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The ratio between the CMB lensing/galaxy counts and the galaxy shear/galaxy counts cross-correlations
combines the information from different cosmological probes to infer cosmographic measurements that are
less dependent on astrophysical uncertainties and can constrain the geometry of the Universe. We discuss
the future perspectives for the measurement of this lensing ratio as previously introduced, i.e., with the use
of the Limber and flat-sky approximations and neglecting all the effects on the galaxy survey from
observing on the past light cone. We then show how the cosmological information in this estimator is
affected by the Limber approximation and by the inclusion of the redshift space distortions (RSD) and
lensing magnification contributions to the galaxy number counts. We find that the lensing magnification
contribution induces a multipole dependence of the lensing ratio that we show to be detectable at a
statistical significant level combining post-Planck CMB surveys and a Euclid-like experiment. We propose
an improved estimator which takes into account this angular scale dependence. Using this extended
formalism, we present forecasts for upcoming and future cosmological surveys, and we show at which
extent the lensing ratio information can improve the CMB constraints on cosmological parameters. We get
that for extended cosmological models where the neutrino mass, the spatial curvature and the dark energy
equation of state are allowed to vary, the constraints from Planck on these parameters and on H0 can be
reduced by ∼40% with the inclusion of a single lensing ratio and by ∼60%–70% adding the joint
measurement of 9 lensing ratios with a Euclid-like survey. We also find that neglecting the contribution
from lensing magnification can induce a bias on the derived cosmological parameters in a combined
analysis.

DOI: 10.1103/PhysRevD.102.023502

I. INTRODUCTION

Weak gravitational lensing is one of the most direct
probes of the distribution of dark matter and it is correlated
with the intervening process of structure formation. Ratios
between cross-correlations of galaxies and weak lensing at
two different source planes in redshift have been proposed
as cosmographic distance measurements [1–6]. The role of
these ratio estimators between the weak lensing at two
different redshift and a matter tracer as a cosmographic
measure becomes extremely transparent under different
approximations, such as the Limber and flat sky approxi-
mation, and the limit in which the foreground distribution is
extremely peaked in redshift.

Being a ratio between two cross-correlation terms with
the same lens, this estimator is largely independent on the
clustering bias of the lens and weak lensing systematics, but
depends on most of the background cosmological param-
eters. By taking one of the source planes as the CMB last
scattering surface, the lever arm of such a lensing ratio
estimator becomes somewhat maximal [5,6].
The scientific potential of the CMB lensing ratio as a

cosmographic measurement for the next generation of
CMB and LSS experiments has been forecast in several
papers [6–8]. The estimator for the lensing ratio between
CMB lensing/galaxies and galaxy shear/galaxies has
already been applied to real data [8,9]. Miyatake et al.
[9] used CMASS [10] and CFHTLens [11] for galaxy
lenses and sources, respectively, and CMB lensing from
Planck 2015 [12]. Prat et al. [8] used galaxy position
and lensing from DES Y1 [13] and CMB lensing from a
combination of Planck 2015 and SPT [14].
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In this paper we study and extend the lensing ratio
estimator as introduced by Das and Spergel in [6] (hence-
forth DS) and we study its scientific capabilities in the
context of future cosmological observations. We show how
the approximations in the galaxy and lensing kernel and the
finite width in redshift of the lenses density distributions
affect to the multipole dependence of the lensing ratio.
The inclusion of the lensing magnification contribution in
the galaxy number counts introduces a further and larger
dependence on the multipoles, which we show to be
detected with future cosmological observations, and calls
for an extension of a lensing ratio estimator which takes
into account the dependence on multipoles.
Our paper is organized as follows. After this introduc-

tion, we introduce the notation for the CMB lensing/galaxy
and galaxy shear/galaxy cross-correlation, respectively, in
Sec. II. In Sec. III we introduce the experimental specifi-
cations of the CMB anisotropies and galaxy surveys we use
in our forecasts. In Sec. IV we forecast the capabilities of a
Euclid-like1 [15] experiment alone and in combination with
galaxy lenses at lower redshift from DESI2 [16] and
SPHEREx3 [17] in measuring the lensing ratio as originally
introduced in DS. In Sec. V we consider the ratio between
the CMB lensing/galaxy and galaxy shear/galaxy cross-
correlations without approximations and replacing the
galaxy density with the galaxy number counts including
RSD and lensing magnification contributions and introduce
its optimal estimator and minimum variance. In Sec. VI we
forecast the expected errors on cosmological parameters by
using the novel methodology introduced in Sec. V. In
Sec. VII we draw our conclusions.

II. FORMALISM

In this section we define the quantities involved in the
angular power spectra of the cross-correlation between a
foreground lens galaxy population and a background weak
lensing source that comes from the CMB or from the
galaxy shear. We define the angular power spectrum as

δll0δmm0Ca
l ¼ halma�l0m0 i ð1Þ

where alm are the spherical harmonic coefficients obtained
from the expansion of a scalar field with spin-0 spherical
harmonics as

aðn̂Þ ¼
X
lm

almY�
lmðn̂Þ: ð2Þ

We are interested in the cross-correlation of a foreground
galaxy number density field with two different back-
grounds as the convergence field from the weak lensing

of galaxies and of the CMB. The angular power spectrum
can be calculated as

CXY
l ¼ 4π

Z
dk
k
PðkÞIXl ðkÞIYlðkÞ ð3Þ

where PðkÞ≡ k3PðkÞ=ð2π2Þ is the dimensionless primor-
dial power spectrum and IXl ðkÞ is the kernel for the X field
for unit primordial power spectrum.
All the weak lensing quantities can be defined from the

lensing potential

ϕðn̂; χÞ ¼ 2

c2

Z
χ

0

dχ0
χ − χ0

χχ0
Φðχ0n̂; χ0Þ ð4Þ

where Φðn̂; χÞ is the gravitational potential. The comoving
distance is

χðzÞ ¼
Z

z

0

cdz0

Hðz0Þ : ð5Þ

The observable 2-dimensional lensing potential, aver-
aged over background sources with a redshift distribution
WbðχÞ, is given by

ϕðn̂Þ ¼ 2

c2

Z
χ

0

dχ0

χ0
qbðχ0ÞΦðχ0n̂; χ0Þ ð6Þ

where qbðχÞ is the lensing efficiency (for a given back-
ground distribution Wb) defined as

qbðχÞ ¼
Z
χ
dχ0

χ0 − χ

χ0
Wbðχ0Þ: ð7Þ

By expanding the gravitational potential in Fourier space
and using the plane-wave expansion, we can define the
lensing potential kernel as [18]

