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On convergence of Newton’s method for the characteristic equation

of 4th order pairwise comparison matrix in AHP

Shunsuke Shiraishi∗ Tsuneshi Obata†
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　 In this article, we apply Newton’s method to the characteristic polynomial of 4th order pairwise
comparison matrices. We will see that convergent limit of the sequence generated by the iteration of Newton’s
method depends on the choice of an initial value. We seek the viability of possible choice of the initial value
corresponding to the consistency of the pairwise comparison.
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1 Introduction

In AHP(Analytic Hierarchy Process), Saaty employed eigenvalue method to estimate the priority of objec-
tives [6]. Especially, the maximum eigenvalue of a pairwise comparison matrix plays a central role. By
simple transformation of the maximum eigenvalue into so-called consistency index, denoted by CI, AHP
obtained wide popularity in the area of multiple criteria decision making [2, 4, 12]. This is because that
Saaty’s consistency criterion of CI ≤ 0.1 is simple and easy to use.

In our prior study [8], we considered 3rd order pairwise comparison matrix in AHP. We focused on the
3rd order matrix for a reason why the contradictory revelation of decision maker where A > B,B > C but
C > A is a source of inconsistency of pairwise comparison. To calculate the maximum eigenvalue of 3rd
order matrix, we applied Newton’s method [5] to the characteristic equations. Newton’s method has an
applicability in the context of AHP. Indeed in [1], Newton’s method was used to find the minimum value of
the Perron eigenvalue of incomplete pairwise comparison matrices. With the aid of the favorable properties
of the 3rd order pairwise comparison matrix, we verified that the sequence generated by Newton’s method
always converges to the maximum eigenvalue if we set the initial value of the iteration equal to 3 which is
the order dimension of the matrix [8].

One of the most favorable properties of 3rd order pairwise comparison matrix is the fact that the solution
of the characteristic equation is unique [7, 8]. When we intend to generalize to 4th order matrix, we
immediately face to the difficulty. The number of real-numbered solutions becomes two because the order
of the characteristic equation is four and other two solutions become complex-numbers [9]. So the limit of
the generated sequence by Newton’s method becomes to depend on the initial value of the iteration. We
first considered that the initial value is appropriate to be set 4, because the maximum eigenvalue of n-th
order pairwise comparison matrix is proven theoretically to be greater than n [2, 4, 6, 12]. The example we
indicate below(Section 3.2) show that this intuition is false.

In this paper, we seek the viability of possible choice of the initial value corresponding to the consistency
of the pairwise comparison. If A is near consistent, the number of the dimension 4 is appropriate as an
initial value(Section 3.1). If A is hard inconsistent, the situation changes. As we noted above, the generated
sequence may converge to the minimum eigenvalue of A if one choose the initial value equals to 4.

∗School of Economics, University of Toyama
†Faculty of Science and Technology, Oita University

1



Here we change our point of view. As we will see in Section 2, the characteristic polynomial takes its
global minimum at unique point. This point can be calculated easily by Newton’s method. However the
global minimum point cannot be taken as a candidate of the initial value of Newton’s method, because it
satisfies the first-order condition. So if we add some perturbation α > 0 to this point for taking as an initial
value, then we observe that the generated sequence converges to the maximum eigenvalue (Section 3.2).

This paper is organized as follows. In Section 2, we consider the minimum solution of the characteristic
polynomial. If we apply Newton’s method, we easily obtain the minimum point. In Section 3, we consider
applicability of Newton’s method to obtain the maximum eigenvalue. We observe two cases of examples.
One is the pairwise comparison matrix is near consistent i.e. CI ≤ 0.1. The other is the pairwise comparison
matrix is hard inconsistent where CI is far from Saaty’s criterion 0.1. As a conclusion, we mention the
validity of use of 4 as an initial value based on the fact that most experts decides so that the pairwise
comparison is near consistent.

2 The first-order condition for the characteristic polynomial

In this paper, we treat 4th order pairwise comparison matrix:

A =


1 a12 a13 a14
1

a12
1 a23 a24

1
a13

1
a23

1 1
a34

1
a14

1
a24

1
a34

1

 .

