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Abstract 

Inflammatory bowel disease (IBD) is known as a complex and multifactorial disease 

which caused by combination between dysfunction of intestinal mucosal barrier, 

dysregulation of immune system, and inappropriate response to environmental factor such as 

gut microbiota in genetically susceptible host. 

Intestinal mucosa acts as a selective barrier that allows nutrients absorption and at the 

same time restraint antigen uptake from the luminal side to the maintenance of intestinal 

mucosal homeostasis. The intestinal mucosal barrier function is orchestrated by intestinal 

environmental factors and cellular networks including epithelial cells, mesenchymal cells, 

immune cells and neuronal cells. Cytokines and short chain fatty acids (SCFAs) are key 

players in the regulation of cellular networks in the intestine via immune system-related 

receptors expressing on the various types of cells that constitute intestinal mucosa. Thus, the 

breakdown of intestinal mucosal barrier has been shown to play a critical role in the 

pathogenesis of intestinal immune-related disorders including IBD. However, the precise 

roles and networks between cytokines, SCFAs and immune system-related receptors in the 

intestinal mucosal barrier in vivo remain unclear. 

Interleukin (IL)-4 and IL-13 are multifunctional and central cytokines in type 2 immune 

responses. These cytokines signal through the IL-4 receptor (IL-4R) system, which consists 

mainly of the IL-4R subunit. IL-4R subunit has been reported to express in various types 

of cells such as epithelial cells, macrophages and neuronal cells. Several studies showed 

evidences that IL-4 and IL-13 were involved in the regulation of intestinal mucosal barrier 

function through IL-4R signaling. However, there is no direct evidence has revealed the 

role of IL-4R in intestinal mucosal barrier function in vivo. 

Recently, SCFAs produced by gut microbiota have been reported to maintain intestinal 

homeostasis through the activation of SCFA-sensing G protein-coupled receptors such as 

GPR41 and GPR43. It has been reported that GPR41 and GPR43 colocalize in 

enteroendocrine cells as sensors for SCFAs. GPR41 was also expressed in cell bodies of 

enteric neurons. However, there is no information available concerning which type of enteric 

neuron GPR41 is located. Furthermore, several studies showed the physiological and 
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pathophysiological roles of GPR41 and GPR43 in the gut using knockout mice. However, 

the precise roles of GPR41 and GPR43 are still controversial, and many questions regarding 

the functions of these receptors remain unanswered. 

Therefore, the present studies investigated the role of IL-4R and morphological 

characterization of GPR41 immunoreactivity in the intestinal mucosal inflammation using 

murine IBD model. 

 

1. IL-4R subunit deficiency protects mice from DSS-induced colitis through the 

enhancement of intestinal mucosal barrier function 

 

In IBD patients, lamina propria mononuclear cells (LPMCs) in inflamed colonic mucosa 

produce large amounts of IL-13 compared with LPMCs in noninflammatory control patients. 

The expression of IL-4R was detected in the colonic enterocytes of IBD patients. 

Furthermore, IL-4- and IL-13-mediated intestinal epithelial barrier dysfunction was 

improved in mice lacking signal transducer and activator of transcription 6, a downstream 

effector of IL-4R activation. Although these findings suggest the involvement of IL-4R 

signaling in the disruption of intestinal mucosal barrier function in IBD patients, the precise 

role of the IL-4R in intestinal inflammation remains unclear. 

This study was conducted to investigate the role of IL-4R during murine intestinal 

inflammation. To achieve this objective, IL-4R-deficient (IL-4R-/-) mice and their 

littermate wild-type (WT) mice were used. Experimental colitis was induced by 

administration of 3% dextran sulfate sodium (DSS) in the drinking water for 7 days. 

Treatment with DSS caused body weight loss, an increase in the disease activity index, colon 

shortened, and histological abnormalities in WT colitis mice, all of which were significantly 

attenuated in IL-4R-/- colitis mice. Neutrophil infiltration in the colonic mucosa was 

reduced in IL-4R-/- colitis mice compared with WT colitis mice. The increase in Cxcl2 and 

Il-1β mRNA expression induced by DSS treatment was significantly suppressed in IL-4R-

/- colitis mice. These results clearly demonstrate that the development of DSS-induced colitis 
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is suppressed in IL-4R-/- mice compared with WT mice. To investigate changes in colonic 

gene expression levels between WT colitis and IL-4R-/- colitis mice, I performed 

transcriptome analysis on colonic tissues. The differential expression analysis showed that 

the expression level of 47 genes was differentially expressed between IL-4R-/- colitis and 

WT colitis mice. Among the differentially expressed genes, I focused on Nox1 expression 

because NOX1 has been reported to contribute to the maintenance of intestinal homeostasis. 

Consistent with the transcriptome analysis result, the qPCR analysis results showed that the 

Nox1 mRNA expression was significantly higher in the colons of IL-4R-/- colitis mice. 

Furthermore, the depletion of IL-4R resulted in increase of Nox1 mRNA expression level 

in the colons of normal mice. To determine the contribution of IL-4R to NOX1 activity, I 

measured reactive oxygen species (ROS) production in the murine colonic tissues. The ROS 

production was markedly higher in the colons of IL-4R-/- mice compared with WT mice in 

the both steady and colitis state. Since NOX1-dependent ROS production in intestinal 

epithelial cells is considered an important property for maintaining intestinal barrier, I 

hypothesized that IL-4R mediates intestinal mucosal barrier function through the regulation 

of NOX1-dependent ROS production. To address this hypothesis, I evaluated intestinal 

barrier function by intestinal permeability assay. IL-4R-/- mice showed a reduction in 

intestinal permeability, suggesting that the intestinal mucosal barrier function of IL-4R-/- 

mice may be strengthened by upregulation of NOX1-derived ROS production. 

These findings indicate that IL-4R deficiency enhances intestinal mucosal barrier 

function through the upregulation of NOX1-dependent ROS production, thereby suppressing 

the development of DSS-induced colitis. 
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2. Morphological investigation of GPR41-positive enteric sensory neurons in the colon 

of mice with DSS-induced colitis 

 

Previous reports have exhibited that dysbiosis of the gut microbiota is associated with 

aberrant immune response, intestinal barrier disruption and IBD. SCFAs are known as a 

group of molecule that involved in the crosstalk between microbiota, epithelial cells, and 

immune system. Growing evidence showed that sensory neurons in the enteric nervous 

system are involved in the pathological alteration of immune responses in IBD. Nevertheless, 

correlation between dysbiosis and enteric sensory neurons in the pathogenesis of IBD remain 

elusive. 

Therefore I investigate the distribution of GPR41 and calcitonin gene-related peptide 

(CGRP) in the colonic mucosa of mice during intestinal barrier function disturbances. 

Disruption of intestinal barrier was induced by acute colitis model using DSS and antibiotic 

treatment. In the present study GPR41 was detected in nerve fiber and cell somas of enteric 

neurons. CGRP-immunoreactivities (IRs) were observed in the colonic lamina propria and 

enteric neurons. GPR41- and CGRP-IRs were markedly upregulated in the colitis mice 

compared to the normal mice. GPR41-IRs is partly colocalized with CGRP-IRs in the colonic 

lamina propria and muscularis layer of normal mice as well as colitis mice. This result 

indicated that GPR41 is located in the nerve fibers and cell somas of cholinergic intrinsic 

sensory neurons in the mouse colon. Antibiotic treatment for 10 days induced dysbiosis in 

mice which showed by cecum enlargement. However, antibiotic treatment failed to affect the 

morphology of small intestine and colon, and to cause antibiotic-induced diarrhea. 

Immunohistochemical analyses exhibit significant reduction of GPR41- and CGRP-IRs in 

the lamina propria of antibiotic-treated mice. In accordance with previous study, reduction 

of GPR41 immunoreactivities is probably due to alteration of gut microbiota composition 

after antibiotic treatment. These alterations were also accompanied by significantly 

decreased SCFAs, which probably lead to downregulation of GPR41 immunoreactivities. 

GPR41 and CGRP were found colocalized in the colonic lamina propria of vehicle and 
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antibiotic-treated mice. In addition I found that a number of GPR41-positive nerve fibers 

were in close proximity with F4/80-positive intestinal macrophages. 

In conclusion, these findings suggest that GPR41-positive nerve fibers might be acted as 

a mediator in the crosstalk between host immune system and the gut microbiota and neuro-

immune interaction were showed by the GPR41-positive nerve fibers juxtaposed with F4/80-

positive intestinal macrophages. 

 

Conclusion 

Given the findings of my present studies, I conclude that IL-4R deficiency enhances NOX1-

dependent ROS production and intestinal mucosal barrier function, resulting in the 

suppression of colitis development. In addition, GPR41 is suggested to act as a crosstalk 

mediator between gut microbiota and neuro-immune interaction in the intestinal mucosal 

barrier. Furthermore, the role of IL-4R and morphological alteration of GPR41 in the 

intestinal inflammation revealed here may improve the understanding of the pathogenesis of 

IBD. 
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Abbreviations 

IBD: inflammatory bowel disease  

CD: Crohn’s disease 

UC: ulcerative colitis  

DSS: dextran sulfate sodium  

IL-4R: interleukin 4 receptor alpha  

GPCRs: G protein-coupled receptors  

GPR41: G protein-coupled receptor 41 

CGRP: calcitonin gene-related peptide 

SCFA: short-chain fatty acid  

IL: interleukin 

mRNA: messenger RNA  

DAI: disease activity index  

H&E: hematoxylin and eosin  

MPO: myeloperoxidase  

IRs: immunoreactivities  

ABX: antibiotic 
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Introduction  

Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is a chronic idiopathic disorder causing inflammation 

in the gastrointestinal tract (Baumgart and Carding, 2007). IBD is characterized by the 

repeated alternating cycles of clinical relapse and remission (Lee et al., 2018). IBD patients 

exhibit symptoms such as bloody or non-bloody diarrhea, abdominal cramps, weight loss, 

and other features outside the gastrointestinal tract like skin rashes or arthritis. Diagnosis is 

based on clinical manifestation, endoscopic, and histological analysis. IBD consists of two 

main clinical forms, Crohn’s disease (CD) and ulcerative colitis (UC). CD is characterized 

by discontinuous, transmural inflammation that can affect any part of the gastrointestinal 

tract, meanwhile, UC is presented as continuous mucosal inflammation that restricted to the 

colonic mucosal part (De Souza and Fiocchi, 2015; Levine et al., 2011).  

The number of IBD patients has become increasing fast in the last two decades and 

become the world health burden. In North America and Europe, over 1.5 million and 2 

million people suffer from the disease, respectively. In the countries which are influenced by 

a western European cultural heritage, including the USA, Canada, Australia, New Zealand, 

and all countries in western Europe) the number of patients also increasing (Ng et al., 2017; 

Benchimol et al., 2011; Benchimol et al., 2014). The increasing incidence of IBD in newly 

industrialized countries of Asia, South America, and Africa were the people become more 

westernized in lifestyle (Ng et al., 2017). This increasing of patients number brings 

challenges to the health care system around the world due to the capability of IBD to reduced 

quality of life, work capacity, and also increase disability (Alatab et al., 2020). In Japan, the 

accumulative number of IBD patients also increasing year by year (Okabayashi et al., 2020).      

