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ABSTRACT
Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number
of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly
detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering
technique and the ASTRONOMALY package. As proof of concept, we evaluate 85 553 min-cadenced light curves collected over two
∼1.5 h periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the
clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of ASTRONOMALY,
we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across
a range of catalogues from within the fields, and find a further seven uncatalogued variables and two stellar flare events, including
a rarely observed ultrafast flare (∼5 min) from a likely M-dwarf.

Key words: methods: data analysis – methods: observational – techniques: photometric.

1 IN T RO D U C T I O N

In the era of large time-domain surveys, classification and discovery
of transient sources is becoming reliant on machine classification
to handle the associated large amounts of data. Current ground
based surveys such as the Zwicky Transient Facility (ZTF; Bellm
et al. 2019; Graham et al. 2019), Dark Energy Survey (Dark Energy
Survey Collaboration 2016), and the All Sky Automated Survey
for Supernovae (Shappee et al. 2014) are able to scan thousands
of square degrees continuously, which amounts to petabytes of
data annually, and recently the Panoramic Survey Telescope and
Rapid Response System Survey (Stubbs et al. 2010; Chambers et al.
2016) delivered the first petabyte scale optical data release. Space-
based time-domain missions have provided unprecedented volumes
of photometry, light curves, and proper motions for Galactic sources,
with Kepler (Borucki et al. 2010) and K2 (Howell et al. 2014)
targeting ∼400 000+ individual stars, TESS (Stassun et al. 2018) is
expected to target at least 200 000 sources producing light curves for
each source, and Gaia has already released almost 2 billion sources.
Overcoming the mining challenges of these increasing amounts of
data to not only identify and catalogue the multitude of known
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transient types but to make discoveries of new or anomalous sources
is paramount to the success of future large transient surveys and
time-domain science.

1.1 Supervised learning

Supervised machine learning has already been utilized extensively
by several surveys and teams in astronomy for identification of
variable stars and quasi-stellar objects from light curves via mul-
tivariate Gaussian mixture models, random forest classifiers, support
vector machines, or Bayesian neural networks (Debosscher et al.
2007; Kim et al. 2011; Richards et al. 2011; Bloom et al. 2012;
Pichara et al. 2012; Pichara & Protopapas 2013; Kim & Bailer-
Jones 2016; Mackenzie, Pichara & Protopapas 2016). The litera-
ture aforementioned successfully shows the robustness of source
classification while using the combination of supervised algorithms
trained on extracted features. Features represent a set of measurable
properties/characteristics of the light curves being studied (discussed
in further detail in 4.1). The most common features used in earlier
works are available within the python package FATS by Nun et al.
(2015).

Classification of non-folded light curves of extragalactic transient
sources has also been explored, moving away from selecting the
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class of the object by fitting analytical templates built from a set of
known sources (Richards et al. 2011; Karpenka, Feroz & Hobson
2012; Lochner et al. 2016; Möller et al. 2016; Narayan et al. 2018).
While these techniques work well for catalogues of light curves, they
cannot easily be applied to real-time data.

Real-time classification of supernovae by Muthukrishna et al.
(2019) and Möller & de Boissière (2020) has shown the effectiveness
of deep recurrent neural networks, without the need to rely on
extracting computationally expensive features of the input data.

1.2 Unsupervised learning

Even with machine learning advances in astronomy, mining data
for unknown or anomalous events is relatively unexplored, as the
majority of current algorithms require training data sets of known
events. Mackenzie et al. (2016) developed an unsupervised feature
learning algorithm that takes subsections of variable star light curves
to cluster and use as features to train a linear support vector machine.
This work eliminates the need for traditional feature extraction,
limiting the computing time and biases associated with feature
selection. Only limited work into actual transient classification or
anomaly detection via unsupervised means has been performed
within time domain astronomy.

Valenzuela & Pichara (2018) performed unsupervised clustering
of variable star light curves by creating variability trees using the
k-medoids clustering algorithm of fragmented light curves. This
method offers a novel and computationally fast approach to data
exploration but is again limited by the need for known light curve
examples for similarity searches. To identify Kepler data outliers for
visual inspection, Giles & Walkowicz (2019) performed light-curve
clustering using Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). They report the successful extraction of the
known anomalous Boyajian’s star via their method; however they
identified that the DBSCAN assumption of constant density clusters
is a limitation. It should be noted that the overwhelming majority
of work performed to date on light-curve classification by machine
learning has used 30 min to several day cadence, including folded
light curves.

Mahabal et al. (2017) presents another approach to light-curve
classification, by reducing the time series data to 2D representation
in order to classify them using deep learning techniques. This
approach maps the change and magnitude over time to create a
visual representation of the light curve as an image to be used in the
deep learning process. This method presents an alternate approach of
unsupervised learning for time-series classification without the need
for feature extraction.

1.3 Anomaly detection in fast cadenced surveys

Currently, the majority of wide field optical surveys explore a limited
region of the luminosity-time-scale phase space, with an average
cadence of hours to days between visits to fields, with only a few
programs exploring the phase space shorter than 1-h cadence (see
Lipunov et al. 2004, 2007; Roykoff et al. 2005; Rau et al. 2009;
Berger et al. 2014; Burdge et al. 2019; Richmond et al. 2020).
What is largely unexplored by these surveys is the phase space
of transient events occurring on seconds-to-minutes time-scales.
There are several events expected to occur on these time-scales,
and understanding both the events and the general nature of the
fastest transients in the Universe is crucial for understanding the
transient Universe as a whole. For example, the upcoming Rubin
Observatory Legacy Survey of Space and Time (LSST) is predicted

to generate nearly 10 million transient alerts each night. As such, it
will be invaluable to quickly and meaningfully quantify the expected
large volume of short time-scale events to help assist in follow-up
priority assignment (LSST Science Collaboration 2009). To do so,
the astronomical community will rely heavily on the use of brokers
and their integrated algorithms serving alert streams. Current brokers,
which include ALERCE,1 ANTARES,2 LASAIR,3 and MARS4 are already
in use on the nightly ZTF stream, successfully identifying known
extragalactic and galactic transient and variable events. However
identifying anomalous events can prove challenging with pre-trained
algorithms, especially within the rarely explored fast time-scales
(seconds-to-minutes).

The multiwavelength Deeper, Wider, Faster (DWF) program offers
the ability to explore optical transient events with the depth and
cadence required to enable the quantification and characterization of
Galactic and extragalactic variable and fast transient rates for current
and upcoming large-area searches and surveys and to similar depths
as 4m–8m class telescopes. Such as gravitational wave counterpart
searches, the Rubin Observatory LSST survey, and others. This
work presents our effort to explore the DWF optical data for
anomalous light curves without the restrictions of prior assumptions
or expectations.

