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ABSTRACT
In the observation of sky-averaged H I signal from Epoch of Reionization (EoR), model
parameter inference can be a computation-intensive work, which makes it hard to perform a
direct one-stage model parameter inference by using Markov Chain Monte Carlo (MCMC)
sampling method in Bayesian framework. Instead, a two-stage inference is usually used, i.e.
the parameters of some characteristic points on the EoR spectrum model are first estimated,
which are then used as the input to estimate physical model parameters further. However,
some previous works had noticed that this kind of method could bias results, and it could be
meaningful to answer the question of whether it is feasible to perform direct one-stage MCMC
sampling and obtain unbiased physical model parameter estimations. In this work, we studied
this problem and confirmed the feasibility. We find that unbiased estimations to physical model
parameters can be obtained with a one-stage direct MCMC sampling method. We also study
the influence of some factors that should be considered in practical observations to model
parameter inference. We find that a very tiny amplifier gain calibration error (10−5 relative
error) with complex spectral structures can significantly bias the parameter estimation; the
frequency-dependent antenna beam and geographical position can also influence the results,
so that should be carefully handled.

Key words: methods: numerical – methods: statistical – cosmology: observations – dark ages,
reionization, first stars – diffuse radiation.

1 IN T RO D U C T I O N

Detection to the cosmic dawn and the following Epoch of Reion-
ization (EoR hereafter) has become the frontier of radio astronomy
and observational cosmology. It is crucial to answer questions
such as what sources are responsible for the reionization, how
the neutral hydrogen fraction evolved during EoR, how the mass
accretion on to dark haloes modulates the ionization process, etc.
The redshifted neutral hydrogen 21 cm signals from the early
Universe are generally regarded to bring critical information to
answer the above questions. Compared with abundant observations
to the last scattering surface (i.e. the farthest Universe we can see
throw the electromagnetic window) and low redshift (e.g. z � 6)
Universe, much fewer observational evidence about the cosmic
dawn and EoR exists by now, which is necessary to discriminate
candidate models and constrain cosmological model parameters. In
order to fill this gap, the new generation of radio telescopes have
been built or being constructed. The very long list of these new
radio telescopes includes the Low Frequency Array, LOFAR (van
Haarlem et al. 2013), the Murchison Widefield Array, MWA (Tingay
et al. 2013), the 21 CentiMeter Array, 21CMA (e.g. Wang et al.

� E-mail: jhgu@nao.cas.cn (JG), astro.jywang@gmail.com (JW)

2013; Zheng et al. 2016; Huang et al. 2016), the Hydrogen Epoch
of Reionization Array, HERA (DeBoer et al. 2017), the Precision
Array to Probe the Epoch of Reionization, PAPER (Parsons et al.
2010), the Long Wavelength Array, LWA (Taylor et al. 2012),
the Square Kilometre Array, SKA (Carilli & Rawlings 2004), the
Shaped Antenna measurement of the background RAdio Spectrum,
SARAS (Patra et al. 2013), the Broadband Instrument for Global
Hydrogen Reionisation, BIGHORNS (Sokolowski et al. 2015), the
Experiment to Detect the Global EoR Signature, EDGES (Mozdzen
et al. 2016), the Sonda Cosmológica de las Islas para la Detección de
Hidrógeno Neutro, SCI-HI (Voytek et al. 2014), etc. The detection
to the H I 21 cm signal from the cosmic dawn and EoR is extremely
hard. Several conflicting factors should be compromised, including
angular resolution, redshift resolution, signal-to-noise ratio (S/N),
survey speed, the quantity of data to be processed, and accuracy of
instrument calibration. Different paradigms of detection reflecting
the concerning to different factors are invented.

The three major paradigms are (1) imaging, (2) measuring power
spectrum, and (3) measuring global 21 cm signal (i.e. the monopole
component), which have their own problems respectively to solve
and can produce different levels of details about cosmic dawn and
EoR. Direct imaging to cosmic dawn and EoR can obtain the most
abundant information among all the above three paradigms, but
it requires to solve big problems, including direction-dependent
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ionosphere correction and wide-field imaging difficulties. Interfer-
ometers can directly output power spectrum and can seemingly
escape from the difficulties of direct imaging paradigm (e.g. Zheng
et al. 2012). However, year scale integration time is still needed
(Zheng et al. 2012) to suppress the thermal noise. Measuring global
21 cm signal needs much less integration time to reach a required
S/N. Direction-dependent ionosphere correction and wide field
imaging can be avoided as well. Furthermore, the instrument for
measuring global 21 cm signal can be as simple as a single dipole,
so that the response of antenna can be relatively precisely measured
in a microwave darkroom (with near-field measuring technique).
Simplicity is pre-requisite for reliability. Though losing a significant
amount of details (only monopole component can be measured),
especially before other paradigms obtain reliable results, global
21 cm signal can be a promising method for detecting the cosmic
dawn and EoR.

The framework of global 21 cm signal studies can be divided into
following three tightly related aspects as the global 21 cm signal
modelling, statistical inferring based on observational data, and the
obtaining of accurate enough observational data.

For the modelling part, it has been widely accepted that the
evolution of observed 21 cm signal brightness temperature contrast
to CMB is dominated by the competition between the influence
of cosmic microwave background (CMB) and gas on the atomic
hydrogen (H I) spin temperature (e.g. Furlanetto, Oh & Briggs
2006). The CMB temperature decreases as it adiabatically expands
with the universe and follows a relation to redshift z as Tγ ∝ (1
+ z). Meanwhile, the gas kinetic temperature is simultaneously
modulated by the universe expansion and heating and cooling
of a variety of different mechanisms. The CMB affects spin
temperature mainly through Compton scattering, and gas affects
spin temperature through collision and Wouthuysen–Field effect
(Wouthuysen 1952; Field 1958). The strength of above three effects
are mainly controlled by gas neutral fraction, gas temperature, and
background Lyα intensity, which are all tightly connected to the
evolving history of potential ionizing sources, i.e. black holes and
stars (see Mirocha 2014; Mirocha et al. 2012, for a quantitative
discussion).

Inferring model parameters from observational data is another
critical aspect of global 21 cm signal detection. Optimization-based
model fitting is a traditional method of parameter inferring; however
Markov Chain Monte Carlo (MCMC) based methods are gradually
becoming major statistical inference tools and have been widely
used in the studies of global 21 cm signal. A lot of recent works
e.g. Mirocha, Harker & Burns (2013), Mirocha, Harker & Burns
(2015), Harker et al. (2016), Bernardi et al. (2016), and Spinelli et
al. (2019) have used MCMC-based methods as their major methods
of statistical inferences. Comparing to classical optimization-based
methods, MCMC-based methods cannot only solve the optimal
model parameters but also inspect the probability distribution of
model parameters, so that can offer the information about the
structure of the model parameter space. However, there is still
one shortage of MCMC-based methods, i.e. most of such kind of
methods require evaluating model values for a vast number of times
to ensure the Markov chains to reach equilibrium. Considering the
factor that the model evaluation of the global 21 cm signal itself
is computation intensive, it requires a large amount of computing
resources to perform a direct model evaluation in MCMC methods.
Currently, few work directly evaluate the model predicted values in
the step of parameter inference. At least two methods are utilized
to avoid direct model evaluation in MCMC, and the first one is
to approximate the global 21 cm signal model with some simple

mathematical expressions (e.g. Bernardi et al. 2016, modelled the
early reionization stage signal with a Gaussian model), another
method is to split the MCMC inference into two stages (e.g. Mirocha
et al. 2013, 2015; Harker et al. 2016). In these works, they first infer
the frequencies and intensities of some characteristic points of the
global 21 cm signal spectrum, and then in the second stage use
the distribution of these characteristic points to infer the values of
physical model parameters. The pitfall of the expressing the global
21 cm signal model in a simple mathematical formula is that either
the formula cannot fully approximate the precise model values, or
the formulae would have too many degrees of freedom, as a result,
cannot be well constrained and lead to the overfitting problem.
As to the two-stage method, as Harker et al. (2016) mentioned,
there exists a risk to obtain biased results. In the same paper, the
authors raised a question of whether it is feasible to perform direct
single-stage parameter inference and whether unbiased parameter
estimation can be obtained.

The efforts to obtain the well-calibrated observational data forms
the last aspect of the study to the global EoR signal detection. This
problem mainly falls into the category of antenna and electronic
system design. The issue about how to design and calibrate
electronic system will not be covered in this work, so we are not
going to expand this topic here. However, there are two interesting
issues in the early stages of projects that are aiming to detect global
21 cm signals. The first issue is how accurate the analogue front end
should be calibrated and how the calibration errors propagate in the
data reduction chain. The second one is to guide the design of the
antenna by evaluating the influence of frequency-dependent antenna
pattern (FDAP) through simulation. These two issues raise for
both of them can cause artificial frequency structures in the global
21 cm signal spectrum. In some previous works, e.g. Bernardi et al.
(2016), the amplifier calibration error is treated to be uncorrelated
between different frequency channels, which, however, does not
fully reflect its influence on the measured data. The frequency-
dependent antenna beam issue has been mentioned by e.g. Liu
et al. (2013), and is also widely considered in the antenna design
of recent projects. For example, in experiments including SARAS
(Patra et al. 2013), BIGHORNS (Sokolowski et al. 2015), EDGES
(Mozdzen et al. 2016), and SCI-HI (Voytek et al. 2014), the antennas
are specially designed to make the beam pattern less frequency-
dependent. Nevertheless, the effect of frequency-dependent beam
cannot be fully cancelled, which must be evaluated and considered
in actual data reductions.

