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Abstract

Vehicle-trailer systems have different unstable modes that should be considered in their
stability control, including trailer snaking, jack-knifing, and roll-over. In general, vehi-
cle control systems require vehicle parameters and states, including geometric parameters,
mass, tire forces, and side slip angles which some are not constant or can be measured eco-
nomically. In a vehicle-trailer system, the trailer states and parameters such as articulation
angle, trailer geometric parameters, trailer mass, trailer tire forces, and yaw rate need to be
measured or identified/estimated, in addition to the unknown vehicle states/parameters.
The trailer states and parameters can be measured by sensors such as Inertial Measurement
Unit (IMU), wheel torque sensors, and force measurement units. However, most of these
sensors are not commercially viable to be used in a vehicle or trailer due to significant
extra costs.

Estimation algorithms are the other tools to identify the parameters and states of the
system without imposing extra costs. Accurate state and parameter estimators are needed
for the development and implementation of a stability control system for a vehicle-trailer
system. The main purpose of this research is to design real-time state and parameter
estimation algorithms for vehicle-trailer systems.

Correspondingly, a comprehensive overview of different model-based and non-model-
based techniques/algorithms used for estimating vehicle-trailer states and parameters are
provided. The vehicle-trailer system equations of motion are then presented and based
on the presented vehicle-trailer model, the possibility of the trailer states and parameters
estimation are investigated for different possible vehicle-trailer on-board sensor settings.

Two different methods are proposed to estimate trailer mass for arbitrary vehicle-trailer
configurations: model-based and Machine Learning (ML). The stability of the model-
based estimation algorithm is analyzed, establishing the convergence of the estimation
error to zero. In the proposed ML-based approach, a deep neural network is designed
to estimate trailer mass. The inputs of the ML-based method are selected based on the
vehicle-trailer model and are normalized by the vehicle mass, tire sizes, and geometry so
that retraining of the network is not needed for different towing vehicles. The simulation
and experimental results demonstrate that the trailer mass can be estimated with with
acceptable computational costs.

In this thesis, ultrasonic sensors along with kinematics and dynamics equations of a
towing vehicle are used to develop three approaches for hitch angle estimation. The first
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approach is based on direct calculation of hitch angle using certain a priori geometric
information and distance measurements of four Ultra sonic sensors. As the second and
third approaches, kinematic and dynamic models of the vehicle-trailer system are used to
develop least-square and Kalman filter based recursive hitch angle estimations. A more
reliable hitch angle estimation scheme is then proposed as the integration of the algorithms
developed following each of the three approaches via a switching data fusion logic. It is
shown that the proposed integrated hitch angle estimation scheme can be used for any ball
type trailer with a flat or symmetric V-nose frontal face without any priori information on
the trailer parameters.

Additionally, a new approach in estimating the lateral tire forces and hitch-forces of a
vehicle-trailer system is introduced. It is shown that the proposed hitch-force estimation is
independent of trailer mass and geometry. The designed lateral tire forces and hitch-force
estimation algorithms can be used for any ball type trailer without any priori information
on the trailer parameters. A vehicle-trailer model is proposed to design an observer for the
estimation of the hitch-forces and lateral tire forces. Simulations studies in CarSim along
with experimental tests are used to validate the presented method to confirm the accuracy
of the developed observer.

Moreover, using the vehicle-trailer lateral dynamics along with the LuGre tire model,
an estimation system for the lateral velocity of a vehicle-trailer is proposed. It is shown
that the proposed estimation is robust to the road conditions. An affine quadratic stability
approach is used to analyze the stability of the proposed estimation. The test results
confirm the accuracy of the developed estimation and convergence of the vehicle-trailer
lateral velocity estimation to the actual value.

Model-based and ML-based estimators are developed for estimating road angles for
arbitrary vehicle-trailer configurations. The estimators are shown to be independent from
road friction conditions. The model-based method employs unknown input observers on
the vehicle-trailer roll and pitch dynamic models. In the proposed ML-based estimator, a
recurrent neural network with Long-short-term-memory gates is designed to estimate the
road angles. The inputs to the ML-based method are normalized by the vehicle wheel-
base, mass, and CG height to make it applicable to any towing vehicle with the need of
retraining. The simulation and experimental results justify the convergence of the road
angle estimation error.
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Chapter 1

Introduction

Vehicle-trailers, or tractor-trailers, are mainly used to carry goods or groups of people
that cannot be transported by vehicles with only one rigid body as the turning radius of
articulated vehicles including vehicle-trailers are quite small. Such articulated vehicles have
different unstable modes that should be considered in their stability control. Generally, a
vehicle control system depends on the vehicle responses and parameters that are sometimes
unknown. Therefore, accurate estimators are needed for the unmeasurable parameters and
states of the vehicle.

1.1 Motivation

Vehicle-trailers are important parts of the global transportation system, however, they are
perilous vehicles both for themselves and other road users because of their multiple modes
of instability. With respect to single unit vehicles, vehicle-trailer systems have different
unstable modes, including trailer snaking, jack-knifing, and roll-over. Jack-knifing is mainly
attributed to tire/ground friction force saturation that may occur during hard braking
processes or in curved-path negotiations. If a vehicle towing a trailer skids, the trailer
can push the towing vehicle from behind until it spins the vehicle around and collapses.
Similar to jack-knifing, trailer snaking, also called trailer sway, is an unstable yaw motion
mode of the trailer. Trailer snaking motion usually occurs when side forces cause the
trailer to move side to side behind the towing unit. Trailer roll-over happens if high lateral
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forces are applied to the vehicle during a sharp turning maneuver at higher speeds. These
unstable modes exists for both commercial and recreational trailers, however, there are
some differences between the two. For instance, in commercial vehicle-trailer systems, the
trailer weight to vehicle weight ratio is much higher than the trailer weight to vehicle weight
ratio in recreational vehicle-trailer systems.

Based on the Transport Canada Collision Database, 1,898 motor fatalities and 11,5956
personal injuries were reported [1]. Engineers have tried to decrease the percentage of
accidents by developing active safety systems for vehicles. These include Anti-lock Brak-
ing System (ABS), Traction Control System (TCS), Electronic Stability Control (ESC)
and Active Steering Control (ASC), etc. It is well known that unstable modes of vehicle
semi-trailers cause many highway accidents and casualties. For heavy vehicles, similar to
passenger cars, active safety systems require accurate estimation of the states and param-
eters of both the vehicle and trailer, which cannot be measured directly. By taking the
stability control of the trailer into account, trailer states/parameters such as articulated
angle, trailer geometries, trailer mass, and trailer hitch forces, need to be estimated. The
overall diagram representation of control and estimation blocks for vehicle-trailer systems
is illustrated in Fig. 1.1. Fig. 1.1 shows how vehicle state estimation is essential from
different aspects.

The trailer states and parameters can be measured by sensors such as inertial measure-
ment unit, wheel torque sensors, and force measurement units. However, to measure more
parameters and states more sensors are required that results in higher costs. Estimation
algorithms can be used to offset the extra costs of the sensors while achieving a higher
safety in vehicle-trailers. Choosing a good combination of sensors, meaning the sufficient
number of sensors that make the system observable, is imperative to accurately estimate
the states/parameters.

Trailer states/parameters are divided into three groups - constant parameters such as
geometrical parameters, semi-constant parameters such as mass and CG location, and time
varying such as hitch angle forces. The trailer geometric parameters, including the axle
location, trailer width, trailer length, and trailer height, are the constant parameters of the
trailer. Trailer longitudinal/lateral velocities, hitch point forces, trailer yaw rate, trailer
tire forces, and articulated angle are the examples of time varying states/parameters that
need to be estimated.

The parameters relating to the trailer mass are semi-constant parameters since the
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Figure 1.1: The overall block diagram representation of control and estimation blocks for
vehicle-trailer systems.

trailer mass is constant during operation, however, it may change as loads receive/deliver.
The parameters related to the load, are the trailer sprung mass, trailer momentum of
inertia and trailer Center of Gravity (CG) location.

The main purpose of this PhD research is to design a real-time state and parameter
estimation algorithms for vehicle-trailer systems. The estimated parameters/states can
be used in vehicle-trailer’s control and safety systems. There is much research that has
been done for estimating the vehicle (generally vehicle without trailer) states/parameters,
however, when a trailer is attached, the system dynamic changes and the existing vehicle
estimation algorithms are no longer be valid and require adjustment or fully be redeveloped.

Two major approaches have been adopted in the literature to tackle trailer state es-
timation problems. One is the modified kinematic-based approach, which uses stochastic
estimators or nonlinear observers. This method does not need tire model information, how-
ever, sensor noise and bias need to be estimated or calculated precisely to obtain accurate
outcomes.

The other state estimation practice is model-based and utilizes Inertial Measurement

3



Unit (IMU) data (longitudinal and lateral acceleration in addition to yaw rate measure-
ments) and corrects the estimation with tire forces using stochastic observers such as the
Kalman filter and sliding mode observer. Although this approach seems promising, it re-
quires accurate tire parameters and accurate information about the road surface, including
the road friction coefficient which may not be available or hard to measure.

1.2 Objectives

One of the main objectives of this research is to develop real-time estimation algorithms
for the states and parameters of vehicle-trailer systems. The main states/parameters that
have been considered in this thesis include:

• Hitch forces and angle

• Trailer mass, moment of inertia, and CG location

• Trailer tire forces

• Trailer yaw rate and slip angle

• Trailer axle location

The states/parameters listed above are the ones essential for proper stability control of
a vehicle-trailer system. In order to estimate the trailer states and parameters, different
estimation methods including model-based and non-model-based are used and applied.
The second objective of this work is to make/develop real-time state/parameter estimators
robust to surface friction changes. This is especially important as the road condition
detection is hard and not reliable in practice.

1.3 Thesis Outline

The work done in the literature on vehicle-trailer states and parameters estimation are
presented in Chapter 2. Chapter 2 provides a comprehensive overview of different model-
based and non-model-based techniques/algorithms used for estimating vehicle-trailer sys-
tem states and parameters. The main features, limitations, and assumptions for each
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estimation method are discussed. Summary tables for vehicle-trailer estimation techniques
are provided.

In Chapter 3, the vehicle-trailer equations of motion are presented. Based on the pre-
sented vehicle-trailer model, the possibility of the trailer states and parameters estimation
are investigated for different possible vehicle-trailer on-board sensor settings.