Although progress has been made in understanding IBD, their etiology is remains obscure. 

The fact that IBD needs long-term therapy and IBD is caused by multifactorial agent make 

this disease remain incurable. According to that condition, there is no exact treatment for 

IBD. The main goal of IBD treatment is to reduce inflammation that triggers the symptoms 
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to provide long-term remission as well as reduced risk of complication (Kumar et al., 2019; 

Neurath and Travis, 2012).  

To achieve long-term remission, mucosal healing, and rebuilding of barrier function 

integrity in the intestinal mucosa is required (Neurath and Travis, 2012). This fact leads to 

an assumption that intestinal mucosal barrier function is crucial in IBD treatment.  

 

Intestinal mucosal barrier function in IBD 

Disruption of the intestinal mucosal barrier has been reported as one of IBD etiologic 

factor besides dysregulation of the immune system, inappropriate response to environmental 

factors such as gut microbiota in a genetically susceptible host (Sartor, 2006).  

The gastrointestinal tract was protected by an intestinal mucosal barrier which comprised 

physical barrier, and chemical barrier (Figure 1). A functional intestinal mucosal barrier acts 

as a selective barrier by allows absorption of nutrients and fluids but simultaneously prevents 

harmful substances like toxins and bacteria from passing through the intestinal epithelium to 

the underlying tissue (Schoultz and Keita, 2020; Furness et al., 1999). The physical barrier 

comprises the mucus layer, glycocalyx, and the cell junction that thoroughly linking intestinal 

epithelial cells. The mucus layer forms a protected habitat for the commensal microbiota in 

close proximity to the epithelial cells (Cornick et al., 2015; Smith et al., 2009). The mucus 

layer consists of IgA, one of the most abundant antibodies in the mucosal secretion that 

neutralize pathogenic bacteria and favor maintenance of commensal microbiota (Gutzeit et 

al., 2014). The physical barrier protects the mucosa from intestinal microorganism aggression. 

The next part of the intestinal mucosal barrier is the epithelium, a single layer that separates 

the body from the external lumen side. The epithelium is composed of several different cell 

types, such as enterocytes, Paneth cells, and goblet cells (Schoultz and Keita, 2019). Lamina 

propria is underlain below the epithelial cells consist of innate and adaptive immune cells 

such as macrophages, B cells, and T-regulatory cells (Santaolalla et al., 2011; Okumura and 

Takeda, 2017). Chemical barriers, which include antimicrobial peptide (AMP), regenerating 

islet-derived 3 family of protein, lysozyme, and secretory phospholipase A2 (Okumura and 

Takeda, 2017; Quiros and Nusrat, 2019).  
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Cytokines and short-chain fatty acids (SCFAs) play pivotal roles in the intestinal mucosal 

cellular networks through the activation of immune system-related receptors expressing on 

the various types of cells (Friedrich M et al., 2019; D’Souza et al., 2017). To understand the 

intestinal mucosal barrier function, it is important to reveal the precise roles of these receptors. 

The current study investigates two kinds of receptors related to intestinal mucosal barrier 

function which are cytokine receptor interleukin-4 receptor alpha (IL-4R) and SCFAs 

receptor, G protein-coupled receptor 41 (GPR41).  

 

Figure 1. Schematic presentation of intestinal mucosal barrier that protects our 

gastrointestinal tract, comprises of the physical and chemical barrier.  
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IL-4R 

IL-4R is the main receptor unit for major Th2 cytokines IL-4 and IL-13 (Egholm et al., 

2019; LaPorte et al., 2008). The IL-4R consists of a 140 kDa IL-4R chain which is a main 

comnponent of both type I and type II receptors. Type I receptor is comprised of IL-4R 

chain and chain subunit, meanwhile type 2 receptor contain IL-13R1 besides IL-4R 

(Nelms et al., 1999) (Figure 2). IL-4R subunit has been reported to express in various types 

of cells such as epithelial cells (Takeda et al., 2010), macrophages (Jenkins et al., 2013), and 

neuronal cells (Lee et al., 2018). Several studies showed evidence that IL-4 and IL-13 were 

involved in the regulation of intestinal mucosal barrier function through IL-4R signaling 

(Groschwitz and Hogan, 2009). In IBD patients, inflamed colonic mucosa produces large 

amounts of IL-13 compared with noninflammatory control patients (Heller et al., 2005). 

Furthermore, expression of IL-4R was detected in the colonic enterocytes of IBD patients 

(Heller et al., 2005).  

 

Figure 2. IL-4 receptor complex. IL-4 interact with type I and type II receptor complex.  

 

GPR41 

The second receptor is SCFA-sensing G protein-coupled receptor GPR41. GPR41 is one 

of the SCFA receptors besides GPR43 and GPR109a. GPR41 was deorphanized in 2003 and 

activated by SCFAs such as acetate (C2), propionate (C3), butyrate (C4) and valerate (C5) 
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which generated by gut microbiota fermentation of dietary fibers in the colon (Le Poul et al., 

2003; Brown et al., 2003). GPR41 has been reported to express in various tissues, including 

adipose tissues, intestines, peripheral nervous system, and immune cells. Their existences 

showed their crucial role in the regulation of energy homeostasis via SCFA (Brown et al., 

2003; Kimura et al., 2011; Le Poul et al., 2003; Samuel et al., 2008). SCFAs are one of the 

molecules involved in the crosstalk between gut microbiota, epithelial cells, and the immune 

system (Sheppach, 1994; D’Souza et al., 2017). SCFA will bind to these receptors and exert 

their function in the physiological and pathophysiological conditions. For examples, 

regulating the intestinal motility, hormone secretion, maintenance of intestinal mucosal 

barrier, and immune cell function (Priyadarsini et al., 2018; D’Souza et al., 2017; Le Poul et 

al., 2003; Brown et al., 2003; Nilsson et al., 2003; Thangaraju et al., 2009). Several previous 

studies have shown the protective roles of SCFAs in IBD models via the activation of GPR43 

(Arpaia et al., 2013; Maslowski et al., 2009; Masui et al., 2013).  

 

DSS colitis model  

Dextran sulfate sodium (DSS) is the most widely used to make chemically induced colitis 

model. DSS is a chemical colitogen, possesses anticoagulant properties, to induced disease. 

DSS is water-soluble, negatively charged, with a variety of molecular weights ranging from 

5-1400 kDa. The most severe murine colitis, which most resemblance human UC was 

generated by administered 40-50 kDa DSS in drinking water (Okayasu et al., 1990; 

Chassaing et al., 2015). The mechanism of how DSS induced intestinal inflammation is 

unclear but is presumed caused by the destruction of epithelial monolayer lining the large 

intestine allowed translocation of pathogenic bacteria and their metabolite into underlying 

tissue. The DSS-induced acute colitis is very popular because the model is simple, 

reproducible, rapid, and easy to control. Different types of intestinal inflammation, such as 

acute, chronic, and relapsing models could be addressed by modifying DSS concentration 

and administration frequency (Chassaing et al., 2015).  

Evaluation of acute DSS-induced colitis model is carried out by daily monitoring of body 

weight, stool consistency, and the presence of blood in the stool which could be summarized 
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as disease activity index (DAI) score. In the beginning, mice body weight might slightly 

increase depend on DSS dosage and mouse strain. Mice with lower resistance to DSS exhibit 

severe rectal bleeding and weight loss within 3-4 days of DSS administration. In accordance 

with Guide for the Care and use of Laboratory Animals of the National Institute of Health, 

we have to set the humane endpoint based on the percentage of body weight loss (Chassaing 

et al., 2015).  Histological changes induced by DSS include mucin and goblet cell depletion, 

epithelial erosion, and ulceration are quantitatively determined by histological score. 

Furthermore, DSS also induced an influx of neutrophils into the lamina propria and 

submucosa and increase proinflammatory cytokine expression such as IL-1β, TNF, IL-6, 

IFN and Cxcl2 (Yan et al., 2009; Perše and Cerar, 2012; Chassaing et al., 2015; Melgar et 

al., 2005; Hayashi et al., 2017; Farooq et al., 2009). 

 

Antibiotic-induced dysbiosis model  

Antibiotic-induced dysbiosis models has been used to investigate the role of gut 

microbiota in some pathological conditions (Zarrinpar et al., 2018; Sampson et al., 2016; 

Shen et al., 2015; Rakoff-Nahoum et al., 2004). The effect of low-dose antibiotic treatment 

induced dysbiosis through decreasing gut microbiota diversity (Zarrinpar et al., 2018; 

Mahana et al., 2016; Cho et al., 2012; Cox et al., 2014). Epidemiological studies unveil that 

antibiotics treatment increases the risk of IBD. It remains unknown how antibiotic-induced 

dysbiosis confers the risk of increasing inflammatory response (Holota et al., 2019). However 

the impact of microbiota depletion on metabolic homeostasis is still not well characterized 

and showed the paradoxical impact. For instance, gut microbiota is responsible to generate 

extra calories through fermentation of dietary fibers into SCFAs (Zarrinpar et al., 2019; 

Canfora et al., 2015). Consequently, gut microbiota depletion could result in a decrease 

number of calories and decreased luminal SCFAs (Zarrinpar et al., 2019; Wichmann et al., 

2013; Bäckhed et al., 2007).  
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Objective 

Interaction between intestinal environmental factors and cellular networks across 

epithelial cells, immune cells, mesenchymal cells, and neuronal cells construct a complex 

structure that organized intestinal mucosal barrier function. There are two main players in 

the regulation of intestinal cellular networks, which are cytokines and SCFAs. They exert the 

regulation function through intestinal immune system-related receptors that are expressed on 

various cell types that build the intestinal mucosal barrier. Disruption of the intestinal 

mucosal barrier has been shown involved in intestinal immune-related diseases including 

IBD. However, the precise roles and the networks between cytokines, SCFAs, and immune 

system-related receptors in the intestinal mucosal barrier function in vivo remain obscure. 