IϕlðkÞ ¼ 2

�
3ΩmH2

0

2k2c2

�Z
dχ

ð2πÞ3=2
qbðχÞ
χaðχÞ jlðkχÞδðk; χÞ; ð8Þ

where Ωm is the present-day matter density, H0 is the
Hubble constant, δðk; χÞ is the comoving-gauge matter
density perturbation, and jl the spherical Bessel functions.
In case of CMB lensing, the source distribution can be
approximated by WCMBðχÞ ≃ δDðχ − χ�Þ and the lensing
efficiency by

qCMBðχÞ ≃
χ� − χ

χ�
ð9Þ

where χ� is the comoving distance at the surface of last
scattering, and Eq. (8) reduces to

1https://www.cosmos.esa.int/web/euclid/home
2https://www.desi.lbl.gov/
3http://spherex.caltech.edu/
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IϕCMB
l ðkÞ ¼ 2

�
3ΩmH2

0

2k2c2

�

×
Z

dχ

ð2πÞ3=2
χ� − χ

χ�χ
1

aðχÞ jlðkχÞδðk; χÞ: ð10Þ

Finally the convergence κ ¼ ∇2ϕ=2 can be expanded in
spherical-harmonics as

κðn̂Þ ¼ −
1

2

X
l;m

lðlþ 1ÞϕlmYm
l ðn̂Þ ð11Þ

and we can relate the two kernel functions by

IκlðkÞ ¼
lðlþ 1Þ

2
IϕlðkÞ: ð12Þ

The 2-dimensional integrate window function for the
galaxy number counts is

IGl ðkÞ ¼
Z

dχ

ð2πÞ3=2WfðχÞΔs
lðk; χÞ ð13Þ

where Δs
lðk; χÞ is the synchronous gauge source counts

Fourier transformed and expanded into multipoles and
WfðχÞ is the foreground redshift distribution of galaxies.
We assume that Δs

lðk; χÞ is related to the underlying matter
density field through a redshift dependent galaxy bias bg
as Δs

lðk; χÞ ¼ bgðχÞδðk; χÞjlðkχÞ.
Finally, we define the lensing ratio as DS

rl ≡ CκCMBG
l

C
κgalG
l

: ð14Þ

III. DATA AND SPECIFICATIONS

We define here the specifications for the future large
scale structure and CMB surveys considered in order to
produce the mock signal and noise data. The lensing ratio
estimator is based in the cross-correlations between three
ingredients: a tracer for the foreground galaxy population,
a background of source galaxies traced by a Euclid-like
photometric survey; and the CMB lensing background
source, for which we consider a Planck-like experiment
and many future experiments.
We create the mock data for the angular power spectra

using CLASSgal [19,20]. The nonlinear corrections are
modeled as HALOFIT with the recipe by [21]. For the
fiducial cosmology we assume a ΛCDMþP

mν model
with one massive neutrino consistent with the Planck 2018
results [22]. We use Ωbh2 ¼ 0.022383, Ωch2 ¼ 0.12011,
H0 ¼ 67.32 km s−1Mpc−1, τ ¼ 0.0543, ns ¼ 0.96605,
lnð1010AsÞ ¼ 3.0448 and

P
mν ¼ 0.06 eV.

A. Galaxy lenses

For the foreground lens population we use a Euclid-like
spectroscopic survey and lower redshift populations like
DESI and SPHEREx that allow to increase the background
number of objects and the distance between the lens and the
sources, which come from the Euclid photometric survey.
We describe here the specifications of these experiments.
We adopt as baseline for a given lens population narrow

slices with Δz ¼ 0.1. For this, we convolve the number
density distribution dN=dz with a Gaussian probability
distribution for the measured redshift given the redshift
accuracy. Following [23], the number density distribution
of a single bin is expressed as

dnigal
dz

¼ dN
dz

Z
zmax

zmin

dzmpðzmjzÞ; ð15Þ

where zmin, zmax are the edges of the redshift bin and
pðzmjzÞ is the probability density for the measured redshift
zm given the true redshift z of the galaxy, given by

pðzmjzÞ ¼
1ffiffiffiffiffiffi
2π

p
σz

e−
1
2
ðzm−zÞ2=σ2z : ð16Þ

Inserting Eq. (16) into Eq. (15) we obtain:

dni
dz

¼ 1

2

dN
dz

�
erf

�
zmax − zffiffiffi

2
p

σz

�
− erf

�
zmin − zffiffiffi

2
p

σz

��
ð17Þ

where erf is the error function.
In the harmonic space, the Poisson shot noise for a given

foreground population at redshift zi is obtained as the
inverse of the number of objects per steradian,

N G
l ðziÞ ¼

4πfsky
n̄ig

ð18Þ

where fsky is the sky fraction and nig is the total number of
galaxies.

1. Euclid-like spectroscopic survey

The Euclid spectroscopic survey will measure the galaxy
clustering from millions of Hα emitters in a redshift range
0.9 ≤ z ≤ 1.8 with a sky coverage of 15000 deg2. The
number density distribution dN=dz of the survey is fitted
from the model 3 data by [24] using a flux threshold
FHα > 2 × 10−16 erg cm−2 s−1. This yields as total number
density of objects n̄g ¼ 2039 sources per deg2, for which we
introduce a 50% factor due to the Euclid completeness and
purity. We assume a bias evolution function bgðzÞ ¼ 0.7þ
0.7z according to the fitting for Hα emission line object from
[25]. The redshift accuracy is characterized by a dispersion
σz ¼ 0.001ð1þ zÞ. We represent in Fig. 1 the dN=dz of the
full survey and the selected foreground population for the
first redshift bin at 0.9 < zlens < 1. We will refer hereafter to
this foreground configuration as Euclid-r1.
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2. Lenses at lower redshift

For the foreground lens populations at lower redshift
we consider the ground-based survey Dark Energy
Spectroscopic Instrument (DESI) and the recently approved
NASA mission Spectro-Photometer for the History of
the Universe, Epoch of Reionization, and Ices Explorer
(SPHEREx).
DESI is an ongoing spectroscopic survey that covers

∼14000 deg2 in the sky. Here we consider the lower
redshift target objects: the bright galaxy sample (BGS),
which will measure ∼10 million galaxies at 0 < z < 0.4.
We adopt the specifications in [16] for the number density
distribution and the bias redshift evolution, which is given
by bgðzÞ ¼ 1.34=DðzÞ. The redshift accuracy is given by
σz ¼ 0.001ð1þ zÞ. The overlapping sky fraction with
Euclid will be limited to ∼4000 deg2.
SPHEREx will be a full-sky spectro-photometric survey

that can operate with different configurations depending
on the number of objects and redshift accuracy. In this
work we assume SPHEREx-2, a configuration with σz ¼
0.008ð1þ zÞ and ∼70 million objects.4 Since this survey
will cover ∼80% of the sky, there will be full overlap with
the background from Euclid and all the CMB experiments.