Its characteristic polynomial has the following form:

PA(λ) = λ4 − 4λ3 + c3λ + detA,

where
c3 =

∑
i<j<k

(
2 −

(aijajk
aik

+
aik

aijajk

))
.

See [2, 4, 11]. From the well-known inequality between the arithmetic mean and the geometric mean, we
have

c3 ≤ 0.

The pairwise comparison matrix A is said to be consistent provided that aikakj = aij for all i, k, j.
Concept of consistency relates Saaty’s consistency index defined by

CI =
λmax − n

n− 1
,

where λmax stands for the maximum eigenvalue of n-th order pairwise comparison matrix. It is well known
that CI = 0 is equivalent to the consistency of the matrix [2, 4, 12]. It has been shown that consistency of
A is also equivalent to c3 = 0 [11]. Below, we treat inconsistent case where c3 < 0 holds. By taking the
first-order and second-order derivatives of PA(λ), we have

P ′
A(λ) = 4λ3 − 12λ2 + c3,

P ′′
A(λ) = 12λ2 − 24λ = 12λ(λ− 2).

Thus P ′
A(λ) takes its local maximum at λ = 0 and local minimum at λ = 2. Since

P ′
A(0) = c3 < 0,

P ′
A(2) = −16 + c3 < 0,

lim
λ→−∞

P ′
A = −∞,

lim
λ→∞

P ′
A(λ) = ∞,
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λ

P ′
A(λ)

λ∗
32

c3

Figure 1: Graph of P ′
A(λ) in inconsistent case

the equation P ′
A(λ) = 0 has a unique solution, say λ∗ > 0. We indicate the shapes of the graph of P ′

A(λ) in
Figure 1.

If the matrix is inconsistent, the first-order condition for the characteristic polynomial holds on the only
unique point. This determines the shapes of the graph of PA(λ). See Figures 2 and 3. It takes global
minimum at λ∗ > 0. In the area of the left-hand side of λ∗, the graph is monotone decreasing. In the area
of the right-hand side of λ∗, the graph is monotone increasing. We note that if the matrix is consistent, the
point λ = 0 is a stationary point.

λ

PA(λ)

λ∗ = 3 4

Figure 2: Graph of PA(λ) in consistent case

λ

PA(λ)

3 4

Figure 3: Graph of PA(λ) in near consistent case

The inequality λ∗ > 3 also follows from

4λ∗3 − 12λ∗2 = 4λ∗2(λ∗ − 3) = −c3 > 0.

We generate a sequence by Newton’s method as follows:

• λ0 = 3

• λn+1 = λn − P ′
A(λn)

P ′′
A(λn)

3



As we see immediately below, this sequence converges to λ∗ where the first-order condition P ′
A(λ∗) = 0

holds.

Lemma 1 For all n ≥ 1, we have λn > λ∗.

Proof. We prove by induction. Set n = 1. λ1 = 3 − c3
36

> 3 and P ′
A(λ1) = c23

( 1

18
− 4c3

363

)
> 0. From

the monotonicity of P ′
A(λ), we have λ1 > λ∗.

Assume λn > λ∗ for the induction. From this assumption, we can take λ∗ ≤ λ < λn. We can deduce
P ′′′
A (λ) = 12(λ− 1) > 0 , hence P ′′

A(λ) is monotone increasing for λ > 1. Thus we have

P ′′
A(λ) < P ′′

A(λn).

This implies ∫ λn

λ∗
P ′′
A(λ)dλ <

∫ λn

λ∗
P ′′
A(λn)dλ,

and

P ′
A(λn) − P ′

A(λ∗) < P ′′
A(λn)(λn − λ∗). (1)

Taking account into the fact that P ′
A(λ∗) = 0, the inequality (1) says that

λ∗ ≤ λn − P ′
A(λn)

P ′′
A(λn)

= λn+1.

//

Lemma 2 The generated sequence λn is monotone decreasing for n ≥ 1.

Proof. 　 From lemma 1, we have 3 < λ∗ < λn. Since P ′
A(λ) is monotone increasing for 3 < λ, we have

P ′
A(λn) > P ′

A(λ∗) = 0. It is obvious that P ′′
A(λn) > 0. Thus the sequence λn is monotone decreasing. //

From Lemmas 1 and 2, the sequence is monotone decreasing and bounded below. So it converges [3].