In the fourth chapter, two different approaches are proposed to estimate trailer mass
for arbitrary vehicle-trailer configurations; model-based and Machine Learning (ML). In
Section 4.2, the proposed model-based trailer mass estimation is described and the conver-
gence of the trailer mass estimate is analyzed. In Section 4.3, an overall structure of the
proposed ML approach is described and a DNN trailer mass estimator is designed using
different number of neurons at different layers. A sensitivity analysis with respect to all
available measurements from the vehicle-trailer system, which are used as the DNN inputs,
is also presented in Section 4.3, along with a discussion of selection of the inputs of the
DNN based on this sensitivity analysis. In Section 4.4, training and testing the designed
DNN with a set of real-time vehicle-trailer system data is explained. The trailer mass
estimation results with the model-based and ML approaches are presented and compared
in Section 4.5 with discussion.

In Chapter 5, ultra-sonic sensors along with kinematics and dynamics equations of a
towing vehicle are used to develop three approaches for hitch angle estimation. The first
approach is based on direct calculation of hitch angle using a priori geometric information
and distance measurements of four ultra-sonic sensors. An angle estimate is generated
for each of the six possible sensor-pair combinations, and these six estimates are passed
through a voting algorithm to produce a single estimate. In Section 5.2, the methodology
of the hitch angle estimation and algorithms to estimate the hitch angle are described.
In Section 5.3, the hitch angle estimation by using ultra-sonic sensors measurements as
well as the trailer front face angle estimation are introduced. As the second and third
methods, kinematic and dynamic models of the vehicle-trailer system are used to develop
least-squares and Kalman filter based recursive hitch angle estimations. The kinematic
equation for hitch angle is presented in Section 5.4. Moreover, the trailer axle location
estimation is developed in Section 5.4. The estimated trailer mass is used in the designed
hitch angle estimation algorithm based on the vehicle-trailer dynamic method and finally,
results with discussions are provided in Section 5.5.

In Chapter 6, a new approach in estimating the lateral tire forces and hitch-forces
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of a vehicle-trailer system is introduced. In Section 6.2, a vehicle-trailer system model
is presented in the state space form. In Section 6.3, algorithms to estimate the hitch-
forces are developed and discussed, and the state constraints are presented. The designed
lateral tire forces and hitch-force estimations algorithm can be used for any ball type trailer
without any priori information on the trailer parameters. The estimator stability analysis
and estimation error convergence rate are investigated in Section 6.4. Finally, simulation
and experimental results are provided in Section 6.5 with discussions. The results confirm
the accuracy of the developed observer.

Using a 3-degree-of-freedom lateral dynamic vehicle-trailer system model with the Lu-
Gre tire model, a constrained unscented transformation based scheme for estimating the
lateral velocity of a vehicle-trailer is proposed in Chapter 7. In Section 7.2, the vehicle-
trailer system model is presented in the state space form. An observer is designed for
the lateral velocity estimation in Section 7.2 with stability analysis. It is shown that the
proposed lateral velocity estimation scheme is robust to the road condition. An affine
quadratic stability approach is used to analyze the stability of the proposed estimation
scheme. Finally, the proposed lateral velocity estimator is validated by simulation and
experimental studies with discussions in Section 7.3.

Chapter 8 proposes two different approaches for estimating the road angles for arbitrary
vehicle-trailer configurations independent from the road friction conditions: Model-based
and machine learning. The model-based method employs unknown input observers on the
vehicle-trailer roll and pitch dynamic models. In Section 8.2, the vehicle-trailer pitch/roll
dynamic is analyzed, and the proposed model-based road angle estimation using unknown
input observer approach is described. In Section 8.3, an overall structure of the proposed
non-model-based approach is described and a machine learning based road angle estimator
is designed using recurrent neural network with long-short-term-memory gates. A sensi-
tivity analysis with respect to all available measurements from the vehicle-trailer system
to find the inputs to the network is also presented in Section 8.3. In Section 8.4, training
and testing the designed LSTM-RNN with a set of real-time vehicle-trailer system data is
explained. The road angle estimation results using the model-based and machine learning
are presented and compared in Section 8.5.

Finally, conclusions are made in Chapter 9 with suggestions for future works.
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Chapter 2

Background and Literature

2.1 Introduction

This chapter provides a comprehensive overview of different model-based and non-model-
based techniques/algorithms used for estimating vehicle-trailer states and parameters. The
main features, limitations, and assumptions for each estimation method are discussed. This
chapter is organized as follows: In Section 2.2, the literature on estimating hitch angle,
lateral velocity, coupling forces, tire forces, roll and slip angles, trailer mass, and geometrical
parameters are reviewed. Moreover, the details of non-model-based estimation techniques
for vehicle-trailer system state estimation is reviewed in Section 2.2. Conclusions are
provided in Section 2.3.

2.2 Literature Review on Vehicle-Trailer State and Pa-
rameter Estimation Techniques

Compared to single unit vehicles, vehicle-trailers are more susceptible to instability. Hence,
any improvement in their stability control would significantly improve transportation safety.

To decrease the number and fatality of accidents, various safety systems have been
developed [2, 3, 4, 5, 6]. These systems help the driver maintain vehicle stability in critical
driving situations. In general, vehicle control systems depend on vehicle parameters and
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state variables, which are sometimes unknown and/or cannot be directly measured. Such
unknown parameters and states need to be estimated on-line using estimation algorithms
using available sensor measurements. In current practice, vehicle control systems are usu-
ally deactivated when a trailer is connected due to the changes in the vehicle dynamics
model and unknown trailer parameters. In most cases, it is possible to measure some of the
unknown parameters and states in a vehicle-trailer system, however, cost, compatibility,
and communication limitation between the trailer and towing vehicle constrain implemen-
tation of such direct measurements. Estimation algorithms are then required to estimate
the parameters and states without imposing extra costs and complexities.

Although state and parameter estimations are used extensively in single unit vehicles,
the lack of scholarly work in vehicle-trailer state and parameter estimation is noticeable.
This is plausible due to various types of trailers that can be attached to a vehicle. There
are in general three approaches in the literature to estimate the vehicle-trailer states and
parameters as summarized in Fig. 2.1:

1. Model-based estimation methods : Vehicle-trailer models including kinematic, single
track, roll/pitch/yaw, quarter vehicle-trailer, and higher-order models are used in
these model-based techniques to estimate and predict the states and parameters of
vehicle-trailer systems. These approaches can provide accurate results in both static
and dynamic responses.

2. Data driven estimation methods : The states and parameters of the vehicle-trailer
system are estimated using measured sensory data by applying different data training
and data fusion techniques.

3. Data-fusions methods based on vision/radar based methods : Vision and radar data
about the surrounding objects and the vehicle/trailer motion are used to estimate
the vehicle-trailer states and parameters. Data fusion techniques are utilized to
estimate the vehicle-trailer system states/parameters more accurately by different
combinations of the above two approaches.

Typically the vehicle-trailer system states and parameters are either assumed to be
known [7, 8, 9, 10] or estimated based on the vehicle-trailer’s dynamic responses [11, 12,
13]. Given that the vehicle-trailer states and parameters need to be available for vehicle-
trailer control and active safety systems, the real-time estimation of the vehicle-trailer
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Figure 2.1: Classification of the vehicle-trailer estimation methods.

states/parameters are crucial for improving the performance of vehicle-trailer control and
active safety systems.

In many research works, a specific form of the vehicle-trailer kinematic/dynamic model
is considered to estimate the vehicle-trailer states and parameters [14, 15, 16]. However,
it is very difficult and challenging to estimate vehicle-trailer system states and parameters
simultaneously such as center of gravity location, sprung mass, and, most importantly,
tire’s cornering stiffness due to the correlation with each other [17, 18, 19].

This section reviews the literature on vehicle-trailer state and parameter estimation
for the hitch angle, lateral velocity, coupling forces, tire forces, roll and slip angles, trailer
mass, and geometrical parameters.

2.2.1 Hitch Angle Estimation

Hitch angle estimation is needed in vehicle-trailer motion control mainly to prevent trailer
snaking and jack-knifing. In [20], the hitch angle estimation is based on the vehicle-
trailer equations of motion, where the linear tire model has been used for deriving these
equations of motion. Another hitch angle estimation is proposed in [21] based on the
vehicle-trailer kinematic model. By considering the nonlinear kinematic model under the
effect of varying slip angles, estimation of the hitch angle of load-haul-dump trucks has
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been studied in [22, 23]. By taking the Ackermann steering geometry into account, the
hitch angle can be represented as a function of the vehicle’s steering angle and velocity.
Use of this function together with the vehicle steering angle and velocity measurements
for hitch angle estimation is studied in [24, 25, 26, 27]. By considering the vehicle-trailer
kinematic and dynamic models, hitch angle estimation has been investigated in many
other research works to develop reliable methods for vehicle-trailer state and parameter
estimation [28, 29, 30, 31, 32, 33, 34].

There also exist works on estimation of the hitch angle based on vision through the
vehicle rear camera. By detecting the angle between the trailer front face and the vehicle
by a fixed camera at the rear end of the vehicle, the hitch angle has been estimated in [35,
36, 37]. The hitch angle can also be measured directly by potentiometer or encoder sensors
connected to the hitch point [38]. This approach however, requires sensor connection at
the hitch point, which may not be practical for recreational vehicle-trailer systems.

The hitch angle can also be found by ultra-sonic sensor measurements. In [39], ultra-
sonic sensors were utilized to measure the hitch angle to develop a car parking assistant
system for a vehicle-trailer system. To do so, the ultra-sonic sensors that are located in
the rear bumper of the vehicle, measure the distance between the vehicle rear bumper to
the trailer front face. Thus, different equations can be written to calculate the hitch angle
θ based on multiple sensor combinations. For instance, using the ultra-sonic sensor’s data,
θ can be calculated from [39, 40, 41, 42, 34]:

θ = α− arcsin
d1 − d2

c2

, (2.1)

where, α is the trailer front face angle. These sensors are sensitive to temperature changes
and sever whether conditions and become unreliable when the trailer front face changes
from one trailer to another. To correct the determined hitch angle by the ultra-sonic
sensors, the vehicle-trailer kinematic model was considered [40, 41].