We represent in Fig. 1 the dN=dz of the full survey and the
lens foreground population for a bin at 0.2 < zlens < 0.3.
We will refer hereafter this foreground configuration as
SPHEREx-r1.

B. Galaxy shear sources: Euclid-like
photometric survey

The Euclid photometric survey will measure both galaxy
clustering and weak lensing from a sample of billions of
galaxies. Here we will consider the weak lensing from a
given background population. We parametrize the dN=dz
of the survey as

dN
dz

∝ zα exp

�
−
�
z
z0

�
β
�

ð19Þ

where α ¼ 2, β ¼ 3=2, z0 ¼ zmean=
ffiffiffi
2

p
and zmean ¼ 0.9 is

the mean redshift of the survey. The number density of the
sources population is n̄g ¼ 30 objects per arcmin2. The sky
coverage is 15000 deg2 as well as for the spectroscopic
survey, and the bias is assumed to evolve with redshift
following bGðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
[26].

We assume that the background population is given by a
broad bin that maximizes the number of objects behind the
lenses without overlapping with them. For this, we con-
volve the dN=dz of the photometric survey with a Gaussian
redshift probability distribution with a dispersion σz ¼
0.05ð1þ zÞ, following Eq. (17). We show in Fig. 1 the
dN=dz of the photometric survey and the maximal back-
ground source populations for the two foregrounds of the
Euclid-r1 and SPHEREx-r1 configurations.
The shear noise for the background population for a

redshift bin at zi is obtained as

N
κgal
l ðziÞ ¼ σ2ϵ

4πfsky
n̄ig

ð20Þ

where σϵ is the intrinsic ellipticity RMS, for which we
adopt σϵ ¼ 0.22, fsky is the sky coverage and nig is the
number of sources.

C. CMB lensing source

For the CMB lensing background source we consider as
surveys the ESA mission Planck5 [27], the ground-based
future experiments Simons Observatory (SO)6 [28] and
CMB Stage-4 (S4)7 [29], the proposed space missions
Lite satellite for the studies of B-mode polarization and
Inflation from cosmic background Radiation Detection
(LiteBIRD)8 [30], and the two concepts Probe of Inflation

FIG. 1. Survey configuration for the lensing ratio. The green
dashed curve represents the normalized dN=dz of SPHEREx and
the green shaded area corresponds to a bin at 0.2 < z < 0.3 for
the foreground population of the SPHEREx-r1 configuration. The
blue dashed curve represents the normalized dN=dz of the Euclid-
like spectroscopic survey, and the blue shaded area corresponds
to the bin at 0.9 < z < 1.0 that traces the foreground of the
Euclid-r1 configuration. The red dashed curve represents the
normalized dN=dz of the Euclid-like photometric survey, and
the pink and red shaded areas correspond to the background of
source galaxies beyond the SPHEREx-r1 and Euclid-r1 lenses.

4For the SPHEREx number density distribution and the bias
redshift evolution we fit the data by Olivier Doré (private
communication).

5https://www.cosmos.esa.int/web/planck
6https://simonsobservatory.org/
7https://cmb-s4.org/
8http://litebird.jp/eng/
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and Cosmic Origins (PICO)9[31] and Polarized Radiation
Imaging and Spectroscopy Mission (PRISM)10 [32]. The
specifications of these experiments will be also used for
temperature and polarization for a quantitative assessment of
what the lensing ratio can add to the information of the CMB
fields alone.
We reconstruct the minimum variance (MV) estimator

for the CMB lensing noise N ϕϕ
l using the temperature and

polarization noise N TT
l and N EE

l . This is done combining
the TT, EE, BB, TE, TB, EB estimators following the
Hu-Okamoto algorithm [33] and using the public code
QUICKLENS.11 For the TT and EE channels we calculate the
isotropic noise deconvolved with the instrument beam
using the formula

N X
l ¼ w−1

X b−2l ; bl ¼ e−lðlþ1Þθ2FWHM=16 ln 2 ð21Þ

where θFWHM is the FWHM of the beam in radians and
wTT , wEE are the inverse square of the detector noise level
for temperature and polarization in arcmin−1 μK−1.
In order to provide specifications of simulated Planck-

like data leading to uncertainties on the cosmological
parameters compatible with the latest results in [22] we
adopt wTT ¼ 33 μKarcmin, wEE ¼ 70.2 μKarcmin and
θFWHM ¼ 7.3 arcmin for the 143 GHz channel and assume
a sky fraction of fsky ¼ 0.7. We readapt the noise in
polarization N EE

l inflating the noise in polarization at l <
30 in order to obtain estimates for the uncertainty in the
optical depth compatible with the Planck 2018 results. For
the Planck-like survey, the effective noise bias for the
CMB lensing power spectrum is obtained from the inverse
weighted sum of the specifications of the 143 and 217 GHz
channels in [34] to match the Planck 2018 performances
[22]. We assume a sky coverage fsky ¼ 0.7 also for the
lensing, which fully overlap with Euclid and we set
lmax ¼ 1500.
For SO we adopt the specifications of the six frequency

bands listed in [28]. We assume fsky ¼ 0.4 and lmax ¼
3000. Since this is a ground-based experiment, the largest
scales will not be seen by SO, hence we set lmin ¼ 30 and
consider the Planck specifications for 2 ≤ l ≤ 29 (here-
after we call Planckþ SO to this combination). We rescale
the MV noise bias for the CMB lensing to match the
baseline configuration in [28]. Given that the experiment
will be based in the southern hemisphere, there will not be
full overlap with the Euclid sky coverage. We assume that
the common sky fraction will be around 25% of the sky.
For S4 we adopt wTT¼1μKarcmin, wEE¼

ffiffiffi
2

p
μKarcmin,

θFWHM ¼ 3 arcmin [29] and we assume as for SO fsky ¼
0.4 and lmax ¼ 3000. Since this experiment will be also
based in the southern hemisphere, we limit as well the

overlapping sky fraction with Euclid to 25% and adopt the
Planck noise for l < 30.
For LiteBird we combine the 7 channels described in

[35]. We assume 70% sky fraction and since this mission
will be optimized for large scales, we adopt lmax ¼ 1350.
For PICO we use the 7 channels ranging from 75 to

220 GHz given in [31]. We assume lmax ¼ 3000 and 70%
of sky coverage.
For PRISM we sum the 12 channels ranging from 52 to

385 GHz in [32]. We adopt lmax ¼ 4000 and 75% for the
sky fraction.
We show in Fig. 2 the CMB lensing potential noiseN ϕϕ

l
obtained for the experiments described above.