The motivation of this work is to inspect what information we
can extract from the global H I 21 cm signal in actual observation
conditions. This goal can be further divided into the following two
aspects. The first aspect of this work is to find out the feasibility
of inferring physical model parameters from observation data
through a direct physics-based modelling method. We intend to
evaluate the physics-based global 21 cm model in each step of
the MCMC sampling and to check whether unbiased parameter
estimations can be inferred. The second motivation is to study in
practical observations, how will different factors, including thermal
noise, instrument calibration errors, and frequency-dependent an-
tenna beam patterns, affect model parameter inference, and model
comparison.

So in this work, we investigate the feasibility of constrain-
ing the parameters of physical global 21 cm signal model with
MCMC sampling method. We will evaluate the influence of un-
corrected instrumental effects and frequency-dependent antenna
beam patterns on the results and estimate how well the instruments
should be calibrated in order to gain meaningful results. The
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paper is organized as follows, we explain the modelling method
of the reionization processes in Section 2, describe the MCMC
sampling method that we use to constrain the model and the
model parameters in Section 3, present the results in Section 4,
and give a discussion and conclude this work in Section 5. We
adopt the �-cold dark matter cosmological parameters released by
Planck Collaboration et al. (2016) (H0 = 67.74 km s−1 Mpc−1,
��, 0 = 0.3089, �m, 0 = 0.3089, �b, 0 = 0.0486, σ 8 = 0.8159, and
ns = 0.9667).

2 MO D E L L I N G SK Y- AV E R AG E D
LOW- F R EQU ENCY SPECTRUM

In this section, we present the global H I 21 cm signal model of
cosmic dawn and EoR used in this work. We first briefly review
the algorithm for computing the global H I signal based on previous
studies. Then, the parameter values for simulating the reference
21 cm signal are presented. Last, we show the foreground emission
spectrum model.

2.1 Redshifted 21 cm signal from the EoR

The computing of the global H I signal involves three threads, i.e.
(1) solving radiative transfer equation (RTE) to determine the back-
ground radiation intensity, (2) updating ionization, recombination,
cooling and heating rate coefficients to compose the rate equations,
and (3) solving the rate equations for each time slice sequentially.
These threads are twisted and complicated. Even though it is not the
central topic of this paper, and has been well and comprehensively
studied by many other authors, we still choose to briefly review the
modelling method as follows.

To model the global H I signal in the low-frequency radio band,
we follow the method and algorithm that has been comprehensively
described by previous works mainly including Furlanetto et al.
(2006), Mirocha et al. (2012), and Mirocha (2014). Among these
three works, Mirocha (2014) described the detailed algorithm to
calculate the global 21 cm signal, together with some important
practical instructions; Mirocha et al. (2012) described the one
dimensional radiative transfer algorithm used by the former work,
and the authors released a PYTHON package ARES1 (Mirocha et al.
2012; Mirocha 2014), that has been being actively developed;
Furlanetto et al. (2006) summarized equations to calculate the
physical quantities that are required to derive the global 21 cm
signal. Although the package ARES is well developed and is in
principle suitable for solving the problem of this work, MCMC
sampling that we will perform requires evaluating the model with
different parameter sets for a vast number of times, and the PYTHON-
based package AREA becomes a performance bottleneck for us. As
a result, we take the ARES code as a reference and re-implement
the algorithm in RUST2 with some minor modifications to gain a
required high computing efficiency so that in very limited time,
we can draw a large enough sample with the MCMC method.
As a necessary comment to the code performance, although our
code is implemented with RUST and compiled to native code, the
computational performance is improved by less than one order of
magnitude. It is still practical to perform similar MCMC sampling
with the ARES code.

1https://bitbucket.org/mirochaj/ares
2https://www.rust-lang.org

Followings are the details about the global 21 cm signal modelling
algorithm. The redshifted global 21 cm signal from cosmic dawn
and EoR is calculated as

δTb = 0.027(1−x̄i)

(
�b,0h

2

0.023

)(
0.15

�m,0h2

1+z

10

)1/2 (
1− Tγ

TS

)
K,

(1)

where x̄i is the mean ionized fraction and TS is the spin temperature.
Both x̄i and TS are to be solved as follows.

We follow the ‘two-component’ scenario utilized by e.g. Mirocha
(2014) and Furlanetto et al. (2006). The two-component scenario
divides the intergalactic medium (IGM) into the ‘bulk IGM’ that
is mostly neutral, and H II regions that is fully ionized. The
filling factor of H II region is denoted by xi and the ionization
fraction in the bulk IGM regions is denoted by xH II, so that in
above equation (1), the average ionization fraction is calculated as
x̄i = xi + (1 − xi)xH II. For the bulk IGM regions, the fraction of
H II can be solved from following rate equation.

d

dt
xH II = (	H I + γH I + βH Ine) xH I − αB

H IInexH II, (2)

where ne is the electron density and the meanings of other symbols
are listed in Table 1. The temperature of bulk IGM is solved from
the equation

d

dt
TK = −2H (z)TK + 2

3

εX + εcomp − C
kBntot

, (3)

where ntot is the total number density of particles, and H(z) is
the Hubble constant at redshift z. C represents the contribution of
all cooling mechanisms, including Hubble cooling, collisional ion-
ization cooling, collisional excitation cooling, and recombination
cooling. The coefficients of the latter three cooling mechanisms are
calculated with the equations in Fukugita & Kawasaki (1994). The
rate equation for the filling factors of the H II region surrounding
galaxies is

dxi

dt
= f∗fescNionn̄

0
b

dfcoll

dt
(1 − xH II) − αAnexiC(z) (4)

where fcoll is the fraction of gas in collapsed haloes more massive
than some minimum mass (see below), f∗ is the star formation
efficiency, and n̄0

b is the baryon number density today. We set the
clumping factor C(z) ≡ 1, same as Mirocha (2014). Ionization on
the boundary of H II regions is assumed to be mainly driven by
photons with energy between 13.6 and 200 eV, the escape fraction
of which is denoted by fesc. Nion is the number of photons per
baryon particle in star formation and is set to be 4000 (Same as
Mirocha 2014). The photon ionization coefficient 	H I, ionization
rate due to fast secondary electrons γH I, and X-ray heating rate εX

in equation (3) are determined by background radiation intensity
Ĵν(z) (see equations 9–11 of Mirocha 2014, Ĵν means the intensity
in the unit of photon numbers), which is obtained from the solution
of the cosmological RTE (see the equation 3 in Mirocha 2014) as

Ĵν(z) = c

4π
(1 + z)2

∫ zf

z

ε̂X,ν′ (z′)
H (z′)

e−τ̄ν dz′, (5)

where the photon depth τ̄ν is the mean optical depth (see below), and
zf is some ‘first light redshift’, when the ionizing sources turn on.
The emissivity ε̂X,ν(z) (again in the unit of photon numbers) depends
on the accretion rate and model of first generation of luminous
celestial objects as

ε̂X,ν(z) = ρ̄0
b

CX

Ēγ

f∗fX
dfcoll

dt
Iν, (6)
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Table 1. The references of how following quantities are calculated.

Quantity Meaning Related equation in this work Ref.

αA, αB Cases-A and -B recombination coefficients 2, 4 Equations (B5)–(B9) of Fukugita & Kawasaki (1994)
β Collisional ionization coefficients 2 Equations (B1)–(B4) of Fukugita & Kawasaki (1994)
εcomp Compton heating coefficient 3 Equation (54) of Seager, Sasselov & Scott (2000)
εX X-ray heating coefficient 3 Equation (11) of Mirocha (2014)
γ Photon ionization coefficients 2 Equation (10) of Mirocha (2014)
	 Secondary photon ionization coefficients 2 Equation (9) of Mirocha (2014)
Jν Background intensity 5 Equations (4) or (25) of Mirocha (2014)
Jα Lyα background intensity 14 Equations (7) or (25) of Mirocha (2014)
τ ν Optical depth 5, 8 Equation (6) of Mirocha (2014)
TK Gas kinetic temperature 3, 13 Equation (14) of Mirocha (2014)
TS H I spin temperature 1, 13 Equation (20) of Furlanetto et al. (2006)
xH I, xH II Fraction of H I and H II in bulk IGM region, respectively 2 Equation (12) of Mirocha (2014)
xi Volume filling fraction of H II regions 4 Equation (13) of Mirocha (2014)
xc Collisional coupling coefficient 13 Equation (24) of Furlanetto et al. (2006)
xα Wouthuysen–Field coupling coefficient 13 Equation (40) of Furlanetto et al. (2006)

where ρ̄0
b is today’s baryon matter density, Iν is the source spectrum

that is normalized as
∫

Iνdν = 1, and CX = 2.6 × 1039 erg s−1 M−1
� yr

is the energy of X-ray emission produced when unit mass of matter
is accreted Ēγ is the mean photon energy within the total band,
and fX reflects the uncertainty of CX. In the process of heating
and ionization in bulk IGM regions, we follow the treatment of
Mirocha (2014) that only X-ray radiation within 0.2–30 keV is
considered and assume the first generation of luminous celestial
objects to be accreting black holes, with a power-law spectrum with
a fixed slope of −1.5. The energy range of the X-ray responsible
for reionization and the slope of the power-law spectrum are both
fixed because allowing these parameters to vary will introduce
degeneracy in parameter space and make the Markov Chain hard to
reach an equilibrium. Studying which kind of source is responsible
for the reionization is not the major topic of this paper. In our
future work, we will study the feasibility of discriminating different
ionizing sources by using the global H I signal. We note that more
sophisticated methods have been developed recently (e.g. Mirocha
et al. 2018; Park et al. 2019, based on luminosity functions) to model
ionizing sources more accurately. These new modelling methods
offer the possibility of inferring more detailed information about
the cosmic dawn and EoR, and we will consider including them in
our future work. In this work, we still use the method that we have
described above.