In the hitch angle equation (2.1), α is the only required trailer parameter. Therefore,
if the trailer front face angle estimation is available, the hitch angle kinematic relation
(2.1) works for any unknown trailer. Further discussion on trailer parameter estimation
feasibility is provided in Chapter 3.
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2.2.2 Vehicle-Trailer Velocity Estimation

Vehicle velocity in both lateral and longitudinal directions play an important role in sta-
bility control systems. To measure the longitudinal/lateral velocities, Global-Positioning-
Systems (GPSs) can be used, however, they suffer from poor accuracy, signal availability,
refreshing frequency, and their lack of reception in some geographical areas for the most
commonly used GPSs in vehicles. Variety of approaches have been proposed for lateral
velocity estimation in the literature. A vehicle state estimator was presented in [43] by
combining data of magnetometer, GPS, and IMU and utilizing a stochastic filter integrated
with a Kalman Filter (KF) to cancel the effect of disturbances in the magnetometer. The
kinematic model equations were used to estimate the vehicle longitudinal and lateral ve-
locities using KF based estimation algorithms in [44, 45], and non-linear observers in [46].
These methods do not employ a tire model, however, sensor noise should be considered
in detail for reliable estimation. In addition, to mitigate noise effects and address the
low excitation scenarios, some kinematic-based methodologies have been utilized in the
estimation algorithms.

Estimation of the vehicle-trailer lateral velocity is essential for the vehicle stability
control module to enable combined vehicle-trailer active safety systems. Correspondingly,
a lateral velocity estimator based on the data received from a low-cost inertial measurement
unit was proposed in [47]. Based on the more detailed nonlinear lateral dynamics model of
the vehicle-trailer system [48, 49], an Extended KF (EKF) approach was used to estimate
the vehicle-trailer lateral velocity in [50].

The vehicle-trailer velocity can also be estimated using vision based method. In
[51], a model-based state observer was proposed to estimate the lateral velocity using
a forward-looking monocular camera. Utilizing a monocular camera may lead to the in-
crease of computational effort as well as addition of the uncertainty term due to the camera
calibrations[52, 53]. Moreover, the assumptions of invariant road surface with static fea-
tures are invalidated if the road surface is soft and disturbed by the passing vehicle or if
the surface is reflective as in the case of standing water or snow. Such road conditions need
to be taken into account in off-highway applications

Although lateral velocity estimation is investigated extensively in single unit vehicles,
there is a large lack of scholarly work in vehicle-trailer lateral velocity estimations. Based on
the literature, the current lateral velocity estimators are almost all for single vehicle units
that cannot be used for vehicle-trailer combinations. Therefore, designing and developing
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optimal real-time vehicle-trailer lateral velocity estimator is one of the open topics in this
area.

2.2.3 Vehicle-Trailer Coupling and Tire Force Estimation

Lack of the knowledge of the system’s parameters is the major issue when an accurate
model is needed for vehicle stability and traction control systems. However, model-free
control techniques could be another solution when the system parameters are unknown
[54, 55, 56, 57]. In a vehicle-trailer arrangement, the vehicle states and parameters are
usually assumed to be known, measured, or estimated based on the vehicle’s dynamics and
its responses [58, 59, 60]. A KF state estimator was designed in [61] to estimate the tire
cornering stiffness, sideslip, and roll angles of a vehicle-semitrailer system simultaneously.
In [61], a five degree-of-freedom single-track model was considered, and the tire model
was assumed to be linear which may not be a valid assumption in harsh maneuvers. The
vehicle’s longitudinal and lateral tire forces have been estimated by applying an EKF on a
vehicle bicycle model in [62], where the vehicle system dynamics were derived by the use
of a shaping filter.

The lateral and normal forces at the hitch-point, also called fifth wheel in commercial
vehicles, were measured by a multi-axis force sensor unit, and the measured hitch-forces
were used for the roll stability advisor system. A sliding mode observer was used to estimate
the effect of the trailer (forces) on the vehicle. The longitudinal and lateral hitch-forces
were estimated by applying a sliding mode observer and using the measured vehicle and
trailer accelerations in [63, 64, 65]. The roll stability of a commercial vehicle-trailer system
was investigated by utilizing hitch-force measurements in [66]. However, the approach in
[66] is subject to the extraneous hardware and wiring complexity, which is not desirable
for the automotive industry.

The effect of hitch loading on a vehicle was investigated and the designed hitch load
estimator algorithm was validated experimentally in [67]. To estimate the hitch-forces, the
vehicle tire forces are needed. Tire force estimation is used extensively in single unit ve-
hicles; however, literature on vehicle-trailer tire force estimations especially with unknown
trailer configurations is very scarce.

Tire forces are important terms in the vehicle equations of motion. To be able to model
the vehicle behaviour accurately, an accurate tire model should be considered. The tire
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behaviour has been modeled in numerous studies and used for vehicle and vehicle-trailer
state estimation or stability analysis [68, 69, 70]. One of the most well-known tire models is
the Pacejka model, where the tire behaviour is modeled by a group of curved lines that are
generated from experimental tests to represent the relationship between the road friction
coefficients, slip ratio, slip angle, and tire forces [71]. Another widely used tire model is
the LuGre tire model, which uses relative velocities in longitudinal and lateral directions
to model the tire behaviour in pure-slip conditions [72] and combined-slip modes [73].

Sliding mode observer design is a common technique used for estimating the states and
parameters of vehicle and vehicle-trailer systems. In [74, 75, 12, 76], sliding mode observers
were designed to estimate forces in the vehicle-trailer system. A similar estimation method
was applied to a mining truck in [77]. The vehicle’s longitudinal and lateral tire forces
have been estimated by applying an EKF on a vehicle bicycle model [78], where a trained
neural network model was used to estimate the tire cornering stiffness.

Tire forces can also be measured indirectly by strain-gauge based mechanisms in the
wheel hub, as presented in [79]. However, it is expensive to implement this approach on
production vehicles. Shear stress measurement systems using strain gauges mounted on
the axle bar can be used to provide more accurate measurements, however, utilization of
strain gauges for force measurements in vehicle systems bears installation and calibration
issues [80].
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Table 2.1 summarises the papers cited in this work based on their approaches, measure-
ment signals, and critical assumptions they had considered for estimating the vehicle-trailer
forces and lateral velocities.

2.2.4 Vehicle-Trailer Roll and Sideslip Angle Estimation

Unavailability of some of the system states and parameters is a major problem when an
accurate model is needed for stability control systems. This problem also exists in the case
of vehicle with trailer especially for roll dynamics since the vehicle and trailer suspension
parameters are required. An unknown input observer was used in [86, 87] to estimate the
roll angle for the vehicle and semi-trailer vehicle which has a right impact on the vehicle-
trailer ride comfort and stability [88, 89, 90]. By considering the roll dynamics of heavy
articulated vehicles, roll angle estimation via Luenberger observer was studied in [91]. In
[91], an intelligent fault monitoring system was also proposed to increase the accuracy of
the roll angle estimation for a prototype heavy vehicle active suspension system. In [61],
roll and sideslip angles were estimated for vehicle semi-trailer systems using a KF state
estimator, assuming a linear tire model.

The sideslip angle, which is one of the most crucial states for stability of the vehicles,
was estimated for the vehicle-trailer system by considering a five degrees-of-freedom (DoF)
yaw–roll vehicle linear model in [92, 61]. In [93], an observer was designed to accurately
estimate the roll and sideslip angles for both the vehicle and the trailer on high friction sur-
faces while tire capacity was well below the limits of tire adhesion. However, performance
of this observer is reported to be influenced by approaching the limits of adhesion [93]. The
trailer’s tires could reach the limits of adhesion and become saturated if either the tire road
friction coefficient drops or they are saturated longitudinally by heavy braking. Simulation
results for a state observer to estimate the lateral and longitudinal velocities (from which
the sideslip angle can be obtained) of vehicle-trailers on roads with an unknown slope angle
values were presented in [82]. However, this state estimator requires an accurate vehicle
tire model as well as good knowledge of the friction coefficient value between the tire and
the road. In [94], an algorithm was developed to estimate the vehicle sideslip angle and
yaw rate by considering the steering wheel angle excitation. This algorithm relies on lateral
acceleration and wheel angular velocity sensors. The results show that the algorithm is
able to estimate the sideslip angle with sufficient accuracy on various surfaces with differ-
ent handling manoeuvres. Three extended Kalman filter state estimators were designed
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simultaneously to estimate the trailer sideslip angle in [95], where the effects of body roll
on the sensing of lateral acceleration have been investigated as well.

2.2.5 Vehicle-Trailer Mass and Parameter Estimation

In vehicle-trailer systems, snaking and jack-knifing are the two distinct yaw instability
modes, which are defined based on the saturated axle. Trailer snaking motion usually
occurs when side forces cause the trailer to move side to side behind the towing unit and
generally happens on slippery road surfaces. On the other hand, jack-knifing is mainly
attributed to tire/ground friction force saturation that may occurs during hard braking or
in curved-path negotiations. If a vehicle towing a trailer skids, the trailer can push the
towing vehicle from behind until it spins the vehicle around and collapse [96, 97, 98, 99,
100, 101]. One of the most important parameter that relates to the mentioned vehicle-
trailer instability modes is the trailer Center of Gravity (CG) location that relates to the
payload condition. The CG location defines the instability type; meaning that jack-knifing
is more willing to occur when the CG location is close to the hitch point. However, the
trailer will sway if the CG location stand far from the hitch point and close to the end of
the trailer [97, 68, 102, 103, 104].

Generally, a trailer is used for carrying goods and products, and special trailers can be
designed for carrying heavy payloads. The trailer’s payload is dependent on its usage and
measuring the payload can improve the stability investigation of the vehicle-trailer system.
However, measuring the payload directly is costly and as a result, payload estimation is
highly sought. The trailer mass can vary depending on the goods and loads the trailer
carries [105]. Given that the trailer mass cannot be measured directly using low cost
sensors, it is necessary to estimate it via the integration and processing of data acquired
from the sensors installed on conventional vehicle-trailer systems.

Techniques for weighing trucks in motion have been intensively studied recently [106,
107]. In [108], the vehicle weight was estimated by utilizing the vehicle velocity and driving
torque, and designing a sliding mode term along with a low-pass filter to ensure the conver-
gence of the estimation error to zero. The article [109] presented a method to identify the
commercial vehicles payload based on the vehicle longitudinal acceleration and measured
trailer’s air spring.

Model-based and machine learning approaches were proposed to estimate trailer mass
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for arbitrary vehicle-trailer configurations [110]. In [110], the stability of the model-based
estimation algorithm was analyzed, and a generic machine learning based approach was
designed to estimate the trailer mass with unknown trailer parameters. A Recursive Least
Square (RLS) method was proposed in [111] to estimate both the vehicle mass and road
angle. The proposed method in this work for both vehicle mass and road angle estimation
were validated experimentally. The dynamics of the sprung and unsprung mass were
investigated to design a full vehicle state estimator in [112]. Similarly, the trailer mass and
yaw inertia were estimated by using an RLS based algorithm to maintain the stability of
the vehicle-trailer system in [113].
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Table 2.2, summarises the papers cited in this work based on their approaches, measure-
ment signals, and critical assumptions they had considered for estimating the vehicle-trailer
lateral load transfer and trailer mass.