IV. COSMOGRAPHIC LENSING RATIO
MEASUREMENTS

In this section we study how under some approximations
the lensing ratio rl can be interpreted as a cosmographic
measurement that does not depend on the multipoles,
astrophysical uncertainties and perturbations. We then
present forecasts for the error on the lensing ratio for this
previously introduced limit using the future cosmological
surveys mock data described in Sec. III and explore how
this uncertainty varies with the foreground population
redshift zlens and the selected background.

A. The cosmographic ratio limit

We show here the limit in which the lensing ratio rl
defined in Sec. II becomes a geometrical quantity inde-
pendent of the angular scale, the power spectrum and the
galaxy bias. This limit needs to assume the Limber
approximation, to select a foreground lens population
which is narrow enough in redshift and to neglect the

FIG. 2. Signal of the CMB lensing potential data and its noise
computed for the experiments considered using the minimum
variance estimator.

9http://pico.umn.edu
10https://www.cosmos.esa.int/web/voyage-2050
11https://github.com/dhanson/quicklens
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effects on the galaxy number counts from observing on the
past light cone.

1. Limber approximation

In order to speed up the computation of Eq. (3), which is
time-consuming due to the rapid oscillations of the spheri-
cal Bessel function at high multipoles, it is commonly
adopted the Limber approximation [36] which is accurate at
high-l. It consists in replacing the spherical Bessel function
jlðkχÞ with a Dirac delta-function δD

jlðkχÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2ðlþ 1=2Þ
r

δD

�
lþ 1

2
− kχ

�
: ð22Þ

We can then approximate the kernel functions (8)–(10)–
(13) obtaining the following angular power spectra

Cϕϕ
l ðzi; zjÞ ¼

4

ðlþ 1=2Þ4
�
3ΩmH2

0

2c2

�
2

×
Z

dχ
qbiðχÞqbjðχÞ

a2ðχÞ Pδ

�
lþ 1=2

χ
; χ
�
;

ð23Þ

CGG
l ðzi; zjÞ ¼

Z
dχ

WfiðχÞWfjðχÞ
χ2

b2gðχÞPδ

�
lþ 1=2

χ
; χ

�
;

ð24Þ

CϕG
l ðzi;zjÞ¼

2

ðlþ1=2Þ2
�
3ΩmH2

0

2c2

�

×
Z

dχ
qbiðχÞWfjðχÞ

aðχÞχ bgðχÞPδ

�
lþ1=2

χ
;χ

�
;

ð25Þ

for background sources, foreground lenses, and their cross-
correlation, where the matter power spectrum is defined as

hδðk; χÞδ�ðk0; χÞi ¼ ð2πÞ3Pδðk; χÞδDðk − k0Þ: ð26Þ

We show in Fig. 3 the effect of the Limber approximation
in the cross-correlation angular power spectra CκCMBG

l and

C
κgalG
l and in the lensing ratio rl, using the Euclid-r1

configuration. We find that the Limber approximation

changes the signal of the denominator C
κgalG
l and hence

the ratio rl at the lowest multipoles, smoothing the
l-dependence that appears when this approximation is not
used.
In DS it is also considered the flat-sky approximation.

In this limit, the sky is approximated by a 2-dimensional
plane tangential to the celestial sphere and mathematically
expansions in spherical harmonics are replaced by Fourier
expansions

X
l;m

ϕl;mYm
l ðn̂Þ →

Z
d2θ
ð2πÞ2 ϕðlÞe

{θ·n̂: ð27Þ

The relation between the convergence and lensing kernel
(12) is then

IκlðkÞ ≃
l2

2
IϕlðkÞ: ð28Þ

The flat-sky approximation does not affect the ratio since
the difference in the prefactor lþ 1=2 → l cancels out.

2. Narrow foreground

If the redshift distribution of the foreground population is
narrow enough in redshift or if we have a redshift accuracy

FIG. 3. Impact of the Limber approximation on both lensing-galaxy cross-correlation angular power spectra (left panel) and on the
lensing ratio (right panel), using the Euclid-r1 configuration at zlens ¼ 0.95.
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σz sufficient to slice the foreground population in narrow
redshift bins, we can approximate the foreground redshift
distribution as a Dirac delta function

WfðχÞ ∝ δDðχ − χfÞ; ð29Þ

where χf is the peak of the distribution. We then find

CϕG
l ðzf; zbÞ ¼

2

ðlþ 1=2Þ2
�
3ΩmH2

0

2c2

�

×
bðχfÞPδðlþ1=2

χf
; χfÞ

aðχfÞχf

Z
dχ

χ − χf
χ

WbðχÞ:

ð30Þ

Under these approximations the ratio loses the
l-dependence, we obtain a quantity which depends only
on background parameters (H0;ΩX; w0; ...), and the clus-
tering bias cancels out, i.e.,

r ¼ χ� − χf
χ�

1R
dχ χ−χf

χ WbðχÞ
: ð31Þ

Finally, if also the background distribution is sufficiently
thin we can recover the standard cosmographic expression
for the ratio

r ¼ χ� − χf
χb − χf

χb
χ�

; ð32Þ

where we assumed WbðχÞ ∝ δDðχ − χbÞ.

B. Forecasts for future experiments

We quantify the accuracy that will be reachable on the
lensing ratio measurement for future experiments in the
limit in which it can be considered as an l-independent
quantity (rl ≃ r). For this, we follow the formalism by DS
in order to compute the error on r.
The log-likelihood is defined as

χ2ðrÞ ¼
X
l

Z2
l

σ2ðZlÞ
ð33Þ

where Zl ¼ CκCMBG
l − rC

κgalG
l . For the variance of Zl at a

fiducial value of the ratio r0, we use the extended definition
by [8], which accounts for partial overlap in the sky
between surveys,

σ2ðZlÞ ¼
1

ð2lþ 1Þ

×

�
1

fκCMBG
sky

ðC̄κCMBκCMB
l C̄GG

l þ ðCκCMBG
l Þ2Þ

þ r20
f
κgalG
sky

ðC̄κgalκgal
l C̄GG

l þ ðCκgalG
l Þ2Þ

− 2r0
f
κCMBκgalG
sky

fκCMBG
sky f

κgalG
sky

ðCκCMBκgal
l C̄GG

l þCκCMBG
l C

κgalG
l Þ

�

ð34Þ

where C̄XX
l ¼ CXX

l þN XX
l includes the signal and noise

power spectra, and the fsky factors account for the over-
lapping sky fraction between each pair of probes. We
introduce the maximum likelihood estimator for the lensing
ratio solving ∂χ2=∂r ¼ 0 as DS

r̂ ¼
P

lC
κCMBG
l C

κgalG
l =σ2ðZlÞP

lðCκgalG
l Þ2=σ2ðZlÞ

; ð35Þ

and we then compute the error on r̂ as

1

σ2ðr̂Þ ¼
1

2

∂2χ2ðrÞ
∂r2 ¼

X
l

ðCκgalG
l Þ2

σ2ðZlÞ
: ð36Þ

In Fig. 4 we represent r̂ and its error as a function of zlens
for the 9 possible bins of the Euclid-like spectroscopic