As our literature review highlights, the vast majority of work to
date on machine learning for transient classification and identification
has relied on pre-existing understanding of longer duration variable
and transient time-series behaviour. In this work, we demonstrate
an unsupervised method to aid in the discovery of both known
and poorly understood transients on the time-scales of seconds-to-
minutes.

The paper is organized as follows: A brief introduction to the
DWF program is presented in Section 2, two DWF data gathering
strategies and the data in Section 3. We present our multifaceted
anomaly detection approach in Section 4 and our proof of concept
results in Section 5. We conclude by presenting our overall outcomes
in Section 6.

2 TH E D E E P E R , W I D E R , FA S T E R PRO G R A M

Several new and exciting astronomical fast transient events have been
discovered in recent decades and the progenitors and physical mech-
anisms behind many of them are still poorly known (e.g. Fast Radio
Bursts, FRBs), supernova shock breakouts, Fast-Evolving Luminous
Transients (FELTs), and other rapidly evolving extragalactic events
(for example: Lorimer et al. 2007; Garnavich et al. 2016; Perley et al.
2018; Prentice et al. 2018; Rest et al. 2018). What has limited our
ability to detect and understand these events is the capability to gather
data in short, regular time intervals before, during and after the events;
as well as over a range of wavelengths. The DWF program (Andreoni
et al. 2017a, b; Meade et al. 2017; Vohl et al. 2017; Andreoni &
Cooke 2018) has been designed with these challenges specifically in
mind, constructing an all wavelength and simultaneous observational
program of over 70 facilities to date. DWF takes a ‘proactive’
approach to transient astronomy, with coordinated simultaneous
wide-field fast-cadenced multiwavelength observations of target
fields taken continuously over 1–3 h periods, capturing data before,
during, and after the transient events. The optical data collected

1https://github.com/alercebroker
2https://antares.noao.edu
3https://lasair.roe.ac.uk
4https://mars.lco.global
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during the simultaneous observations is processed in near real-time
to quickly identify candidates requiring the use of rapid Target of
Opportunity (ToO) observations.

DWF unites the worlds most sensitive facilities with large fields
of view in the optical – the Dark Energy Camera (DECam; Flaugher
et al. 2015) on the Cerro Tololo Inter-American Observatory (CTIO)
Blanco 4-m telescope in Chile and Hyper-SuprimeCam (HSC;
Miyazaki et al. 2017) on the Subaru 8-m telescope in Hawaii –
taking continuous 20–30 s exposures. Using this strategy, DWF is
able to explore a region of luminosity phase space rarely explored
by many traditional surveys (see Andreoni et al. 2020). From the
real-time data processing, DWF can quickly identify candidates and
coordinate rapid-response and long-term follow-up observations of
transient candidates. DWF began in 2014 and since its inception has
had two pilot runs and seven operational runs (see Andreoni & Cooke
2018; Cooke et al., in preparation).

The unique design of DWF allows exploration of transients on
the seconds-to-hours time-scales, providing further understanding
into known classes of fast transients, events theorized to occur on
these time-scales, and very early detections of slower evolving events
(see Section 3 for observation specifics). Using either DECam or
HSC, the deep optical component of DWF can explore a region
of parameter space not yet reached by previous transient surveys.
Note that, although DWF collects simultaneous fast-cadenced data
across all wavelengths, radio through gamma-ray, from multiple
facilities, we will only focus on DECam optical data here. Work by
Andreoni et al. (2020) utilized the unique DWF data and ‘Mary’, our
transient difference image discovery pipeline, to detect both galactic
and extragalactic transients on the minute time-scales. In this paper,
we examine light curves generated purely from science images (i.e.
without image subtraction) for all sources in our chosen fields, and
explore the ability to identify known and unknown transient and
variable sources through the use of unsupervised machine learning.
By examining every source light curve through an unsupervised
algorithm, we aim to not only distinguish clear source separations
in feature space, but identify and classify unknown and outlying
sources to comprehensively explore fast transient events and source
variability on the seconds-to-hours time-scales.

3 DATA

We use fast cadenced data collected during DWF runs using DECam.
We collect 20 s, continuous imaging of targeted fields, acquired in a
single band, the ‘g’ filter. We choose the continuous use of the ‘g’
filter to maximize depth with DECam, reaching ∼0.5 magnitudes
deeper in comparison to the other filters in dark time. The expected
limiting magnitude in ‘g’ band is m(AB) ∼23, for an average
seeing of 1.0 arcsec and airmass of 1.5 (relatively high airmass due
to the field constraints of observing simultaneously with multiple
facilities). For this work, the DECam images are post-processed
through the NOAO High-Performance Pipeline System (Scott et al.
2007; Swaters & Valdes 2007; Valdes & Swaters 2007) and then
transferred to the OzSTAR supercomputer at Swinburne University
of Technology for our data analysis. The DECam 62 CCD mosaic is
separated into individual fits files for each extension. Each CCD is
processed separately for source extraction using SExtractor (Bertin &
Arnouts 1996) and all source magnitudes are corrected for exposure
time and magnitude offsets against the SkyMapper Data Release 2
catalogue (Bertin & Arnouts 2010; Onken et al. 2019). A master list
is compiled by cross-matching all extracted sources from each CCD,
over all exposures within 0.5 arcsec radius between source centroids
into one catalogue of source positions. This master catalogue is used

to create light curves for each source, replacing any non-detections
per single exposure with the CCD exposure detection upper limit
represented in the light curve.

To date, DWF has targeted 20 separate fields, each observed
typically for six consecutive nights, and has accumulated over 1
million source detections. In this work, we analyse light curves
from two separate fields for only one night each, observed using
two different observing strategies. In Section 5.1, we analyse data
collected from the DWF ‘J04-55 field’ on 2015 December 18,
using a field centre of RA:04:10:00.0 and DEC: −55:00:00.0. The
continuous 20 s exposures were collected over a 90 min period, using
a stare’ observational strategy (i.e. pointing at the same coordinates
with no small field dithering between exposures). In Section 5.2,
we analyse data gathered over an 80 min period of continuous 20 s
exposures centred on the ‘Antlia field’ RA: 10:30:00.0 and DEC:
−35:20:00.0 on the Antlia cluster of galaxies. These data were
collected on 2017 February 6 and utilized a five point dithering
strategy at the beginning, middle, and end of the observation, while
staring in between. In these data, we explore the contribution of
telescope dithering to the false positive rate of anomaly detection in
Section 5.2.