In equation (5), the emitting frequency ν ′ of a photon emitted at
redshift z′ that is observed at frequency ν at redshift z is

ν ′ = ν

(
1 + z′

1 + z

)
. (7)

The optical depth τ̄ν is calculated as

τ̄ν(z, z′) =
∑

j

∫ z′

z

nj(z
′′)σj,ν′′

dl

dz′′ dz′′, (8)

where dl/dz = c/H(z)/(1 + z) is the proper cosmological line ele-
ment, and σ j, ν is the bound-free absorption cross-section of species
j = H I, He I, He II with number density nj. Same as Mirocha
(2014), we approximate xHe III to be 0 and assume xHe II = xH II. Note
that nj is a function of redshift, which is to be solved in equation (2).
Fortunately, nj at any redshift zi relies only on previous redshift
slices with z > zj. Nevertheless, a strict calculation requires solving
equations (2) and (8) alternatively. This issue has been addressed in
section 5.1 of Mirocha (2014). In their work and the code ARES, a
priori ionization history was assumed and used to generate tabulated

optical depth τ̄ . In our implementation, we do not use the priori
ionization history; instead, we solve equations (2) and (8) in turn.
With the radiation intensity Ĵν obtained, we compute the ionization
and heating coefficients by using equations (9)–(11) in Mirocha
(2014).

In equations (4) and (6), the coefficients are related to the fraction
of gas in collapsed haloes more massive than a redshift-dependent
minimum mass mmin (z)

fcoll = ρ−1
m

∫ ∞

mmin

mn(m)dm, (9)

where ρm is the mean comoving density of the universe, n(m)dm is
the comoving number density of haloes with mass between m and
m + dm. In Mirocha (2014), fcoll is computed with the HMF-CALC

code (Murray, Power & Robotham 2013). In this work, we use an
analytic equation

fcoll = 1

2

[
1 + erf

(
z0 − z

zw

√
2

)]
, (10)

where the two parameters z0 and zw can vary to represent different
evolving histories. So that

dfcoll

dt
= dfcoll

dz

dz

dt
, (11)

and

dfcoll

dz
= − 1

zw

√
2π

e
− (z−z0)2

2z2
w . (12)

In order to check how well this formula can approximate
the numerically computed fcoll(z) with HMF-CALC, we perform a
series of ordinary least-squares model fittings by using the above
equation (10) to the data calculated with HMF-CALC of different
Tmin ’s. The model-fitting results are shown in Figs 1(a) and (b).
The fitting results show that our analytic fcoll(z) model is a good
approximation to the data computed with HMF-CALC. We choose
z0 = −0.64 and zw = 6.4 as the parameter of our reference model,
which roughly corresponds to Tmin = 104 K.

If necessary, fcoll can be replaced by other analytic expressions
in the future. This significantly enhances flexibility and computing
performance in MCMC sampling.

On the other hand, the spin temperature TS is determined as

T −1
S ≈ T −1

γ + xcT
−1

K + xαT −1
c

1 + xc + xα

, (13)
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Figure 1. (a) The data points denote the fcoll(z) data computed with HMF-CALC and the dashed lines denote fcoll(z) values computed with equation (10) by
using corresponding zw’s and z0’s obtained with model fittings. (b) Values of zw’s and z0’s corresponding to different Tmin’s.

Figure 2. The dependency graph of the quantities needed to calculate the
global H I 21 cm spectrum. Any one arrow points from one quantity to
another one, the computing of which depends on the former one.

where the colour temperature of UV radiation field Tc is ap-
proximated to be � TK. The coupling coefficient xc and xα are
calculated by using equations (24) and (40) of Furlanetto et al.
(2006), respectively. The xα depends on the background intensity
of Lyα, which is calculated as

Ĵα = c

4π
(1 + z)2

nmax∑
n=2

f (n)
rec

∫ z
(n)
max

z

ε̂ν′ (z′)
H (z′)

dz′, (14)

and

ε̂ν = ρ̄0
bCLWf∗fesc,LW

dfcoll

dt
Iν, (15)

where CLW is fixed to be 4.72 × 1027 g−1, corresponding to 9690
photons per baryon particle, and fesc, LW is the corresponding escape
fraction. Same as Mirocha (2014), nmax is truncated to 23, and the
f (n)

rec is the ‘recycling fraction’ (Pritchard & Furlanetto 2006).
Finally, by assembling above computing together, we can obtain

the global H I 21 cm signal of high redshifts. Looking back above
still very incompletely summarized procedures, it is obvious that the
rate equations (2) and (4), temperature evolving equation (3), and
RTE (5) twist with each other. This can be shown a bit more clearly
in Fig. 2. The dependence relations between different quantities
form two loops, i.e. xH I → τ̄ν → Jν → 	 & γ → xH I and xH I →
εcomp → TK → αB&β → xH I. The most natural way is to solve
them by turns from a high enough initial redshift to lower redshifts

Figure 3. The flowchart of the algorithm for computing the global H I 21 cm
spectrum.

Table 2. Reference Model Parameters.

Parameter Value

f∗ 0.05
fesc 0.1
fesc, LW 1.0
fX 1.0
z0 − 0.64
zw 6.4
Npoly 1
T100 806 K
p1 − 2.27

iteratively. We summarize the algorithm of computing the global
H I 21 cm signal in Fig. 3.

2.2 Reference model and frequency range to be used

We choose the parameter values listed in Table 2, and assume the
ionizing sources to be black holes with a power-law spectrum to
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Figure 4. Brightness temperature contrast to CMB temperature calculated with the reference and varied model parameters. In (a)–(c), we show the influence
of varying f ′

esc, f ′
esc,LW, and f ′

X, respectively.

calculate the reference model values. The power-law index α is set
to be −1.5. Note that among f∗, fesc, fesc, LW, and fX, only three can be
determined independently, because f∗ always appears together with
one of the other three factors in above equations (4), (6), and (15).
Consequently, it becomes an issue that needs to be discussed how to
choose the free parameters to be inferred. The difference in selecting
different sets of free parameters can be nontrivial, given that the
corresponding priori distributions are not adjusted accordingly. We
regard it more natural and intrinsic to use

f ′
esc ≡ f∗fesc, (16)

f ′
esc,LW ≡ f∗fesc,LW, (17)

and

f ′
X ≡ f∗fX (18)

as the free parameters to infer. Note that there can be better
choice when more priori knowledge is available. In Fig. 4, we
compare δTb(ν)’s calculated with the reference model parameters
and different f ′

esc, f ′
esc,LW, and f ′

X values. It is not surprising
that below 40 MHz, the signal changes little no matter how the
parameters vary. At redshift higher than z ≈ 35 (corresponding to
40 MHz), most of the current models predict that ionizing sources
had not yet appeared, the brightness temperature of H I signal is
mainly modulated by the adiabatic expansion progress of CMB
radiation and gas. Because the ionosphere will significantly block
electromagnetic wave with frequency � 30 MHz, ground-based
experiments cannot arbitrarily extend the frequency range to lower
frequencies. So it is reasonable to set the lower limit of the frequency
range to be 40 MHz. On the other hand, as we describe above,
H I brightness temperature model assumes that the IGM is divided
into the ‘bulk IGM’ and H II regions, and this assumption can be
violated in the late stage. As a result, we set the upper limit of
the frequency to be 120 MHz, corresponding to z = 10.8. At this
redshift, the reference model predicts an average H I fraction still
higher than 50 per cent, which means it is not in the very late stage
of reionization. As a conclusion, we will assume the data to be
acquired within the frequency range of 40–120 MHz in most of the
following analyses.

2.3 Foreground emission

Because the foreground is dominated by the synchrotron radiation
from the Milky Way, we naturally model the foreground as a
simple power-law spectrum when simulating the signals. Then in
the stage of parameter inference, i.e. MCMC sampling, we treat

the foreground spectral model as a seventh-degree log-polynomial,
to emulate any uncorrected instrumental effects on foreground
spectrum, just like the treatment in Bernardi et al. (2016), though
we do not think it can adequately compensate for the instrumental
effects. We express the foreground spectrum as

Tfg(ν) = T100 exp

⎡
⎣Npoly∑

n=1

pn

(
log

ν

100 MHz

)n

⎤
⎦ . (19)

When simulating the foreground, we set the polynomial degree Npoly

to be 1, and p1 = −2.27. The brightness temperature at 100 MHz
T100 is set to be 806 K (see Table 2), which is in agreement with the
value used in Bernardi et al. (2016). In the parameter inference stage,
we set Npoly to be 7, and allow all the coefficients in equation (19)
to vary.

3 MCMC SAMPLI NG

3.1 Posterior probability distribution of model parameters

According to the Bayes’ theorem, given a set of measurements that
follow an underlying model, the posterior distribution of the model’s
parameters can be derived with

p(θ |T obs
b ) = p(θ )p(T obs

b |θ ), (20)

where p(θ ) is the priori distribution of the model parameters, and
p(T obs

b |θ ) is the likelihood. We assume that there is no intrinsic
fluctuation in the model; all deviation of the measurements from
the model value is caused by thermal noise. In this condition, we
can model the distribution of the noise value as normal distribution
and safely regard the noise in different frequency channels to be
uncorrelated. So that the likelihood can be written as

p(T obs
b |θ ) =

∏
i

1√
2πσ 2

νi

e
− (T obs

b (νi )−T m
b (νi ))2

2σ2
νi , (21)

where T obs
b is a vector of measured antenna temperature in all used

frequency channels, T m
b is the corresponding model value, T obs

b and
T m

b are respectively the value for a certain frequency channel, and
σνi is the measurement uncertainty caused by thermal noise in the
ith channel. According to the Gaussian white noise assumption, the
noise is

σνi = T obs
b√
�ντ

, (22)

where �ν is the channel width and τ is the integration time.
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According to the foreground spectrum model equation (19), the
antenna temperature at the lowest frequency 40 MHz is 6451 K. If
we assume a channel bandwidth of 1 MHz3 and an integration time
of 10 d, the noise level at 40 MHz is σ 40 MHz ≈ 6.94 mK. Apparently,
the S/N of global H I signal detections can reach a rather high value
with very limited integration time.