2.2.6 Non-Model-Based Vehicle-Trailer State Estimation

Data-driven based methods are largely considered effective tools for system modelling, as
they are suitable to model complex systems using their ability to identify relationships from
input–output data pairs. Particularly, the relationships from input–output vehicle-trailer
data pairs can be used for vehicle-trailer system state and parameter estimation as shown
in Fig. 2.2. Training neural networks using collected data to estimate vehicle parameters
and states are widely studied in the literature [119, 120, 121, 122, 123, 124, 125, 126].
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Figure 2.2: Deep neural network model for vehicle-trailer state estimation.

Among the studies following this approach, sparse autoencoder and softmax regression
were used in [127], to form a Deep Neural Network (DNN) structure to classify the road
excitation for semi-active suspension systems. Correspondingly, a hybrid-learning based
classification method was proposed in [128] to classify the braking intensity to three levels
by developing a supervised random forest model. A recurrent neural state estimator was
designed to estimate the vehicle roll angle in [129]. The inputs of the designed estimator
were selected based on the vehicle dynamic model. The proposed estimator contains long
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short-term memory cells and predicts the roll angle based on the lateral acceleration,
steering wheel angle, and outputs of the control system. Similarly, the vehicle roll angle was
estimated using a neural network method in [130]. The performance of the trained neural
network in [130] for estimating the vehicle roll angle indicates that the neural network
results are comparable with model-based estimation techniques and in some cases the
neural network approach performs better than the model-based estimation.

A general regression neural network was proposed to estimate the vehicle sideslip angle
in [131, 132]. The results of this works indicate that the neural network is able to reach
an excellent estimation quality while generalizing over the different tires, surfaces, and
driving situations. In [133], a machine learning approach was proposed to estimate the
engine torque which is very important in the automotive industry. In this work, an engine
torque model was used to investigate the importance of the inputs to the designed neural
network.

Moreover, the trailer mass information can be used for estimating other vehicle-trailer
system parameters as well. For instance, since conventional vehicles usually come with
independent suspensions, the normal tire load transfer can be determined from the static
load on the sprung mass [134, 135]. Correspondingly, a neural network approach was
developed and tested to improve the accuracy of multiple sensor weight in motion systems
in [136] by considering the suspension displacements. In this work, due to the difficulty to
inverse the model that describes the dynamical vehicle pavement interaction, the neural
network method was utilized to estimate the static truck weight. The simulation and
experimental results for the designed DNN in [136] demonstrate an accurate estimation
on the truck weight. However, the algorithm was tested and validated for one vehicle and
there is no confirmation for the designed neural network to be generic among the vehicle
types. In [137], a DNN approach was proposed to estimate the vehicle-trailer system
states/parameters. In this work, the proposed DNN gives decent angle estimation, with
the network trained on LIDAR data being superior. However, the model-based approaches
were shown to be more accurate and more robust [137].
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2.3 Conclusions and Discussions

In this chapter, an overview of state and parameter estimation for vehicle-trailer sys-
tems, and the main approaches for vehicle-trailer states/parameters estimations were re-
viewed. Although the estimation techniques have been widely applied in this areas, they
still encounter many limitations such as limited coverage, model simplification, and severe
assumptions that may not be valid all the time. For the existed estimators in the litera-
ture, the discussed algorithms were summarized in tables, and their critical assumptions
were highlighted. Table 2.3, summarizes the papers cited in this work based on their ap-
proaches, measurement signals, and critical assumptions they had considered for estimating
the vehicle-trailer system states and parameters.

In addition, as Machine Learning (ML) techniques used for vehicle-trailer state and
parameter estimation were also reviewed. It was discussed that collecting consistent data
is the biggest challenge of such methods.

Based on the related works in the literature, non-model-based techniques require large
amount of data with an acceptable level of consistency, while model-based techniques
require significant excitation levels to achieve an accurate estimation of the vehicle-trailer
state and parameter estimation. As some of the existing estimators in the literature have
been validated by simulation studies, additional investigations are needed to prove the
efficacy of the proposed methods with experimental studies.

Based on the literature, the hybrid approaches that are designed based on the system
kinematic/dynamics relations and non-model-based approaches for vehicle-trailer state and
parameter estimations, have better performance. Hybrid approaches are built upon un-
derstandings of the nature of the system, and the network needs to be constructed in a
way that captures the physical principles without significantly increasing the network com-
plexity and thus causes much slower training. Therefore, conventional ML approaches still
remains a competitive candidate for vehicle-trailer system state estimation because of two
reasons: first, it is usually simpler and easy to build and train; second, they do not require
much a priori knowledge of the nature of the system [149].
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Chapter 3

Vehicle-Trailer Modeling

3.1 Introduction

In this chapter first, the motion dynamics of the vehicle-trailer system is modeled and
then, the trailer parameter estimation feasibility is investigated based on the trailer on-
board sensor configurations. A full trailer states and parameters estimation scheme is also
presented in this chapter for different possible vehicle-trailer on-board sensor settings. The
remainder of this chapter is organized as follows: In Section 3.2, the main vehicle-trailer
kinematic and dynamic models are presented, and the incorporation of the LuGre tire
model is explained in Section 3.3. The trailer parameter estimation feasibility is investi-
gated in Section 3.4 based on the trailer on-board sensor settings, and the minimum sensory
requirements for full vehicle-trailer estimation is reviewed by considering the vehicle-trailer
kinematic and dynamic models in the literature. Conclusions and discussions are provided
in Section 3.5.

3.2 Vehicle-Trailer Modeling

A 3-DoF model is considered to represent the motion dynamics of the vehicle-trailer system
of interest. Fig. 3.1 illustrates a schematic representation of the vehicle-trailer system
configuration. In Fig. 3.1, m1, m2, Iz1 and Iz2 are the masses and yaw moments of the
vehicle and trailer, respectively. The yaw rates of the vehicle and trailer are denoted by
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r1 and r2. Longitudinal and lateral velocities at the vehicle Centers of Gravity (CG) are
denoted by u and v1, respectively. Fxf,i, Fxr,i, Fxt,i, Fyf,i, Fyr,i, and, Fyt,i with i ∈ (R,L) in
which R and L refer to the Right and Left side of the vehicle, are the longitudinal/lateral
tire forces at front and rear axles of the vehicle, and trailer’s axle, respectively. FxT and
FyT represent the coupling forces, also known as hitch forces, in longitudinal and lateral
directions of the trailer, respectively according to Fig. 3.1.

𝑒

δ

𝑏1

𝑎1

𝑏2
𝑎2

r1

𝜃

u
v1

r2

u
v2Fyt

Fyr

Fyf

FxT

FyT FxT

FyT

𝑐 𝑚1

𝑚2
𝐼𝑧2

𝐼𝑧1

Figure 3.1: Free body diagram of a vehicle-trailer system.

Since they have less influence on the yaw stability, the pitch and body-roll of the
vehicle-trailer are neglected [96, 150]. To derive a linear vehicle-trailer model, the following
assumptions have been made: (1) the forward speed u remains constant; (2) the vehicle
steering angle δ and articulation angle θ are small; and (3) all products of variables are
ignored. The equations of motion for the vehicle-trailer system are as follows [96, 151]:

m1(v̇1 + ur1) = Fyf + Fyr − FyT , (3.1)

Iz1ṙ1 = a1Fyf − b1Fyr + cFyT , (3.2)

m2(v̇2 + ur2) = Fyt + FyT , (3.3)

Iz2ṙ2 = −b2Fyt + a2FyT . (3.4)
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The linear hitch coupling equations are given by [68]

v2 = −a2r2 − uθ + v1 − cr1, (3.5)

r2 = θ̇ + r1. (3.6)

Eliminating coupling forces, the equations (3.1) to (3.6) yield to

−m2a2θ̈ + (m1 +m2)v̇1 −m2(a2 + c)ṙ1 = −u(m1 +m2)r1 + Fyf + Fyr + Fyt, (3.7)

cm2a2θ̈ − cm2v̇1 + (Iz1 + c2m2 + cm2a2)ṙ1 = cm2ur1 + a1Fyf − b1Fyr − cFyt, (3.8)

(Iz2 + a2
2m2)θ̈ − a2m2v̇1 + (Iz2 + a2

2m2 + cm2a2)ṙ1 = m2a2ur1 − l2Fyt, (3.9)

where l2 is the trailer wheel-base. The lateral tire forces at front and rear axles of the
vehicle, and trailer’s axle are determined using a linear tire model. The linear tire model
is considered to address the lateral forces at each axle Fiy = ciαi, i ∈ [f, r, t] where αi is
representing the slip angle at each axle as follows [68]:

αf = δ − v1 + a1r1

u
, (3.10a)

αr = −v1 − b1r1

u
, (3.10b)

αt =
l2θ̇ + uθ + (l2 + c)r1 − v1

u
. (3.10c)

By substituting the lateral tire forces and the side slip angles defined in (3.10), the
linear lateral vehicle dynamic model is represented by

Mẋ = Dx + Cδ, (3.11a)
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x =
[

v1 r1 θ̇ θ
]T
, (3.11b)

M =


m1 +m2 −m2(a2 + c) −m2a2 0

−cm2 M22 cm2a2 0

−a2m2 M32 Iz2 + a2
2m2 0

0 0 0 1

 , (3.11c)

D = −1

u


D11 D12 −ctl2 −ctu
D21 D22 cl2ct cctu

−l2ct D32 l22ct l2ctu

0 0 −u 0

 , (3.11d)

C =
[

cf a1cf 0 0
]T
, (3.11e)

whereM22 = Iz1+c2m2+cm2a2,M32 = Iz2+a2
2m2+cm2a2, D11 = cf+cr+ct, D12 = a1cf−

b1cr−(l2 +c)ct+(m1 +m2)u2, D21 = a1cf−b2cr−cct, D22 = a2
1cf +b2

1cr+c(l2 +c)ct−cm2u
2,

D32 = l2(l2 + c)ct −m2a2u
2. The model (3.11) can also be presented in the conventional

state space form as

ẋ = Ax + Bδ, (3.12)

where A = M−1D and B = M−1C. To study the static stability of the vehicle-trailer
system, the equilibrium condition (ẋ = 0) is considered. Thus, by considering Routh’s
stability criterion under the constant longitudinal velocity assumption, the stability of the
system leads to the following condition for the understeer coefficient [68]

l1 +Kusu
2 > 0, (3.13a)

Kus =
m1(crb1 − cfa1)−m2b2(cf (a1 + c) + cre)

cfcrl1
, (3.13b)

where l1 is the vehicle wheel-base. The stability condition defined by the understeer coef-
ficient is used for finding the critical velocity and also comparing the linear and non-linear
lateral dynamic presented. As mentioned, the linear lateral dynamic presented in (3.12) is
derived based on the linear tire model. In the linear tire model, it is assumed that the tire
forces has a linear relationship with the slip angle which may not be a realistic assumption
for the situation where the slip angle is large. Therefore, to address this issue, a non-linear
vehicle-trailer lateral dynamic is described in the next section.
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3.3 Incorporation of the LuGre Tire Model

In this section, the vehicle-trailer lateral dynamics is incorporated with the LuGre tire
model to better represent the non-linear behaviour of the system due to tire interactions.