4 M E T H O D O L O G Y

We use the following methodology: (1) feature extraction, (2)
clustering, (3) t-SNE visual representation, (4) anomaly ranking and
visualization with ASTRONOMALY. We use feature extraction to find
a low dimensional representation of the data, clustering to eliminate
large clusters of ordinary objects and instrumental effects and isolate
possible interesting transients, anomaly detection to rank these
remaining objects by ‘abnormality’ and finally ASTRONOMALY to
visually explore the detected anomalies. Note that all stages are per-
formed on nightly light curves with an average cadence of ∼60–68 s
between light-curve points, accounting for both the 20 s exposure and
40 s CCD readout time, CCD clear and rest. We utilize python for all
stages, using the following packages SCIKIT-LEARN, HDBSCAN, FATS,
ASTROPY, NUMPY, PANDAS, and MATPLOTLIB (Hunter 2007; McKin-
ney et al. 2010; Pedregosa et al. 2011; Nun et al. 2015; Oliphant
2015; McInnes, Healy & Astels 2017; Price-Whelan et al. 2018).

4.1 Features

As the number of data points differ for different light curves, we
extract a uniform set of features to (i) reduce the dimensionality, and
(ii) allow for direct comparison between light curves that may be on
different time-scales with different sampling properties. To represent
our unique fast-cadenced data, we use a mixture of normalized fea-
tures developed and used primarily for the identification of variable
stars and quasi-stellar objects. We performed principle component
analysis on the features and selected those that corresponded to large
eigenvalues. The majority of our features are taken from work by
Richards et al. (2011), which were used to classify variable stars
from sparse and noisy time-series data. We use only the features not
restricted explicitly to folded light curves or periodic sources. Some
examples of the features used are amplitudes, standard deviation,
linear trend, maximum slope, etc. In addition to these, we used the
stellar variability detection features, H1 (amplitudes), R21 (the 2nd
to 1st amplitude ratio), and R31 (the 3rd to 1st amplitude ratio)
which are focused around Fourier decomposition. The remaining
features were taken from work in quasi-stellar object selection, these
being autocorrelation length, consecutive points, variability index,
and Stetson KAC as used by Kim et al. (2011) and mean, σ and

MNRAS 498, 3077–3094 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/3077/5903285 by U
niversity of the W

estern C
ape user on 08 February 2021



3080 S. Webb et al.

τ taken from a continuous autoregressive model fitted to our data
from Pichara et al. (2012). We extract 25 unique features from each
light curve using mostly using FATS and some in-house routines. Full
details and sources for the features used are shown in Appendix A1.

In this work, we run feature extraction in parallel on the OzSTAR
supercomputer at Swinburne University. We utilize the Intel Gold
6140 18-core processors on OzSTAR, achieving a feature extraction
speed of ∼110 s per 1000 light curves when processed serially.

4.2 HDBSCAN

The focus of this paper is to use machine learning to analyse and
cluster our light curves. We choose to use Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN5;
McInnes et al. 2017). The theoretical method behind this algo-
rithm was first proposed by Campello, Moulavi & Sander (2013).
HDBSCAN takes the approach of Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) and converts it into a
hierarchical clustering algorithm by varying the value of epsilon
(ε) to identify clusters of varying densities (for further details see
McInnes et al. 2017).

To better understand how HDBSCAN works, we first outline
the original DBSCAN algorithm by Ester et al. (1996). DBSCAN
performs nearest neighbour searches in a given feature space to
determine clusters of overdensities, points closely related in distance,
and identify outlier points that exist in low density regions as noise.
DBSCAN requires two parameters, ε, which represents the radius of
the neighbourhood search and a minimum number of points (minPts),
which must exist in a neighbourhood to constitute a dense region.
What has limited the use of DBSCAN in the past is the inability to
vary ε in a given data set, requiring clusters to have similar densities.
However, HDBSCAN can take in a minimum cluster size parameter
which eliminates the need for a single value of ε when determining
clusters from a dendrogram, adjusting of ε as it explores clusters of
varying densities.

After several preliminary tests combining the different distance
metrics and varying minimum cluster sizes to evaluate cluster purity
and uniformity, we opted to require a minimum cluster size of 5
and to use a Euclidean distance metric for its intrinsic ability to
calculate the shortest distance between points. We aim to create as
many distinct clusters in our feature space as the algorithm will allow
to limit the outliers to very low density regions.

4.3 t-SNE

To help visualize the clustering of objects in our high dimensional
feature space, we use the t-distributed Stochastic Neighbor Embed-
ding (t-SNE) algorithm developed by van der Maaten & Hinton
(2008). The t-SNE algorithm uses the same Euclidean distance
metric to measure the proximity of all features in higher-dimensional
space. It converts these distances to probabilities using a Gaussian
distribution. A similarity matrix of the probabilities is stored for
the higher-dimensional space, and the feature space is then collapsed
down to 2 or 3 dimensions, depending on the user’s choice, where the
Euclidean distance is calculated once again using a t-distribution to
assign probabilities and saved as a second similarity matrix. The two
distributions are then minimized using the sum of Kullback–Leibler
divergence of all data points using a gradient descent method to return
a 2D representation of the distance of data in our feature space. It is

5https://hdbscan.readthedocs.io/en/latest

important to note that due to the stochastic nature of t-SNE, it is used
here only for visualization and not cluster identification. We note here
that t-SNE was performed for the entirety of our data sets, using the
OzSTAR6 computing nodes as well as on a personal machine with
8 GB ram and a 4.0 GHz quad-core Intel Core i7. We acknowledge
that for future work the use of Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP; McInnes, Healy &
Melville 2018) is a promising method for dimensionality reduction,
however in this work we were unable to use UMAP due to compu-
tational issues and we deemed t-SNE to be sufficient.

4.4 ASTRONOMALY

To find the most anomalous light curves, in each cluster, we use the
python package ASTRONOMALY7 (Lochner & Bassett, in preparation)
which is comprised of a python back end and JavaScript front end to
easily explore the data via a locally hosted web interface (for further
details see Appendix B1). ASTRONOMALY is a flexible framework,
designed to detect anomalies within astronomical images or light
curves using any of a variety of anomaly detection algorithms. Here
we use the scikit-learn implementation of isolation forest (Ting,
Liu & Zhou 2008) available in ASTRONOMALY. Each cluster of light
curves identified by HDBSCAN was saved in individual data frames
containing each light curve’s features.

Using ASTRONOMALY, each cluster’s light curve’s were evaluated
independently, feeding both their features and original light-curve
file into the back end of the package.

The isolation forest then works to isolate each light curve by
recursively generating partitions, creating a tree structure ultimately
segregating each light-curve point into nodes. Each node either
contains one individual data point, or several data points all with
the same feature value.

The web interface GUI allows the user to visually inspect the
highest ranking anomalous light curves (as measured by the isolation
forest algorithm), as well as explore the interactive t-SNE plot to
probe the lower dimensional cluster space. To enable more rapid
visualization, for this work we limit ASTRONOMALY to present only
the 2000 most anomalously ranked light curves in the GUI interface.