To gain a better understanding of the interaction between cytokine, SCFAs, and immune 

system-related receptors in the pathogenesis of IBD, we investigated the role of IL-4R and 

SCFA-sensing G protein-coupled receptor GPR41 in the regulation of intestinal mucosal 

barrier function that involves in the pathogenesis of intestinal inflammation using murine 

IBD model (Figure 3). 
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Figure 3. The aim of my study to investigate the role of a cytokine receptor, IL-4R, and 

SCFAs receptor, GPR41, in the regulation of intestinal mucosal barrier function in the 

inflammatory bowel disease model.   
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Chapter 1 

IL-4 receptor  subunit deficiency protects mice from DSS-

induced colitis through enhancement of intestinal mucosal 

barrier function 
 

1. Introduction 

 

IL-4 and IL-13 are multifunctional and central cytokines in type 2 immune responses 

(Egholm et al., 2019). These cytokines exert their function through the IL-4 receptor system, 

which comprises of type 1 (heterodimer between IL-4R and chain) and type 2 (heterodimer 

between IL-4R and IL-13R1) (Nelms et al., 1999). IL-4R has been reported to express 

in various type of cells including epithelial cells, (Takeda et al., 2010), tissue-resident 

macrophages (Jenkins et al., 2013), and neuronal cells (Lee et al., 2018). Previous reports 

showed evidence that IL-4 and IL-13 contribute to the regulation of the intestinal mucosal 

barrier function (Groschwitz and Hogan, 2009). Stimulation of human colonic epithelial 

monolayer cells by IL-4 and IL-13 reported could increase intestinal permeability (Zünd et 

al., 1996; Berin et al., 1999). Another report demonstrated improvement of intestinal 

epithelial barrier function through IL-4 and IL-13 in STAT6 deficient mice (Madden et al., 

2002). Furthermore, the inflamed colonic mucosa of UC patient’s produces large amounts of 

IL-13 in the lamina propria mononuclear cells (LPMCs) compared with LPMCs in non-

inflammatory control patients (Heller et al., 2005). These finding suggested the roles of IL-

4R in the intestinal inflammation development through regulation of intestinal mucosal 

barrier function.  

Intestinal mucosal barrier was defined as complex structure that separates the internal 

milieu from the luminal environment (Cummings et al., 2004; Bischoff et al., 2014). The 

intestinal mucosal barrier consists of physical and chemical barriers that regulated by 

intestinal environmental factors and cellular networks including epithelial cells, 

mesenchymal cells, immune cells, and neuronal cells (Okumura and Takeda, 2017; Friedrich 

et al., 2019). The intestinal mucosal surface is coated by a thick mucus gel comprise of the 
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outer layer that secreted mucins, the inner layer of the glycocalyx, and cell junctions (Hooper 

and Macpherson, 2010; Okumura and Takeda, 2017; Friedrich et al., 2019). Besides provided 

physical barrier, intestinal mucosa also plays the role as a chemical barrier through the 

generation of antimicrobial peptides (AMPs), which includes lysozymes, defensins, 

cathelicidins, lipocalins, and also C type lectin such as RegIIIg (Koslowski et al., 2010; 

Okumura and Takeda, 2017; Friedrich et al., 2019). Intestinal mucosa act as a selective 

barrier that allows nutrients absorption and limits the uptake of antigens from the lumen at 

the same time (Quiros and Nusrat, 2019).  The intestinal mucosa prevents enormous contact 

of antigens with the immune cells and thereby protect the gut from an aberration of the 

immune response (Martini et al., 2017). Cytokines and their receptors act together at the 

cellular interaction in the intestine under both physiological and pathophysiological 

conditions (Friedrich et al., 2019). 

However, the role of IL-4R in murine intestinal inflammation related to intestinal barrier 

function remains unclear.  Thus, in recent research, I determine the role of IL-4R in the 

intestinal inflammation using an experimental acute colitis model induced by DSS using IL-

4R-/- mice. 

 

2. Materials and methods 

2.1. Animals 

IL-4R-/- mice (BALB/cJ-il4ratm1Sz) on a BALB/c background (Noben-Trauth et al., 1997) 

were purchased from Taconic Biosciences (Rensselaer, NY, USA). To generate WT and IL-

4R-/- littermate for the experiments, IL-4R hetero-deficient mice were crossed and 

confirmed by genotyping (Figure. 4A). Mice were housed in a room with a light/dark cycle 

(12 h: 12 h) in the experimental animal facility at the University of Toyama and were 

provided free access to food and water. All experiments were performed in accordance with 

the Guide for the Care and Use of Laboratory Animals of the National Institute of Health and 

the University of Toyama. The Animal Experiment Committee at the University of Toyama 

approved all of the animal care procedures and study protocols (authorization No. 
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A2015INM-2 and A2018INM-3). In this study, I used 10-12 weeks old male mice, 16 mice 

in each normal group, and 24 mice in each colitis group.  

 

2.2. Genotyping  

To determine genotype of littermates, PCR was performed using primer pairs specific for 

exon 7 and the neo gene in a single reaction according to the previous report (Noben-Trauth 

et al., 1997). DNA was extracted from the tails of mice using DirectPCR Lysis Reagent 

(Viagen Biotech, Los Angeles, CA, USA) according to the manufacturer’s instructions. PCR 

amplification was performed using MightyAmp DNA polymerase (Takara Bio). The PCR 

conditions were as follows: initial denaturation at 98C for 2 minutes, followed by 25 cycles 

of amplification (98C for 10 seconds, 60C for 15 seconds and 68C for 1 minute). A portion 

of the PCR mixture was electrophoresed on 2% agarose gel containing 0.1% ethidium 

bromide in Tris-borate-EDTA buffer and photographed. 

 

2.3. DSS-induced acute colitis model  

Mice were administered with 3% DSS (36-50 kDa; MP Biomedical, Santa Ana, CA, USA) 

in drinking water for 7 days based on a previous report (Hayashi et al., 2017). Assessment of 

colitis severity was made by daily observation of body weight, stool consistency, and 

presence of blood in the stool. The disease activity index was the average of 2 parameters: 

diarrhea (0, normal; 1, soft stool; 2, loose stool; 3, mild diarrhea; 4, severe diarrhea) and 

blood in the stool (0, normal; 1 faint bleeding; 2, slight bleeding; 3 gross bleeding; 4, severe 

bleeding). DSS-induced acute colitis model was terminated when body weight loss reached 

20% of initial body weight as the humane endpoint. 

 

2.4. Histology analysis  

Histology analysis was performed in accordance with previous report (Hayashi et al., 2014). 

In brief, the distal colon was fixed in 4% paraformaldehyde for 24 hours at 4°C, treated with 

30% sucrose solution, then embedded in Tissue Freezing Medium (TBS, Durham, NC, USA). 

The frozen sections were sliced into 10 µm thickness at -20°C using a cryostat microtome 
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(Leica Microsystem, Nussloch, Germany). The sections were routinely stained with 

hematoxylin and eosin (H&E). H&E-stained sections were score for inflammation and crypt 

damages based on our previous report (Hayashi et al., 2014).   

 

2.5. Immunohistochemistry analysis  

Immunohistochemistry was performed as described in the previous report (Lee et al., 2013) 

with slight modification. In brief, the mice were sacrificed on day 7 after DSS administration 

and distal colons were isolated, fixed in 4% paraformaldehyde for 2 hours at 4°C and treated 

with 30% sucrose solution. The tissue sample was embedded in an OCT compound (Sakura 

Finetek, Tokyo, Japan). Frozen sections (30 µm) were immersed for 1 hour in 0.3% Triton 

X-100 solution and exposed to normal donkey serum (1:10; Jackson ImmunoResearch 

Laboratories, West Grove, PA, USA) for 1 hour at room temperature. The sections were 

incubated with rabbit anti-human myeloperoxidase (MPO) antibody (1:200; Abcam, 

Cambridge, UK) or rabbit anti-IgG antibody (Wako, Osaka, Japan) for isotype control of 

MPO antibody (Figure. S2) and then incubated with Alexa Fluor 488-conjugated donkey 

anti-rabbit IgG (1:400); Jackson ImmunoResearch Laboratories). The sections were mounted 

using VECTASHIELD mounting medium containing DPI (Vector Laboratories, 

Peterborough, UK). The stained sections were observed and visualized using a confocal 

laser-scanning microscope (LSM780; Carl Zeiss, Oberkochen, Germany). The number of 

MPO-positive cells in the colonic mucosa was determined using ImageJ software (NIH, 

Bethesda, MD, USA). 

 

2.6. RNA isolation and quantitative real-time PCR (qPCR) 

Total RNA was isolated from mouse colon using Sepasol RNA I Super (Nacalai Tesque, 

Kyoto, Japan) according to the manufacturer’s instruction. Transcript levels of Il-1β, Cxcl2, 

Nox1, Il-4, Il-13, and Il-4r were determined as described in the previous report (Hayashi et 

al., 2017). I generated cDNA using PrimeScript RT Reagent Kit (Takara Bio, Ohtsu, Japan) 

and amplify it by qPCR using TB Green Premix EX Taq (Takara Bio). qPCR was performed 

using Takara TP800 (Takara Bio). The PCR reaction conditions consisted of 10 seconds at 
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95°C and 20 seconds at 60-63°C. Relative mRNA expression was normalized to Gapdh as 

an internal control in each sample. The results are expressed as a ratio relative to the average 

of the control group. The primers are shown in Table 1.  

 

Table 1. Primer sequences for qPCR 

 Primer sequence, 5’-3’ 

Gene Forward Reverse 

Gapdh TGACCACAGTCCATGCCATC GACGGACACATTGGGGGTAG 

Cxcl2 ACCCCACTGCGCCCAGACAGAA AGCAGCCCAGGCTCCTCCTTTCC 

Il-1β CTGTGTCTTTCCCGTGGACC CAGCTCATATGGGTCCGACA 

Il-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT 

Il-13 GGATATTGCATGGCCTCTGTAAC AACAGTTGCTTTGTGTAGCTGA 

Il-4r ACGTGGTACAACCACTTCCA TGGCTTCGGGTCTGCTTATC 

Nox-1 AGTAGGTGTGCATATGGGTGT ACCAGCCAGTTTCCCATTGT 

 

 

2.7. Transcriptomic analysis  

Transcriptomic analysis was conducted based on our previous report (Nagata et al., 2017). 

Briefly, total RNA was isolated from the distal colon after 7 days of 3% DSS treatment. 

mRNA was purified from the mixture of total RNA using RNeasy Mini Kit (Qiagen, Crawley, 

UK), and then mRNA of 3-6 mice from each group (WT normal, WT colitis, and IL-4R-/-

colitis) was mixed. Microarray analysis was performed using GeneChip Mouse Gene 1.0 ST 

array (Affymetrix, Santa Clara, CA, USA). The GeneChip was scanned with GeneChip 

Scanner 3000 (Affymetrix), and the gene expression was analyzed using GeneChip Analysis 
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Suite Software (Affymetrix). Median centered and log2 transformed transcript levels are 

indicated by the color code: blue (low) and red (high). Moreover, the GeneChip microarray 

data set then analyzed using Transcriptome Analysis Console (TAC; Thermo Fisher 

Scientific, Waltham, MA, USA), GeneSpring (Silicon Genetics, Redwood City, CA, USA), 

and Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA, 

USA, http://www.ingenuity.com) to extract significant genes, and identify gene ontology and 

canonical pathways associated with the differentially expressed genes.  

 

2.8. Isolation of colonic epithelial cells (CEC) 

CEC was isolated by the chelation method using EDTA as described previously (Hayashi, 

2014; Greten et al., 2004) with minor modification. Briefly, the colon was excised, open 

longitudinally then washed of fecal content in ice-cold RPMI-1640 (Wako, Osaka, Japan). 

