DC microgrid
system designer can use the reduced-order model to design the
secondary controller and research the dynamic characteristics.
Under this case, the full order model can be ignored and real-
time simulation process can be cancelled. To this end, it is
very significant to apply to DC microgrids rather than stay at
the theoretical level. Furthermore, for this special system, a
DC microgrid, the system model should be built in advance.
Based on this model, the subsequent model order reduction
approach can be studied. That is exactly what this paper does.
In order to reduce computational burden, the process of the
model order reduction with inhomogeneous initial conditions
can be divided into two phases, i.e., off-line phase and on-
line phase. Therein, the foresaid two parts in (45) can be
obtained in parallel through an off-line phase before utilizing
the reduced order model for real-time simulation. The detailed
process can be shown in Algorithm 1 and Algorithm 2.

Remark 4: In order to decrease the computational burden,
the model order reduction process of balanced truncation
can be replaced by the other previous model order reduc-
tion approaches, such as Iterative Rational Krylov Algo-
rithm (IRKA), Sparse LRCF-ADI (SLRCF-ADI) and so on

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on January 11,2021 at 22:06:08 UTC from IEEE Xplore.  Restrictions apply. 



0885-8969 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2021.3050434, IEEE
Transactions on Energy Conversion

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. XX, NO. XX, XX 20XX 6

Algorithm 1 Off-line Phase: Construct the basic reduced-order aggregate model
Input: The dynamical system matrices A, B, C, and the initial condition matrix A0.
Output: Reduced mappings for Fu→y and Fx0→y .
1: Approximating Fu→y: Apply model order reduction approach to Fu→y : ẋ(t) = Ax(t) +Bu(t), x(0) = 0, yu(t) =

Cx(t);
2: Obtain the reduced-order model Fru→y for forced component, i.e., Fru→y : ẋr1(t) = Ar1xr1(t)+Br1u(t), xr1(0) =

0, yr1(t) = Cr1xr1(t);
3: Approximating Fx0→y: Apply model order reduction approach to Fx0→y : ẇ(t) = Aw(t) + A0v(t), w(0) =

0, yx0(t) = Cw(t);
4: Obtain the reduced-order model Frx0→y for unforced component, i.e., Fx0→y : ẋr2(t) = Ar2xr2(t) +

Br2u(t), xr2(0) = 0, yr2(t) = Cr2xr2(t).

Algorithm 2 On-line Phase: Construct the reduced-order aggregate model for real-time simulation
Input: The initial condition x0 and the forcing term u(t).
Output: The approximate reduced-order output variable yr(t).
1: Compute ξ0 such that x0 = A0ξ0;
2: Simulate Fru→y with input variable u(t) and homogeneous initial condition to provide the output variable yr1(t);
3: Simulate Frx0→y with null input variable u(t) = 0 and inhomogeneous initial condition ξ0 to provide the output variable

yr2(t);
4: Compute approximate output variable: yr(t) = yr1(t) + yr2(t).

[16]. Meanwhile, the other model order reduction process
is not changed, which is an important advantage for the
proposed model order reduction approach. Furthermore, the
MATLAB code for model order reduction approach with
homogeneous initial conditions can be found at the website:
https://sites.google.com/site/rommes/software, which is pro-
vided in the literature [16]. Furthermore, the load practical
DC microgrid usually changes over time, which results in
the parameter perturbations. Fortunately, this issue has been
solve in the previous literature [21], where the parameter
perturbation term can be reserved in the reduced-order process.
Based on this, if the model order reduction process of balanced
truncation in this paper is replaced through the parameter
preserving model order reduction approach in the literatures
[21], the parameter perturbation problem can be well solved.
Meanwhile, one real DC microgrid has various DGs, such
as solar generator, wind generator and so on. Fortunately,
the researches regarding certain generator have been widely
proposed in the previous literatures, such as wind generator,
Li-Ion and so on. For each specific DG, the state-space
function should be rebuilt to reflect the different dynamic
characteristics. This paper pays more attention on general
system, and each DG is regarded as an ideal DC voltage
source. This operation has been widely applied in the previous
literatures [21]-[26]. Of course, once the state-space function
is provided, the proposed model order reduction approach in
this paper can also be applied to power system consisting of
one or more DG.