ASTRONOMALY serves two purposes in this work. The first is easy
visualization of the data in the clusters. Each cluster is analysed
individually and the interactive t-SNE plot allows the user to quickly
determine if the objects in the cluster do indeed look similar. The
data can then be further vetted using the ranked anomaly system.
The most anomalous objects within the cluster will appear first and
hence should be the objects that are least likely to actually belong to
that cluster. Thus, the effectiveness of the clustering can be quickly
evaluated without the need for exhaustive study of every single light
curve in the cluster.

The second reason we use ASTRONOMALY is to identify anomalous
sources in the ‘unclustered’ group. With the same ranking system, the
most interesting sources (and also instrumental effects) should appear
early in the list allowing quick identification. It is critical to note that
while this data set is still small enough to manually investigate every
object (especially with ASTRONOMALY’s visual interface), for data
sets consisting of millions of light curves, this would simply not be
possible and the automated ranking becomes much more important
to allow rapid discovery of anomalous sources.

6https://supercomputing.swin.edu.au/ozstar/
7https://github.com/MichelleLochner/astronomaly
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Table 1. The details of each of the three clusters identified by the HDBSCAN
algorithm. The description of the light curves refers to both the light curve
and information gathered from individual cutouts of the detection images.
Unclustered represents light curves unable to be identified to a cluster.

Description of Cluster # of Per cent of
light curves ID Light curves Sources

Faint sources Cluster 0 8 0.03 per cent
at detection – – –
threshold – – –

Sources near Cluster 1 144 0.62 per cent
CCD edge – – –

Steady light curves Cluster 2 22 909 > 98.7 per cent

Real and Unclustered 138 <0.59 per cent
photometrically – – –
affected light curves – – –

5 R ESULTS

5.1 DWF J04-55 field – no dithering observational strategy

We present the results of our unsupervised method applied to light
curves over a 90-min observation of the DWF ‘J04-55 field’ using
DECam in stare mode (the telescope tracked the same field centre
coordinates for the duration of the observations). It is important
to acknowledge that small movements of the telescope may still
be present due to telescope guiding, shutter movements, and small
pointing shifts. A total of 89 images were acquired, with 23 199
sources, as identified in the J04-55 field from the 5-night master
source list, as having greater than three detections (Ndet > 3) for
feature extraction.

5.1.1 Clusters

A total of three clusters were identified using HDBSCAN, as shown
in Table 1. Cluster 2 dominates, containing 98.7 per cent of light
curves in the field. Inspection showed that this cluster overwhelm-
ingly contained sources which were unchanging in magnitude,
consisting of both stars and galaxies. In such a short time-scale
observation, we expect that the majority of sources will be assigned
to a single cluster in this manner. The two remaining clusters identify
faint sources only breaching the detection threshold a few times
during the 90 min, and sources near, or on, the edges of CCDs which
have caused unusual/anomalous light curves. A visual representation
of the clusters in feature space can be seen in Fig. 1.

5.1.2 Variable/transient sources

A total of 138 light curves remained unclustered (referred to as
noise by HDBSCAN, shown in black on Fig. 1). The unclustered
light curves represent those which have a significant distance from
identified clusters and represent the outliers in the data. It is these
outliers which are variable and transient sources in the field. The
light curve of each was visually inspected (in order of anomaly score)
using the ASTRONOMALY package and variable sources were cross-
matched to existing catalogs to check for known variability (mainly
the International Variable Star Index (VSX) catalogue (Watson,
Henden & Price 2006), identified RR lyrae stars from the Dark
Energy Survey (DES) Stringer et al. (2019), and the Catalina Surveys
Southern Periodic Variable Star Catalogue (Drake et al. 2017)).

For newly discovered sources showing variability, locations on a
Colour–Magnitude Diagram (CMD) were calculated using Gaia data
release 2 parallax and photometric information (Evans et al. 2018;
Luri et al. 2018). The CMD positions were then overlaid on the
variability CMDs presented in work by Gaia Collaboration (2019)
and shown in Appendix C1 as green triangles. After evaluation with
ASTRONOMALY, it was determined that the majority of the light curves
were indeed anomalous in structure, however caused by instrumental
and observational effects. The false positives represented sources on
the edges of CCDs or those teetering on the detection threshold.
However we did identify six sources of continuous variability, five of
which have been previously catalogued, with the remaining variable
source discovered by this work. In addition to the variable stars, a
stochastic classical flare event was also identified. Source IDs, name,
coordinates, known catalogue ID (if available) and period are shown
in Table 2, and the light curves are shown in Fig. 2.

5.1.3 Validating the completeness for J04-55 field

To confirm the effectiveness of our unsupervised clustering, we used
several methods to verify that all variable sources in the field were
identified. First we retrieved all known variable sources from the
VSX catalogue. We found 13 catalogued variable sources within
DECam’s CCD footprint. Five of the known variable sources were
recovered as anomalies in this work (see Table 2), and three were
below our detection threshold for the vast majority of exposures. The
remaining five did not show significant variability over the ∼90 min
period and were subsequently clustered in the grouping of steady
light curves. These four sources have catalogued periodicities much
longer than 90 min (See Appendix D1 for their details.) Secondly,
ASTRONOMALY was used to display the 2000 light curves ranked
most anomalous via the isolation forest algorithm over the identified
clusters. After visual inspection, no additional variable light curves
were found. Through these evaluations, we confirm that our methods
successfully retrieve most, if not all, varying or transient sources
present in the field during our observations.

5.2 DWF J10-35 (or Antlia) field – Dithering observational
strategy

Through the uniqueness of the DWF program, novel and non-
traditional observing strategies have been implemented dependent on
the strategies of the facilities performing simultaneous observations
and the overall goals of the observing program. Here we confirm
that our unsupervised analysis is able to successfully identify and
quantify both real astrophysical anomalies, and those caused due
to an observing strategy with relatively large dithers (∼60 arcsec)
designed to move the telescope sufficiently to fill the DECam
CCD gaps evenly with five dithers. We chose a DWF field where
observations were a mixture of five point dithers, and continuous
stares over an ∼80 min period. Dithering within surveys is often
crucial to fill CCD chip gaps and gather photometric information of
all sources in the field. Dithering in this manner results in partial light
curves for sources in the chip gaps that are missed during the stare
mode observations. Here we evaluate the ‘J10-35’ field, which we
will refer to as the Antlia field, as the 3 deg2 field is centred on the
Antlia galaxy cluster. The observations contained three, five point
dithers during the beginning, middle, and end of the observations.