FIG. 4. Forecast measurements of the maximum likelihood
estimator for the lensing ratio r̂ (35) with their errors as a function
of the Euclid-like spectroscopic foreground redshift zlens for three
CMB experiments: Planck, Planck þ SO and PRISM. The
central dots and error bars correspond to a ΛCDM cosmology
while the red and blue dashed curves represent the values of r̂
obtained shifting by a certain amount Ωk and w0, respectively.
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survey and three of the CMB experiments considered:
Planck, Planckþ SO and PRISM. As suggested in [6,8],
this estimator is specially sensitive to the curvature of
the Universe and the equation of state of dark energy. We
therefore calculate also r̂ for cosmologies beyond ΛCDM
shifting w0 and Ωk by a given amount.
We find that for post-Planck CMB experiments in which

the CMB lensing noise will be reduced by a significant
amount, the ratio will be measured with better accuracy
specially for the lower redshift bins. At higher redshift for
the lenses zlens, the higher noise of the galaxy surveys gives
less precise measurements. For the nonstandard cosmolo-
gies, we find that r̂ is sensitive in particular to the curvature
variations.
For the Euclid-like spectroscopic lenses and using the

Planck CMB lensing, the best measurement will be
σðr̂Þ=r̂ ¼ 5.5%, corresponding to the Euclid-r1 configura-
tion at 0.9 < zlens < 1.0. If we take a lower redshift lens at
0.2 < zlens < 0.3 for DESI and SPHEREx, we get as relative
errors 6.7% and 4.3%, respectively. This means that the
measurement for DESI will be affected by the small over-
lapping sky fraction with Euclid, while using SPHEREx as
foreground population can relatively improve the lensing
ratio measurement. Using post-Planck CMB lensing, we get
as relative errors 3.2% and 2.3% for SO in combination with
the Euclid-r1 and SPHEREx-r1 configurations, respectively.
With PRISM, these two measurements improve to 1.4%
and 0.7%, respectively.
In Fig. 5 we explore the effect of fixing the background

galaxy shear sources to the Euclid-like photometric pop-
ulation placed behind the Euclid-like spectroscopic survey
(i.e., behind the higher redshift lens on Fig. 4). The increase
on the distances between the galaxy lens and source planes
shifts the maximum likelihood ratio to lower values and

also decreases the absolute error, but we find a very similar
relative error in comparison with the variable background
case. This also shows that the measurement is not limited
by the background noise.

V. A GENERALIZED LENSING RATIO
ESTIMATOR

In this section we show how the inclusion of the RSD
and lensing magnification contributions to the galaxy
number counts has an impact on the angular scale depend-
ence of the lensing ratio rl and the cosmological informa-
tion contained on it. We propose the introduction of a
multipole dependent estimator to upgrade the formalism by
DS and consider a more general case beyond assuming that
r is constant. We define the signal-to-noise ratio of the r̂l
estimator and evaluate the impact of including on the
calculation the contributions beyond the density term.

A. Number counts angular power spectrum

Equation (13) assumes only the contribution from the
synchronous-gauge galaxy overdensity to the galaxy
number counts. Here we quantify the relevance of includ-
ing other terms to Δs

lðk; χÞ given by RSD and lensing
magnification (see [37,38] for details). The RSD term is
given by

ΔRSD
l ðk; χÞ ¼ kvk

H
j00lðkχÞ ð37Þ

where vk is the velocity of the sources and H is the
Hubble parameter. The lensing convergence contribution
is given by

Δlensing
l ðk; χÞ ¼ lðlþ 1Þ

2
ð2 − 5sÞ

×
Z

χ

0

dχ0
χ − χ0

χχ0
½ϕkðχ0Þ þ ψkðχ0Þ�jlðkχ0Þ

ð38Þ

where ϕk and ψk are the metric perturbations in the
longitudinal gauge and s is the magnification bias, which
accounts for the fact that observed galaxies are magnified
by lensing. In this paper, we consider lensing magnifica-
tion as the only observational effect on number counts
with the density and RSD. We neglect the Doppler, Sachs-
Wolfe and other integrated effects (ISW and time-delay)
because they are negligible in the calculation of the ratio.
We derive and fit the functional form of the redshift

dependence of the magnification bias sðzÞ of the Euclid-
like spectroscopic survey using the model 3 luminosity
function by [24]. For a flux threshold of Fcut ¼
2 × 10−16 erg s−1 cm−2 we find:

FIG. 5. As for Fig. 4 but using Planck as CMB lensing
background with a variable galaxy background beyond each
foreground (blue error bars) and a fixed galaxy background at
2.0 < z < 2.5 (red error bars).
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sðzÞ ¼ 0.33þ 0.46zþ 0.15z2 − 0.16z3 þ 0.03z4: ð39Þ

Note that this fit is valid only for z≥0.6 since themodel 3
by [24] does not include data for low redshift objects.
In Fig. 6 we show the impact of including the RSD term

alone and both RSD and lensing contributions together in
the cross-correlation angular power spectra CκCMBG

l and

C
κgalG
l and in the lensing ratio rl, adopting the Euclid-r1

configuration.
For the case including only RSD, we find a small

correction on the angular power spectra at low multipoles,
which results in a slightly higher lensing ratio at l < 10.
When we consider also the lensing magnification, we
obtain a larger positive contribution to both CκCMBG

l and

C
κgalG
l that is especially strong at large scales but holds also

at higher multipoles. This results in a negative ∼10%
shift for rl given that the impact of including GR in the

denominator C
κgalG
l is higher. The shape of the lensing ratio

becomes less constant with l once the lensing magnifica-
tion contribution is considered.
We show here how the lensing term induces the

l-dependence of the lensing ratio. If we consider the
density term and the lensing contribution the kernel of
the galaxy number counts becomes

IGl ðkÞ≡ IG1

l ðkÞ þ IG2

l ðkÞ

¼
Z

dχ

ð2πÞ3=2 WfðχÞ½Δs
lðk; χÞ þ Δlensing

l ðk; χÞ�: ð40Þ

Using the Limber approximation, the first term of the
lensing-galaxy cross-correlation is given by Eq. (25), and
for the second term we find:

CϕG2

l ðzi; zjÞ ¼
lðlþ 1Þ
ðlþ 1=2Þ2

�
3ΩmH2

0

2c2

�

×
Z

dχ
ð2πÞ3

qbiðχÞ
aðχÞχ δ

�
lþ 1=2

χ
; χ

�
ðϕþ ψÞ

×
Z

χ

0

dχ0
χ0 − χ

χ0χ
ð2 − 5sÞWfjðχ0Þ: ð41Þ

We note that in this case, the assumption of a narrow
foreground would not eliminate the l-dependence of the
ratio since the last integral is bound to χ and cannot be
simplified. We represent in Fig. 6 the contribution to the
angular power spectra from the lensing magnification
term (κ) and their ratio, showing that is not anymore an
l-independent quantity. Nonetheless, the l-dependence
can be alleviated using a different tracer for the galaxy
foreground population which is not affected by the lensing
magnification contribution as in [39], where they used as a
foreground the SKA HI intensity mapping survey.

B. Signal-to-noise analysis

We extend here the formalism to compute the error on
the lensing ratio by DS to consider the angular scale
dependence of the ratio. We introduce the signal-to-noise
ratio (SNR) of an l-dependent estimator r̂l and compare
its value to the ratio studied before.
We start by assuming that different multipoles l are

uncorrelated. This is a consequence of neglecting the super-
sample covariance and non-Gaussian terms of the covari-
ance matrix of the data, therefore the remaining Gaussian
term, which is diagonal in l, is assumed to be dominant at
the scales of interest. We then define the log-likelihood
of rl as

FIG. 6. Impact of the RSD and lensing contributions on the lensing-galaxy cross-correlation angular power spectra (left panel) and on
the lensing ratio estimator (right panel) for the Euclid-r1 configuration.
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χ2lðrlÞ ¼
Z2
l

σ2lðZlÞ
ð42Þ

where Zl ¼ CκCMBG
l − rlC

κgalG
l . For the variance σlðZlÞ we

extend the definition in Eq. (34) replacing r0 by a multipole
dependent fiducial rl;0

σ2lðZlÞ¼
1

ð2lþ1Þ

×

�
1

fκCMBG
sky

ðC̄κCMBκCMB
l C̄GG

l þðCκCMBG
l Þ2Þ

þ r2l;0

f
κgalG
sky

ðC̄κgalκgal
l C̄GG

l þðCκgalG
l Þ2Þ

−2rl;0
f
κCMBκgalG
sky

fκCMBG
sky f

κgalG
sky

ðCκCMBκgal
l C̄GG

l þCκCMBG
l C

κgalG
l Þ

�
:

ð43Þ

The maximum likelihood estimator for the lensing ratio, r̂l,
is obtained imposing ∂χ2lðrlÞ=∂rl ¼ 0 as

r̂l ¼ CκCMBG
l C

κgalG
l =σ2ðZlÞ

ðCκgalG
l Þ2=σ2ðZlÞ

¼ CκCMBG
l

C
κgalG
l

; ð44Þ

which in this case coincides with the definition of the
lensing ratio itself. We then estimate the error on r̂l as

1

σ2lðr̂lÞ
¼ 1

2

∂2χ2lðrlÞ
∂r2l ¼ ðCκgalG

l Þ2
σ2lðZlÞ

ð45Þ

and with this, we define the SNR of the lensing ratio as
the total one as sum over the multipoles since they are
uncorrelated, hence

�
S
N

�
2

r̂l

¼
X
l

r̂2l
σ2lðr̂lÞ

¼
X
l

ðCκCMBG
l Þ2

σ2lðZlÞ
: ð46Þ

We now assess whether the l-dependence of the lensing
ratio will be measurable using the future experiments
discussed here. We find that this dependence will be
detectable at the level of 1.4σ for Planck, 2.2σ for
Planckþ SO and 5.1σ for PRISM by considering
unbinned multipoles. We also visualize the importance
of the multipole dependence in Fig. 7, where we display
for the Euclid-r1 configuration the errors on rl for
Planck, Planckþ SO and PRISM, by taking as an
example 4 broad bins—see caption for more details.

Both the calculation with unbinned multipoles and
Fig. 7 show how the multipole dependence induced by
lensing magnification could be detected with future
experiments.
We calculate and show in Fig. 8 the SNR of the lensing

ratio for the Euclid-r1 configuration as a function of lmax
and lmin, as well as the individual contribution of each
multipole to the total amount. We find that the majority of
the information of this estimator is around l ∼ 100. We also
find that including corrections from general relativity
increases the SNR around ≲10%.
In Table I we list the SNR of the lensing ratio

measurement for the CMB experiments considered as a
function of the lens redshift zlens of each bin. We find that
the post-Planck CMB lensing will reduce significantly
the error on this measurement, reaching up to ∼1%
with PRISM. We also note the synergies between the
Euclid-like survey and the CMB space missions due to
the overlapping sky fraction, as an example PICO will
be able to measure the lensing ratio with better accuracy
than S4 despite having a larger CMB lensing noise.
The impact of the lensing correction is stronger at higher
zlens, allowing to increase the SNR up to a factor ∼2 − 3

for the last redshift bin. We have also checked that
complementing the ground-based SO and S4 experiments
with Planck at l < 30 does not have a significant impact
on the SNR.

FIG. 7. Lensing ratio and its error measured for the lowest zlens
configuration of the Euclid-like spectroscopic survey. The solid
black curve represents rl computed with all the contributions to
the galaxy number counts and the dashed line to r̂ computed
using the density term only. The blue, green and red error bars
correspond errors on rl for Planck, Planck þ SO and PRISM,
respectively, in four broad bins—i.e., (2,29),(30,199),(200,599),
(600,1500). The blue, green and red shaded areas represent the 1σ
confidence region for r̂ calculated for Planck, Planckþ SO and
PRISM, respectively.
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VI. COSMOLOGICAL PARAMETER
CONSTRAINTS

We investigate here by a Fisher matrix approach whether
the measurement of the lensing ratio can help to constrain
cosmological parameters in extended models when it is
added to the CMB information.
The Fisher matrix formalism [40] assumes the likelihood

L to be a multivariate Gaussian and the minimum errors on
the cosmological parameters can be estimated from the
diagonal of the inverse Fisher matrix (σi ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
).