The rest part of the posterior distributions is the priori distribution
of unknown parameters. We assume parameters f ′

esc, f ′
esc,LW, and

f ′
X to independently follow a uniform distribution in the interval

(0,100). Note that although these parameters have the meaning
of ‘escape fraction’ and in principle should be limited between 0
and 1, we are using them to compensate for the uncertainties of
corresponding physical parameters (i.e. Nion, CLW, and CX), so that
we do not impose the limit between 0 and 1.

The priori distribution of z0 is

dp(z0)

dz0
= 1

σz0

√
2π

e
− (z0−ẑ0)2

2σ2
z0 , (23)

and the priori distribution of zw is

dp(zw)

dzw
= 1

σzw

√
2π

e
− (zw−ẑw)2

2σ2
zw , (24)

where the hyperparameters ẑ0 = −0.64 and ẑw = 6.4. In order to
set the values of hyperparameters σz0 and σzw as a part of the
priori knowledge, we examine Fig. 1(b). A reasonable range of
z0 corresponding to Tmin ∈ [0.5 × 104, 2 × 104] can be z0 ∈
[ − 0.66, −0.62], so that it is safe enough to set σz0 to be 0.2,
which allows z0 to vary within a slightly larger range. Similarly,
zw values corresponding Tmin ∈ [0.5 × 104, 2 × 104] can be
safely enclosed within the interval [5.8, 7.1], so that we set σzw

to be 1. It is also possible that the fcoll(z) calculated with other
parameters or other codes can lead to larger reasonable ranges,
but they will not differ by order of magnitudes. If necessary, in
actual parameter inference, σz0 and σzw can be replaced by other
values.

3.2 Sampling algorithm

With the posterior distribution of the model parameters in hand,
we then move on to sampling realizations from the posterior
distribution. There have been a dozen of different sampling method
available. We decided to test the affine invariant sampling method
proposed by Goodman & Weare (2010) and its parallel tempering
version proposed by Liang, Liu & Carroll (2011). The most
important advantage of the affine invariant sampling method is that it
does not need to be finely tuned to fit into a concrete problem, and is
efficient enough to sample from very complex posterior distribution
function. The computing of the global H I signal spectra in this work
happens to be such kind of problem. Even after being reimplemented
with RUST, the program still needs about 4 s for one CPU core to
compute one spectrum. To reach a convergence, we set a ‘burn-in’ of
30 000 steps, the total length of the Markov Chain is set to be 60 000.
In the beginning, we use the origin affine invariant sampling method
and find that the chains are very hard to converge when the initial
parameter is not close enough to the optimal value. So that we finally
use the parallel tempering method to accelerate the convergence.

3Most systems have a much higher spectral resolution to excise radio
frequency interference. Because the predicted global H I signal varies slowly
with frequency, it is feasible to combine fine raw frequency channels to
coarse channels to improve the computational performance.

We reimplement the PYTHON package EMCEE4 (Foreman-Mackey
et al. 2013) that performs both the affine invariant sampling method
and its parallel tempering version with RUST and run the sampling
program on a high-performance computing cluster, utilizing parallel
computing technique. For the parallel tempering method, we set six
‘temperature’s and for each temperature, 28 walkers (hence totally
168 chains) are used. The β values for the six temperatures are
set to be 2−i where i = 0, 1, . . . , 5. Totally 168 CPU cores are
allocated for the MCMC program. Using more CPUs will not help
reduce the time needed to compute one spectrum, but will allow us
to set more chains, thus may help speed up the convergence of each
chain.

3.3 The standard we use to diagnose if the inference is biased

Strictly speaking, in order to diagnose if the inference is biased,
an analytical expression of the posterior distribution probability
of interesting parameters is needed to deduce the expectations
and compare them with input values. However, it is hard or
even impossible in the condition of detection to global H I signal,
because H I signal spectra are computed through massive numerical
methods. We have to choose an alternative (not so strict) way –
compare the input values with the mean sampled values and their
dispersions. In practical parameter inference, when the distribution
of sampled parameters is not heavily multimodal, we can express
the inference result as a central value x together with its standard
deviation �x (for normal distribution, it is the 68 per cent confidence
level error) in the form of x ± �x. If the interval [x − �x, x + �x]
encloses the true parameter values (i.e. input values here), we can
practically regard the inference method to be good enough, so that
practically unbiased. Similar tests can also be performed based on
the plots of joint distributions of pairs of parameters. The above
standard may not be appropriate, especially when one trying to
examine it from a strict mathematics-based point of view. Some
readers may not agree with our above standard, so in the following
sections, we present objective results, including inferred parameter
values and some of the plots of the parameter distributions we
obtained, and readers can make their own decisions.

4 STUDI ED CASES AND RESULTS

In this section, we study the influence of a variety of factors on the
inference of model parameters. The factors include thermal noise,
amplifier gain calibration error, and frequency-dependent antenna
beam pattern. As is mentioned above, we choose f ′

esc, f ′
esc,LW, f ′

X,
z0, and zw as our interesting parameters, which can reflect the
detailed physical images of the reionization process. We choose
1 MHz spectral resolution, which is achievable with most practical
data acquisition systems, and simultaneously sufficiently high for
inferring most of the interesting parameters. In order to rule out the
effect of the fluctuation from the random noise itself, we use the
same random number generator seed to simulate the noise in the
following sections.

4.1 The property of parameter space when ignoring
foreground and noise

Before testing the conditions that emulate practical observations,
we first inspect the property of parameter space with the foreground

4https://github.com/dfm/emcee
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Direct parameter inference from global EoR signal 4087

Figure 5. Probability distributions of single parameters (histograms, panels
on the diagonal) and of joint parameters (68 per cent, 95 per cent, and
99.7 per cent probability contours, remaining panels) for the test case BL7
in Section 4.2 with the thermal noise calculated by assuming an integration
time of 10 d, σz0 = 0.2, and σzw = 1.0. The instruments are assumed to be
perfectly calibrated. The ‘+’ symbols denote the estimation to the expected
values by averaging the sample. The ‘x’ symbols denote the estimations by
using median values. The dots denote the parameter values used to simulate
the data.

component absented. The purpose is to discover potential intrinsic
multimodal features and degeneracy in parameter space and
separate them from the influence of the existence of foreground
components. We simulate the total signal that is composed of only
the global H I signal by using the parameters listed in Table 2
and thermal noise by using equation (22). When simulating the
noise, the foreground signal is included in the T obs

b of equation (22)
temporarily and observation time of 10 d is assumed so that the
realization of the noise component is identical to what will be used
in the following sections. In the parameter inference stage, we test
two models, one is the pure global H I signal model, and the other
is the sum of the global H I signal model and a seventh-degree
log-polynomial foreground component (equation 19). Because the
nominal value of T100 is 0 K here, other foreground coefficients pi’s
degenerates in the parameter space. If no constraint is applied to pi’s,

they can be an arbitrary value and cause the chain hard to converge.
Hence, we assume all pi’s to independently follow uniformed
distributions between −1 and +1. The hyperparameters σz0 and
σzw here are both set to be 10 temporarily, which are fairly loose
constraints, in following sections they will be set to σz0 = 0.2 and
σzw = 1.0. The sampling of both models reach equilibrium very fast,
and the joint distribution of parameters show neither multimodal
feature nor degeneracy. This phenomenon implies the feasibility
of inferring parameters of global H I models with the MCMC
sampling algorithm. The detailed inference result is unimportant
here and cannot be compared to following testing conditions, so we
omit them.

4.2 The influence of thermal noise

As has been mentioned in Section 3.1, an observation with very
limited integration time can already obtain a high enough S/N. Nev-
ertheless, it is still interesting to study how well the parameters can
be constrained in an ideal observation condition (i.e. only inevitable
thermal noise is considered). By using the above equation (22), we
generate the noise signal for each frequency channel and add it to
the total signal.

With the posterior distribution we set in the previous Section 3.1,
we perform the sampling. We plot the parameter distribution in
Fig. 5 (i.e. the ‘corner plot’, only the H I signal model parameters,
foreground model parameters are not shown here). The numeric
results are listed in Table 3, labelled as BL7 (‘BL’ means baseline,
and the ‘7’ denotes the degree of the polynomial for the foreground
component). By using the averaged values as an unbiased estimator,
we find that the estimated values are all enclosed by 90 per cent
probability contours. The parameter f ′

esc,LW is slightly underes-
timated, and 68 per cent probability contours cannot enclose the
input value, so that seems to be biased. We also recover the global
H I signal by using two methods: (1) directly computing the signal
with sampled H I signal parameters, (2) subtracting the sampled
foreground component (computed from the sampled foreground
parameters) from the total signal. The comparison between the
input and recovered signals are shown in Fig. 6, from which we
find that the input signal does not pass through the centre of the

Table 3. Estimation to the model parameters obtained with the MCMC sampling method. Symbols f̂∗, f̂esc, and f̂esc,LW denote the parameter values used to
simulate the signal. The signal is simulated with the reference model (Section 2.2), and the parameters are sampled assume the ionization sources to be black
holes with power-law spectra.