Using observations taken on the 2017 February 6, a total of 70 348
sources were identified in the Antlia field from the 5-night master
source list. Of these, 62 354 light curves met our pipeline criterion
of having Ndet > 3 over the ∼80 min observation period.
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3082 S. Webb et al.

Figure 1. Feature space of the 25 features of the 23 199 light curves of the ‘J04-55 field’ collapsed down to 2 dimensions using t-SNE with the clusters labelled
in Table 1 and coloured accordingly. It is important to note (1) that the axis values within a t-SNE are not physically meaningful and hence not labelled, and (2)
that the t-SNE algorithm works by adapting its own notion of distance to regional density variations in the higher dimensional data. As a result, t-SNE naturally
expands dense clusters and contracts sparse ones when collapsed as shown, and this can make some structure within the t-SNE plot appear more significant than
it is.

Table 2. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field DWF ID Catalogued ID Typea Period (d)b

J04-55 DWF040449.509-552715.863 ASASSN-V J040449.48-552715.9 W Ursae Majoris 0.27
J04-55 DWF040807.980-541827.191 ASASSN-V J040807.97-541827.2 W Ursae Majoris 0.35
J04-55 DWF041109.879-544851.201 SSS J041109.9-544851 W Ursae Majoris 0.32
J04-55 DWF041435.853-544157.278 ASAS J041436-5441.9 Contact Binary 0.45
J04-55 DWF040636.176-543322.433 DES 11110400160736 RR Lyrae 0.59
J04-55 DWF041006.862-553303.224 Discovered in this work Slow pulsating B. –
J04-55 DWF040657.647-541626.051 Discovered in this work Flare event on RR Lyrae 0.86
aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
bFor previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not known.
cAbsolute G-Band magnitude as calculated using GAIA parallax information.

The same 25 features chosen previously were extracted from
each of the 62 354 light curves and a total of 37 clusters were
identified through the HDBSCAN clustering algorithm, as well as
a group of unclustered light curves that did not satisfy the distance
requirements to join the identified clusters (see Appendix E1 for
individual cluster information). It is immediately apparent that a
significantly higher number of clusters were identified throughout
these data in comparison to the previous J04-55 field results in
Section 5.1, for which we only find four clusters. The increase in

clusters is due to characteristics introduced into the light curves
from photometric issues caused mainly by the dithering strategy and
the tip/tilt motion when using the hexapod8 on DECam. Below, we
outline the usefulness of these clusters in identifying and quantifying
transient classifications.

8The hexapod mechanism is a set of six pneumatically driven pistons that
actuate to precisely align the optical elements between exposures.
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Unsupervised methods for transient discovery 3083

Figure 2. Four previously known and two newly discovered variable/transient sources present in the unclustered noise within the J04-55 field analysis.

Table 3. The nine sub-groupings of light-curve types as identified in the Antlia field.

Sub Description of light curves Cluster IDs # of Per cent of colour in
Group Light Curves Sources t-SNE

G1 Steady light curves 36 58279 93.5 per cent Grey
G2 Variable sources 1 6 <0.01 per cent Cyan
G3 Faint sources at detection threshold 33, 34, 35 23 <0.01 per cent Red
G4 Only detected on five point dithers 0, 3, 4, 21, 22, 23, 27, 28, 32 111 <0.2 per cent Orange
G5 Photometric correction issues on first 5 dither points 5, 6, 7, 9, 10, 11, 12, 13, 18 266 <0.45 per cent Blue
G6 Sources near edge of CCD resulting in dimming and brightening 2, 14, 17, 24,26, 29 1176 1.88 per cent Purple
G7 One or more detections affected by cosmic rays, pixel faults, etc 31 5 <0.01 per cent Green
G8 Other photometric correction issues e.g. Blended sources. 8, 15, 16, 19,20, 25, 30 319 <0.6 per cent Pink
UC Contains a mixture of real variables and light curves affected – – – –

by many of the identified photometric concerns outlined above −1 / unclustered 2169 3.48 per cent Black

5.2.1 Cluster sub-groupings

The 37 clusters can be broken down into eight sub-groups of
clusters, including the unclustered grouping, shown in Table 3.
Visual inspection of randomly selected, if not all for the smaller
groupings, source fits images over time were used to determine the
sub-groupings. The majority of clusters fall into the sub-groups of
photometric anomalies caused by telescope dithering, photometric
correction issues or, less frequently, by CCD artifacts/cosmic rays.
However two sub-groupings are of interest, variable sources (G2),
and the light curves that were unable to be clustered with HDBSCAN

(UC within Fig. 3 and Table 3). The variable sources identified in G2
are discussed further in Section 5.2.2.

Representation of the clusters in feature space can been seen in
Fig. 3 where the feature space has been reduced into 2 dimensions
using t-SNE. The figure clearly shows the feature space dominated by
one main cluster of non-varying light curves (number 36, sub group
G1), which is unsurprising, as we expect the majority of sources
in the field to be unchanging over the minutes-to-hours time-scales.
Fig. 3 further illustrates the grouping of clusters with related light
curves by highlighting the sub-groups of light-curve properties and
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3084 S. Webb et al.

Figure 3. Feature space of the 25 features of the 62 354 light curves of the Antlia field collapsed down to 2 dimensions using t-SNE. The sub-groupings as
outlined in Table 3 are coloured accordingly. It is important to note that t-SNE algorithm works by adapting its known notion of distance to regional density
variations in the higher dimensional data, as a result t-SNE naturally expands dense clusters and contracts sparse ones when collapsed.

their causes as outlined in Table 3. Example light curves of each of
the sub-groups are shown in Fig. 4.

From the sub-grouping of clusters, we are able to meaningfully
quantify the light curves for this field: finding that 93.5 per cent are
grouped into one cluster, of steady light curves, while ∼2.0 per cent
of light curves were affected by telescope dithering and/or the use
of the hexapod on the DECam instrument, and 0.39 per cent of light
curves had photometric correction issues over the first five exposures
(of the 80) due to the initial five point dither pattern and change in
standard stars used for correction on certain CCDs.

5.2.2 Sub-groups identifying variable sources

The algorithm identified one cluster containing sources of true
astrophysical variability, described in sub-grouping G2 in Table 3.
These sources were cross-matched to several catalogues to check
for known variability, as outlined in Section 5.1.2. In this group, we

identified six variable sources, three of which have been previously
catalogued and three sources discovered by this work. Source IDs,
name, coordinates, known catalogue ID (if available), and period are
shown in Table 4.