3.3.1 LuGre Tire Model

Tire forces are the key features for driving the vehicle equation of motion. To be able to
model the vehicle behaviour accurately, an accurate tire model should be considered. The
tire behaviour has been modeled in numerous studies and used for vehicle state estimation
or stability analysis [152, 69, 153, 154, 70]. The tire behaviour is modeled by a group of
curved lines that find the relationship between the tire-road friction, normal tire load, slip
ratio, slip angle, and tire forces. These curved lines are generated from the experimental
test, and the most well-known tire model is Pacejka model [71]. Compared to other con-
ventional models, the LuGre tire model uses relative velocities in both longitudinal and
lateral directions (vrx = Reω−u and vry = uα, where Re and ω represent the tire effective
radius and angular velocity, respectively) rather than slip ratio λ = vrx/max[Reω, u] and
slip angle α to model the tire behaviour.

As mentioned, the longitudinal and lateral relative velocities are obtained by vrx =

Reω − u and vry = uα. vrx, vry, α, u, Re, and ω are all defined in the tire coordinate
system at each corner (e.g. for front tire in single-track model, they lead to vrx,f , vry,f ,
αf , uf = u, Re,f , and ωf ). The average lumped model friction state (deflection) of the
bristle/patch element located at the point ζ is denoted by z = [Zx(ζ, t),Zy(ζ, t)]T ∈ R2,
with longitudinal component, Zx(ζ, t) and lateral component, Zy(ζ, t). The tire internal
lateral state Zy(ζ, t) has the following dynamics under the pure-slip assumption [72]:

Ży(ζ, t) = vry −
(
σ0|vry|
Θg(vry)

+ κRe|ω|
)
Zy(ζ, t), (3.14a)

g(vry) = µc + (µs − µc)e−|
vry
Vs
|τ̄ , (3.14b)

where µc and µs are the normalised Coulomb and static friction, respectively. σ0, Θ, and
κ represent the tire rubber stiffness, road friction condition, and average lumped model,
respectively. σ0 and Θ are the tire specifications that are obtainable by experimental tests
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[155]. The average lumped model, κ, is suggested to be set by κ = 7/6L, where L is the
tire patch length [72]. For the distributed LuGre tire model, the tire parameter τ̄ , is 0.5.
The transient between the two friction states is addressed by the Stribeck velocity, Vs.

The tire internal lateral state, Zy, is obtained under the pure-slip assumption. Given
that the tire model with the mentioned assumptions cannot address the decreasing lateral
tire capacities caused by the tire slippage, a modified LuGre tire model known as combined-
slip LuGre tire model was proposed in [73]. In the proposed model, the internal state
Zj, j ∈ [x, y] for both longitudinal and lateral directions with the combined-slip condition
is described as [73]

Żj = vrj − C0Zj − κRe|ω|Zj, (3.15a)

C0 =
‖ M2

cvr‖σ0j

g(vr)µ2
cj

, (3.15b)

g(vr) =
‖ M2

cvr‖
‖ Mcvr‖

+

(
‖ M2

svr‖
‖ Msvr‖

− ‖ M2
cvr‖

‖ Mcvr‖

)
e−

√
| ‖vr‖
Vs
|, (3.15c)

Ms =

[
µsx 0

0 µsy

]
,Mc =

[
µcx 0

0 µcy

]
, (3.15d)

vr = [vrx, vry]
T . (3.15e)

The transient function g(vr), represents the relation between the Coulomb and static
friction in the combined-slip tire model. The longitudinal relative velocity in the traction
and brake cases are defined by vrx = λReω and vrx = λu, respectively. By considering the
internal lateral tire states, the normalised friction force, µj = Fj/Fz where Fj, j ∈ [x, y]

and Fz represent the longitudinal, lateral, and normal tire forces, respectively, with the
average lumped LuGre model yields to

µ = σ0z + σ1ż + σ2vr, (3.16a)
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σj =

[
σjx 0

0 σjy

]
, j ∈ [0, 1, 2], (3.16b)

where µ ∈ R2 describes the normalised friction force in both longitudinal and lateral
directions. σ0, σ1, and σ2 represent the rubber stiffness, rubber damping, and relative
viscous damping, in both longitudinal and lateral directions, respectively. As shown in
(3.16a), the calculated tire forces obtained by the average lumped LuGre model-based on
the distributed normal force over the patch line. The LuGre tire models in (3.14a) and
(3.15a) are used to develop the vehicle-trailer lateral dynamics as described in the next
subsection.

3.3.2 Lateral Dynamics with Pure-Slip LuGre Tire Model

In this subsection, the vehicle-trailer lateral dynamics described in (3.12) is incorporated
with the LuGre tire model for pure-slip cases.

Steady-state dynamics

By considering Ży(ζ, t) = 0 at steady-state, the steady-state LuGre model is obtained as
follows:

µyi =

(
ρi

u|αi|+ γiρi
+ σ2y,i

)
uαi, (3.17a)

ρi = Θg(vry,i), (3.17b)

γi = κiRe,iωi/σ0y,i, (3.17c)

where i ∈ [f, r, t], and the slip angle at each axle is presented by αi which is described in
(3.10). To analyse the effect of slip angle, the normalised lateral tire force (3.17a) expressed
as follows for the cases where |αi| � γiρi/u:

µyi = Θ

(
1

γi
+ σ2y,i

)
uαi, (3.18)
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where Θ ∈ (0, 1] is a constant coefficient that represents the effect of road condition which
benefits in presenting the tire model close to the real tire behaviour [156, 157]. The linear
tire model was compared with normalised lateral forces of the pure-slip LuGre model in
[156]. For the steady-state behaviour, the vehicle-trailer lateral dynamics with normalised
lateral forces of the pure-slip LuGre model leads to

−m2a2θ̈ + (m1 +m2)v̇1 −m2(a2 + c)ṙ1 = −u(m1 +m2)r1 + µyfFzf + µyrFzr + µytFzt,

(3.19)

cm2a2θ̈ − cm2v̇1 + (Iz1 + c2m2 + cm2a2)ṙ1 = cm2ur1 + a1µyfFzf − b1µyrFzr − cµytFzt,
(3.20)

(Iz2 + a2
2m2)θ̈ − a2m2v̇1 + (Iz2 + a2

2m2 + cm2a2)ṙ1 = m2a2ur1 − l2µytFzt, (3.21)

where Fzf = (m1gb1 − m2ga2e/l2)/l1, Fzr = (m1ga1 + m2ga2(l1 + e)/l2)/l1, and Fzt =

a2gm2/l2. The normal axle forces are measured using acceleration measurement and load
transfer [158, 159]. The normalised lateral force (3.17a) can be re-written in the following
form by considering the non-linear part:

µyi = kiuαi −
1

γi

(
1 + γiρi

u|αi|

)uαi = Λiαi, (3.22)

where αi, i ∈ [f, r, t] is the slip angle as defined in (3.10). The term κiuαi is represented
the linear part of (3.18). The second term in (3.22) illustrates the non-linear behaviour of
the lateral tire forces which happens when the slip angle is large. By considering the static
normal force distribution at each axle and replacing (3.22) in equations (3.19) to (3.21),
the vehicle-trailer lateral dynamics are represented in the state space form

ẋ = A(t)x + B(t)δ + H(t), (3.23)

A(t) = M−1Dn(t),

B(t) = M−1Cn(t), (3.24a)
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Dn = −


Dn,11 Dn,12 −ktFztl2 −ktFztu
Dn,21 Dn,22 cl2ktFzt cktFztu

−l2ktFzt Dn,32 l22ktFzt l2ktFztu

0 0 −1 0

 , (3.24b)

Cn =
[
kfFzfu a1kfFzfu 0 0

]T
, (3.24c)

Dn,11 = kfFzf + krFzr + ktFzt, Dn,12 = a1kfFzf − b1

krFzr − (l2 + c)ktFzt + (m1 +m2)u,Dn,21 = a1kfFzf

−b2krFzr − cktFzt, Dn,32 = l2(l2 + c)ktFzt −m2a2u,

Dn,22 = a2
1kfFzf + b2

1krFzr + c(l2 + c)ktFzt − cm2u, (3.24d)

where M is defined in (3.11c). In (3.23), the H(t) term represents the non-linear behaviour
of the system in pure-slip condition, and is calculated as shown in (3.25), where

H(t) =
1

W


∑

i φi (Iz1Iz2 + Iz1a
2
2m2 + Iz2m2c

2 +Di)αi − φtm2Iz2c
2αt∑

i φi (Ei(a2
2m1m2 + Fi))αi∑

i φi (−Ei (m1m2a2(a2 + c) + Iz2(m1 +m2)) +m2(Iz1a2 − l2c))αi − φtKαt
0


(3.25)

W = Iz1m1m2a
2
2 + Iz2m1m2c

2 + Iz1Iz2m1 + Iz1Iz2m2, (3.26a)

Df = Iz2a1cm2,Dr = −Iz2b1cm1,Dt = −Iz1a2l2m2, (3.26b)

Ff = 2m1Iz2a1 + Iz2cm2,Fr = Iz2cm2 − 2m1Iz2b1,

Ft = ca2l2m1m2 −m1Iz2c, (3.26c)

K = l2(m1m2c
2 + a2m1m2c+ Iz1m1 + Iz1m2), (3.26d)

Ef = a1, Er = −b1, Et = −c, φi =
−1

γi

(
1 + γiρi

u|αi|

)uFzi. (3.26e)
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H(t) can be used to find the magnitude of the non-linear behaviour of the system in
pure-slip condition comparing with linear model.