The colons were then cut into small pieces and stirred at 37C for 20 min in RPMI-1640 

containing 2% FBS (GIBCO, Carlsbad, CA) and 0.5 mM EDTA. Then the colons tissue were 

separate from the solution by using 0.5 µ filter, centrifuge at 500 g for 7 min at 4C. 

 

2.9. Measurement of ROS production 

Measurement of ROS production was performed following the previous report (Yokota et al., 

2017). Whole colon tissues were isolated on day 7 after 3% DSS treatment from WT and IL-

4R-/- mice then washed with ice-cold PBS. Tissue samples were then homogenized in ice-

cold Krebs-HEPES buffer (pH 7.4) containing protease cocktail inhibitor (Complete Mini; 

Roche, Mannheim, Germany), and then centrifuged at 1100 x g at 4°C for 15 min. The 

production of ROS which is mainly superoxide was determined using chemiluminescence 

assay by L-012 (Wako, Osaka, Japan). Chemiluminescence was measured with a 

luminometer (Lumat LB 9507, Berthold Technologies, Germany). The level of ROS 

production was presented as arbitrary light units per minute per mg protein. 

  

http://www.ingenuity.com/
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2.10. In vivo intestinal permeability assay 

In vivo intestinal permeability assay was performed based on the previous report (Gupta et 

al., 2014) with a slight modification. Briefly, normal and colitis mice were fasted overnight. 

200 mg/kg body weight of FITC-dextran (4 kDa, Chondrex, Redmond, WA, USA) was given 

by per oral administration. Control mice were administered with PBS (-). After 4 hours, mice 

were anesthetized and blood was collected by cardiac puncture. Blood samples were 

centrifuged (2500 x g, 10 min, 4°C) and plasma was collected. The fluorescence intensity of 

samples was measured in black 96-well plates by a microplate reader (Tecan GENios; 

TECAN, Männedof, Switzerland) at the wavelength 485 nm (excitation) and 535 nm 

(emission). FITC-dextran concentrations were measured from a standard curve. 

 

2.11. Statistical analysis  

The data are presented as the mean ± SEMs. Statistical analyses were conducted with Prism 

8 (GraphPad Software, San Diego, CA) using one- or two-way ANOVA followed by 

Bonferroni’s multiple comparison test or an unpaired t-test with Welch’s correction. 

Probability (P) values <0.05 were considered statistically significant. 

 

3. Results 

3.1.Genotyping  

I confirmed that the IL-4R expression was totally depleted in the colon of IL-4R-/- 

mice by performed PCR genotyping and qPCR. Gel electrophoresis of PCR genotyping 

showed PCR products with the size 125 bp band in WT mice, a 280 bp band in IL-4R-/- 

mice, and 125 bp and 280 bp bands in IL-4R-hetero-deficient (IL-4R+/-) mice (Figure 

4A). qPCR analysis results showed the mRNA expression level of Il-4r in the colons of IL-

4R-/- normal mice were totally depleted (Figure 4B; n=4; P<0.05). 
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Figure 4. (A) Representative images of genotyping are shown. PCR products reveal a 125 bp 

band in WT mice, a 280 bp band in IL-4R-/- mice, and 125 bp and 280 bp bands in IL-4R-

hetero-deficient (IL-4R+/-) mice. Water (W) was amplified as negative control template. 

M, molecular mass markers. (B) The mRNA expression level of Il-4r in the colons of WT 

and IL-4R-/- normal mice. The data are presented as the mean ± SEM values for 4 mice. 

*p<0.05 

 

3.2.IL-4R deficiency increased resistance to DSS-induced colitis 

To investigate the role of IL-4R in murine intestinal inflammation, I use the DSS-

induced acute colitis model in WT and IL-4R-/- mice.  The loss of body weight was started 

on day 4 after DSS treatment, and it was markedly attenuated in IL-4R-/- colitis mice 

(Figure 5A; 78.5 ± 2.0% in WT colitis; 92.6 ± 1.4% in IL-4R-/- colitis mice on day 7; 

P<0.001).  

The disease activity index was determined as the average of diarrhea score and rectal 

bleeding score and was also significantly alleviated in IL-4R-/- colitis mice (Figure 5B; 3.7 

± 0.2 in WT colitis; 1.1 ± 0.3 in IL-4R-/- colitis on day 7; P<0.001).  

There is no difference in colon length of WT and IL-4R mice in normal mice. But, after 

7 days DSS treatments, colon shortened was significantly attenuated in IL-4R-/-  colitis 
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mice compared to WT colitis mice (Figure 6A, 6B; 7.5 ± 0.2 cm in WT colitis; 10.1 ± 0.5 cm 

in IL-4R-/- colitis; P<0.001). 

Histology analysis by H&E staining revealed that DSS treatment for 7 days was caused 

the loss of epithelial integrity and crypt architecture in WT colitis mice which was 

accompanied by submucosal edema. All of this colon destruction was attenuated in IL-4R-

/- colitis mice (Figure 6C, 6D; 5.5 ± 0.3 in WT colitis; 2.5 ± 0.2 in IL-4R-/- colitis; P<0.001).  
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Figure 5. IL-4Rα deficiency increased resistance to DSS-induced colitis. Experimental acute 

colitis was induced in WT and IL-4Rα KO mice by giving 3% dextran sulfate sodium (36-

50 kDa) in drinking water for 7 days. (A) Body weight loss, (B) disease activity index are 

shown. The data are presented as the mean ± SEM values for 8 mice and are representative 

of 1 of 3 independent experiments. ***p<0.001 compared with WT normal mice. ††p<0.01 

and †††p<0.001 compared with WT colitis mice. ###p<0.001 compared with IL-4R-/- 

normal mice. 
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Figure 6. IL-4R deficiency increased resistance to DSS-induced colitis.  Colitis was induced 

in WT and IL-4R-/- mice by daily treatment with a 3% DSS solution in the drinking water 

for 7 days. (A) Macroscopic photographs of colons and (B) colon length measurements are 

shown. The data are presented as the mean ± SEM values for 8 mice and are representative 
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of 1 of 3 independent experiments. **p<0.01; ***p<0.001. (C) Representative images of 

H&E staining are shown. The scale bar represents 100 µm. (D) Histological scoring of DSS-

induced colitis is shown. The data are presented as the mean ± SEM values for 4-6 mice. 

***p<0.001. 

 

Furthermore, I investigated the MPO immunoreactivity to determine the distribution of 

neutrophils in the mice colonic mucosa after 7 days of DSS treatment. MPO 

immunoreactivities was markedly increased after DSS treatment in WT colitis mice (Figure 

7A) and it was significantly decreased in IL-4R-/- colitis mice. I used IgG as an isotype 

control for MPO-immunoreactivity to confirm the unspecific binding (Figure 7B). 

Quantitative analysis was showed the infiltrated neutrophils were significantly reduced in IL-

4R-/- colitis mice (Figure 7C; 169.9  24.5 in WT colitis; 78.9  11.7 in IL-4R-/- colitis; 

P<0.001). 

The mRNA expression level of Cxcl2 and Il-1β in the colons of WT colitis mice was 

markedly elevated on day 7 (Figure 8A; Cxcl2; 0.0 ± 0.0 in WT normal, 5.3 ± 1.7 in WT 

colitis; P<0.01, Figure 8B; Il-1β; 0.4 ± 0.1 in WT normal, 6.6 ± 2.1 in WT colitis; P<0.01). 

However, the increase in Cxcl2 and Il-1β mRNA expression was significantly suppressed in 

the colons of IL-4R-/- colitis mice (Figure 8A; Cxcl2; 5.3 ± 1.7 in WT colitis, 0.5 ± 0.3 in 

IL-4R-/- colitis; P<0.05, Figure 8B; Il-1β; 6.6 ± 2.1 in WT colitis, 0.3 ± 0.1 in IL-4R-/- 

colitis; P<0.01). These results clarify that the development of DSS-induced colitis is 

suppressed in IL-4R-/- mice compared with WT mice. 
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Figure 7. IL-4R-/- mice showed a low inflammatory response to DSS-induced colitis. 

Colitis was induced in WT and IL-4R-/- mice by daily treatment with 3% DSS solution in 

drinking water for 7 days. (A) Representative images of the confocal micrograph of the mice 

colonic mucosa showed staining of MPO-positive cells. The scale bar represents 50 µm. 

immunohistochemistry analysis results. (B) Representative images of isotype control IgG 

staining for MPO antibody are shown. The scale bar represents 100 µm. (C) The number of 
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MPO-positive cells in the colonic mucosa is shown. The data are presented as the mean ± 

SEM values for 9 mucosae from 3 mice. ***p<0.001 

 

 
Figure 8. DSS-induced changes in the mRNA expression level of (A) Cxcl2 and (B) Il-1β in 

the colons of WT and IL-4R-/- mice. The data are presented as the mean ± SEM values for 

4 mice and are representative of 1 of 2 independent experiments. *p<0.05; **p<0.01. 

 

3.3.IL-4R deficient mice elevated NOX1-dependent ROS production in the mouse colon 

I investigate the changes in colonic gene expression levels in WT colitis and IL-4R-/- colitis 

mice by transcriptomic analysis of colon tissues collected on day 7 after 3% DSS treatment. 

The differential expression analysis using TAC showed that the expression level of 91 genes 

was altered by DSS treatment and 47 genes were differentially expressed between IL-4R-

/- colitis and WT colitis mice (Figure 9A). Among 47 genes, 10 genes were upregulated and 

37 genes were downregulated in IL-4R-/- colitis mice compared with WT colitis mice. 

Furthermore, the top 10 upregulated and downregulated genes in IL-4R-/- colitis mice 

compared to WT colitis mice were shown in the heat map (Figure 9B). To determine the 

biological significance of these genes, I performed GeneSpring and IPA. However, 

A B 
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GeneSpring and IPA did not show any significant canonical pathway. Thus, among the 

differentially expressed genes, I focused on Nox1 expression because NOX1 has been 

reported to contribute to the maintenance of intestinal homeostasis (Lambeth and Neish, 

2014). 

 

 

Figure 9. The transcriptomic analysis shows that IL-4R-/- mice exhibit a high level of Nox1 

mRNA expression in the DSS-induced colitis model. Microarray data sets of WT normal, 

WT colitis (day 7), and IL-4R-/- colitis (day 7) mice are analyzed using Transcriptomic 

Analysis Console (TAC) Software. (A) Differentially expressed genes whose expression 
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levels are more than 4-fold or less than a quarter in the comparison between IL-4R-/- colitis 

and WT colitis or WT colitis and WT normal. (B) The heat map shows the top 10 upregulated 

(left) and downregulated (right) in IL-4R-/- colitis mice compared with WT colitis mice. 

The color range represents log2-transformed fold changes. Each row corresponds to each 

gene, and each column corresponds to each group. Genes were sorted using hierarchical 

clustering based on Euclidean distance and average linkage, as shown in the dendrogram on 

the left side of the heat map. The 10 gene names are displayed on the right side of the heat 

map. 