Of the three newly discovered sources in this sub-grouping, we
are unable to unambiguously identify the variable types of two
sources using the CMD in Appendix C1. The CMD location of
the reamining source was calculated using Gaia data release 2
parallax and photometric information (Evans et al. 2018; Luri et al.
2018). The CMD position is overlaid on the variability CMDs
presented in work by Gaia Collaboration (2019) and subsequently
used for likely type identification in 3. We are unable to confidently
classify DWF103240.961-344522.875 in the CMD because of its
large Gaia parallax uncertainty and, thus, absolute magnitude. On
the other hand, DWF103147.030-354553.653 sits in an area where
few pulsating objects are found, between main sequence stars and
white dwarfs but where cataclysmic variables are common. A source
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Unsupervised methods for transient discovery 3085

Figure 4. Antlia field examples of typical light curves present in each of the sub-groupings. The blue points represent source detections, the red triangles
represent the limiting magnitudes of the exposures and are only present in the light curves when sources are not detected.

Table 4. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this
work.

Field DWF ID Catalogued ID Probable typea Period (d)b

Antlia DWF102919.102-355133.303 SSS J102919.0-355133 Spotted Star 0.34
Antlia DWF102938.901-345415.969 SSS J102938.8-345416 W Ursae Majoris 0.27
Antlia DWF103105.927-360744.003 SSS J103105.8-360742 W Ursae Majoris 0.44
Antlia DWF102552.421-354418.436 Discovered in this work δ Scuti or γ Doradus –
Antlia DWF103240.961-344522.875 Discovered in this work – –
Antlia DWF103147.030-354553.653 Discovered in this work – –

aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD
position (see Appendix C1).
bFor previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not
known.
cAbsolute G-Band magnitude as calculated using Gaia parallax information.

in this region was shown by Gaia Collaboration (2019) to be likely
a cataclysmic variable (CV). The light curves for all six sources are
presented in Fig. 5.

5.2.3 Variable/transient sources

A total of 2169 light curves were unclustered by HDBSCAN and
not assigned to a specific cluster in our analysis of the Antlia field.
These light curves can be seen to sit along the outskirts of the main
grouping of G1 in Fig. 3, as well as occupying similar feature space
to other identified clusters. It is these light curves which are of

particular interest for rare transient and variable events, as we expect
any unusual and unique light curves in comparison to the majority
to be identified as noise via HDBSCAN.

Two independent approaches were used to evaluate the unclustered
light curves. The first was manual inspection of all 2169 light curves
and the second was anomaly detection and ranking using ASTRONO-
MALY. This dual approach was taken to comparatively quantify the
successful extraction of interesting anomalous light curves using
ASTRONOMALY’s inbuilt isolation forest anomaly ranking. Here,
ASTRONOMALY was used to explore groupings of similar light curves
through its inbuilt interactive t-SNE plot.
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3086 S. Webb et al.

Figure 5. Three previously known and three newly discovered variable sources as identified in sub-group G2.

Table 5. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field DWF ID Catalogued ID Typea Period (d)b

Antlia DWF102641.723-355131.230 SSS J102641.7-355130 W Ursae Majoris 0.29
Antlia DWF102742.474-343932.754 SSS J102742.4-343933 W Ursae Majoris 0.27
Antlia DWF103120.961-354209.063 SSS J103120.8-3542094 W Ursae Majoris 0.27
Antlia DWF103037.999-355800.839 ASAS J103038-3558.0 β Persei 0.72
Antlia DWF103047.592-354046.884 SSS J103047.5-354047 RR Lyrae 0.31
Antlia DWF103114.718-343832.907 SSS J103114.5-343834. RR Lyrae 0.33
Antlia DWF102606.360-354249.252 Discovered in this work UV Ceti or T Tauri –
Antlia DWF103355.245-352124.241 Discovered in this work T Tauri –
Antlia DWF103325.535-353259.289 Discovered in this work γ Doradus –
Antlia DWF102955.559-360035.170 Discovered in this work Ultrafast flare –

aFor previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
bFor previously catalogued sources, the period is taken from the discovery survey, if newly discovered source period is not known.
cAbsolute G-Band magnitude as calculated using Gaia parallax information.

During our evaluation, sources within the unclustered grouping,
were again cross-matched to VSX, DES, and the Catalina Surveys
Southern Periodic Variable Star Catalogue, to identify previous
detections and classifications. The majority of the unclustered light
curves were false positives caused by dithering affects on sources.
However, amongst the false positives we identify nine variable
sources, six of which were previously catalogued by surveys, with the
remaining three sources discovered in this work. We further discover
an ultrafast flaring source, with positioning on the CMD suggesting
the source is consistent with M dwarf flares. Optical flare events
evolving on very short time-scales (seconds-to-minutes) such as this
have previously only been identified using 10 s cadence of NUV
GALAX data by Brasseur, Osten & Fleming (2019), uncovering a
previously unexplored population of short duration of stellar flares.
Source IDs, name, coordinates, known catalogue ID (if available)
and period are shown in Table 5. The light curves for each of
the sources are presented in Fig. 6. The newly discovered sources
showing variability are overlaid on the CMD in Appendix C1 as
purple triangles.

5.2.4 ASTRONOMALY performance

We utilized the large set of unclustered light curves identified in the
Antlia field to test the abilities of ASTRONOMALY to present only
the most astrophysically anomalous light curves to astronomers in
a timely manner. ASTRONOMALY takes less than 2 min to process
the features through the isolation forest algorithm and launch the
interactive web GUI.

Using the ASTRONOMALY front end GUI to visually inspect each
light curve in ranked order, we identified the nine variable sources
within the top 280 of 2000 highest ranking anomalous light curves
taken from the grouping of unclustered sources and the ultrafast flare
event was identified within the first 600. By using both clustering
and ASTRONOMALY we were able to find all the anomalies in the
first 0.9 per cent of the over all Antlia data. This result highlights
the possibility to significantly reduce the amount of time needed for
light-curve evaluation of anomalous events by astronomers, and will
be continued to be utilized in the future analysis of DWF light curves.

A more recent version of ASTRONOMALY contains human-in-the-
loop learning, designed specifically to deal with finding objects that
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Unsupervised methods for transient discovery 3087

Figure 6. Size previously known and four newly discovered variable sources as identified in the grouping of unclustered light curves. The blue points represent
source detections, while the red triangles represent the limiting magnitudes of the exposures and are only present in the light curves when sources are not
detected.

are swamped by more anomalous points (according to the machine
learning) but are actually more mundane objects.