Remark 3.1: The norm of the non-linear term H(t) is a bounded function of the
vehicle front/rear and trailer slip angles [160].

The non-linear term H(t) can also be expressed in terms of state vector. To do so,
for the large slip angle (|αi| � γiρi/u), the normalised lateral forces shown in (3.17a) are
written as µyi = ρisgn(αi) + σ2y,iuαi, leading to

H(t) = A(t)x + B(t)δ, (3.27)

A = A + QA, (3.28a)

B = B−QB, (3.28b)

QA = −1

u


m1 m1a1 −l2 −u
cm1 m1 +m2 cl2 cu

−l2 l2(l2 + c) l22 l2u

0 0 −u 0

 , (3.28c)

QB =
[

b1 a1 cl1 a2a1

]T
. (3.28d)

By substituting (3.27) into (3.23), the vehicle-trailer lateral dynamics for large slip
angles (|αi| � γiρi/u) can be written as

ẋ = (A +A)︸ ︷︷ ︸
Ā

x + (B + B)︸ ︷︷ ︸
B̄

δ. (3.29)

Remark 3.2: The term H(t) is a matched function of the lateral dynamic model for
the large slip angles and can be incorporated with the system model[161, 162].
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Transient dynamics

The average lumped LuGre tire model (3.14a) can be rewritten as

Żyi(t) = −
(
σ0|vry|
Θg(vry)

+ κRe|ω|
)
Zy(ζ, t) + vry = −

(
σ0γi(t) +

σ0u|αi(t)|
ρi(t)

)
Zy(ζ, t) + vry

= − σ0iu

ρi(t)

(
γi(t)ρi(t)

u
+ |αi(t)|

)
︸ ︷︷ ︸

Pi(t)

Zyi(t) + vry,i(t), (3.30)

where ρi(t) and γi(t) are defined in (3.17b) and (3.17c), respectively. To analyse the
transient mode of the average lumped LuGre tire model, the solution of (3.14a) is derived
as follows:

Zyi(t) = Zyi(0)e−tPi(t) +

∫ t

0

e−Pi(τ)(t−τ)vry,i(τ)dτ . (3.31)

For small slip angles (|αi(t)| � γi(t)ρi(t)/u), the linear part leads to Pi(t) = σ0iγi(t) =

κiRe,iωi(t). Thus, the solution of (3.14a) becomes Zyi(t) =
∫ t

0
e−κiRe,iωi(τ)(t−τ)vry,i(τ)dτ

assuming zero initial condition, which is a simpler version of (3.31). By considering
ωi(t) ∈ [ωl, ωu] where ωu and ωl are the wheel angular speeds’ upper and lower bounds,
the

∫ t
0
e−κiRe,iωi(τ)(t−τ)vry,i(τ)dτ is an increasing function of t which leads the internal tire

state to

uαi(t)(1− e−κiRe,iωut)
κiRe,iωu

< Zyi(t) <
uαi(t)(1− e−κiRe,iωlt)

κiRe,iωl
. (3.32)

Thus, the normalised lateral force µyi(t), i ∈ [f, r, t] for the linear cases can be written
as

µyi(t) = Θ[
1

γi(t)
+ e−κiRe,iωi(t)t

(
σ1i −

1

γi(t)

)
+ σ2i]uαi(t). (3.33)

By substituting (3.33) in equations (3.19) to (3.21), the lateral dynamic model is ob-
tained as

ẋ(t) = ¯̄A(t)x(t) + ¯̄Bδ(t) + H̄(t), (3.34)
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where ¯̄A(t) has the same elements as A(t) in (3.23) has but ki(t) ∈ [f, r, t] is replaced by

k̄i(t) = Θ

[
1

γi(t)
+ e−κiRe,iωi(t)t

(
σ1i −

1

γi(t)

)
+ σ2i

]
. (3.35)

The non-linear part H̄(t) is the same as H(t) shown in (3.25) but φi(t) is to be replaced
by φ̄i(t) = φi(t) + Φi(t) where

Φi(t) = −e−σ0iγi(t)t/ρi(t)Θ

(
σ1i −

1

γi(t)

)
+

e−σ0iγi(t)t

(
σ1i −

ρi(t)

u|αi(t)|+ γi(t)ρi(t)

)
e−σ0iu|αi(t)|t/ρi(t). (3.36)

Φi(t) in (3.36) exponentially converges to zero. Therefore, a reasonable estimation
accuracy will be obtained by considering the steady-state lateral dynamic model (3.29).

3.4 Full Vehicle-Trailer State Estimation Scheme

In this section first, the trailer parameter estimation feasibility is investigated based on the
trailer on-board sensor settings, then a full trailer state and parameter estimation scheme
is presented.

3.4.1 Parameter Estimation Feasibility

Since several states/parameters of the trailer need to be estimated for control and stability
analysis purposes, different set of sensors can be considered. Therefore, it would be better
to first check the trailer state and parameter estimation feasibility with respect to different
sets of sensors, which can be used in the system. Fig. 3.2 illustrates the feasibility of
states/parameters estimation by considering different set of sensors in which the check and
cross marks mean the state and parameter with the set of sensors shown in the first left
column can be estimated or not. Given that the kinematic relationships are valid in low
speed operations, the estimation process is divided into two regions, low speed conditions
in which the kinematic relationships are valid, and high speed conditions in which some
assumptions such as small hitch angle or small steering angle, are valid. The assumptions
for the low speed condition are as follows:
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• The vehicle-trailer is driven by low speed, u < 35km/h,

• Hitch angle is measured by ultra-sonic sensors,

• Kinematic relation for hitch angle is valid,

and the assumptions for the high speed condition are as follows:

• The vehicle-trailer is driven by high speed, u > 35km/h,

• Vehicle and trailer both have same longitudinal acceleration, ax1 ≈ ax2,

• The hitch angle and steering angle are small.

To reach high speeds, the vehicle-trailer must first pass a low speed region. Therefore,
any constant/geometrical trailer parameter that estimates in the low speed condition can
be considered as a known trailer parameter with some level of uncertainty in the high speed
operation. In other words, the idea behind the motion categorization is to estimate the
trailer parameters as much as possible in the low speed operation as long as the mentioned
assumptions are valid, and then use them with some level of uncertainty in the high speed
operation as known parameters.

Based on the estimation and control purposes, the states/parameters can be catego-
rized into three groups based on their priority. By considering the effect of trailer on the
towing vehicle, the hitch forces, CG location, and hitch angle are the most important info
among the trailer states/parameters. For instance, the CG location plays an important
role in trailer instability modes especially for trailer snaking as the poles of the system are
related to the CG location value. Therefore, hitch forces, hitch angle, and CG location are
considered as primary states/parameters and highlighted in dark green.

Due to the fact that control goals are not unique, other parameters and states may
add to the primary states/parameters but generally, the rest of states/parameters are
considered as secondary states/parameters and highlighted in light green except trailer
tire’s forces. As shown in the literature, the trailer tire forces rarely need to be estimated.
Therefore, trailer tire’s forces in both longitudinal and lateral directions are considered as
the tertiary states/parameters and highlighted in yellow.
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Set of sensors 
States/Parameters 

𝐹𝑥𝑇 𝐹𝑦𝑇 𝑎2 ϴ
 

𝐹𝑥𝑡 𝐹𝑦𝑡 𝑟2 𝛼𝑡 𝑚2 𝐼𝑧2 𝑙2 𝑣2 

1 
• Vehicle IMU 

• Wheel speed/torque 

Low Speed 
            

High Speed 
            

2 

• Vehicle IMU 

• Wheel speed/torque 

• Hitch Angle [Ultrasonic] 

• Tractor GPS  

Low Speed 
            

High Speed 
            

3 
• Vehicle IMU 

• Tractor GPS  

• Trailer IMU 

Low Speed 
            

High Speed 
            

4 
• Vehicle IMU 

• Wheel speed/torque 

• Trailer IMU 
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Figure 3.2: The feasibility of trailer’s state and parameter estimation.

For each cases based on the system model and measurement signals, the system state
and parameter estimations can be addressed. For instance, the estimation scheme for
the second case in the Fig. 3.2 where the towing vehicle has IMU, ultra-sonic, and wheel
speed/torque sensors is fully explained in the next sub section.

3.4.2 Unknown Trailer State and Parameter Estimation Scheme

For the second case in Fig. 3.2, the vehicle, not trailer, is equipped with an IMU, wheel
speed/torque sensor, and ultra-sonic sensors. In this subsection, the general form of the
vehicle-trailer equations of motion are introduced to investigate estimation of unknown
trailer parameters/states for the second case of the sensor configuration as shown in Fig. 3.2.
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For a typical vehicle-trailer system configuration, as illustrated in Fig. 3.1, based on
the linear hitch coupling equations, the hitch angle rate θ̇, is the difference between the
vehicle and trailer yaw rates (3.6). Thus, by assuming no lateral slip for the trailer, the
well-known hitch angle kinematic equation is obtained as [163, 164, 24, 25, 26, 27]:

θ̇ =
u sin θ

l2
− u tan δ

a1 + b1

(
1 +

e cos θ

l2

)
, (3.37)

where l2 is the trailer wheel-base. In the hitch angle kinematic equation (3.37), l2 is the only
trailer parameters. Therefore, if the measured/estimated value of the trailer wheel-base is
available, the equation (3.37) can be used for any unknown trailer.

As mentioned, the hitch angle is the key variable to investigate the trailer estimation
feasibility, which can be calculated based on the hitch coupling equations (3.6). The hitch
angle can also be estimated based on the ultra-sonic sensors that are mounted on the rear
bumper of the vehicle as shown in (2.1). The estimated hitch angle from the ultra-sonic
sensors, θ̂, is then used to identify the trailer wheel-base, also know as trailer axle location.
Hence, (3.37) can be written in a discrete Static Parametric Model (SPM) to identify the
trailer axle location as:(

θ̂k − θ̂k−1

Ts
+
uk tan δ

a1 + b1

)
l2 = uk sin θ̂k +

uke cos θ̂k tan δ

a1 + b1

, (3.38)

where Ts is the sensor sampling rate. Given that the both regression and output signals
in (3.38) are a function of vehicle states, (3.38) can be used to estimate the trailer axle
location.