Theorem 1 The sequence λn converge to λ∗.

Proof. From lemmas 1 and 2, the sequence is monotone decreasing and bounded below. So it converges
to, say λ̄ ≥ λ∗. Taking the limit of the iteration in

λn+1 = λn − P ′
A(λn)

PA
′′(λn)

,

we have

λ̄ = λ̄− P ′
A(λ̄)

PA
′′(λ̄)

.

Since λ̄ ≥ λ∗ > 3, the inequality PA
′′(λ̄) > 0 holds. So we have P ′

A(λ̄) = 0. Because the equation P ′
A(λ) = 0

has a unique solution for λ > 3, λ̄ is identical to λ∗. //
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3 Examples and convergence of Newton’s method

3.1 Near consistent case

In the context of AHP the maximum eigenvalue of pairwise comparison matrix plays an important role as
consistency index [2, 4, 6, 12]. We denote the maximum eigenvalue by λmax. Here we employ the Newton
method again. The iteration is as follows.

• Set λ0,

• λn+1 = λn − PA(λn)

P ′
A(λn)

.

First we consider the following pairwise comparison matrix.

A =


1 3 5 7
1
3 1 5 7
1
5

1
5 1 3

1
7

1
7

1
3 1


Easy calculation shows

c3 = −3.885714285714290,

detA = −0.812698412698412,

PA(4) = −16.3555555555556,

hence A is inconsistent but near consistent as we see later soon. Since PA(0) = detA < 0, PA(4) < 0,
limλ→−∞ PA(λ) = ∞, limλ→−∞ PA(λ) = ∞, there exist two 1 real-number eigenvalues in which larger one
is greater than 4 and smaller one is negative. Table 1 displays the convergence to the maximum eigenvalue.

Table 1: Convergence to maximum eigenvalue

n λn PA(λn)
0 4 −16.35555556
1 4.272074355724550 3.800335333
2 4.229363816108630 0.105222281
3 4.228112292650730 8.85852 × 10−5

4 4.228111237233530 6.29409 × 10−11

5 4.228111237232780 −2.74225 × 10−14

The consistency index CI = 0.076 satisfies Saaty’s criterion CI ≤ 0.1, so we say that the pairwise
comparison is near consistent. In this case, the global minimum point is λ∗ = 3.10101640728595 < 4. We
think that the iteration worked well by the fact that the adopted initial value is located to the right-hand
side of λ∗.

3.2 Hard inconsistent case

Next we consider the following pairwise comparison matrix [9].

A =


1 8 1

8 8
1
8 1 7 8
8 1

7 1 2
1
8

1
8

1
2 1


1If all the solutions of PA(λ) = 0 is real-numbered , they must be 0 (with multiplicity 3) and 4. See [9].
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Easy calculation shows

c3 = −482.479910714286,

detA = 162.38671875,

PA(4) = −1767.532924,

hence A is inconsistent. In this case, there exist two positive solutions of PA(λ) = 0.
If we set initial value of the iteration to be λ0 = 4, we have the convergence result displayed in Table

2. On the other hand, if we set λ0 = 7, we have another convergence result in Table 3. Note that the

Table 2: Convergence to minimum value

n λn PA(λn)
0 4 −1767.532924
1 −0.223698387552739 270.3639772
2 0.335916364839731 0.174934909
3 0.336278037953792 −4.38848 × 10−7

4 0.33627803704649 0

Table 3: Convergence to maximum value

n λn PA(λn)
0 7 −2185.972656
1 14.249840836239000 22945.48681
2 11.598715594278600 6423.104817
3 10.048988345204200 1452.275256
4 9.434868757280800 174.7882348
5 9.338234707707280 3.899896756
6 9.335978296973030 0.002092977
7 9.335977084712800 6.04757 × 10−10

8 9.335977084712450 −9.66338 × 10−13

consistency index CI of A is 1.778 which is far from Saaty’s consistency criterion CI ≤ 0.1. It seems to be
a consequence of the existence of contradictory triad of the objectives. Objective 1 is highly preferred to
objective 2 (a12 = 8) and objective 2 is highly preferred to objective 3 (a23 = 7), but objective 3 is highly
preferred to objective 1 (a31 = 8).