 

To verify the transcriptome analysis results, I conducted qPCR to measure the mRNA 

expression level of Nox1 in colitis mice. Consistent with the transcriptome analysis result, 

the qPCR analysis results showed that the Nox1 mRNA expression in the colons of IL-4R-

/- colitis mice was significantly higher than that in the colons of WT colitis mice (Figure 

10A; 0.21 ± 0.04 in WT colitis, 2.00 ± 0.26 in IL-4R-/- colitis; P<0.05). Furthermore, the 

depletion of IL-4R resulted in a significant 4.2-fold increase in the mRNA expression level 

of Nox1 in the colons of normal mice (Figure 10A; 0.85 ± 0.07 in WT normal, 3.53 ± 0.71 in 

IL-4R-/- normal; P<0.05).  
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Figure 10. IL-4R deficiency increases NOX1-dependent ROS production in the colon of 

the mouse. The mRNA expression level of Nox1 in the colons of WT and IL-4R-/- mice. 

The data are presented as the mean ± SEM values for 8 mice. *p<0.05; ***p<0.001.  

 

To evaluate the contribution of IL-4R to NOX1 activity, I measured ROS production in 

the colonic tissues of mice. The production of ROS was significantly increased in the colons 

of IL-4R-/- normal mice compared with WT normal mice (Figure 11; 0.7x108 ± 0.1x108 

RLU/mg protein in WT normal, 9.8x108 ± 0.8x108 RLU/mg protein in IL-4R-/- colitis; 

P<0.05). I also observed a significant increase in the production of ROS in the colons of IL-

4R-/- colitis mice compared to WT colitis mice, (Figure 11; 0.8×108 ± 0.1×108 RLU/mg 

protein in WT colitis, 10.3×108 ± 3.2×108 RLU/mg protein in IL-4R-/- colitis; P<0.01). 

These findings indicate that IL-4R deficiency enhances ROS production in the colonic 

mucosa through the upregulation of NOX1 expression. 
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Figure 11. ROS production measurement from colon tissues samples by L-012 assay of 

WT and IL-4R-/- mice in normal and colitis condition. The data are presented as the mean 

± SEM values for 4 mice and are representative of 1 of 2 independent experiments. *p<0.05; 

**p<0.01. 

 

Since NOX1 expression is highly expressed in intestinal epithelial cells (Szanto et al., 

2005; Valente et al., 2008), I also determined ROS production from colon epithelial cells 

fraction (Figure 12, n=10-12; P<0.05). 
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Figure 12. ROS level in the colonic epithelial fraction isolated colons of WT and IL-4Rα-/- 

normal mice. The data are presented as the mean ± SEM values for 10-12 mice. *p<0.05. 

 

3.4.IL-4R depletion modulates intestinal barrier function in vivo 

To investigate the in vivo intestinal permeability, I determined the FITC-dextran 

concentration in the plasma of WT and IL-4R-/- mice in the colon of normal and colitis 

mice. The FITC-dextran level was significantly suppressed in the plasma of IL-4R-/- colitis 

mice (Figure 13A; 673.9 ± 42.1 pg/ml in WT colitis; 204.0 ± 41.5 pg/ml in IL-4R-/- colitis; 

p<0.001). Interestingly, the level of plasma FITC-dextran was significantly lower in IL-4R-

/- normal mice compared with WT normal mice (Figure 13B; 420.6 ± 93.6 pg/ml in WT 

normal; 177.3 ± 44.8 pg/ml in IL-4R-/- normal; P<0.05). 
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Figure 13. IL-4R deficiency enhances the intestinal barrier function in vivo. The 

concentration of FITC-dextran in the plasma of WT and IL-4R-/- mice are shown. Plasma 

samples were collected from WT and IL-4R-/- mice on day 0 (normal) or day 7 (colitis) 

after initiation of DSS treatment. The data are presented as the mean ± SEM values for 7-8 

mice. *p<0.05; ***p<0.001. 

 

In accordance with previous reports that revealed IL-4 and IL-13 play a role in the 

regulation of intestinal mucosal barrier function (Groschwitz & Hogan, 2009) and mediates 

their function through IL-4R, I determined the mRNA expression level of IL-4 and IL-13 

in normal and colitis condition (Figure 14A; n= 4, P<0.05). The results showed, there was no 

difference in Il-4 mRNA expression between WT normal and WT colitis mice. Furthermore, 

the depletion of IL-4R subunit generated 2.4-fold increase of Il-13 mRNA expression in 

the colons of IL-4R-/- normal mice (Figure 14B, n=4, P<0.001).  
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Figure 14. DSS-induced changes in the mRNA expression level of Il-4 and Il-13 in the colons 

of WT and IL-4Rα-/- mice. The data are presented as the mean ± SEM values for 4 mice. 

*p<0.05; **p<0.01; ***p<0.001. 

 

4. Discussion 

My recent findings indicate that the development of DSS-induced colitis is attenuated in 

IL-4R-/- mice through enhancement of NOX1-derived ROS production in the colon.  

IL-4R-/- mice showed normal phenotypic unless challenge with worm infestation in 

which case they showed inability to clear the parasite and succumb to overwhelming disease 

burden (Herbert et al., 2004). IL-4R-/- mice experienced loss of IL-4 signal transduction 

and functional activity and exhibited lack sensitivity to IL-4 stimulation (Noben-trauth et al., 

1997).  

IBD is a chronic inflammatory disorder attack the gut, which comprise of Crohn’s disease 

and UC (Maloy and Powrie, 2011; Kaser et al., 2010). Genetic, clinical, and experimental 

studies have shown that IBD is a multifactorial disease in which a genetically inadequate host 
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response to environmental factors leads to a breakdown of the intestinal mucosal barrier 

(Maloy and Powrie, 2011). Maintenance of the intestinal mucosal barrier is mediated by a 

tissue-specialized cellular network via the signaling pathways of various cytokine receptors 

(Friedrich et al., 2019). The disintegration of the cellular network regulated by cytokines and 

their receptors is recognized as the pathogenic mechanism underlying disorders of chronic 

intestinal inflammation, such as IBD. Indeed, many IBD risk loci have been found in regions 

of genes encoding cytokines or their downstream signaling mediators (Liu et al., 2015). An 

IL-13-dependent abnormal Th2 cell response has been observed in the colonic mucosa of 

IBD patients (Heller et al., 2005). IL-4 and IL-13 have also been reported to play critical 

pathogenic roles in animal models of colitis (Mizoguchi et al., 1999; Heller et al., 2002). IL-

4R was strongly expressed in the colonic tumors of murine colitis-associated cancer (CAC) 

model in WT mice, and the number and size of colonic tumors were significantly reduced in 

IL-4R-/- CAC mice through the suppression of epithelial tumor proliferation due to lack of 

IL-4R-/- signaling, however, there was no information about the inflammation in this 

previous study (Koller et al., 2010). Although the involvement of IL-4R in the disruption 

of epithelial barrier function in IBD patients has been suggested (Heller et al., 2005), no 

direct evidence has revealed the role of IL-4R in mediating intestinal inflammation.  

To investigate the contribution of IL-4R in the intestinal mucosal inflammation, I used 

experimental acute colitis using DSS as an inducing agent. Mice deficient in IL-4R 

exhibited obvious amelioration of symptoms of DSS-induced colitis such as diarrhea, rectal 

bleeding, colon shortening, and destruction of the colonic mucosal structure. In addition, 

DSS-induced neutrophil infiltration in the colonic mucosa was decreased in IL-4R-/- mice. 

Neutrophil infiltration in the mucosa is mediated by specific chemoattractant such as CXCL1, 

CXCL2 (also known as macrophage inflammatory protein 2; MIP2) and CXCL8 (Farooq et 

al, 2009). Notably, CXCL2-overexpressing transgenic mice showed that the increased 

number of MPO-positive neutrophils in the colonic lamina propria of normal and DSS-

treated mice (Ohtsuka and Sanderson, 2003). Intestinal mucosal neutrophils, which infiltrate 

the inflamed mucosa of IBD patients and animals in experimental colitis models, produce 

various cytokines that trigger further inflammatory responses (Baumgart and Carding, 2007). 
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Among these cytokines, IL-1β exhibits increased production in the model of DSS-induced 

colitis (Melgar et al., 2005; Hayashi et al., 2017). We previously reported that the expression 

level of IL-1β in the colonic mucosa was positively correlated with the disease severity of 

DSS-induced colitis in mice (Hayashi et al., 2017). Furthermore, IL-1β secreted from 

infiltrated neutrophils in the colonic mucosa contributes to the pathogenesis of colitis (Wang 

et al., 2014). In the present study, the infiltration of neutrophils and the upregulation of 

CXCL2 and IL-1β observed in colonic tissues of colitis mice were significantly suppressed 

in the IL-4R-/- mice. These findings strongly demonstrate that IL-4R-/- mice exhibit 

reduced susceptibility to inflammatory responses in the intestine.  

Since IL-4 and IL-13 have been reported to play the role in intestinal mucosal barrier 

function (Grocshwitz and Hogan, 2009) I also measured Il-4 and Il-13 mRNA expression in 

the colonic tissues of normal and colitis mice (Figure 14). The mRNA expression of Il-4 was 

significantly lower in IL-4R-/- colitis mice than in WT colitis mice. IL-4 deficient mice 

have been reported to show amelioration of the DSS-induced colitis (Stevceva et al., 2001), 

suggesting the pathogenic role of IL-4 in DSS-induced colitis model. However, the roles of 

IL-4 in the DSS-induced colitis model are still controversial because protective roles of IL-4 

have been also reported (Kim and Chung, 2013). In the present study, there was no difference 

in Il-4 mRNA expression between WT normal mice and WT colitis mice. Furthermore, the 

depletion of IL-4R resulted in a 2.4-fold increase in the mRNA expression level of Il-13 in 

the colons of IL-4R-/- normal mice. Since IL-13 increases intestinal permeability dependent 

on IL-4R/STAT6 activation elevated IL-13 in IL-4R-/- normal mice is assumed to not 

affect intestinal permeability due to lack of IL-4R in the present study. Although IL-4 and 

IL-13 are recognized as key cytokines for IL-4R-mediated mucosal barrier function 

(Groschwitz and Hogan, 2009), further detailed studies are required to understand the role of 

IL-4 and IL-13 in the intestinal mucosal barrier function in vivo. 

My recent study revealed that colonic tissues of IL-4R-/- mice give high Nox1 mRNA 

expression levels under both steady-state and inflammatory conditions. According to the 

previous study, NOX1 is NADPH oxidase and is a major source of ROS in nonphagocytic 

cells (Lambeth and Neish, 2014). This study also reported that NOX1-dependent ROS 
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production in the intestinal epithelial cells plays a crucial role in intestinal homeostasis 

maintenance (Lambeth and Neish, 2014). Impaired ROS production due to Nox1 gene 

mutation has been suggested to be associated with an increased risk of very early onset IBD 

(Hayes et al., 2015; Stenke et al., 2019). IL-10 deficient mice are well known as a model of 

spontaneous colitis (Kühn et al., 1993) because IL-10 produced from intestinal macrophages 

plays an important role in the regulation of intestinal homeostasis during host defense 

mechanism (Maloy and Powrie, 2011; Hayashi, 2020). Double-deficient Nox1 and IL-10 

mice showed earlier colitis symptoms compared with IL-10-deficient mice (Tréton et al., 

2014). In addition, mutant mice that produce a low level of intestinal ROS developed more 

severe DSS-induced colitis compared with WT mice (Aviello et al., 2019).  In this present 

study, I found that IL-4R depletion elevated the production of ROS in colonic tissues of 

normal mice. These findings indicate that IL-4R depletion in mice enhances ROS 

generation due to the upregulation of Nox1 expression in the colon, and lead to colitis 

severity attenuation.  

