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In this short note, we apply the Newton’s method to the characteristic polynomial of the 3rd order

pairwise comparison matrices. We show the convergence of the sequence generated from the initial value 3,
to the maximum eigenvalue.

Key words:AHP, pairwise comparison matrix, Newton’s method, convergence

1 Introduction

In the context of AHP(Analytic Hierarchy Process), evaluating the principal eigenvalue of pairwise compar-
ison matrices is a key ingredient. The associated eigenvector is used as a priority vector [1, 3, 7, 12]. To
find the maximum eigenvalue and the associated eigenvector, one usually uses ’Power Iteration’. For the
beginners of AHP, the calculation is not an easy task. So we constructed WWW systems for wide users[4, 5].
On the other hand, to calculate the maximum eigenvalue by Excel, we proposed Newton’s method[11]. In
this note, we focus on 3rd order pairwise comparison matrices. With the aid of the favorable properties of
them, we will show that the sequence generated by Newton’s method converges to the maximum eigenvalue.

2 Existence of the solution

We consider the 3rd order pairwise comparison matrix:

A =

 1 a12 a13
1

a12
1 a23

1
a13

1
a23

1

 . (1)

Its characteristic polynomial has the following form [9, 10]:

PA(λ) = λ3 − 3λ2 − detA.

We can calculate determinant of the pairwise comparison matrix as follows.

detA =

∣∣∣∣∣∣
1 a12 a13
1

a12
1 a23

1
a13

1
a23

1

∣∣∣∣∣∣
=

a12a23
a13

+
a13

a12a23
− 2 ≥ 0.
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The last inequality follows from the relationship between the arithmetic mean and the geometric mean.
We say the matrix A is consistent if aikakj = aij . For the 3rd order pairwise comparison matrix, it is obvious
that the consistency of A and detA = 0 is equivalent. If A is consistent, the characteristic polynomial is
PA(λ) = λ3−3λ2 = λ2(λ−3). In this case, solution of the characteristic equation is λ = 3, 0 (0 is a multiple
root).

Below, we treat the case when A is inconsistent(i.e. detA > 0). Taking the derivatives of PA(λ), we have
P ′
A(λ) = 3λ(λ− 2). So the point λ = 0 takes a local maximum and the point λ = 2 takes a local minimum.

The vertical axis section is −detA < 0. We indicate the shapes of the graph of PA(λ) in Figure1.

λ

PA(λ)

32

−detA

Figure 1: Inconsistent case

Easy calculation shows the followings:

PA(3) = 33 − 3 · 32 − detA = −detA < 0,

PA(3 + detA) = (3 + detA)3 − 3(3 + detA)2 − detA

= 27 + 27 detA+ 9(detA)2 + (detA)3 − (27 + 18 detA+ 3(detA)2)− detA

= 8detA+ 6(detA)2 + (detA)3 > 0.

We immediately have the following existence theorem of the solution for the characteristic equation.

Theorem 1 　 For the inconsistent pairwise comparison matrix A, the characteristic equation has a unique
real-valued solution in the interval (3, 3 + detA). This solution is the maximum eigenvalue.

Proof. By the intermediate value theorem[2], the existence of real solution is obvious. From the shape
of the graph, this solution is unique real-valued solution. In general, other two conjugate complex-valued
solutions exist, say a± bi, b ̸= 0.

From the general theory of eigenvalues and the trace of the matrix[7], we have λ+(a+ bi)+ (a− bi) = 3.
So we have

a =
3− λ

2
.

Since a+ bi is the solution of the characteristic equation, we have

(a+ bi)3 − 3(a+ bi)2 − detA = 0.
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By expanding the left-hand-side of the formula, we have

0 = a3 − 3ab2 − 3a2 + 3b2 − detA,

0 = 3a2b− b3 − 6ab.

Since b ̸= 0, from the last formula, we have

3a2 − b2 − 6a = 0.

So we finally have
b2 = 3a2 − 6a.

Thus we have

a2 + b2 =
(3− λ

2

)2

+ 3
(3− λ

2

)2

− 6
(3− λ

2

)
= λ2 − 3λ < λ2.

This means λ is maximum. //

3 Convergence of Newton’s method

From the general theory of Newton’s method, convergence is obvious[6]. Here we give the elementary proof.
We set initial point λ0 = 3 and generate a sequence by the following iteration.

• λ0 = 3,

• λn+1 = λn − PA(λn)

P ′
A(λn)

.

λmax denotes the maximum eigenvalue guranteed by Theorem 1. So PA(λmax) = 0.

Lemma 1 　 For all n ≥ 1, we have λn > λmax．

Proof. We prove by induction. Set n = 1. λ1 = 3 + detA
9 > 3 and PA(λ1) =

2
27 (detA)2 + (detA9 )3 > 0.

So we have λ1 > λmax.
From the assumption of the induction, we can take λmax ≤ λ < λn. Since P ′

A(λ) is monotone increasing
for λ > 2, we have

P ′
A(λ) < P ′

A(λn).

Thus we have ∫ λn

λ

P ′
A(λ)dλ <

∫ λn

λ

P ′
A(λn)dλ.

So we conclude

PA(λn)− PA(λ) < P ′
A(λn)(λn − λ). (2)

Set λ = λmax. Taking account into PA(λmax) = 0, we have

λmax < λn − PA(λn)

P ′
A(λn)

= λn+1.

//
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Lemma 2 　 The generated sequence λn is monotone decreasing for n ≥ 1.

Proof. From Lemma1, we have 3 < λmax < λn. Since PA(λ) is monotone increasing for λ > 3, we have
PA(λn) > PA(λmax) = 0. Obviously P ′

A(λn) > 0 and PA(λn) > 0, so we have λn > λn+1. //

From Lemmas 1 and 2, the sequence is monotone decreasing and bounded below. So it converges[2].

Theorem 2 　 The sequence λnconverge to λmax.

Proof. Obvious. //

4 Conclusion

In this note, we fully use the favorable properties from which A is 3rd order. For the matrices for 4 and
more order dimension, the followings are open problems.

• If one happens to find the solution of the characteristic equation and can verify λ ≥ n, then is it the
maximum eigenvalue?

• If we set initial value λ0 = n, does Newton’s method generate a convergence sequence.

We leave them to the further reseach.
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