As we saw in our earlier study [9], inconsistent matrix has two real-number solution of the charac-
teristic equation. This example shows Newton’s method generates two possibilities of convergence λ =
0.33627803704649 or λmax = 9.335977084712450 according to the choice of the initial value.

In the sequel, we explore what value is appropriate as an initial value. We use the point λ∗ in which the
first-order condition P ′

A(λ∗) = 0 holds. For a positive number α > 0, we set λ0 = λ∗ + α. In this example,
we have λ∗ = 6.169243126. We execute Newton’s method for α = 0.1 and α = 3. Tables 4 and 5 display the
result. For α = 0.1, the speed of convergence is rather slow, but it surely converges to λmax. After we knew
the value of λmax, we should have taken the initial value to be probably greater than 9. If we take pretty
big value λ0 = 100, the generated sequence converges to λmax within 14 iterations.

If we set α = 0.01 which seems to be a pretty small perturbation, the generated sequence converges to
λmax within 23 iterations. So we may set an open problem whether Newton’s method generates a convergence
sequence or not for any small α > 0.

If we set α to be minus, then the limit converges to the minimum eigenvalue. See Tables 6 and 7. Hence
another research question arises. Does the limit of the sequence converge to the real-numbered maximum
eigenvalue or the minimum eigenvalue whether we take the initial point greater than λ∗ or smaller than it.

4 Conclusion

When we apply Newton’s method, we expect initially that the starting point is appropriate to be 4 which is
the order of the matrix [10]. This is based on the fact that the maximum eigenvalue satisfies λmax ≥ n. In
this paper, we showed this expectation is disappointing. However, most experts are expected to make their
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Table 4: α = 0.1

n λn PA(λn)
0 6.269243126 −2303.249673
1 79.412213554346700 37728074.15
2 59.833868245604100 11931508
3 45.165172530193900 3771005.331
4 34.189139919570200 1190133.313
5 26.000813565363400 374340.1162
6 19.935247616875200 116791.8014
7 15.517798800980200 35714.1292
8 12.432283037020700 10367.14983
9 10.494134824844600 2604.359332
10 9.570191109609920 427.3456909
11 9.348139987068080 21.06018771
12 9.336012161595220 0.060560989
13 9.335977085005290 5.056 × 10−7

14 9.335977084712450 −9.66338 × 10−13

Table 5: α = 3

n λn PA(λn)
0 9.169243126 −276.5971607
1 9.34295919605378 12.07470833
2 9.33598866245479 0.019989108
3 9.33597708474435 5.50817 × 10−8

4 9.33597708471245 −9.66338 × 10−13

Table 6: α = −0.1

n λn PA(λn)
0 6.06924312562351 −2303.291046
1 −70.07541392690180 25524046.72
2 −52.29913099739670 8078903.945
3 −38.95657591609530 2558597.161
4 −28.92986702107190 811434.2812
5 −21.37289999950420 258194.0381
6 −15.63738654603580 82796.09146
7 −11.21260875037460 27017.12915
8 −7.67163754706579 9133.62062
9 −4.62176525122383 3243.472532
10 −1.76081670971280 1043.395832
11 0.16596323022640 82.29526788
12 0.33642016013832 −0.068742847
13 0.33627803718671 −6.78198 × 10−8

14 0.33627803704649 0

Table 7: α = −3

n λn PA(λn)
0 3.169243126 −1393.154241
1 0.240481614892951 46.30688558
2 0.336331616023033 −0.025915346
3 0.336278037066414 −9.63732 × 10−9

4 0.33627803704649 0
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decision to be near consistent, the use of λ0 = 4 may be valid practically. Indeed, if one can verify λ∗ < 4,
there is no reason to hesitate of using λ0 = 4 as an initial value.

On the other hand, new expectation arised. If we set the initial value to be the minimum of the char-
acteristic polynomial plus α, then we can expect the generated sequence may converge to the maximum
eigenvalue. Practically, we find first the minimum λ∗ of the characteristic polynomial by Newton’s method.
Next we add slight plus perturbation λ∗ + α and apply Newton’s method. Theoretical proof of convergence
and the findings of appropriate size of α are left for the future research.
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