Remark 5: If the initial condition contributes to a large
amount of energy in the augmented system, the reduced-order
model with a higher order will be required. Meanwhile, this
will also increase the computational and control complexity
while operating the controller in real time. In this paper,
the original full-order state-space function is divided into

two components, i.e., the unforced component with nontrivial
initial conditions and forced component with null initial condi-
tions. Therein, the unforced component represents the impact
of the initial conditions. Under this initial condition, the order
of the reduced-order model regarding unforced component
will be high. There is an important trade-off between model
accuracy and computational complexity. However, if you want
to obtain one lower order model, whose order is the same as
the reduced order model based on the conventional approach,
the output variable error between full order model and reduced
order model for unforced component can be chosen as one
large value. Under this case, the order of the reduced order
model based on the proposed approach in this paper can be the
same as that based on the conventional approach. Meanwhile,
the model accuracy is still improved through the proposed
model reduction approach. Furthermore, this paper focuses
more on the system modeling and its model order reduction.
There is no doubt that the relative controller based on the
proposed reduced-order model in this paper can be designed.
Therein, the control performance is better if it is based on one
more accurate model. To my best knowledge, the hierarchical
control has been proposed to solve relative problem, such as
current sharing and so on. Therein, the distributed secondary
control strategy proposed in the literature [11] is proposed,
which is based on multi-agent consistency control.

IV. APPROXIMATED ERROR BOUND OF THE PROPOSED
REDUCED-ORDER AGGREGATE MODEL

It is important for real-time simulation researchers to
obtain the approximated error bound between the original
system and reduced-order system in advance. To this end,
this section provides an error bound for approximation error
∥y(t)− yr(t)∥L2

, which is obtained through the proposed
model order reduction approach.
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Firstly, for the unforced component, let (37)-(38) be one
full balanced realization. For certain preset reduced order r2,
partition A, A0 and C conformingly as

A =

[
A11 A12

A21 A22

]
, A0 =

[
A01

A02

]
, C =

[
C1 C2

]
(46)

where A11 ∈ Rr2×r2 , A01 ∈ Rr2×N , and C1 ∈ RN×r2 .
Furthermore, define that W is a solution of the Sylvester
function

ATW +WA11 + CTC1 = 0 (47)

Define that ∂ = diag (δ1, δ2, ..., δ3N ) is the diagonal matrix
of Hankel singular values of (37)-(38). Based on this, partition
W and ∂ can be rewritten as follows:

W =

[
W1

W2

]
, ∂ =

[
∂1 0
0 ∂2

]
(48)

where W1, ∂1 ∈ Rr2×r2 . Define

Fx0 (t) = CeAtA0 (49)
Fr2x0 (t) = Cr2e

Ar2tAr0 (50)

where Fx0 (t) represents the impulse response of the full-
model in (37)-(38), and Fr2x0 (t) represents the impulse
response of the reduced-order model in (43)-(44). As a result,
the approximation error is shown as follows [4]

∥Fx0 (t)− Fr2x0 (t)∥
2
L2

≤ trace [℘1∂2 + ℘2∂2] (51)

where ℘1 = A02A
T
02, ℘2 = 2W2A12 and ℘ = ℘1 + ℘2.