However, the pathogenic roles of NOX1-derived ROS in colitis have also been reported. 

Administration of apocynin, an antioxidant and a nonselective NADPH inhibitor, suppressed 

the inflammatory response in a model of DSS- and tumor necrosis factor--induced 

colitis(Mouzaoui S et al., 2014; Ramonaite R et al., 2014). NOX1-deficient mice exhibited 

reduced susceptibility to trinitrobenzene sulfonic acid-induced colitis by suppressed 

proinflammatory cytokine expression in the macrophages (Yokota et al., 2017; Makhezer et 

al; 2019). These contradictory results in the colitis model using NOX1-deficient mice may 

be due to the differences in the colitis models and the responsible cells in which NOX1 

functions.  

Several reports showed that since NOX1 is highly expressed in intestinal epithelial cells 

(Szanto et al., 2005; Valente et al., 2008), epithelial NOX1-derived ROS have been reported 

to play an important role in the regulation of intestinal epithelial integrity. My current results 

showed the ROS production from colon epithelial fraction of IL-4R-/- was 1.8-fold higher 

compared with WT colon epithelial cell fraction. But the ROS measurement from colon 

epithelial cell fraction exhibited lower ROS production than colon tissue sample ROS. I 



39 
 

thought probably ROS production may not measure accurately using this method. I have to 

consider another protocol to determine ROS production from colon epithelial fraction, for 

example by utilize organoid techniques. ROS measurement from colon epithelial cells 

organoid have been reported in several research (Levy et al., 2020; Moll et al., 2018; Cheung 

et al., 2015).  

 Intestinal epithelial NOX1-derived ROS generation and subsequent ROS signaling have 

been demonstrated to control intestinal mucosal wound repair after injury (Leony et al., 2013). 

ROS generated by epithelial NOX1 was involved in the proliferation and differentiation of 

colonic epithelial cells by modulating the PI3K/AKT/Wnt and Notch signaling pathways 

(Coant et al., 2010). In addition, NOX1-mediated cellular ROS production was also required 

for collective migration of epithelial cells, because defective directional migration and altered 

cell-cell contact were observed in cells with loss of NOX1 function (Khoshnevisan et al., 

2020). Intestinal epithelial cells cover the outermost surface of the mucosa and interface with 

the lamina propria to form the intestinal mucosal barrier (Quiros and Nusrat, 2019). Thus, 

NOX1-dependent ROS production in the intestinal epithelial cells is considered an important 

property for intestinal barrier integrity maintenance. These findings led to the hypothesis that 

IL-4R mediates intestinal mucosal barrier function via regulation of NOX1-dependent ROS 

production. To address this hypothesis, I investigate intestinal barrier function in IL-4R-/- 

mice which is assessed by the intestinal permeability approach, because intestinal 

permeability is important functional feature of intestinal mucosal barrier function (Luissint 

et al., 2016; Wilms et al., 2020). IL-4R-/- mice exhibited a reduction of intestinal 

permeability to 4 kDa FITC-dextran, indicated that the intestinal barrier function of IL-4R-

/- mice might be strengthened by enhancement of Nox1-derived ROS production. However, 

further studies are needed to clarify the mechanism by which IL-4R signaling regulates 

NOX1 expression in intestinal epithelial cells. 

Given the findings of my present study, I conclude that IL-4R deficiency enhances 

NOX1-dependent ROS production and intestinal mucosal barrier function, resulting in the 

suppression of colitis development (Figure 15). The mechanism of how IL-4R signaling 
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could regulate the NOX1-dependent ROS production remain elusive because almost all of 

previous report related to redox regulation by IL-4 signaling required IL-4R (Sharma et al., 

2008; Liu H et al., 2017).  

 

Figure 15. Schematic representation of how depletion of IL-4R subunit alleviates intestinal 

inflammation in IL-4R-/- colitis mice through enhancement of NOX1-dependent ROS 

production that strengthens intestinal permeability. 
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Chapter 2 

Morphological investigation of GPR41-positive enteric sensory 

neurons in the colon of mice with DSS-induced colitis  

 

1. Introduction 

 

Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal 

tract that includes ulcerative colitis (UC) and Crohn’s disease (CD). Although the etiology 

of IBD remains unclear, it has generally been accepted that abnormalities of the intestinal 

immune system and dysbiosis of the gut microbiota are involved in the pathogenesis of IBD. 

The gut microbiota is a pivotal contributor to human health. Some of its effects are at least 

partly mediated by short-chain fatty acids (SCFAs), consisting mainly of acetate, propionate, 

and butyrate produced by the microbiota. Dysbiosis is defined as an alteration in the gut 

microbiota composition that results in an imbalance between beneficial and harmful bacteria 

(Machiels et al., 2014; Nishida et al., 2018). Indeed, dysbiosis is associated with 

predisposition to numerous human diseases, including non-gastrointestinal diseases, such as 

diabetes and Alzheimer’s disease. Genome-wide association studies have revealed that more 

than 200 genes associated with susceptibility to IBD are involved in mediating the host 

response to the gut microbiota (Nishida et al., 2018).  

Recently, SCFAs have been shown to regulate the functions of intestinal immune cells 

through the activation of SCFA-sensing G protein-coupled receptors (GPCRs), such as 

GPR41 and GPR43 (Kimura et al., 2020). GPR41 and GPR43 are thought to at least partially 

mediate the interaction between the host and the gut microbiota (Ang and Ding, 2016). It has 

also been reported that GPR41 and GPR43 are colocalized in enteroendocrine cells as sensors 

for SCFAs in GPR41-mRFP and GPR43-mRFP transgenic mice (Nøhr et al., 2013). GPR41 

also reported to expressed in cell bodies of enteric neurons but cannot be detected in nerve 

fibers of mucosa and enteric ganglia (Nøhr et al., 2013). However, there is no information 

available concerning which type of enteric neuron GPR41 is located. To date, there have 
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been several studies on the pathological roles of GPR41 and GPR43 in chronic inflammatory 

disorders such as colitis, asthma, and arthritis using knockout mice (Kimura et al., 2020). 

However, studies have shown conflicting evidence as to whether GPR41 and GPR43 are 

protective or causative, and many questions regarding the functions of GPR41 and GPR43 

remain unanswered (Ang and Ding, 2016).  

The DSS-induced acute colitis model is the most widely used animal model of IBD and 

causes dysbiosis, which is usually experienced in IBD patients (Munyaka et al., 2016). In 

DSS-induced colitis, intestinal macrophages in the inflamed colonic mucosa respond to 

microbial stimulation and produce large amounts of proinflammatory cytokines. These 

proinflammatory cytokines will lead to the destruction of the colons (Platt et al., 2010). Our 

previous report has been revealed that the proportion of F4/80-positive macrophages were 

increased in the mouse colon in response to DSS treatment (Hayashi et al., 2017). However, 

DSS-induced colitis studies related to dysbiosis have rarely been carried out.  

Therefore, to determine pathophysiological roles of GPR41 in the intestinal inflammation, 

I conducted morphological characterization of GPR41, enteric nerve fibers, and F4/80-

positive macrophages in the colonic mucosa of DSS induced colitis mice.  

 

2. Materials and Methods  

2.1.Animal  

Male BALB/c mice aged 8 weeks and male C57BL/6 mice aged 10-12 weeks were purchased 

from SLC (Shizuoka, Japan). Mice were housed in a room with a light/dark cycle (12 h: 12 

h) in the experimental animal facility at University of Toyama and were provided free access 

to food and water. All of the animal care procedures and experiments were approved by the 

Animal Experiment Committee at the University of Toyama (authorization No. A2018 INM-

3).  
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2.2.DSS-induced colitis model  

BALB/c mice were treated with 3% DSS (36-50 kDa; MP Biomedicals, Santa Ana, USA) in 

the drinking water for 7 days (Hayashi et al., 2017). Assessments of colitis severity were 

made by daily observation of body weight, stool consistency, and the presence of blood in 

the stool. The disease activity index was calculated as the average of 2 parameters: diarrhea 

(0, normal; 1, soft stool; 2, loose stool; 3, mild diarrhea; 4, severe diarrhea) and blood in the 

stool (0, normal; 1 faint bleeding; 2, slight bleeding; 3 gross bleeding; 4, severe bleeding).  

Whole colons were excised on day 7 after DSS administration. The assay was terminated 

when weight loss reached 20% of initial body weight as the humane endpoint. 

 

2.3.Determination of proinflammatory mRNA expression 

Proinflammatory mRNA expression was determined in the excised distal colon as described 

previously (Hayashi et al., 2017). Briefly, total RNA was extracted from the colon tissue 

using Sepasol RNA I Super (Nacalai Tesque, Kyoto, Japan) according to the manufacturer’s 

instructions. Reverse transcription was carried out using the PrimeScript RT Reagen Kit 

(Takara Bio, Ohtsu, Japan). Real-time PCR amplification of Il-1β, Il-6, and Gapdh was 

performed using TB Green Premix EX Taq (Takara Bio, Ohtsu, Japan). The levels of target 

mRNAs were normalized to those of Gapdh as an internal control for each sample. The 

primer sequences are shown in Table 1. 

 

2.4.Histological analysis 

Histological analysis was performed in accordance with previous experiments (Hayashi et 

al., 2014). Briefly, the distal colon was removed, washed in ice-cold phosphate-buffered 

saline, and fixed in 4% paraformaldehyde for 24 h at 4C. After treatment with 30% sucrose 

solution, the tissue sample was embedded in Tissue Freezing Medium (TBS,  Durham, NC, 

USA), and sliced 10 µm thickness at -20C using cryostat microtome (Leica Microsystems, 

Nussloch, Germany). The sections were then routinely stained with H&E and scored for 

inflammation and crypt damage as described previously (Hayashi et al., 2014).  
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2.5.Antibiotic-induced gut dysbiosis model (ABX model) 

Antibiotic-induced gut dysbiosis model was performed based on the previous report (Hill et 

al., 2010). Briefly, C57BL/6 mice received an antibiotic cocktail which comprised of 

ampicillin (1 mg/ml), vancomycin (0.5 mg/ml), metronidazole (1 mg/ml), and neomycin (1 

mg/ml by oral gavage for 10 days. Mice were sacrificed on day 10 after antibiotic treatment. 

Each cecum was carefully dissected and weighed.  