5.2.5 Validating the completeness for Antlia field

Similar to Section 5.1.3, we took several steps to verify all variable
sources which were identified. Within a 1.5 degree radius of the field
centre, 22 catalogued variable sources (with periods less than 1 d)
existed in the VSX catalogue and within DECam’s CCD footprint.
Nine of the known variable sources were recovered as anomalies
in this work, both being identified in the cluster of variables and
within the unclustered grouping of most anomalous light curves, as
explained in detail in Sections 5.2.1 and 5.2.2. Of the remaining
sources, six did not show significant variability over the ∼80 min
period and were subsequently clustered in the grouping of steady

light curves, consistent with their longer recorded periods (see
Appendix D2 for full details). The remaining seven were either
below detection threshold, at saturation limits, or photometrically
affected by dithering and were clustered accordingly. ASTRONOMALY

was used to display the top 2000 light curves (limited to 2000 light
curves by ASTRONOMALY for the handling of the interactive t-SNE
plot) ranked most anomalous via the isolated forest algorithm over the
identified clusters. After visual inspection, no additional interesting
light curves were found.

6 C O N C L U S I O N

Existing and future astronomical surveys are continuously pushing
the bounds of the known transient universe, and the ability to
efficiently probe a large number of light curves in a timely manner
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will become vital in the exploration of regions of previously known
and unknown classes of events. In this work, we have successfully
shown the capability of unsupervised machine learning methods
to rapidly and thoroughly explore fast cadenced data collected by
transient surveys, using the DWF program as an example. By taking
a two-step approach of both clustering and anomaly/outlier detection,
we were able to identify seven previously unidentified variable stars.
We also identified two classes of stellar flares, one classical flare and
one rapidly evolving flare, further demonstrating the effectiveness
of our unsupervised methods and the unique capability of the DWF
program. Notable is the speed of which this method can be performed.
Feature extraction takes ∼110 s per 1000 light curves and when run
in parallel (on the OzSTAR supercomputer) can complete a set of
70 000 light curves in less than 15 min. The HDBSCAN clustering
takes a further ∼2 min, and in total, a set of 70 000 light curves
can be ready for human evaluation using ASTRONOMALY within
20 min. Both the speed and ease of use our method demonstrates
the ability of unsupervised methods in meaningfully evaluating light
curves to identify source variability. This method is well suited for
the use on current and upcoming surveys for anomaly detection,
for which hundreds of millions of light curves will inevitably be
produced.

Finally, we stress that this work explores a small fraction of the
full DWF data set, only two fields for 80–90 min each. Future work
will involve the evaluation of 250+ h of data for 17 fields. Moreover,
as DWF runs typically occur over six consecutive nights, additional
variable sources will be found over a range of phase durations when
the data is analysed over the full run duration for the two fields
explored here. Furthermore, we plan to use this unsupervised method
on light curves combined over multiple nights to search for long
period variables, which would otherwise appear steady in single
night light curves.
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APPENDIX A : FEATURES

Table A1. Features used in this work and the properties of the light curves they represent.

Feature Description Inputs Refs

Amplitudes Half the difference between Magnitude Richards et al. (2011)
the median of the maximum 5 percent and the median
of the minimum 5 percent magnitude.

Autocorrelation length Length of linear dependence of a signal with Magnitude Kim et al. (2011)
itself at two points in time

Beyond1Std Percentage of points beyond one Magnitude & Error Richards et al. (2011)
standard deviation from the weighted mean

CARmean The mean of a continuous time autoregressive Magnitude, Time & Error Pichara et al. (2012)
model using a stochastic differential equation

CARσ The variability of the time series on Magnitude, Time & Error Pichara et al. (2012)
time-scales shorter than τ

CARτ The variability amplitude of the Magnitude, Time & Error Pichara et al. (2012)
time series

H1 Amplitude derived using the Fourier Magnitude Kim & Bailer-Jones (2016)
decomposition

Con The number of three consecutive Magnitude Kim et al. (2011)
data points that are brighter or fainter then 2σ

and normalized by N −2
Linear trend Slope of a linear fit to the light curve Magnitude & Time Richards et al. (2011)

MaxSlope Maximum absolute magnitude slope between two Magnitude & Time Richards et al. (2011)
consecutive observations

Mean The mean magnitude Magnitude Kim et al. (2014)

Mean variance the ratio of the standard deviation Magnitude Kim et al. (2011)
to the mean magnitude

Median absolute deviation The median discrepancy of the data Magnitude Richards et al. (2011)
from the median data

Median buffer range percentage Fraction of photometric points Magnitude Richards et al. (2011)
with amplitude/10 of the median magnitude

Pair slope trend The fraction of increasing first differences Magnitude Richards et al. (2011)
minus the fraction of decreasing
first differences

Q31 The difference between the 3rd Magnitude Kim et al. (2014)
and 1st quarterlies

R21 2nd to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)
Using the Fourier decomposition

R31 3rd to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)
using the Fourier decomposition

Rcs Range of cumulative sum Magnitude Richards et al. (2011)

Skew The skewness of the sample Magnitude Richards et al. (2011)

Slotted autocorrelation Slotted autocorrelation length Magnitude & Time Protopapas et al. (2015)
Function length

Small Kurtosis Small sample Kurtosis of magnitudes Magnitude Richards et al. (2011)

Standard deviation Standard deviation of the magnitudes Magnitude Richards et al. (2011)
Stetson KAC Stetson K applied to the slotted Magnitude Stetson (1996), Kim et al. (2011)

autocorrelation function of the light curve
Variability index Ratio of the mean of the square of successive differences Magntiude Kim et al. (2011)

to the variance of data points
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APPEN D IX B: ASTRONOMALY W E B IN T E R FAC E

Figure B1. Top) ASTRONOMALY web interface ‘Anomaly Scoring’ tab, where light curves can be visually assessed in order of anomaly ranking as determined
by the isolation forest algorithm. Bottom) ASTRONOMALY web interface ‘Clustering’ tab, displaying an interactive t-SNE plot produced from the input data. The
points within the t-SNE can be clicked and then the corresponding light curve will be displayed to the right of the screen. This feature is extremely useful for
searching similar light curves based on their features.
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APPENDIX C : C OLOUR MAG NITUDE PLOT – N EWLY DI SCOV ERED TRANSI ENTS/ VARI ABLE S
F RO M T H I S WO R K

Figure C1. Known pulsating (top panel), eruptive (centre panel), and cataclysmic (bottom panel) variables are shown on the CMDs taken from the Gaia
Collaboration (2019), with the newly discovered variable and flaring sources (large symbols) overlaid. The green triangles represented sources found in the
J04-55 field, the orange represent newly discovered sources from G2 in the Antlia field, and the purple represent the newly discovered sources, which HDBSCAN
was not able to cluster. Schlafly & Finkbeiner (2011) was used to correct Gaia BP-RP for galactic reddening.
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APPEN D IX D : PREVIOUSLY C ATALOGUED SOURCES

Table D1. Variable star index (VSX) catalogued variable sources within the DWF J04-55.