Therein, the former term in the upper bound (51), e.g.,
trace[℘1∂2] depends on the neglected Hankel singular val-
ues ∂2, and the latter term in the upper bound (51), e.g.,
trace[℘2∂2] depends quadratically on ∂2. Through the foresaid
theoretical accumulation, the upper bound of the approxima-
tion error for the proposed model order reduction approach is
provided as follows:

Theorem 1: Assume that y(t) is the output variable of the
full-order model in (15) with inhomogeneous initial condition
x0. Meanwhile, yr(t) is the reduced-order output variable,
which is obtained through Algorithm 1 and Algorithm 2.
Based on this, for abnormal input variable u(t) ∈ LN

2 , the
output variable error y(t)− yr(t) is bounded through

∥y(t)− yr(t)∥L2
≤

(
2

3N∑
i=r1+1

λi

)
∥u(t)∥L2

+
√
trace [℘∂2]∥ξ0∥L2

(52)

where λi (i = r1 + 1, r1 + 2, ..., 3N ) represents the truncated
Hankel singular values in (41)-(42). δi (i = r2 + 1, r2 +
2, ..., 3N ) represents the truncated Hankel singular values in
(43)-(44).

Proof: Recall from (32) that y(t) = y1(t)+ y2(t) and from
(45) that yr(t) = yr1 + yr2. Thus,

∥y(t)− yr(t)∥L2
≤ ∥y1(t)− yr1(t)∥L2

+∥y2(t)− yr2(t)∥L2
(53)

The former term of the upper bound in (53) is provided
through utilizing the balanced truncation upper bound in

(31). Since y1(t) is the output variable of the reduced-order
model approximation to (39)-(40) provided through balanced
truncation approach, and therefore

∥y1(t)− yr1(t)∥L2
≤

(
2

3N∑
i=r1+1

λi

)
∥u(t)∥L2

(54)

For latter term of the upper bound in (53), i.e.,
∥y2(t)− yr2(t)∥L2

, the definitions of y2(t) in (40) and yr2(t)
in (44) are applied, and therefore

∥y2(t)− yr2(t)∥L2
≤
√
trace [℘∂2]∥ξ0∥L2

(55)

Therefore, the proof is finished.
Remark 6: The error bound in (52) for output variable re-

sponse illustrates the value of proposed model order reduction
for two mappings Fru→y and Frx0→y independently. First of
all, scholars can choose the reduced dimensions r1 and r2
independent of each other, which is based on preset error
thresholds. Then, with independent reduction of Fu→y and
Fx0→y , the scaling of input variable maps and inhomogeneous
initial conditions are not coupled. To this end, the resulting
reduced-order models is scale-independent, which is one of
the main advantages of the proposed model order reduction
approach. Furthermore, the prior knowledge and theoretical
basis could be provided for DC microgrid designers through
this theorem. Before real-time simulation, the errors between
the output variables of the full order model and the output
variables of the reduced order model can be provided through
error bound theorem. If this error can be accepted through DC
microgrid designers, the DC microgrid designer can use the
reduced-order model to design the secondary controller and
research the dynamic characteristics. Under this case, the full
order model can be ignored and real-time simulation process
can also be canceled.

V. SIMULATION AND EXPERIMENT

In this section, the proposed model order reduc-
tion approach is verified through DC microgrid built in
this paper. In order to reveal the result performance
based on the proposed model order reduction approach,
L∞ error (L∞ error=∥y(t)− yr(t)∥L∞

) and L2 error
(L2 error=∥y(t)− yr(t)∥L2

) are provided, which are two
important indexes for evaluating the performance of the model
order reduction approach [30]. In order to simplify the system
complexity, assume that there are four different parameters of
agents in this DC microgrid, i.e., AgentI , AgentII , AgentIII
and AgentIV . Meanwhile, the rated dc voltage is 50V , and
the ratio of rated capacities regarding each DG in different
agent is set as DGI : DGII : DGIII : DGIV = 1 : 2 : 3 : 4.
The converter rating values of four DGs are chosen as 2kW,
4kW, 6kW and 8kW, respectively. The detailed parameters of
each DG are shown in Table I.