Typically, the vehicle-trailer longitudinal motion equation is considered to estimate the
trailer mass. By following the Newtonian law for the forward motion of the vehicle-trailer
system, the longitudinal motion equation is obtained as follows:

Fx,fL + Fx,fR + Fx,rL + Fx,rR − (m1 +m2)ax1 − FR = 0, (3.39)

where

FR = µRm1g +
1

2
ρcdAu

2 = C0 + C1u
2, (3.40)

represents the resistance force, cd is the drag coefficient, µR is rolling resistance, ρ is air
density, and A is representing the projected cross-sectional area of the vehicle. As intro-
duced by (3.40), the resistance force is a quadratic function of the longitudinal velocity
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with two coefficients C0 and C1. The longitudinal tire forces can be estimated by consider-
ing the wheel dynamics [165]. Therefore, by substituting (3.39) in (3.40) the trailer mass
equation is obtained as follows:

m2 =
Rt (Tt − Iω̇t,m)

ax1

−m1 −
C0 + C1u

2

ax1

+Wm, (3.41a)

Rt =
[
R−1
eff,fL R−1

eff,fR R−1
eff,rL R−1

eff,rR

]T
, (3.41b)

Tt =
[
TfL TfR TrL TrR

]T
, (3.41c)

ω̇t,m =
[
ω̇fL ω̇fR ω̇rL ω̇rR

]T
, (3.41d)

I =


Iω,fL 0 0 0

0 Iω,fR 0 0

0 0 Iω,rL 0

0 0 0 Iω,rR

 , (3.41e)

where ωt,m represents the wheel angular velocity at each corner that measured by the wheel
speed sensor and to calculate the derivative of this signal Newton’s difference quotient tech-
nique is used, and the generated signals passed by a low-pass filter. Wm represents the
longitudinal uncertainty due to the acceleration measurement, inaccurate resistance force,
geometry, and forces. Wm is mostly contributed to the sensor measurement including:
longitudinal acceleration, longitudinal velocity, and wheel speed sensor measurement. Es-
timation algorithms should be considered to cancel the effect of the uncertainty term Wm.
More discussion on the estimation algorithm to cancel the effect of uncertainty term is
provided in the next chapter.

It has been shown that by following the Newtonian law for the forward motion of the
vehicle-trailer system, the trailer mass is obtainable by (3.41a). Therefore, the trailer mass,
axle location and, hitch angle are theoretically obtainable by considering the kinematic
relations of the vehicle-trailer systems. To investigate other trailer states/parameters listed
in Fig. 3.2 estimation feasibility, the 3-degree-of-freedom vehicle-trailer dynamic model is
considered as presented in (3.23).

38



In Fig. 3.1, FxT and FyT represent the coupling forces, also known as hitch forces, in
longitudinal and lateral directions, respectively. From the vehicle-trailer lateral dynamics
(3.11a), a direct relation for hitch forces and lateral vehicle velocity is obtained as:

E

 v1

FxT
FyT

 = F, (3.42a)

E =

 −Cf
u

sin δ 1 0

−Cf
u

cos δ − Cr
u

0 −1

−Crb1
u
− Cf

u
cos δa1 0 e+ b1

 , (3.42b)

F =
[

F1 F2 F3

]T
, (3.42c)

where F1 = m1ax1 − Fxf cos δ − Fxr + sin δ(
Cf
u
a1r1 − Cfδ), F2 = m1ay1 − Fxf sin δ +

cos δ(
Cf
u
a1r1 − Cfδ) − Cr

u
b1r1, F3 = Iz1ṙ1 − Fxf sin δa1 + cos δa1Cf (

a1r1
u
− δ) + Cr

u
b2

1r1.
Therefore, by following the lateral dynamics, a direct relation for hitch forces and lateral
vehicle velocity can be obtained as shown in (3.42a).

The trailer CG location and yaw momentum of inertia are correlated based on the
vehicle-trailer lateral dynamics. Given the vehicle-trailer lateral dynamics in relations
(3.7) to (3.9), the coupled relations for trailer CG location and yaw momentum of inertia
can be represented by the following relation:[

r2 FxT sin θ − FyT cos θ + Ctb2
r1−θ̇
u

0 −m2r2 − Ct r1−θ̇u

][
Iz2
a2

]
=[

Ctb2
l2θ̇+uθ+(l2+c)r1−v1

u

FyT cos θ − FxT sin θ −m2(ay1 − (e+ b1)r1)− Fyt

]
, (3.43)

where Fyt = −Ct(l2θ̇+uθ+ (l2 + c)r1− v1)/u, and Ct represent the trailer lateral tire force
and cornering stiffness, respectively. Based on the presented equation for vehicle-trailer
systems, the trailer parameters listed in Fig. 3.1 can be estimated for both low and high
speed operations. The estimation scheme for unknown trailer parameters/states based on
the second case sensor configuration is shown in Fig. 3.3.
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Figure 3.3: Trailer state and parameter estimation feasibility for the second sensor config-
uration at low and high speeds.

As mentioned, the presented model and measurements are contributed with uncer-
tainties. For instance, Wm in (3.41a) represents the longitudinal uncertainty due to the
acceleration measurement, inaccurate resistance force, geometry, and forces which is mostly
contributed to the sensor measurement. To cancel the effect of process and measurement
noise, optimal filters and estimation algorithms can be applied. The KF approach has been
demonstrated to be the strongest method for estimating parameters and multi-sensory
data fusion problems with a low computational cost [166, 167]. For the vehicle-trailer
system state/parameter identification and estimation issues, two modified KF methods
are generally utilized including the UKF and the EKF methods. The EKF method is to
prepare almost maximum-likelihood prediction of parameters and states of a discretized
linear/nonlinear equations of the motion of the system [168]. The EKF is not an optimal
estimator due to its linear counterpart, however, it is optimal if the state transition model
and measurement equipment are both linear. Furthermore, EKF has several limitations,
however, the literature indicates that it has succeeded in precise estimation for nonlinear
model of the vehicle-trailer [169, 170]. In the EKF, the state distribution is assembled
based on a Gaussian random variable, which is spread through the linearized model of
the system. The UKF is an extension of the Unscented Transformation (UT) which is a
method for estimating a random variable [171]. The UKF method estimates the states
of the system by espousing a deterministic sampling algorithm which is known as sigma
points that could correctly calculate the realistic covariance and mean of the Gaussian
random variable with the reasonable level of accuracy [172, 173]. Moreover, the UKF
method has less computational cost by terminating the Jacobian matrices, which is the
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advantage of UKF by comparison with EKF [174]. Therefore, for estimating the states
of the system with uncertain variables, the UKF method is applicable. Given that the
observeability is a sufficient condition for implementation of optimal filters (e.g. KF) or
estimation algorithms, the estimation error of the UKF is investigated in [175].

3.5 Conclusions and Discussions

In this chapter, an overview of the vehicle-trailer model using linear and nonlinear tire
models was introduced. It has been shown that adding a non-linear tire model modifies the
fidelity of the model and increases the model accuracy. By considering the LuGre tire model
in vehicle-trailer modeling, the system modeling became non-linear. In this particular case,
there was a possibility to separate the linear and nonlinear parts, considering the nominal
motion dynamics (corresponding to the non-slip case without significant nonlinearity) as
the linear part and representing the difference between the high-fidelity nonlinear system
model and the linear nominal system model by an additive nonlinearity. The H(t) term
in (3.25) represented this additive nonlinearity in the system in pure-slip condition while
the other terms are representing the nominal linear behaviour of the system.

A full possible solution for estimating the states and parameters of an unknown trailer
was also investigated and the state and parameter estimation feasibility was discussed
based on the different on-board sensor settings. The main benefits of state estimations is
not only improving the performance of vehicle-trailer control systems, but also enabling
autonomous vehicle-trailers.

The proposed approach for the feasibility of the trailer parameter/state estimations
have two algorithms for low and high speed conditions. In low speed conditions (vx < 35

km/h), the kinematic relationship between the trailer and vehicle as well as linear tire
model are considered to estimate the trailer parameters/states. Then, as the speed of
vehicle-trailer increases, the low speed assumptions are no longer valid and instead the
high speed assumptions are considered. The estimator algorithms for high speeds are
dependent on the low speed estimator outputs (the trailer constant parameters).

41



Chapter 4

Trailer Mass Estimation

4.1 Introduction

For heavy duty vehicles as well as passenger cars, active safety systems require accurate
estimation of the states and parameters of both the vehicle and the trailer, which cannot be
measured directly. Trailer mass is an important one of these parameters. An over-loaded
trailer could easily place the vehicle-trailer system in unstable conditions. Trailer mass is
also important from the driver viewpoints, noting that commercial vehicle drivers are held
responsible for traffic safety on the roads and before departure they are required to keep the
trailer’s payload within the legal range. While the payload value can typically be found
from the load description, there are instances where it is not available. Given that the
trailer mass can vary depending on the goods and loads the trailer carries, and the trailer
mass cannot be measured directly using low cost sensors, it is necessary to estimate it via
the integration and processing of data acquired from the sensors installed on conventional
vehicle-trailer systems.

The existed vehicle mass estimators in the literature are for vehicle unit itself and
when a trailer connects to the towing vehicle, the vehicle mass estimators may not work
as the dynamic of the system changes. Therefore, the trailer mass estimation needs to be
investigated individually for vehicle-trailer configuration.

For both system model-based and Machine Learning (ML) based approaches, three
main challenges exist in the vehicle/trailer mass estimation: (a) reliable identification of
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unknown trailer parameters and road friction conditions; (b) modularity of the designed
estimators being applicable to different vehicle-trailer configurations; (c) limitations of the
available sensors and available measurements. Aiming to develop an estimation approach
which tackles all these challenges, the main contribution of this chapter is the design of
two novel trailer mass estimators that are modularly applicable to different trailer types
and road friction coefficients, one following a system theoretic approach based on vehicle-
trailer dynamic model and one based on Deep Neural Networks (DNNs), where the vehicle-
trailer dynamics are used to define appropriate inputs for the DNN to be able to make
the design modular. Moreover, the performance of the proposed two designs are verified
via simulations and experiments compared with existing methods in the literature. The
analysis and test results indicate that the proposed designs are accurate and modular
with acceptable computational costs, which empower the methods to be implemented on
real time. This chapter is organized as follows: In Section 4.2, the proposed dynamic
system model-based trailer mass estimation approach is described and the convergence of
the trailer mass estimate is analyzed. In Section 4.3, an overall structure of the proposed
ML approach is described and a DNN trailer mass estimator is designed using different
number of neurons at different layers. A sensitivity analysis with respect to all available
measurements from the vehicle-trailer system, which are used as the DNN inputs, is also
presented in Section 4.3, along with a discussion of selection of the inputs of the DNN
based on this sensitivity analysis. In Section 4.4, training and testing the designed DNN
with a set of real-time vehicle-trailer system data is explained. The trailer mass estimation
results with the model-based and ML approaches are presented and compared in Section
4.5 with discussion.