Field Catalogue name Type Period (d) Notes

DWF J04-55 SSS J041109.9-544851 W Ursae Majoris eclipsing binary 0.31 Identified in this work as anomalous
DWF J04-55 ASAS J040958-5520.2 Cepheid 9.20 Below detection threshold most exposures
DWF J04-55 ASAS J041436-5441.9 Contact binary 0.45 Identified in this work as anomalous
DWF J04-55 ASASSN-V J040807.97-541827.2 W Ursae Majoris eclipsing binary 0.55 Identified in this work as anomalous
DWF J04-55 ASASSN-V J040449.48-552715.9 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous
DWF J04-55 SSS J041229.7-543444 Asymmetric RR Lyrae 0.55 Below detection threshold most exposures
DWF J04-55 SSS J040348.1-552845 W Ursae Majoris eclipsing binary 0.39 Below detection threshold most exposures
DWF J04-55 SSS J040421.3-551639 β Persei eclipsing binary 1.15 Flat light curve, unchanging over observations
DWF J04-55 ASAS J040237-5502.5 Detached eclipsing binary 1.93 Flat light curve, unchanging over observations
DWF J04-55 WISE J041127.4-543854 β Persei eclipsing binary 0.68 Flat light curve, unchanging over observations
DWF J04-55 ASASSN-V J041337.83-554819.5 Variable star of unspecified type unknown Flat light curve, unchanging over observations
DWF J04-55 ASASSN-V J040350.67-545214.6 Spotted stars that weren’t 0.49 Flat light curve, unchanging over observations

classified into a particular class

Table D2. Variable star index (VSX) catalogued variable sources within the DWF Antlia field.

Field Catalogue Name Type Period (d) Notes

DWF Antlia SSS J103047.5-354047 RR Lyrae 0.31 Identified in this work as anomalous
DWF Antlia SSS J102938.8-345416 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous
DWF Antlia SSS J103120.8-354209 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous
DWF Antlia ASAS J103038-3558.0 β Persei-type eclipsing binary 0.72 Identified in this work as anomalous
DWF Antlia SSS J103114.5-343834 RR Lyrae 0.33 Identified in this work as anomalous
DWF Antlia SSS J102742.4-343933 W Ursae Majoris eclipsing binary 0.27 Identified in this work as anomalous
DWF Antlia SSS J103105.8-360742 W Ursae Majoris eclipsing binary 0.44 Identified in this work as anomalous
DWF Antlia SSS J102641.7-355130 W Ursae Majoris eclipsing binary 0.29 Identified in this work as anomalous
DWF Antlia SSS J102919.0-355133 Spotted stars that weren’t 0.34 Identified in this work as anomalous

classified into a particular class
DWF Antlia SSS J102615.2-351023 RR Lyrae 0.50 Below detection threshold most exposures
DWF Antlia SSS 110101:103109-350150 Dwarf novae unknown Flat light curve, unchanging over observation
DWF Antlia SSS J102933.7-354152 W Ursae Majoris eclipsing binary 0.29 Flat light curve, unchanging over observation
DWF Antlia SSS J103200.4-353401 W Ursae Majoris eclipsing binary 0.44 Flat light curve, unchanging over observation
DWF Antlia SSS J102734.7-353154 W Ursae Majoris eclipsing binary 0.40 Flat light curve, unchanging over observation
DWF Antlia SSS J102717.6-353645 β Persei-type eclipsing binary 0.89 Flat light curve, unchanging over observation
DWF Antlia SSS J103425.0-350405 W Ursae Majoris eclipsing binary 0.41 Flat light curve, unchanging over observation
DWF Antlia SSS J102712.4-353219 RR Lyrae 0.63 At saturation limit with photometry affected,
DWF Antlia SSS J103237.3-345913 Spotted stars that weren’t 0.30 At saturation limit with photometry affected,

classified into a particular class
DWF Antlia SSS J103436.8-352812 W Ursae Majoris eclipsing binary 0.35 At saturation limit with photometry affected
DWF Antlia SSS J103157.1-351718 W Ursae Majoris eclipsing binary 0.32 Light curve photometricly affected.
DWF Antlia SSS J103440.2-351511 W Ursae Majoris eclipsing binary 0.31 Affected photometry from CCD edge

identified as such in G6.
DWF Antlia SSS J102906.8-360355 W Ursae Majoris eclipsing binary 0.32 Affected photometry from CCD edge,

identified as such in G6.
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A P P E N D I X E: L I G H T- C U RV E T R A I T S

Table E1. Clusters identified from Antlia field light curves using HDBSCAN.

Cluster Number of Notes
light

unclustered 2169 Light curves with majority non-detections as well as possible variable sources and photometry affected by telescope dithering.
0 6 Only detected on five point dithers, either beginning, middle or end of observations.
1 6 Variable sources.
2 20 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
3 30 Only detected on five point dithers, either beginning, middle or end of observations.
4 23 Only detected on five point dithers, either beginning, middle or end of observations.
5 7 First five point dither detections correction issues of 0.1–0.2 mag.
6 19 First five point dither detections correction issues of 0.1–0.2 mag.
7 58 First five point dither detections correction issues of 0.1–0.2 mag.
8 16 Bright Sources on ccd extension 30, Issues with correction over the night.
9 10 First five point dither detections correction issues of 0.1–0.2 mag.
10 17 First five point dither detections correction issues of 0.1–0.2 mag.
11 107 First five point dither detections correction issues of 0.1–0.2 mag.
12 23 One or more detections affected by Cosmic Rays, pixel faults, etc.
13 5 First five point dither detections correction issues of 0.1–0.2 mag.
14 14 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
15 11 Bright Sources on ccd extension 30, issues with correction over the night.
16 22 Bright Sources on ccd extension 30, issues with correction over the night.
17 23 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
18 20 First five point dither detections correction issues of 0.1–0.2 mag.
19 8 Sources on ccd extension 30, Issues with correction over the night.
20 226 One or more detections affected by cosmic rays, pixel faults, etc and faint sources at detection threshold.
21 12 Only detected on five point dithers, either beginning, middle or end of observations.
22 6 Only detected on five point dithers, either beginning, middle or end of observations.
23 7 Only detected on five point dithers, either beginning, middle or end of observations.
24 12 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
25 17 Defuse or blended sources.
26 156 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
27 11 Only detected on five point dithers, either beginning, middle or end of observations.
28 11 Only detected on five point dithers, either beginning, middle or end of observations.
29 951 Sources near edge of ccd resulting in dimming and brightening as the source moves ccd position during observations.
30 19 Faint sources behind defuse galaxies/ blended point sources
31 5 One or more detections affected by cosmic rays, pixel faults, etc.
32 5 Only detected on five point dithers, either beginning, middle or end of observations.
33 12 Faint sources at detection threshold.
34 6 Faint sources at detection threshold.
35 5 Faint sources at detection threshold.
36 58 279 Steady light curves.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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