A. Model Accuracy Verification

In order to visually verify the model accuracy, the number
of the agents in DC microgrid is chosen as four, i.e., AgentI ,
AgentII , AgentIII and AgentIV . Meanwhile, the line resis-
tance Rij between the ith agent and the jth agent are shown
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TABLE I: The DC microgrid simulation parameters regarding
four agents

Detailed parameters of the AgentI
Parameter Meaning Symbol Value

V − I droop coefficient mI 0.01
Resistor for RLC Filter RfI 0.1Ω
Inductor for RLC Filter LfI 0.8mH
Capacitor for RLC Filter CfI 2.2mF

Common resistor load RLI 2Ω
First term in PnP controller nI,1 -5

Second term in PnP controller nI,2 -0.1
Third term in PnP controller nI,3 25

Detailed parameters of the AgentII
Parameter Meaning Symbol Value

V − I droop coefficient mII 0.0075
Resistor for RLC Filter RfII 0.05Ω
Inductor for RLC Filter LfII 0.4mH
Capacitor for RLC Filter CfII 1.1mF

Common resistor load RLII 4Ω
First term in PnP controller nII,1 -5

Second term in PnP controller nII,2 -0.1
Third term in PnP controller nII,3 25

Detailed parameters of the AgentIII
Parameter Meaning Symbol Value

V − I droop coefficient mIII 0.005
Resistor for RLC Filter RfIII 0.025Ω
Inductor for RLC Filter LfIII 0.2mH
Capacitor for RLC Filter CfIII 0.55mF

Common resistor load RLIII 10Ω
First term in PnP controller nIII,1 -5

Second term in PnP controller nIII,2 -0.1
Third term in PnP controller nIII,3 25

Detailed parameters of the AgentIV
Parameter Meaning Symbol Value

V − I droop coefficient mIV 0.0025
Resistor for RLC Filter RfIV 0.01Ω
Inductor for RLC Filter LfIV 0.08mH
Capacitor for RLC Filter CfIV 0.22mF

Common resistor load RLIV 4Ω
First term in PnP controller nIV,1 -5

Second term in PnP controller nIV,2 -0.1
Third term in PnP controller nIV,3 25

as follows: R12 = R21 = 2.3Ω, R13 = R31 = 2.1Ω, R14 =
R41 = 2.7Ω, R23 = R32 = 2.9Ω, R24 = R42 = 1.5Ω and
R34 = R43 = 2.5Ω. In order to better reflect the real power
system, the four agents are different in hardware-in-the-loop
(CHIL) experiment test system. From Table I, there are three
different points, i.e., rated power difference, line impedance
difference and load difference. Firstly, the droop coefficient of
each distributed generator is designed in inverse proportion to
its rated current, i.e., m1I1 = m2I2 = ... = mNIN . To this
end, each agent has different rated power or current. Secondly,
the RLC filter of each agent is different, which illustrates
that the line impedance of each agent is different. Thirdly,
the load of each agent is different in the CHIL experiment
test system. Based on this, the state matrix Aii of each agent
is different, which results in that the system model belongs
to linear heterogeneous multiagent systems. The test system
is executed in the CHIL experiment test system, which is
shown in Fig. 3. The detailed illustration regarding the CHIL
experiment test system can be found in our previous literatures
[8], [31]. Under these parameters, the dimension of the original
system (14)-(15) is twelve, i.e., A12×12, B12×4 and C4×12.
Furthermore, the detailed form is shown in the appendix.
Through observing the relative matrices, it is obvious that only
the Aij and Aii regarding the increased/decreased agent are

OPAL-RT OP5600
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Fig. 3: The CHIL experiment test system.
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Fig. 4: The output variables between practical experimental
system in the CHIL experiment setup and full-order state-
space function in the simulation setup.

provided in full-order system. To this end, it is convenient
for scholars to build complex system modeling with switched
topology or “plug and play” feature. Moreover, the output
variables between practical experimental system and full-order
state-space function are shown in Fig. 4. Therein, yrefi and
y mod i represents the output variables for the ith agent based
on practical experimental system and full-order state-space
function, respectively. Moreover, the reference system is the
CHIL experiment test system. Therein, the model accuracy can
be verified through comparing the output variables of the CHIL
experiment test system with the output variables of the full-
order state-space function in the simulation setup. To this end,
the output variable curve of the full-order state-space function
can give adequate overall fits with the practical experimental
system, which is shown in Fig. 4. Thus, the model accuracy
can be ensured through the foresaid experimental results.