Label f ′
esc/f̂

′
esc f ′

esc,LW/f̂ ′
esc,LW f ′

X/f̂ ′
X z0 zw log Z Related figures Description

Only thermal noise is considered, no other instrumental effect, see Sections 4.2 and 4.3

BL7 1.27 ± 0.72 0.68 ± 0.25 1.07 ± 0.41 − 0.67 ± 0.20 6.46 ± 0.08 402.09 5,6 Npoly = 7 for foreground
BL7NN 1.18 ± 0.76 1.27 ± 0.54 1.23 ± 0.47 − 0.67 ± 0.20 6.36 ± 0.08 437.08 7, 8 No noise; Npoly = 7 for foreground
BL3NN 1.01 ± 0.30 1.03 ± 0.12 1.05 ± 0.15 − 0.67 ± 0.20 6.40 ± 0.05 439.64 9, 10 No noise; Npoly = 3 for foreground
BL4NN 1.13 ± 0.74 1.11 ± 0.20 1.23 ± 0.54 − 0.68 ± 0.20 6.38 ± 0.07 439.55 11 No noise; Npoly = 7 for foreground
BL3 0.82 ± 0.28 0.97 ± 0.11 0.97 ± 0.11 − 0.67 ± 0.20 6.44 ± 0.05 403.26 Npoly = 3 for foreground

Frontend gain calibration error considered, Npoly = 7 for foreground, see Section 4.4

G7 1.21 ± 0.74 0.70 ± 0.26 1.10 ± 0.43 − 0.68 ± 0.20 6.46 ± 0.08 402.08 12, 16 n = 7
G8 4.63 ± 0.74 30.75 ± 14.02 5.22 ± 1.43 − 0.65 ± 0.24 5.73 ± 0.11 376.20 13, 16 n = 8

FDAP considered, in free space, Npoly = 7 for foreground, see Section 4.5.1

L100 1.28 ± 0.73 0.73 ± 0.27 1.05 ± 0.33 − 0.69 ± 0.20 6.46 ± 0.07 402.35 14, 15 L = 100 cm
L200 1.80 ± 0.88 2.08 ± 0.93 1.32 ± 0.41 − 0.65 ± 0.20 6.26 ± 0.08 400.84 14, 15 L = 200 cm

FDAP considered, above the ground, Npoly = 7 for foreground; see Section 4.5.2

L100GN 1.14 ± 0.74 0.52 ± 0.18 1.21 ± 0.60 − 0.66 ± 0.20 6.48 ± 0.09 401.92 14, 15 L = 100 cm, H = 50 cm, latitude = 45◦N
L200GN 0.04 ± 0.17 9.97 ± 2.34 10.34 ± 1.82 0.03 ± 0.37 5.89 ± 0.07 14, 15 L = 200 cm, H = 100 cm, latitude = 45◦N
L100GS 2.10 ± 0.86 1.77 ± 0.86 1.17 ± 0.37 − 0.68 ± 0.20 6.29 ± 0.09 400.25 14, 15 L = 100 cm, H = 50 cm, latitude = 45◦S
L200GS 16.10 ± 1.82 0.08 ± 0.12 0.07 ± 0.002 0.36 ± 0.21 3.53 ± 0.03 14, 15 L = 200 cm, H = 100 cm, latitude = 45◦S
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Figure 6. Comparisons between input H I 21 cm signal and the recovered
signal for test case BL7 described in Section 4.2. Solid line denotes the
input global H I signal, the error bars denote the noise level calculated
with equation (22). Red crosses denote the sum of input signal and the
actually simulated noise. The grey band denotes the 68 per cent confidence
interval of the recovered H I signal. The yellow band denote the 68 per cent
confidence interval of the difference between the total signal and the
recovered foreground.

Figure 7. Same as Fig. 5, except that the noise component is removed from
the total signal, corresponding to test case BL7NN.

bands that marks 68 per cent confidence range. This phenomenon
also suggests that the inference seems to be biased. We suspect that
this can be caused either by the thermal noise or by the overfitting
problem. Also, we note there seems to exist a multimodal feature in
the corner plot, especially in the histogram of the f ′

esc. So that we
further do two more tests: (1) removing the noise component from
total signal (but still taking into account the noise when calculating
the likelihood function, i.e. the parameters σνi ); and (2) using lower
degree polynomials to model the foreground in the sampling (the
noise component is removed as well).

The distributions of parameters sampled with noise component
removed (labelled as BL7NN) are shown in Fig. 7, and the numeric
results are listed in Table 3. Obviously, the input parameter values
can be all enclosed within 68 per cent contours. In Fig. 8, we note
that the input signal right passes through the centre of the bands that
marks 68 per cent confidence range of the recovered signals. Hence
we can conclude that the underestimation of parameter f ′

esc,LW
is caused by the certain realization of the noise component, and
statistically speaking, the inference is unbiased. About the slightly

Figure 8. Same as Fig. 6, except that the noise component is removed from
the total signal, corresponding to test case BL7NN.

Figure 9. Same as Fig. 5, except that the noise component is removed
from the total signal and a third-degree polynomial is used to model the
foreground component, corresponding to test case BL3NN.

multimodal feature, we suspect it is caused by the foreground
model with too many degrees of freedom. We leave the test
of using lower degree polynomials to model the foreground in
Section 4.3.

4.3 The influence of overfitting

It is meaningful to inspect if this choice of using seventh-degree
polynomials to model the foreground component introduces over-
fitting problems so that we perform the sampling with different
degrees of polynomials and check the distribution of sampled
parameters.

We first simulate the total signal, including both the H I signal and
the foreground emission by using the parameters listed in Table 2,
but without the thermal noise component. Then, we run the sampling
program and draw the parameter distributions.

We find that when using a third-degree polynomial to represent
the foreground component (labelled as BL3NN), the distributions
of parameters are close to the no-foreground condition test as per-
formed in Section 4.1, i.e. close to a multivariate normal distribution,
which can be seen in the plot of parameter distributions shown in
Fig. 9. Fig. 10 shows that the H I signal can also be recovered
unbiasedly. When the degree of the polynomial is increased to
fourth (labelled as BL4NN), the distributions of parameters (Fig. 11)
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Figure 10. Same as Fig. 6, except that the noise component is removed
from the total signal and a third-degree polynomial is used to model the
foreground component, corresponding to test case BL3NN.

Figure 11. Same as Fig. 5, except that the noise component is removed
from the total signal and a fourth-degree polynomial is used to model the
foreground component, corresponding to test case BL4NN.

begin to deviate from multivariate normal-like distributions. The
recovered H I signal resembles the result of test case BL7NN,
which is still unbiased and but constrained better. So we do not
show it here. We also test the case when noise is included, and
Npoly = 3 (labelled as BL3), and find that both the distribution of
parameters and the recovered H I signal are similar to the test case
BL3NN.

So we may reach the conclusion that the overfitting problem
does exist when the degree of freedom of the foreground model
reaches a certain value (Npoly = 4 in our test cases). A foreground
component model with too many degrees of freedom may cause the
parameter inference too sensitive to thermal noise, and reducing the
degree of freedom of foreground model can suppress the overfitting
and the influence of thermal noise. However, in actual observation
data reductions, it is infeasible to use a too simple foreground
model. In the following sections, we will show that the foreground
model with proper degrees of freedom is essential to compensate
for instrumental gain calibration errors. As we will point out in the
following Sections 4.4 and 4.5, a properly modelled foreground will
not only help represent the foreground component itself but can also
compensate for inaccurately calibrated amplifier gain and FDAPs.
So we still use a Npoly = 7 polynomial to model the foreground in
the following sections.

4.4 The influence of front end gain calibration error

Instrument calibration is crucial to precisely deduce the underlying
physical parameters from the observed sky-averaged brightness
temperature T obs

b (ν). The brightness temperature of foreground
emission is around 103 K level, while the interesting H I signal is
around 10−1 K level. The deviation of apparent foreground spectra
from a log-polynomial form can easily exceed 10−1 K level when
the precision of amplifier gain flatness calibration is worse than
10−4. However, there is still opportunity to recover H I signal if the
foreground model (here we use the seventh-degree log-polynomial)
can fit the spectral structure induced by the gain calibration error,
given that no significant overfitting to the global H I signal happens.
So in this section, we study how the parameter inference can be
affected by instrument calibration errors. Here, we are not going
to limit our work to any concrete instrument, but try to propose
a universal method to model the frequency-dependent instrument
gain calibration error.

Suppose after calibration, the actual frontend gain is

g(ν) ≡ 1 + �g(ν), (25)

and the observed total spectrum is

T obs
b = T true

b g(ν) (26)

= δTb(ν)(1 + �g(ν)) + Tfg(1 + �g(ν)). (27)

We assume �g(ν) � 1, and δTb(ν) � T
fg

b (ν), so that δTb(ν)�g(ν)
can be ignored. As a result,

T obs
b ≈ δTb(ν) + Tfg(1 + �g(ν)). (28)

We can define the gain error distorted foreground as

T ′
fg ≡ Tfg(1 + �g(ν)). (29)

We substitute equation (22) into above equation and obtain

T ′
fg = T100 exp

⎡
⎣Npoly∑

n=1

pn

(
log

ν

100 MHz

)n

⎤
⎦ exp[log(1 + �g(ν))]

(30)

≈ T100 exp

⎡
⎣Npoly∑

n=1

pn

(
log

ν

100 MHz

)n

⎤
⎦ exp(�g(ν)) (31)

= T100 exp

⎡
⎣Npoly∑

n=1

pn

(
log

ν

100 MHz

)n

+ �g(ν)

⎤
⎦ . (32)

Theoretically, if �g(ν) can be expanded with a polynomial about
log (ν) with a degree not higher than Npoly, then the gain error
distorted foreground T ′

fg can be still fitted by the equation (19),
otherwise, a larger Npoly is required. However, a too large Npoly

may lead to the overfitting problem. According to our tests in
Sections 4.2 and 4.3, an Npoly = 7 though higher than 1, which we
use to simulate the foreground signal, will cause slight overfitting,
but still acceptable. Using Npoly > 7 to model the foreground
can cause more severe overfitting. Practical gain calibration error
can have rather complicated spectral structures. For example,
considering Chebyshev filter is used in the front-end amplifier
module and this kind of filter has ripple-like frequency response.
If a frequency-independent relative gain calibration error exists,
the ripple-like feature will be kept after calibration. Such kinds
of calibration error have complicated spectral structure and it is
easy to verify that they cannot be well represented by a polynomial
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about log (ν) with a degree not higher than 7. So the question now
is how precise the instrument needs to be calibrated in order to
perform a meaningful detection to the global H I signal, and how
serious the gain calibration error can interfere with the parameter
inference.