  

2.6.Immunohistochemical analysis 

Immunohistochemistry was performed according to the procedure described in previous 

reports (Lee et al., 2013). Briefly, the excised distal colons were fixed with 4% 

paraformaldehyde for 24 h at 4 °C. After treatment with a 30% sucrose solution, the tissue 

sample was embedded in OCT compound (Sakura Finetek, Tokyo, Japan). The frozen 

sections (30 μm) were exposed to a rabbit anti-human GPR41 antibody (ab236654, Abcam, 

Cambridge, USA), goat anti-rat CGRP antibody (ab36001, Abcam), or rat anti-mouse F4/80 

(MCA497GA, BioRad, Hercules, CA) for 12−18 h at 4C and then incubated with the 

appropriate secondary antibodies for 2 h (Alexa 488 donkey anti-rabbit IgG, Cy3 donkey 

anti-rabbit IgG, Cy3 donkey anti-goat IgG or Alexa 488 donkey anti-rat IgG (Jackson 

ImmunoResearch Laboratories )) at room temperatures. The immunostained sections were 

examined using a confocal microscope (LSM700 & LSM780). To avoid selection bias, three 

representative preparations were selected from each mouse colon and then three mucosal 

sites of each preparation were quantitatively analyzed using open-source software imageJ 

(NIH, Bethesda, MD, USA). 

 

2.7.Statistical analysis 

All data are presented as the mean ± SEM. Statistical analyses were performed using an 

unpaired Student’s t-test. Probability (P) values <0.05 were considered statistically 

significant. 
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3. Results 

 

3.1. DSS-induced colitis model  

To generate dysbiosis conditions related to IBD, I used 3% DSS to induced the acute 

colitis model in BALB/c mice. In the colitis mice, body weight loss, diarrhea, and blood in 

the stool first appeared on day 4 after DSS treatment started. Significant body weight loss 

was observed on day 7 in the colitis mice (Figure 16A. 78.7 ± 1.9% of initial body weight in 

colitis mice; 102.4 ± 1.0% of initial body weight in normal mice, n=7, P<0.01). The DAI 

score of colitis mice also showed a significant difference compared to those of normal mice 

(Figure 16B; 3.4 ± 0.2, n=7, P<0.01).  Macroscopic observations showed colon shortened in 

colitis mice caused by DSS treatments (Figure 16C; 7.9 ± 0.2 cm in colitis mice vs 11.9 ± 

0.4 cm in normal mice, n=7, P<0.01).  

The mRNA expression level of Il-1β and Il-6 on day 7 was markedly upregulated in the 

colon of colitis mice compared with normal mice (Figure 17A. Il-1β: colitis mice: 17.4 ± 5.4, 

normal mice: 1.0 ± 0.3, n=7, P<0.05; Figure 17B. Il-6: colitis mice: 377.6 ± 164.2, normal 

mice: 1.0 ± 0.6, n=7, P<0.05). Destruction of epithelial integrity and crypt architecture was 

observed on day 7 in the colons of colitis mice.  
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Figure 16. Treatment with 3% DSS in BALB/c mice for 7 days (A) induced body weight loss, 

(B) increase the disease activity index (diarrhea and blood in the stool; DAI score), (C) 

shortened the colon. The data are presented as the mean ± SEM of 7 mice, * p<0.05, and 

**p<0.01 compared with normal mice by Student’s t-test. 
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Figure 17. The changes in the mRNA expression of proinflammatory mediators Il-1β and Il-

6 induced by DSS treatment in the colon of normal and colitis mice. (A) The relative mRNA 

expression level of Il-1β, and (B) relative mRNA expression level of Il-6. The data are 

presented as the mean ± SEM of 7 mice; *p<0.05 compared with normal mice by Student’s 

t-test.  

 

3.2. GPR41 expression was markedly increased in the colon of colitis group 

GPR41-IRs were observed in the nerve-like fibrous structures (Figure 18A: arrowheads) 

of both lamina propria and muscularis layer and in the cell somas of enteric neurons (Figure 

18A: arrow). This result was indicated that GPR41 is expressed in both nerve fibers and cell 

somas of enteric neurons, especially myenteric neurons. Moreover, GPR41-IRs were 

significantly increased in the colonic lamina propria of the colitis group approximately 2-

fold in the colonic lamina propria of colitis mice compared with normal mice (Figure 18B, 

n=5, P<0.01) 
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Figure 18. GPR41 immunoreactivities in the colon of normal and colitis mice. (A) 

Representative images of GPR41-IRs in the colons of normal and colitis mice, (B) 

quantitative analysis of GPR41-IRs in the lamina propria of the mouse colon. Arrowhead: 

nerve fibers; arrow: neurons. The data are presented as the mean ± SEM of 5 mice, **p< 0.01 

compared with normal mice by Student’s t-test.  

 

3.2.CGRP expression was significantly increased in the colon of colitis group 

Our recent study reveals that CGRP-IRs were observed in nerve fibers of the colonic 

lamina propria (Figure 19A: arrowheads) and enteric neurons (Figure 19A: arrow) of mice 

colon (Figure 19A). Quantitative analysis was showed that CGRP expression in the colonic  
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lamina propria of the colitis group was significantly increased by 41.4 ± 8.9% compared with 

the normal group (Figure 19B, n=5, P<0.01). 

 

Figure 19. 3% DSS treatment for 7 days elevated CGRP-immunoreactivities in mouse 

colonic mucosa. (A) Representative images of CGRP-IRs in mice colonic mucosa in normal 

and colitis condition. (B) Quantitative analysis of CGRP-IRs in the lamina propria of the 

mouse colon of normal and colitis mice. Arrowhead: nerve fibers; arrow: neurons. The data 

are presented as the mean  SEM of 5 mice, **p<0.01 compared with normal mice by 

Student’s t-test. 
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3.3.Colocalization of GPR41 and CGRP was observed in the colonic lamina propria of colitis 

group  

GPR41-IRs are partly colocalized with CGRP-IRs in the colonic lamina propria and 

muscularis layer of normal and colitis mice (Figure 20A), indicating that GPR41 is located 

in the nerve fibers and cell somas of cholinergic intrinsic sensory neurons in the mouse colon.  

 

 

Figure 20. GPR41-IRs are partly colocalized with CGRP-IRs in the colonic lamina and 

muscularis layer of normal and colitis mice. (A) Representative images of double-positive 

IRs of GPR41 and CGRP in the colonic lamina propria and muscularis layer of mice colon 

after DSS treatment for 7 days. Arrowhead: nerve fibers; arrow: neurons. (B) Quantitative 

analysis of double-positive IRs/GPR41 IRs area. (C) Quantitative analysis of double-positive 
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IRs/CGRP IRs area. The data are presented as the mean ± SEM of 5 mice, *p<0.05 compared 

with normal mice by Student’s t-test. 

 

The ratio of double-positive IRs to GPR41-IRs in the colonic lamina propria was significantly 

reduced in mice with colitis (Figure 20B; colitis mice: 21.2 ± 1.6%; normal mice: 34.0 ± 

2.8%, n= 5, P<0.05). On the other hand, the ratio of double-positive IR to CGRP-IRs was not 

affected by colitis treatment (Figure 20C).  

 

3.4. GPR41 and F4/80 immunoreactivity in DSS-induced acute colitis model showed 

morphological interaction between macrophages and GPR41-positive nerve fibers 

To determine whether GPR41 involvement in the pathology of intestinal inflammation 

related to neuro-immune interaction I performed immunohistochemistry against GPR41 and 

F4/80 antibody. My research found that intestinal F4/80-positive macrophages were located 

in the colonic lamina propria colitis mice (Figure 21A). The proportion of F4/80-positive 

macrophages was increased in the colitis group after DSS treatment compared with normal 

mice (Figure 21B, n=3, P<0.01). GPR41-immunoreactive nerve fibers were found in the 

colonic lamina propria of the colitis mice (Figure 21A), which many of them were juxtaposed 

with F4/80-positive macrophages (Figure 21A). The number of F4/80-positive macrophages 

in close proximity to GPR41-positive nerve fibers were increased in the colonic lamina 

propria of colitis mice (Figure 22A, B, n= 3, P<0.05).   
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Figure 21. Morphological proximity between GPR41-positive nerve fibers and F4/80-

positive macrophages in the colon of mice with DSS-induced colitis. Treatment with 3% DSS 

increased GPR41-IRs and F4/80-IRs in the colon of mice with colitis. (A) representative 

images of F4/80-positive macrophages in the colon of colitis mice, (B) quantitative analysis 

of F4/80-positive macrophages in the colon of normal vs colitis mice, (C) representative 

images of GPR41-positive nerve fibers in the colon of colitis mice, and (D) representative 

images of the morphological proximity between GPR41-positive nerve fibers and F4/80-

positive macrophages in the colon of colitis mice. The data are presented as the mean ± SE 

of 3 mice, **p<0.01 compared with normal mice by Student’s t-test. 
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Figure 22. The number of F4/80-positive macrophages in close proximity to GPR41-positive 

nerve fibers were increased in the colonic lamina propria of colitis mice (A) Representative 

images of F4/80-positive macrophages in close proximity to GPR41-positive nerve fibers in 

the colonic lamina propria of normal and colitis mice. (B) Histogram showed the number of 

F4/80-positive macrophages in close proximity to GPR41-positive nerve fibers. The data are 

presented as the mean ± SE of 3 mice, *p<0.05 compared with normal mice by Student’s t-

test. 



54 
 

3.5.GPR41 and CGRP immunoreactivities in the mice colonic mucosa after antibiotic 

treatment for 10 days 

Antibiotic cocktail treatment for 10 days showed markedly increased the size of mouse 

cecum (Figure 23A and 23B; 712.86 ± 50.46 mg in ABX-treated mice; 378.57 ± 16.82 mg 

in vehicle-treated mice; n=7, P<0.01). This result suggested that dysbiosis of the gut 

microbiota occurred after 10 days of antibiotic treatments.

 

 

Figure 23. Antibiotic treatment for 10 days induced gut dysbiosis in mice shown by cecum 

enlargement. (A) Representative images of mice cecum of vehicle and ABX mice. (B) Cecum 

weight comparison between vehicle and ABX mice. The data are presented as the mean ± 

SEM of 7 mice, **p<0.01 compared with vehicle mice by Student’s t-test. 
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However, antibiotic treatment did not affect the morphology of small intestine and colon as 

shown by the comparable length of small intestine and colon between vehicle and ABX mice. 

In addition, ABX model did not caused antibiotic-induced diarrhea.  

Antibiotic treatment for 10 days caused a significant decrease approximately 20.8 ± 3.4% of 

GPR41-immunoreactivities in ABX mice compared with vehicle mice (Figure 24A and 24B; 

n=6-7; P<0.01).  

 

 

Figure 24. Antibiotic treatment for 10 days decreased the expression of GPR41 in ABX-

treated mice. The data are presented as the mean  SEM of 6-7 mice, **p<0.01 compared 

with vehicle mice by Student’s t-test.  
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CGRP expression in the colonic lamina propria of ABX mice was significantly reduced by 

24.2 ± 3.6% compared with vehicle-treated mice (Figure 25A and 25B; n=6-7; P<0.01).   