B. Model Order Reduction Approach Verification

In order to visually verify the effectiveness of the pro-
posed model order reduction approach, the number of the
agents in DC microgrid is also chosen as four. The detailed
simulation parameters are the same as those in the foresaid
subsection. Assume that the initial condition of the first agent
is inhomogeneous, i.e., x1 = (V1, If1, z̄1)

T
= (45, 6, 0), and

the other three agents are homogeneous, i.e., x2 = x3 =
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between the output of the full order model and the output of
the reduced order model: (a) L∞ error=∥y(t)− yr(t)∥L∞

;
(b) L2 error (L2 error=∥y(t)− yr(t)∥L2

.

x4 = (0, 0, 0)T . To this end, the matrix A0 can be the 12-
dimension unit matrix, and the reduced order numbers, i.e., r1
and r2, can be chosen as r1 = 4 and r2 = 8, respectively.
There is no doubt that the resulting reduced-order models
(r1 and r2) can be scale independent. In this subsection, the
reference system is the original full-order state-space function
shown in (14)-(15), and output error in this paper represents
the error between the output variables of the original full-
order state-space function and the output variables of the
reduced order state-space function. The errors based on the
literatures [16] and [21] between the output variables of the
full order model and the output variables of the reduced order
model are provided in Fig. 5. There is no doubt that these
errors cannot be accepted for real-time simulation engineers
in the initial stage. Meanwhile, the errors based on proposed
approach between the output variables of the full order model
and the output variables of the reduced order model are
provided in Fig. 6. Obviously, the output variable curve of
the reduced-order model better gives adequate overall fits
with the full-order model at all times. Finally, the L∞ error
and L2 error based on the proposed model order reduction
approach are shown as follows: L∞ error = 3.7816 × 10−3

and L2 error = 1.2687 × 10−3. The result regarding the
input-output maps error is acceptable for real-time simulation
scholars.

In order to illustrate that the proposed model or-
der reduction approach is suitable for the complex DC
microgrid with numerous agents/DGs, three DC micro-
grids consisting of different agents are provided to ver-
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Fig. 6: The errors based on the proposed approach between the
output of the full order model and the output of the reduced
order model: (a) L∞ error=∥y(t)− yr(t)∥L∞

; (b) L2 error
(L2 error=∥y(t)− yr(t)∥L2

.

TABLE II: The DC microgrid simulation parameters regarding
four agents

Number L∞ error L∞ error

20 4.3926 × 10−3 3.6214 × 10−3

60 5.3128 × 10−3 3.9867 × 10−3

100 6.2145 × 10−3 4.3268 × 10−3

ify the effectiveness of the proposed model order reduc-
tion approach. Therein, the types of agents are sorted as
follows: (AgentI , AgentII , AgentIII , AgentIV , AgentI , ...).
Meanwhile, the initial condition regarding the first quartile of
agents is inhomogeneous, which is shown as follows:

x0 = (45, 6, 0, ..., 45, 6, 0︸ ︷︷ ︸
3N/4

, 0, 0, 0, ..., 0, 0, 0︸ ︷︷ ︸
9N/4

) (56)

Based on this, L∞ error and L2 error under the different
number of agents are shown in Table II. The relative results
regarding the input-output maps error are also acceptable for
real-time simulation scholars. Therefore, the effectiveness of
the proposed model order reduction approach can be verified.

C. Previous numerical model verification

In order to verify the high performance of the proposed
model order reduction approach, which is compared with
the the pure theoretical literature [3], the previous numerical
model found on Section 6.1 of the literature [30] is provided.
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Fig. 7: The performance comparison with the pure theoretical
literature [3].