A model is required to describe the gain calibration error as
a function of frequency. The calibration error as a function of
frequency can be expressed as the linear combination of a series
of Legendre Polynomials as

�g(ν) =
∞∑
n

anPn(x) (33)

where

x = 2 log(ν/νmin)

log(νmax/νmin)
− 1, (34)

Pn(x) = 1

2n

n∑
k=0

(
n

k

)
(x + 1)k (35)

is the Legendre polynomial of order n, an is the corresponding
combination coefficient. The most important reason why we do not
simply use a general form of polynomial

∑N

n=1 anx
n is that the

Legendre polynomials are quasi-periodic on the definition domain,
and the ‘period’ decreases as the order increases. This property
makes the Legendre polynomials a suitable formula to express the
spectral structures induced by gain errors at different complexity
levels. If we want to find some actual examples with similar features
from practical devices, one may recall the ripple structure in the
frequency response of Chebyshev filters, if the frequency response
were not properly calibrated such kind of quasi-periodic oscillating
spectral structure will appear in the final data.

Two conditions with an = 10−5δnm (δ is the Kronecker delta),
where m = 7 (labelled as G7) or m = 8 (labelled as G8) are tested,
respectively. For the G7 test case

�g7(ν) = 10−5

16

(
429x7 − 693x5 + 315x3 − 35x

)
, (36)

and for the G8 test case

�g8(ν) = 10−5

128

(
6435x8 − 12012x6 + 6930x4 − 1260x2 + 35

)
,

(37)

where x is defined as above equation (34). For both test cases, an
Npoly = 7 polynomial is used to model the foreground.

About the determination of the value of an, we do not have any
nominate parameter of actual amplifiers used in global H I signal
detection experiments, and can only give an estimation based on the
performance of commercial products. Our estimations are based on
following facts: (1) typical gain error of commercial radio frequency
amplifier chips (e.g. Analog Devices R© AD8079) is around 10−3;
(2) the tolerance of high accuracy resistors can reach 5 × 10−5;
(3) the tolerance of high accuracy capacitor can reach 1 per cent;
and (4) typical measurement error of general-purpose commercial
measuring receivers (e.g. Agilent R© 8902A, R&S FSMR series) is
around 1 per cent. Considering there can be a significant potential
of improving the measurement accuracy for specially designed
receivers, we set an to be 10−5δnm, which is higher than above
commercial measuring receivers by about 3 orders of magnitude.
We expect the Npoly = 7 foreground model can handle the G7
test case, while the G8 test case will significantly bias the results.
The results are summarized in Table 3. Same as Section 4.2, we
plot the recovered H I signals together with the input signals in
Figs 12 and 13.

Figure 12. Same as Fig. 6, except that the noise component is removed
from the total signal, corresponding to test case G7.

Figure 13. Same as Fig. 6, except that the noise component is removed
from the total signal, corresponding to test case G8.

4.5 The influence of frequency-dependent antenna pattern

In most of the current work about detecting global averaged
H I signal, it is assumed that a simple dipole-like antenna (not
necessarily to be exactly dipole antenna) is used to receive the
signal from very large sky area. According to e.g. Wilson, Rohlfs &
Hüttemeister (2009), given the normalized power pattern of an
antenna Pn(n) and the sky brightness temperature distribution Tb(n),
both of which are the functions of direction n, the instant antenna
temperature

TA(ν) =
∫

Tb(n, ν)Pn(n, ν)d�∫
Pn(n, ν)d�

, (38)

which is actually the weighted mean value of the sky brightness
temperature. When the weight changes, the output antenna temper-
ature changes accordingly. The power patterns for most antennas
are frequency-dependent so that it will create artificial spectral
structures. When ground effect cannot be ignored, more significant
frequency-dependent feature will appear. As a result, the effect of
FDAP is potentially non-trivial. This issue has been pointed out
by previous works (e.g. Liu et al. 2013), here we perform some
numeric computations, in order to offer practical guides about the
antenna design for such kinds of experiments. In more general
conditions, when the orientation of the antenna changes with time,
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mainly because of the diurnal motion, the time-averaged antenna
temperature

T̄A(ν) = 1

τ

∫ ∫
Tb(M(t)n, ν)Pn(n, ν)d�∫

Pn(n, ν)d�
dt (39)

=
τ−1

“
Tb(M(t)n, ν)Pn(n, ν)d�dt∫

Pn(n, ν)d�
(40)

is actually used, whereM(t) is the rotation matrix. When the antenna
is fixed in space, M is a constant matrix, so that equation (40)
degenerates into equation (38).

Note that as the H I signal is regarded to be isotropic on large
scales, the influence of FDAP to the global H I spectrum can
be ignored, so we only need to calculate its influence to the
foreground signal. Some all-sky survey map is required to evaluate
equations (38) and (40). We use the map T Haslam

408 (n) produced by
Haslam et al. (1981) as a sky template. In order to ensure that in
the condition of a perfect omnidirectional antenna, the calculated
global averaged foreground spectrum degenerates to equation (19),
we renormalize it to

Tfg(n, 408 MHz) = 4πT100

(
408 MHz

100 MHz

)p1 T Haslam
408 (n)∫

T Haslam
408 (n)d�

, (41)

then

Tfg(n, ν) = 4πT100

( ν

100 MHz

)p1 T Haslam
408 (n)∫

T Haslam
408 (n)d�

, (42)

so that when the antenna beam is frequency-independent and
perfectly isotropic, i.e. Pn(n, ν) ≡ 1, the sky-averaged foreground
spectrum

Tfg(ν) =
∫

Tfg(n, ν)d�∫
d�

≡ T100

( ν

100 MHz

)p1
, (43)

which is actually equation (19) with Npoly = 1.
With equation (42) in hand, let us evaluate the above equa-

tions (38) for an antenna with fixed orientation in free space and (40)
for an antenna on the ground. For an antenna with fixed orientation
in free space,

TA(ν) = T100

( ν

100 MHz

)p1
4π

∫
PnT

Haslam
408 (n)d�∫

T Haslam
408 (n)d�

∫
Pnd�

(44)

= T100

( ν

100 MHz

)p1
∫

PnT
Haslam

408 (n)d�∫
Pnd�

×
(∫

T Haslam
408 (n)d�

4π

)−1

(45)

≡ T100

( ν

100 MHz

)p1
g′

A(ν), (46)

where the equivalent gain g′
A(ν) is defined as

g′
A(ν) ≡

∫
Pn(n, ν)T Haslam

408 (n)d�∫
Pn(n, ν)d�

(∫
T Haslam

408 (n)d�

4π

)−1

. (47)

For an antenna on the ground,

T̄A(ν) = T100

( ν

100 MHz

)p1
τ−1

“
T Haslam

408 (M(t)n)Pnd�dt

(4π)−1
∫

T Haslam
408 (n)d�

∫
Pnd�

(48)

= T100

( ν

100 MHz

)p1 ×
τ−1

“
T Haslam

408 (M(t)n)Pnd�dt∫
Pnd�

×
(∫

T Haslam
408 (n)d�

4π

)−1

(49)

≡ T100

( ν

100 MHz

)p1
g′

A(ν), (50)

where the equivalent gain g′
A(ν) is defined as

g′
A(ν) ≡

τ−1

“
Pn(n, ν)T Haslam

408 (M(t)n)d�dt∫
Pn(n, ν)d�

×
(∫

T Haslam
408 (n)d�

4π

)−1

. (51)

As a result, the influence of FDAP to foreground spectra can be
uniformly expressed as an equivalent gain and dealt within the
mathematical framework that we described in Section 4.4. It is also
notable that when calculating above equivalent gain, we do not need
the sky template in every single frequency, and its normalization is
not important, either.

Before applying the equivalent gain to the foreground spectra,
we further renormalize it as

gA(ν) = g′
A(ν)

B−1
∫

g′
A(ν)dν

, (52)

where B is the total bandwidth. The purpose of this step is to shift
the mean equivalent gain over the whole bandpass to 1 so that
the produced foreground spectra is comparable to our baseline test
cases (e.g. BL7). In other words, although the normalization of the
foreground spectrum can be affected by FDAP, here we decide to
eliminate this factor to ensure that the differences in results are
caused by FDAP itself purely, rather than the change of relative
strength of foreground and H I signals. Following the above steps,
the corresponding equivalent gA(ν) is calculated for each test case
and multiplied to the foreground spectrum.