 

Figure 25. Antibiotic treatment for 10 days decreased the expression of CGRP in ABX-

treated mice. Data are presented as the mean  SEM of 6-7 mice, **p<0.01 compared with 

vehicle mice by Student’s t-test.  

 

I observed colocalization between GPR41-IRs and CGRP-IRs in the colonic lamina propria 

of vehicle and ABX mice (Figure 26A). The ratio of double-positive IRs to GPR41-IRs or 

CGRP-IRs was unaffected by antibiotic treatment (Figure 26B and 26C). 
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Figure 26. Colocalization between GPR41 and CGRP were found in the colonic lamina 

propria of a vehicle and ABX-treated mice. (A) Representative images of double-positive 

IRs of GPR41 and CGRP in the colonic lamina propria and muscularis layer of mice colon 

after antibiotic treatment for 10 days. (B) Quantitative analysis of double-positive 

IRs/GPR41 IRs area. (C) Quantitative analysis of double-positive IRs/CGRP IRs area. The 

data are presented as the mean ± SEM of 6-7 mice. 
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4. Discussion 

DSS-induced colitis model is known as the most widespread and most characterized 

chemically induced models in the investigation of inflammation related to UC (Solomon et 

al., 2010; Chassaing et al., 2014). Most of the DSS model studies focused on mucosal 

response affected by DSS treatment and its similarity to clinical manifestation found in UC 

patients (Munyaka et al., 2016; Wirtz and Neurath, 2007; Kitajima et al., 2000; Melgar et al., 

2008; Yan et al., 2009). Only several studies of the DSS model investigated the dysbiosis of 

the gut microbiota and changes in their metabolic capacity related to DSS treatment 

(Munyaka et al., 2016; Berry et al., 2012; Smith et al., 2012). Those previous research 

revealed that DSS-induced colitis was associated with changes in the composition of gut 

microbiota and that gut microbiota could affect the sensitivity of the host to DSS treatment.  

Our recent study showed that the colitis mice experienced severe colitis which was shown 

from body weight, DAI score, and destruction of epithelial integrity which accompanied by 

crypt architecture damaged.  

My current reports indicate that GPR41 is expressed in both nerve fibers and cell somas 

of enteric neurons. Our results have a discrepancy with the previous findings using GPR41-

mRFP transgenic mice which mentioned that GPR41 is expressed in the cell somas of 

submucosal neurons and myenteric neurons (Nøhr et al., 2013). This discrepancy probably 

due to the great difference in the sensitivity and accuracy required to detect GPR41 in the 

nerve fibers of mice colonic mucosa.  

Prior reports related to GPR41 expression did not provide information on which type of 

enteric neurons expressed GPR41. The enteric nervous system, comprised of many types of 

neurons, such as intrinsic sensory neurons, interneurons, and motor neurons (Qu et al., 2008). 

These neurons configured intrinsic neural circuits and play a crucial role in the maintenance 

of gut integrity which largely depends on the rapid alarm from sensory neurons in the gut 

(Holzer, 2007). My study uses an anti-CGRP antibody to investigate whether GPR41 is 

expressed in intrinsic sensory neurons rather than enteric cholinergic neurons in the colonic 

mucosa. CGRP is assumed to be a neurotransmitter in cholinergic intrinsic sensory neurons 

in the mouse enteric nervous system (Lee et al., 2013; Qu et al., 2008). It is well known that 



59 
 

the local release of CGRP from terminals of sensory neurons is critical for the development 

of neurogenic inflammation. Furthermore, our previous study indicates that CGRP functions 

in the intestine as a mediator between the nervous system and immune system in a murine 

food allergy (FA) model (Lee et al., 2013). In my current research, CGRP-IRs were observed 

in the nerve fibers of the colonic lamina propria and it was significantly increased in mice 

with colitis. These results are in close agreement with our previous report which revealed 

that CGRP-immunoreactive nerve fibers juxtaposed with mucosal mast cells are specifically 

increased in the colonic mucosa of FA mice (Lee et al., 2013).  

DSS-induced colitis reportedly causes the overgrowth of commensal enterobacteria such 

as Escherichia coli which possesses potential proinflammatory properties (Heimesaat et al., 

2011). Toll-like receptor-4, which recognizes lipopolysaccharide (membrane component of 

gram-negative bacteria) is reportedly expressed in myenteric neurons of the mouse colon 

(Barajon et al., 2009), suggesting that enteric neural circuits might be directly activated by 

enteric bacteria. One possible explanation for the increased GPR41 and CGRP expression 

after DSS treatment is due to activation of enteric neurons, especially sensory neurons, by 

easy penetration of SCFAs and enteric bacteria into the lamina propria through colitis-

induced disruption of the epithelial barrier function in the colon of mice with colitis.  

My recent research found the colocalization between GPR41 and CGRP in mice colonic 

lamina propria indicated that GPR41 is located in the nerve fibers and cell somas of 

cholinergic intrinsic sensory neurons in the mouse colon. The ratio of double-positive IRs to 

GPR41-IRs or CGRP-IRs is suggested that GPR41 expression in nerve fibers of enteric 

neurons other than sensory neurons is upregulated by DSS treatment, which may cause a 

disturbance of intrinsic neural circuits and subsequently result in disorders of colonic motility 

such as diarrhea that are typically observed in colitis mice.  

The mechanisms and pathways that are probably related to GPR41 involvement in the 

pathology of enteric immune disorders remain elusive. In this recent research, I observed 

F4/80-positive intestinal macrophages were located in the colonic lamina propria of colitis 

mice. The proportion of these intestinal macrophages was markedly upregulated in the 

colonic mucosa after DSS treatment compared with normal mice. This result was in 



60 
 

agreement with our previous report (Hayashi et al., 2017). Many GPR41-immunoreactive 

nerve fibers found in the colonic lamina propria were juxtaposed with F4/80-positive 

macrophages. Our previous report in food allergy model mice indicated that CGRP-positive 

intrinsic sensory neurons were involved in the pathogenesis of food allergy via neuro-

immune interaction with mucosal mast cells (Lee et al., 2013; Kim et al., 2014; Yamamoto 

et al., 2014). In addition, it is reported that microbiota-driven crosstalk between muscularis 

macrophages and enteric neurons regulates gastrointestinal motility (Muller et al., 2014). 

Taken together, these results indicated that neuro-immune interaction of GPR41-positive 

intrinsic sensory neurons and F4/80-positive macrophages in the colonic lamina propria 

might contribute to the maintenance of intestinal homeostasis and the pathogenesis of 

intestinal immune disorders accompanied by gut microbiota dysbiosis. 

ABX model is frequently used to investigate the gut microbiota interaction with the host 

in terms of intestinal homeostasis, luminal signaling, and metabolism. ABX model is 

considered to be a more reasonable model to investigate the causative of gut microbiota-

dependent effect compared with the germ-free mouse model. GPR41 downregulation in the 

colonic lamina propria of ABX-treated mice probably due to the reduced number of enteric 

bacteria and gut microbiota composition change after antibiotic treatment. A previous report 

showed gut microbiota composition in normal mice is dominated by Firmicutes species 

(butyrate-producing bacteria) and Bacteroidetes species, meanwhile, it is shifted to 

Proteobacteria after antibiotic treatment (Zarrinpar et al., 2018). CGRP expression in colonic 

lamina propria was also reduced in ABX mice compared to vehicle mice. GPR41-IRs was 

found to be colocalized with CGRP-IRs in the colonic lamina propria of the vehicle and 

ABX-treated mice. The ratio of double-positive IRs to GPR41-IRs or CGRP-IRs was 

unaffected by antibiotic treatment, indicated that antibiotic treatment for 10 days did not 

affect the composition of either GPR41-positive fibers or CGRP-positive sensory nerve 

fibers. In addition antibiotic treatment also did not generate antibiotic-induced diarrhea, 

suggesting that antibiotic-induced dysbiosis may not influence enteric neural circuits.  

Taken together, I conclude that GPR41-positive nerve fibers might be act as a mediator in 

the crosstalk between host immune system and gut microbiota. Besides, neuro-immune 
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interaction were shown by the GPR41-positive nerve fibers juxtaposed with F4/80-positive 

macrophages (Figure 27). 

 

Figure 27. Schematic representation of how GPR41 acts as a mediator of crosstalk between 

gut microbiota and immune system in the gastrointestinal tract through activation by SCFAs 

which is generated from the fermentation of dietary fibers by gut microbiota.  
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Conclusion and Future Directions  

My recent report to study the pathophysiological role of IL-4R and GPR41 in the murine 

colitis model reveals some important findings.  

The first study to investigate the role of IL-4R seems to be the first time to show the role 

of interleukin 4 receptor alpha in the intestinal inflammation in vivo. An important finding 

from my study is depletion of IL-4R alpha elevated ROS production-derived NOX1 and 

modulate intestinal mucosal barrier function, resulting the alleviation of acute colitis severity 

(Figure 15). The limitation of this study is I could not show direct evidence that epithelial 

cells indeed produced ROS-derived NOX1 to protect the IL-4R-/- mice from colitis. 

Accumulating evidence from previous reports mentioned that IBD therapy aims is to create 

a long-term remission state, and to address this objective reconstruction of a wounded 

intestinal mucosa is required after induction of remission (Neurath and Travis, 2012). My 

findings could contribute to a novel therapeutic strategy by creating long-term remission 

through the regulation of ROS production-derived NOX1 mediated by IL-4 signaling 

(Figure 28).  

My second study which aimed to determined pathophysiological roles of GPR41 in the 

intestinal inflammation demonstrated for the first time that GPR41 was expressed by enteric 

nerve fibers of both the lamina propria and muscularis layer of mice beside the cell soma of 

enteric neurons. My study also revealed that GPR41 is expressed on a part of cholinergic 

enteric sensory neurons which showed by the results in Figure 20 and 26 that approximately 

one-third of CGRP immunoreactive nerve fibers were immunoreactive for GPR41. GPR41-

positive nerve fibers were found in close proximity with F4/80-positive nerve fibers indicated 

that neuro-immune interaction of GPR41-positive intrinsic sensory neurons and F4/80-

positive macrophages probably contribute to the maintenance of intestinal homeostasis and 

the pathogenesis of intestinal inflammation accompanied by gut microbiota dysbiosis. My 

finding could contribute as preliminary data for further experiments to elucidate whether the 

GPR41 expression plays a functional role in the development of intestinal inflammation in 

the future. 
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In conclusion, although further research is needed to clarify the mechanism of intestinal 

mucosal barrier function regulation by IL-4R and GPR41, the results of this study are 

expected to get a deeper understanding of IBD pathogenesis. My current finding might play 

contribution to create a novel therapeutic approach for IBD treatment (Figure 28).  

 

 

 

Figure 28. Depiction image how the finding in the role of IL-4R and morphological 

alteration of GPR41 in the intestinal inflammation may improve the understanding of IBD 

pathogenesis and contribute to create novel therapy in IBD treatment.  
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