We define the Fisher matrix of the lensing ratio rl as

F rl
αβ ≡

� ∂2L
∂θα∂θβ

�
¼

X
l

∂rl
∂θα

1

σ2lðrlÞ
∂rl
∂θβ ; ð47Þ

where θα, θβ are the cosmological parameters. The lensing
ratio Fisher matrix is added as uncorrelated to the CMB
Fisher matrix [41,42], which is given by

FCMB
αβ ¼

X
l

2lþ 1

2
fCMB
sky Tr

� ∂C
∂θα C

−1 ∂C
∂θβ C

−1
�
; ð48Þ

where C is the 3 × 3 covariance matrix of the CMB data
including temperature (TT), polarization (EE), lensing
(ϕϕ) and their cross-correlations.
For the cosmological model, we extend the baseline

ΛCDMþP
mν cosmology to a 9 parameter model where

we allow also to vary the dark energy equation of state and
the curvature density (w0CDMþP

mν þ Ωk), since we
have shown in Sec. IV that the lensing ratio is sensitive to
the variation of these parameters. We adopt as fiducial
values w0 ¼ −1 and Ωk ¼ 0.
We show in Fig. 9 the 68% and 95% marginalized

confidence regions for h, w0, Ωk and
P

mν obtained for a
Planck-like CMB experiment following the Fisher matrix
described in Eq. (48) and the sum of both rl and CMB
Fisher matrices. We calculate the rl Fisher matrix for the
Euclid-r1 and SPHEREx-r1 configurations described in
Sec. III. The improvement found by adding the lensing
ratio to the CMB information is about ≲40% for h, w0 and
Ωk, while the neutrino mass is only marginally improved.
For the spatial curvature we get a combined uncertainty of
σðΩkÞ ∼ 0.015, comparable to the Planck 2018 [22] error
for a simpler ΛCDMþΩk model using CMB temperature
and polarization. The constraints from the combination
with the lensing ratio obtained with SPHEREx as fore-
ground population are slightly better with respect to the
Euclid-like spectroscopic lens.
In Fig. 10 we show the same constraints but using

Planckþ SO as CMB experiment. For this case, we find
relative improvements around ∼15% for h and w0 and
∼10% for Ωk with respect to the CMB. For the spatial
curvature error, we get σðΩkÞ ∼ 0.004 for the combination
of SO with Euclid-r1 or SPHEREx-r1.
We have shown that the r̂ and r̂l estimators—which

neglect and include the contribution from lensing magni-
fication, respectively—are different in terms of SNR.

FIG. 8. Contribution of each l to the signal-to-noise of rl (left panel) and cumulative signal-to-noise as a function of lmax (center
panel) and lmin (right panel). The solid lines represent the case including only the density term (δ) and the dashed lines correspond to the
calculation including also the lensing magnification term (δþ κ).

TABLE I. SNR of the lensing ratio for the CMB experiments
considered as a function of the foreground redshift zlens for the 9
bins of the Euclid-like spectroscopic survey. We list the SNR
calculated using the density term only (δ) and considering also
the contribution from lensing magnification (δþ κ).

Planck LiteBIRD SO S4 PICO PRISM

zlens δ δþ κ δ δþ κ δ δþ κ δ δþ κ δ δþ κ δ δþ κ

0.95 18 20 23 25 31 34 55 61 60 67 72 81
1.05 18 20 23 25 30 34 51 59 55 64 64 77
1.15 17 19 22 25 28 33 46 56 50 62 56 72
1.25 16 19 20 25 26 33 40 53 43 58 48 67
1.35 15 19 19 24 23 32 35 50 37 55 40 61
1.45 14 19 17 24 21 30 29 46 30 50 32 54
1.55 12 18 15 23 18 28 23 42 24 45 25 48
1.65 11 17 12 22 15 27 18 37 19 40 19 42
1.75 9 16 10 20 12 25 13 32 14 35 14 36

MEASURING LENSING RATIOS WITH FUTURE COSMOLOGICAL … PHYS. REV. D 102, 023502 (2020)

023502-11



FIG. 9. Marginalized 68% and 95% 2D confidence regions for a w0CDM þP
mν þΩk model obtained by the Fisher matrix of a

Planck-like experiment including temperature, polarization and lensing (green contours), and adding the Fisher matrix of the lensing
ratio obtained using as lens population the first bin of the Euclid-r1 configuration at 0.9 < zlens < 1.0 (blue contours) and the SPHEREx-
r1 at 0.2 < zlens < 0.3 (red contours). We do not show the other 5 cosmological parameters since they are not sensitive to the addition of
lensing ratio to the CMB information.

FIG. 10. As for Fig. 9 but using Planck þ SO as CMB experiment.
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We now explore whether neglecting the inclusion of the
lensing magnification term can induce a bias in the derived
cosmological parameters. Following the formalism by [43],
it can be shown the predicted bias in the cosmological
parameters due to an uncorrected effect/systematic is
expressed as

bθα ¼ ðF̃−1ÞαβBβ; ð49Þ

where F̃ αβ is the Fisher matrix computed by assuming the
theoretical signal without the lensing magnification term.
The vector Bβ is given by

Bβ ¼
X
l

1

σ2lðr̃lÞ
ðr̃l − rlÞ

∂r̃l
∂θβ ; ð50Þ

where r̃l and rl are the lensing ratios obtained without and
with the lensing magnification contribution, respectively.
By our working assumptions, we compute the bias in the

cosmological parameters for the combined constraints from
Planck and the lensing ratio using the Euclid-r1 configu-
ration as an example. We represent the result in Fig. 11,
where we show the marginalized 68% and 95% 2D
confidence regions for the h −Ωk and w0 − Ωk planes
obtained considering and neglecting the lensing term, and
we have shifted the uncorrected contours by the amount
given by Eq. (49). We get for the bias on the parameters
bh ¼ 0.23, bw0

¼ −0.53 and bΩk
¼ 0.013, which taking

into account the uncertainties from both approaches cor-
responds to a shift of 0.85σ for h, 0.8σ for w0 and 0.7σ
for Ωk. Whereas the forecast uncertainties by lensing ratio

alone improve by adding lensing magnification, consis-
tently with the improvement in the SNR shown in Table I,
it is clear from Fig. 11 that the forecast uncertainties in
h −Ωk and w0 − Ωk in combination with the CMB degrade
when taking into account lensing magnification. We
interpret this effect as a consequence of introducing an
improved lensing ratio which goes beyond its only depend-
ence on distances and on background cosmology and
therefore worsen the uncertainties on parameters as
h − w0 −Ωk. Therefore, the neglect of the lensing magni-
fication term could overestimate the constraints achievable
with lensing ratios using lenses at the typical redshift of a
Euclid-like spectroscopic survey, in which this contribution
is important, and would lead to a potential bias in the
cosmological parameters.
We now explore the possibility of improving the cosmo-

logical parameter constraints by combining the 9 possible
lensing ratio configurations for Euclid ranging from zlens ¼
0.9 to zlens ¼ 1.8 in a joint tomographicmeasurement, which
hereafter we call Euclid-