4.5.1 A dipole in free space with fixed orientation

As a relatively simple beginning, we assume a dipole in free space
(e.g. on a satellite) with the orientation fixed. The normalized power
pattern of a dipole antenna is

Pn(θ ) = 1

Pmax

[
cos( kL

2 cos θ ) − cos( kL
2 )

sin θ

]2

, (53)

where the polar angle θ is 0 or π on the axis of the dipole, k is the
wavenumber, and L is the length of the dipole. We substitute above
equation into equation (38), then use equation (52) to calculate the
equivalent gain and apply to the foreground signal spectra.

We study dipole antennas with L = 100, 200, and 300 cm,
respectively. We first plot the equivalent gain of dipole antennas
with different length calculated with equation (52) in Fig. 14(a).
Apparently, we can directly rule out the L = 300 cm dipole. For
L = 100 and 200 cm dipole antennas, though the deviation of their
equivalent gain from 1 has reached 10−3 to 10−2 level, it is possible
that they can still be handled by the Npoly = 7 foreground model. So
we perform following tests for these two dipole antennas.

We generate the new total sky-averaged signal by using the above
equivalent gain caused by FDAP, which is then fed into the MCMC
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Figure 14. Equivalent gain of dipole antennas with different length fixed
in (a) free space, and (b) fixed on the earth. The results are derived with
equation (52).

Figure 15. The common logarithm of the absolute values of the coefficients
calculated by expanding the equivalent gain of dipole antennas with different
lengths that are (a) fixed in free space or (b) fixed on the earth with Legendre
Polynomials.

sampling program. We find that for both L = 100 and 200 cm
conditions (denoted as L100 and L200, respectively), the MCMC
can quickly reach a convergence. The inferred parameters are listed
in Table 3. It is not surprising that the inferred parameters of the
L = 100 cm condition are slightly closer to the input values than the
L = 200 cm condition. As we stated above, by expressing FDAP
into equivalent gain makes it easier to attribute the bias of result
to the artificial spectral structures and compare it to the amplifier
gain caused deviation that is described in the previous section.
So we expand the equivalent gain with Legendre polynomials and
inspect the amplitude of coefficients of different degrees. The plots
of coefficients of different degrees are shown in Fig. 15(a).
Obviously, the coefficients of L300 condition for degrees larger
than 7 is significantly higher than that of L100 and L200. The
coefficients of L200 is only slightly higher than that of L100. This
agrees well with our conclusion above that the required order of
polynomials to approximate the equivalent gain can strongly affect
whether the parameter inference is biased.

4.5.2 A dipole antenna on the ground

Then let us consider another more practical condition – ground-
based experiments. We assume a dipole antenna horizontally placed
at some certain height above the ground. This brings two changes
compared to an antenna in free space: (1) the earth will block the
signal of the hemisphere below the horizon, and (2) ground effects
involve. The first change can be handled rather straightforward,
while for the ground effect, a ground model is needed. Here,
we assume an infinitely large perfect conductive ground plane so
that the antenna pattern can be calculated by simply assuming a
mirror antenna. Because of the diurnal motion, the sky above the
horizon changes with time, and equation (40) should be used. The
effective area of the antenna is zero in directions below the horizon.
Obviously, the received signal is related to the latitude of the point
where the antenna is placed, so two representative latitudes are
considered: 45◦00

′
00

′′
N and 45◦00

′
00

′′
S. The orientation of the

dipole antennas are assumed to be along the meridian, and two
lengths L = 100 and 200 cm are assumed. The height H is assumed to
be L/2 correspondingly. The equivalent gains of the four conditions
are calculated and shown in Fig. 14(b). We list the results in Table 3,
labelled as L100GN, L200GN, L100GS, and L200GS, respectively.

From Fig. 14(b), we can conclude that the equivalent gain error of
conditions L100GS and L200GS are larger than conditions L100GN
and L200GN. On the other hand, we find that the result of L100GN
is best among all the ground-based conditions, L100GS is worse,
and L200GN and L200GS conditions give result significantly biased
from the input values. This phenomenon implies that the latitude of
the survey site can significantly affect the results. Then just like what
we have done above, we expand the equivalent gain with Legendre
polynomials and plot the coefficients verse the polynomial degree
in Fig. 15(b). By checking the amplitudes of coefficients of degree
higher than 7, we find the relative amplitudes of different conditions
agree well with the qualities of parameter inference: better inference
quality corresponds to smaller coefficients. This again confirms our
above hypothesis that the spectral complexity is a more critical
factor than the amplitude of gain calibration error that influences
the quality of parameter inference.

5 D ISCUSSION

5.1 Are directly inferred parameter unbiased?

As is mentioned in e.g. Harker et al. (2016), the two-stage fitting
method can obtain biased results, and it would be interesting to
see if biases in IGM properties would persist even if the signal
were fit with the exact model used to generate it. According to our
tests shown in Sections 4.2 and 4.3, the answer to this question is
not as straightforward as it looks. As we have presented in Sec-
tion 3.3, without the analytical expression of posterior distribution
probability, it is hard to answer this question strictly. We have to
make some compromises by comparing input parameters with the
inferred confidence range (represented as standard deviations for
single parameters and contours for joint distributions of pairs of
parameters). In Section 4.2, we note that the parameter f ′

esc,LW
seems to be underestimated when thermal noise is involved (test
case BL7). Then by removing thermal noise from the total signal
(but still keep σνi ’s when computing posterior probability) to form
test case BL7NN, we find that the inference is actually unbiased, and
the seemingly biased results are caused by certain noise realization.
We also note that there are slightly multimodal features in the corner
plots (Figs 5 and 7). From test cases BL3NN and BL4NN, we find
that reducing Npoly from 4 to 3 will significantly change inferred
parameter distributions from slightly multimodal to multivariate
normal-like distribution. Furthermore, when Npoly = 3, even if noise
is brought back to the total signal, the inferred parameters are still
very close to input values, which means the degrees of freedom of
foreground model will affect the sensitivity to thermal noise.

As a result, we can conclude that using seventh-degree polyno-
mials to model foreground and directly inferring parameters with
the exact model used to generate the signal can obtain unbiased
results if only thermal noise is involved.

5.2 Factors that should be considered in practical global H I

signal detection

5.2.1 Instrumental gain calibration

Through the tests described in Section 4.4, we have shown when
the instrumental gain error as a function of frequency cannot be
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Direct parameter inference from global EoR signal 4093

Figure 16. Residuals calculated as the total signal and the model predictions
for test cases G7 and G8. In (a), parameters for simulating the signals
are used, while in (b), optimal parameters (i.e. with the highest posterior
probability) are used.

well approximated by a low-degree polynomial, very tiny gain
calibration error (e.g. 10−5 as we have tested) can cause both
the underlying physical model parameter and the recovered H I

signal to significantly bias from the true values. Higher degree
polynomials will be needed, but a too high polynomial degree can
lead to the overfitting problem (see Section 4.3). The reason why
this issue must be considered seriously is that we cannot simply treat
the instrumental calibration error same as thermal noise, which is
independent in each frequency channel and can be added to the σ 2

term in equation (21). Our result still cannot clarify the requirement
of instrumental calibration precision, but we have shown that even at
the level of 10−5, the instrumental calibration error can be nontrivial.

We are curious about whether the bias is caused by the calibration
error, or caused by the malfunction of the sampling method. In order
to discriminate the above two possibilities, we plot the residual
calculated with the parameters that are used to simulate the signal
and the optimal parameters (i.e. parameters with the maximum pos-
terior probability) in Figs 16(a) and (b), respectively. Apparently, for
both G7 and G8 conditions, the residuals corresponding to optimal
parameters are smaller than the residual corresponding to input
parameters. Meanwhile, for the optimal parameters, the residual of
G8 is larger than the G7 condition; this is in agreement with our
above results that the G7 condition can lead to an acceptable result,
while G8 condition cannot. Also, after examining the parameter dis-
tribution in parameter space and the plot of parameter values versus
sample numbers, we conclude that for both G7 and G8 conditions,
the Markov chains have reached convergences. So we could safely
rule out the possibility of the malfunction of the sampling method.

Although we use only mathematics-based models to represent
calibration problems, instead of actual front-end electronic devices
(mainly a series of amplifiers, filters, and in some conditions,
frequency mixers), we suggest that there are at least two potential
sources could cause frequency-dependent gain calibration error.
One is the broad-band amplifier gain flatness calibration error, and
the other is the complexity of broad-band impedance matching
between analogue devices. The latter factor has been addressed
in e.g. Harker et al. (2012). We choose to not calculate the result
with the equations in their work because besides the impedance
mismatch, and there are other complex factors that will make the
result hard to be represented in any analytical form.

5.2.2 Frequency-dependent antenna beam pattern

If in principle, analogue front-end gain can always be calibrated
with sufficient accuracy, FDAP is inevitable. According to antenna
theory, when the antenna has a size to wavelength ratio L/λ � 1,
it would become the so-called electrically small antenna, the beam
pattern of which is nearly omnidirectional. So it is plausible that

in order to suppress effects caused by the FDAP, smaller antennas
are preferable. Besides the antenna size, we also show that the
ground effect can cause even more severe FDAP (see Section 4.5.2).
The reason is straightforward – the interval between the antenna
and the earth can form a structure with a size comparable to the
wavelength. This could be a big challenge that prevents ground-
based instruments from detecting the global H I signal. In order
to make ground-based instruments suitable for global H I signal
detection, a smaller distance between the antenna and the ground
plane can be a good choice. Actually among several currently
running experiments that are devoted to the detection of global
21 cm signal, the antenna design of EDGES (Mozdzen et al. 2016),
PAPER (Pober et al. 2011), and BIGHORNS (Sokolowski et al.
2015) seems to fulfill the above requirements about the antenna
size. It could be helpful for us to get more realistic results if we
can take into account the actual mechanical models of the above
antennas in our simulation.