Therein, the numbers of state variable, input variable and
output variable are individually set as three hundred, ten and
one. Meanwhile, the input variables are the external forcing on
the top ten masses and the output variable is the momentum
of the first mass. Furthermore, one one-dimensional subspace
for the inhomogeneous initial condition x0 = 1 is chosen.
To this end, the matrix A0 can be the n−dimension unit
matrix. The truncation tolerance of 0.01 is determined to
produce reduced order, which is based on the decay rate.
Based on this, the reduced order numbers, i.e., r1 and r2,
can be chosen as r1 = 16 and r2 = 98, respectively. There
is no doubt that the resulting reduced-order models (r1 and
r2) can be scale independent. In order to illustrate the high
performance, the output variable curves among the full-order
model (yellow curve), the reduced-order model based on the
proposed approach in [3] (red curve) and the reduced-order
model based on the proposed approach in this paper (blue
curve) are provided in Fig. 7. Therein, the output variable
curve of the reduced-order model better gives adequate overall
fits with the full-order model. To sum up, the effectiveness of
the proposed model order reduction approach can be verified.

VI. CONCLUSION

With the rapid development regarding the high penetration
of distributed renewable sources, the model order reduction
approach has been indispensable for the real-time simulation.
Although the traditional model order reduction approaches
have been widely studied, the initial values requirement has
been always ignored or it has been avoided through making the
restrictive assumption that the initial values are zero. Appar-
ently, it is difficult for real-time simulation scholars to accept
this result due to soft-starting operation. To this end, this
paper has proposed a reduced-order aggregate model based
on balanced truncation approach to provide the preprocessing
approach for the real-time simulation of large-scale convert-
ers with inhomogeneous initial conditions in DC microgrid.
Compared with the existing literatures, three advantages have
been found in this paper as follows: (i) The standard linear
time-invariant model with inhomogeneous initial conditions

has been built through non-leader multiagents concept. With
this effect, it has been convenient for scholars to build complex
system modeling with switched topology or “plug and play”
feature. Meanwhile, this modeling concept can be applied to
relative fields, such as AC microgrid, AC/DC microgrid, smart
grid and so on; (ii) For the foresaid system, the reduced-
order aggregate model based on balanced truncation approach
has been presented to provide preprocessing for the real-
time simulation. Based on this, the errors between the output
variables of the full order model and the output variables
of the reduced order model have been reduced; (iii) The
approximated error estimate of the reduced-order aggregate
model regarding large-scale converters has been provided
through using the mathematical theorem 1. To this end, the
prior knowledge and theoretical basis could be provided for
DC microgrid designers. Finally, the simulation results have
been provided to verify the performance of the proposed model
order reduction approach.

APPENDIX
DETAILED SUB-MATRICES FOR THE ORIGINAL SYSTEM

WITH FOUR DGS

A11 =

 −227 455 0
−7500 −250 31250

1 0 0

, A12 = −197 0 0
0 0 0
0 0 0

, A13 =

 −216 0 0
0 0 0
0 0 0

,

A14 =

 −168 0 0
0 0 0
0 0 0

, A21 =

 −395 0 0
0 0 0
0 0 0

 A22 = −227 909 0
−1500 −375 62500

1 0 0

, A23 =

 −313 0 0
0 0 0
0 0 0

,

A24 =

 −606 0 0
0 0 0
0 0 0

, A31 =

 −865 0 0
0 0 0
0 0 0

, A32 = −865 0 0
0 0 0
0 0 0

, A33 =

 −180 1820 0
−30000 −630 125000

0 0 0

,

A34 =

 −727 0 0
0 0 0
0 0 0

, A41 =

 −1683.5 0 0
0 0 0
0 0 0

,

A42 =

 −3030 0 0
0 0 0
0 0 0

, A43 =

 −1818 0 0
0 0 0
0 0 0

,

A44 =

 −1140 4550 0
−75000 −1380 312500

0 0 0

, B11 = B22 =

B33 = B44 =
[
−5 −0.1 25

]T
, C11 =

[
0 0.01 0

]
,

C22 =
[
0 0.0075 0

]
, C33 =

[
0 0.005 0

]
,

C44 =
[
0 0.0025 0

]
.
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