P
ri. We introduce the covariance

of N ratios to take into account that in this combination
there is redshift overlap between the different backgrounds
and between some backgrounds and foregrounds. We then
rewrite Eq. (47) as

F rl
αβ ¼

X
l

XN
i;j

∂ril
∂θα ½Covðr̂lÞ�

−1
ij

∂rjl
∂θβ ; ð51Þ

where the i, j indices run over the ratios and the elements of
the covariance matrix Covðr̂lÞij are given by

FIG. 11. Predicted bias in the cosmological parameters induced by neglecting the lensing magnification contribution to the galaxy
number counts in a combined analysis of the CMB and the lensing ratio, using Planck and the Euclid-r1 configuration. The blue
contours represent the marginalized 68% and 95% 2D confidence regions for the h − Ωk and w0 − Ωk planes obtained considering the
lensing contribution (δþ κ), while the red contours correspond to the case with the density term only (δ).
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Covðr̂lÞij ¼
1

ð2lþ 1Þ
1

C
κigalG

i

l C
κjgalG

j

l

�
1

fκCMBG
sky

ðC̄κCMBκCMB
l C̄GiGj

l þ CκCMBGi

l CκCMBGj

l Þ

þ ril;0r
j
l;0

f
κgalG
sky

ðC̄κigalκ
j
gal

l C̄GiGj

l þ C
κigalG

j

l C
κjgalG

i

l Þ − ril;0
f
κCMBκgalG
sky

fκCMBG
sky f

κgalG
sky

ðCκCMBκ
i
gal

l C̄GiGj

l þ CκCMBGi

l C
κigalG

j

l Þ

− rjl;0
f
κCMBκgalG
sky

fκCMBG
sky f

κgalG
sky

ðCκCMBκ
j
gal

l C̄GiGj

l þ CκCMBGj

l C
κjgalG

i

l Þ
�
: ð52Þ

In Fig. 12 we compare the constraints obtained for
Planck and Planckþ SO in combination with the Euclid-
r1 configuration to their combination with the tomographic
Euclid-

P
ri measurement. For Planck, the constraints on

h, w0 and Ωk are improved around ∼40% from the
tomography with respect to the single ratio case, this
corresponds to a ∼60%–70% improvement with respect
to Planck alone. We get a joint uncertainty on the spatial
curvature of σðΩkÞ ∼ 0.008. The neutrino mass is the most
benefited parameter from the tomography, reaching up to
a ∼60% improvement with respect to the single bin case.
For Planckþ SO, the CMB has a higher relative weight
but still the error on Ωk is improved around ∼10% with
tomography, while the neutrino mass error is improved
around ∼30%.

VII. CONCLUSIONS

We have studied the ratio between the galaxy number
counts/CMB lensing and the galaxy number counts/galaxy
shear cross-correlations as a cosmographic quantity [6].
We have forecast the scientific capabilities of this estimator
using a Euclid-like experiment both for the galaxy back-
ground as will be measured from the photometric survey
and for the galaxy foreground whose redshift will be
determined from its spectroscopic survey, and Planck,
LiteBIRD, SO, S4, PICO and PRISM for the CMB lensing
background. A Euclid-like experiment could deliver tomo-
graphic measurements of the lensing ratio on the basis of
the amount of lenses obtainable from the spectroscopic
survey. We have then increased the lever arm in redshift by
complementing the Euclid-like specifications with DESI

FIG. 12. Marginalized 68% and 95% 2D confidence regions for a w0CDM þP
mν þΩk model forecast by the combination of a

Planck-like experiment with the Euclid-r1 lensing ratio configuration (grey contours) and the Euclid-
P

ri tomographic analysis (green
contours), and by the combination of Planckþ SO with the Euclid-r1 configuration (blue contours) and the Euclid-

P
ri tomographic

analysis (red contours).
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and SPHEREx as galaxy foreground populations at lower
redshift than zlens ¼ 0.9 We have found that using
SPHEREx as lens population and post-Planck space mis-
sions as PRISM the lensing ratio will be measurable with a
∼0.7% uncertainty.
We have also found a nontrivial angular scale depend-

ence in the lensing ratio when going beyond the cosmo-
graphic limit [6], i.e., when exact expressions are
considered and relativistic corrections are taken into
account. In particular, we show that the contribution from
lensing magnification will be important for future experi-
ments, as shown for other ratio estimators (see e.g.,
[44,45]). Nonetheless, we show that the RSD contribution
and the Limber approximation do not induce any signifi-
cant effect. We have found that this angular scale depend-
ence of the lensing ratio will be especially important at
higher redshift of the lenses and can be detectable at a
statistical significant level with post-Planck CMB lensing
in combination with a Euclid-like experiment. The signifi-
cance level could be increased in a tomographic analysis
combining the lensing ratio measurements form different
bins. This multipole dependence calls for the introduction
of an ensemble of lensing ratios defined l by l, with their
corresponding optimal and minimum variance estimators,
which we identify. Using this new formalism, we have
calculated the total signal-to-noise of the lensing ratio for a
Euclid-like spectroscopic foreground including the contri-
bution from the lensing magnification and compared it
to the cosmographic limit approach. We have found an
improvement in the signal-to-noise that ranges from ∼10%
to a factor ∼2 − 3, depending on the lens redsfhit. The
majority of the information on this estimator is found to be
around l ∼ 100.
By using this improved estimator we forecast its

capability to constrain a nonflat cosmology with nonzero
neutrino mass and a redshift-independent parameter of

state for dark energy in combination with future CMB
experiments. We find that the inclusion of the lensing ratio
can reduce by ≲40% the uncertainties on H0, w0 and Ωk
from Planck. We also predict a non-negligible bias in
the estimation of these cosmological parameters caused by
neglecting the lensing magnification term in a combined
analysis. We find that a Euclid-like experiment in combi-
nation with Planck could provide a constraint on the spatial
curvature with an uncertainty of σðΩkÞ ∼ 0.015 for the first
bin of the spectroscopic survey centered at zlens ¼ 0.95.
By considering a joint tomographic analysis of 9 lensing
ratio measurements for a Euclid-like survey between
zlens ¼ 0.9 and 1.8, the uncertainty on the spatial curvature
can be reduced to σðΩkÞ ∼ 0.008 and we get a ∼60–70%
improvement in the errors on H0, w0, Ωk and

P
mν with

respect to Planck.
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