There should be other ways to solve the FDAP problem. One
method is to used digitized beamforming arrays because digitized
beamforming arrays can adjust the complex gain (both amplitude
and phase) of each antenna element to form the desired antenna
beam that is independent of frequency. However, instrument cali-
bration will become a more significant challenge for such kinds of
complex systems. Another method is to scan as large as possible
area of the sky so that the FDAP induced effects could be smeared
out, either by putting the instrument in sites with different latitudes
or for space-based detectors, pointing the antenna uniformly to
different directions.

5.3 Which set of free parameters to be used?

As we have mentioned in Section 2.2, the difference between
selecting different sets of free parameters can be nontrivial. In our
above tests, we choose f ′

esc, f ′
esc,LW, and f ′

X to be free parameters and
assume their priori distributions to be a uniform distribution. On the
other hand, there is another possible choice: directly sampling f∗,
fesc, and fesc, LW and fix fX = 1, still assuming their priori distributions
to be uniform, then the obtained corresponding distribution of (f ′

esc,
f ′

esc,LW, f ′
X) will be definitely not same as the results we have

presented above. The reason is obvious: if f∗ and fesc (or fesc, LW)
both independently follow the uniform distribution, their product
f ′

esc (or f ′
esc,LW) will not follow the uniform distribution.

If we do not have enough priori knowledge, assuming the chosen
parameters to follow uniform distributions independently seems to
be a rather natural decision. However, this decision can cause a
potential problem. Different choices of free parameters can lead to
different estimation results. In this work, we are not able to answer
the question of how to choose the free parameters.

5.4 Using priori knowledge from other observations

As as we have pointed out in Section 4.3, when Npoly ≥ 4 is used in
the foreground component model, the parameters cannot be tightly
constrained. This phenomenon is most apparent for parameter f ′

esc.
From Figs 5, 7, and 11, it can be seen that parameter distributions
deviate from normal-like distributions. And by examining the joint
distributions of f ′

esc and f ′
X in the above figures, one will easily find a

strong correlation between these two parameters. This phenomenon
suggests that these two parameters can play some equivalent roles
in forming the global H I spectrum, especially for the absorption
trough feature. It could be possible to use the priori knowledge
from other observations as further constraints to decouple these two
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parameters. Recalling that f ′
esc mainly affect the process of ionizing,

the CMB optical depth

τCMB(z) = nH(0)cσT

∫ zmax

z

dzx̄i(z)
(1 + z)2

H (z)
, (54)

where nH(0) is the number density of hydrogen atoms at z = 0, c
is the speed of light, σ T is the Thomson scattering cross-section,
and H(z) is the Hubble parameter at redshift z, can be used to
impose further constraint on this parameter. This can be verified
by examining corresponding τCMB values of different f ′

esc. For
example, the reference model value f ′

esc = 0.005 corresponds to
τCMB(10.8) = 0.012, which does not conflict with the Planck result
τ Planck

CMB (0) = 0.054 ± 0.007 (Planck Collaboration et al. 2018). If we
increase f ′

esc by one order of magnitude to 0.05, then a τCMB(10.8) =
0.071 > τ Planck

CMB (0) is obtained, which can immediately be ruled out.
Increasing f ′

esc further by another one order of magnitude to 0.5
will result in a τCMB(10.8) = 0.133. In this condition, the global
H I signal reaches zero shortly after the absorption peak. Though
we only use the CMB optical depth at z = 0 from the Planck data
as an example here, a refined optical depth at higher redshifts can
calculated by properly modelling the electron number density at
lower redshifts and subtracting their contribution to the total value,
which can be used as a tighter constraint to the global H I signal
model parameters.

5.5 The performance of simplified Gaussian model

As was introduced in Bernardi et al. (2016), a simplified model that
is based on Gaussian function can be a possible method to extract
information from global 21 cm signal from the cosmic dawn. We
test the Gaussian model and compare the results with the previous
physical model here.

We use the reference model that we have simulated above, with
the parameters listed in Table 2. Same as Bernardi et al. (2016), the
Gaussian model is expressed as

δTb(ν) = AH Ie
− (ν−νH I)2

2σH I , (55)

where the amplitude AH I, peak position νH I, and standard deviation
σH I are to be inferred through the MCMC sampling. Foreground
model is still the seventh-degree log-polynomial same as we used
in previous sections. For the Gaussian model is only suitable to
approximate the 21 cm signal from pre-reionization epoch, it is
necessary to set an upper frequency limit νmax . We set νmax to be
100, 105, 110, and 120 MHz according to our knowledge about the
simulated signal, and perform the test.

We show the histograms of AH I in Fig. 17. It can be seen clearly
that the distribution of AH I varies significantly with νmax . In other
words, the upper frequency limit can heavily affect the level of the
absorption feature of H I signal. Then we study the recovered H I sig-
nal, which is plotted in Fig. 18. Obviously, if correctly choosing the
upper frequency limit, we can recover the H I signal with a relatively
small error. We show the residual between the total signal and the
sum of H I model component and the foreground model component
in Fig. 19, to check whether we can diagnose the results in actual
observations. From the figure, we find that within the used frequency
ranges, the residuals distribute almost symmetrically, and do not
show obvious difference between test cases with different νmax .
The residuals of all four νmax values also show oscillating features.

It would be interesting to check the residual between the recov-
ered foreground component and the input model, which we show
in Fig. 20. Obviously for νmax = 100 and 120 biased foreground

Figure 17. The histograms of AH I in the Gaussian model sampled assuming
νmax = 100, 105, 110, and 120 MHz, respectively.

Figure 18. Recovered H I signals by using Gaussian model assuming
νmax = 100, 105, 110, and 120 MHz, respectively. The vertical dashed
lines denote the νmax . Grey bands are the 68 per cent confidence ranges
of the signals calculated with equation (55) by using the sampled model
parameters. Yellow bands are the signals calculated as the differences
between total signal and the foreground model values. The black solid lines
denote the input global H I signal model. The red crosses denote the sum of
the input signal and the actually simulated noise.

estimations are obtained. The most significant deviation from the
reference value appears right at the frequency of absorption feature
of the H I signal, which happens to compensate for the biased H I

signal estimation and lead to the symmetric residual distributions
as are shown in Fig. 19. Hence, although both the recovered H I

and foreground components are biased, the total recovered model
component show no apparent biasing evidence, except for some
oscillation features, and the oscillation can also be caused by the
instrument calibration inaccuracy. So we have to conclude that
although modelling the H I signal in the early stage of EoR can
significantly simplify the parameter inference and quickly obtain
the results, it is still risky and mostly suitable only for qualitative
analyses.

5.6 A caveat about this work

In the previous sections, we do confirm that with a direct modelling
method and proper sampling algorithm, it is possible to obtain
unbiased parameter estimation from the global H I signal. This also
partially answers the question raised by Harker et al. (2016) that
whether the inference result would be biased if the signal were fitted
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Figure 19. The distributions of the residuals between the total signal and
the model predicted values assuming νmax = 100, 105, 110, and 120 MHz,
respectively. The vertical dashed lines denote the νmax . The H I signal
is approximated with a Gaussian model. The residuals defined as Ttotal

− Tfg − δTb, where Ttotal is the total signal and δTb is calculated with
equation (55). The solid lines are the mean residual calculated over all the
sampled parameters. The error bars represent the standard deviation of noise.
The grey bands denote the 68 per cent confidence ranges of the residuals.

Figure 20. The errors of estimations to the foreground component in the
conditions of νmax = 100, 105, 110, and 120 MHz, respectively. The vertical
dashed lines denote the νmax . The solid lines represent the mean residual
and the grey bands denote the 68 per cent confidence range.

with the exact the model used to generate it. However, we shall
point out that we cannot test all possible reionization models and
there may still exist some reionization models that could not well
constrained by the observations to global H I signals, and imaging
detection or power spectra measuring are required to constrain the
parameters of those models. The result of this work should be treated
as a test to some specific reionization scenarios. Nevertheless, the
method used in this paper is still useful to test if a direct one-stage
MCMC sampling works in the condition of other models that are
not covered in this work.

5.7 Some practical suggestions of performing MCMC
sampling

Last but not least, we would like to give some practical suggestions
for MCMC sampling. It is true that in an ideal condition when

the parameter space is not multimodal, any casually chosen initial
parameter can finally lead to convergence. However, our experience
shows that in practical conditions, choosing a ‘good’ initial parame-
ter is still essential. We find that when instrumental gain calibration
error or FDAP involves, an arbitrarily chosen initial parameter may
require a rather large number of sampling before convergence. A
practical method is to find the foreground polynomial coefficients
through an ordinary least square fitting with polynomial fitting to the
total signal and use the fitting result as the foreground parameters’
initial values.

6 C O N C L U S I O N S

We survey the feasibility of directly inferring physical model
parameters from global EoR signal data and the influences of
some factors that should be considered in actual observations
to the model parameter inference. We find that if only thermal
noise is considered, unbiased model parameters can be inferred.
The inaccuracy of analogue front-end and frequency-dependent
antenna beam can bias the results on different levels. Even a relative
amplifier gain calibration error of 10−5 can significantly influence
the inferred model parameters given that a low-degree polynomial
cannot well fitted the calibration error as a function of frequency.
The FDAP should be carefully considered to prevent it from creating
artificial spectral structures. Geographical position can also cause
differences in the difficulties of obtaining correct model parameters.
The Northern hemisphere seems to be a better choice than the
Southern hemisphere because of the distribution of the brightness
of the Milkyway. Finally, we give some practical suggestions about
performing MCMC sampling and parameter inference in global
EoR signal detections.
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