4.2 Model-Based Trailer Mass Estimation

The estimated trailer mass can be used for estimating other vehicle/trailer parameters. For
instance, since regular vehicles usually come with independent suspensions, the normal tire
load transfer can be determined by analysing the static load on the sprung mass [134]. To
do so, a dynamic system model-based observer designed for trailer mass estimation is
presented in this section.

For the design, a three degree of freedom vehicle-trailer model is considered to inves-
tigate the vehicle-trailer states/parameters that are related mathematically to the trailer
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Figure 4.1: A schematic view of a vehicle-trailer system.

mass. A model is considered to derive the dynamic equations of the vehicle-trailer system.
Fig. 4.1 shows a schematic representation of a vehicle-trailer system.

In Fig. 4.1, m1, m2, r1, and r2 are the masses and yaw rates of the vehicle and trailer,
respectively. Longitudinal and lateral velocities at the vehicle centers of gravity are denoted
by Vx and Vy, respectively. Fxfi, Fxri, Fyfi, and Fyri, with i ∈ (R,L), where R and L refer
to the Right and Left side of the vehicle, are the longitudinal and lateral tire forces at front
and rear axles of the vehicle, respectively. FxT and FyT represent the coupling forces, also
known as hitch forces, in longitudinal and lateral directions, respectively. The equations
of motion for the vehicle-trailer system are as follows:

m1ax1(t) = Fx,rL(t) + Fx,rR(t) + Fx,fL(t) cos δ(t) + FxT (t)

+Fx,fR(t) cos δ(t)− Fy,fL(t) sin δ(t) + Fy,fR(t) sin δ(t), (4.1)

m1ay1(t) = Fy,fL(t) cos δ(t) + Fy,fR(t) cos δ(t) + Fy,rL(t)

+Fy,rR(t) + FyT (t) + (Fx,fL(t) + Fx,fR(t)) sin δ(t), (4.2)

m2ax2(t) = Fx,tR(t) + Fx,tL(t)− FxT (t) cos θ(t) + FyT (t) sin θ(t), (4.3)

m2ay2(t) = Fy,tR(t) + Fy,tL(t)− FyT (t) cos θ(t)− FxT (t) sin θ(t), (4.4)
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where θ represents the hitch angle. Longitudinal and lateral velocities at the vehicle and
trailer centers of gravity are denoted by ax1, ay1, ax2 and ay2, respectively. In equations
(4.1) to (4.4), it is assumed that the longitudinal and lateral accelerations, yaw rate, and
steering angle are measurable and the vehicle geometric parameters such as CG location
and vehicle length are known. Moreover, the longitudinal tire forces are calculated based
on the wheel dynamic as follows [165]:

Fx,ij(t) =
1

Reff,ij

(Tij(t)− Iω,ijω̇ij(t)) , (4.5)

where i ∈ (f, r) (front and rear axle), j ∈ (L,R) (left and right tire). Also, Reff,ij

is the wheel effective radius, Tij represents the effective torque on the wheel, Fx,ij is the
longitudinal tire force, ω̇ij is the wheel acceleration, Iω,ij is the wheel momentum of inertia.
The goal is to develop a trailer mass estimator utilizing conventional sensor measurements
including: wheel speed, vehicle accelerations, and wheel torque. The proposed model-
based trailer mass estimation algorithm works based on the torque and wheel speed of the
vehicle’s tire at each corner as well as the vehicle’s longitudinal acceleration as shown in
Fig. 4.1. By having the total torque for the vehicle provided by engine and the percentage
of torque distribution, the wheel torque at each corner can be calculated. The vehicle
longitudinal acceleration is measured by an Inertia Measurement Unit (IMU). Ignoring
the torsion stiffness of the axles and the viscous damping of the bearing, the longitudinal
tire forces are related to the wheel speed and applied torque as shown in (4.5). The
longitudinal dynamic is considered for the trailer mass estimation. If the vehicle-trailer
system has lateral movement, the engine’s torque is used for both longitudinal and lateral
movements. Given that the engine’s torque that is used for the lateral movement is not
distinguishable from the engine’s torque that is used for the longitudinal movement, for
the trailer mass estimation, it is assumed that the vehicle-trailer system moves forward
(Vx > 0) with the small steering angle (|δ| < δth, where δth is the steering angle threshold).
By considering these assumptions, the measured engine’s torque can be used directly in
the longitudinal dynamic for trailer mass estimation. These assumptions have been made
to avoid the lateral movement of the vehicle-trailer system. Therefore, the trailer mass
estimation algorithm runs once the above-mentioned assumptions are satisfied.

By following the Newtonian law for the forward motion of the vehicle-trailer system,
the longitudinal motion equation is obtained as follows:

Fx,fL + Fx,fR + Fx,rL + Fx,rR − (m1 +m2)ax1 − FR = 0, (4.6)
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where [151]

FR = µRm1g +
1

2
ρcdAV

2
x = C0 + C1V

2
x , (4.7)

represents the resistance force, cd is the drag coefficient, µR is rolling resistance, ρ is
air density, and A is representing the projected cross-sectional area of the vehicle. As
introduced by (4.7), the resistance force is a quadratic function of the longitudinal velocity
with two coefficients C0 and C1. By inserting (4.5) in (4.6) the trailer mass equation is
obtained as follows:

m2 =
Rt (Tt − Iω̇t,m)

ax1

−m1 −
FR
ax1

+Wm, (4.8)

where Rt, Tt, ωt,m, and I present the wheel radius, torque, rotational speed, and momen-
tum of inertia, which are illustrated in (3.41b), (3.41c), (3.41d), and (3.41e), respectively.
Moreover, Wm represents the longitudinal uncertainty due to the acceleration measure-
ment, inaccurate resistance force, geometry, and forces. Wm is mostly contributed to the
sensor measurement including: longitudinal acceleration, longitudinal velocity, and wheel
speed sensor measurement. ωt,m represents the wheel rotational speed at each corner that
measured by the wheel speed sensor. As the model uncertainty is contributed to the sensor
measurements, it is zero mean.

Next we propose use of a Proportional-Integral-Derivative (PID) observer designed
approach, which has been used in the literature for estimating the velocity and traction
forces [176, 155, 165, 177], to establish the following trailer mass estimation law:

m̂2 =
Rt (Tt − Iω̇t,m)

ax1

−m1 −
FR
ax1

− σ1ω̃t + σ2

∫
m̃m

2 dt, (4.9)

where σT1 ∈ R4 and σ2 are design parameters, and ω̃t = ωt,m − ω̂t is the estimation error
for wheel speed. The trailer mass estimation error denotes by m̃m

2 = mm
2 − m̂2 where

mm
2 = Rt (Tt − Iω̇t,m)/ax1 −m1 − FR/ax1 is the measured trailer mass value ignoring the

sensor noise and disturbance effects, that are represented by the model uncertainty term,
Wm, and the previous time step value is used for the other term (m̂2) in this relation
to make the algorithm implementable. If Wm is zero mean, the integral of the trailer
mass measurement in (4.9) over time will eliminate the effect of uncertainty leading to
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∫
m̃m

2 dt ≈
∫
m̃2dt. The discrete-time recursive implementation of (4.9) is described in

Algorithm 1.

The estimated wheel speed rate at each corner is described as:

˙̂ωt = I−1[Tt −RT
t ax1m̂2 −RT

t ax1m1 + RT
t axσ3

∫
ω̃tdt+ RT

t ax1σ2

∫
m̃2dt], (4.10)

where σT3 ∈ R4 is also a design parameter. Given the fact that
∫
wt(τ)dτ =

∫
wt,m(τ)dτ

based on the zero mean measurement noise assumption, the estimated wheel speed ω̂t is
used as an auxiliary term for trailer mass estimation.

Theorem 4.1. The error dynamics for the trailer mass estimation (4.9) based on the
wheel dynamic with time-varying parameter ωt is exponentially stable.

Proof : Subtracting the trailer mass (4.8) from the estimated trailer mass (4.9) yield
to the trailer mass estimation error m̃2 = σ1ω̃t − σ2

∫
m̃2dt+Wm. The time derivative of

the error dynamic leads to:

˙̃m2 = −σ2m̃2 + σ1
˙̃ωt + Ẇm. (4.11)

Substituting (4.10) from the wheel speed rate ω̇t,m = I−1[Tt − RT
t (ax1m2 − ax1m1 +

ax1Wm)] yields to:

I ˙̃ωt = −RT
t ax1m̃2 + RT

t ax1Wm −RT
t ax1σ3

∫
ω̃tdt−RT

t ax1σ2

∫
m̃2dt. (4.12)

By taking the time derivative from (4.12), and replacing the error dynamic of the trailer
mass estimation showed in (4.11), yield to:

¨̃ωt = −I−1RT
t ax1

(
−σ2m̃2 + σ1

˙̃ωt + Ẇm

)
+ I−1RT

t ax1Ẇm − I−1RT
t ax1σ3ω̃t

−I−1RT
t ax1σ2m̃2,

(4.13)

which can be written in the following state space form:[
˙̃ωt
¨̃ωt

]
=

[
04×4 14×4

−I−1RT
t ax1σ3 −I−1RT

t ax1σ1

]
︸ ︷︷ ︸

M

[
ω̃t
˙̃ωt

]
,

(4.14)
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where M is Hurwitz. Therefore, the error dynamic (4.14) is exponentially stable provided
by σ1,σ3 > 0. Thus, ω̃t → 0 and ˙̃ωt → 0. �

Therefore, the estimation error dynamic illustrated in (4.11) asymptotically turns to

˙̃m2 = −σ2m̃2 + Ẇm, (4.15)

which is an exponentially stable dynamic for ∀σ2 > 0. And has attenuation for uncertainties
with the gain 1

σ2
. To implement the algorithm on real-time testing, the discretized form of

the trailer mass error dynamic is used. The proposed dynamic system model-based trailer
mass estimation algorithm is summarized in Algorithm 1.
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Algorithm 1 Trailer mass estimation algorithm
Trailer Mass Estimation
Initialization:
Ts= Sampling rate, Rt= Effective radius, I= Wheel
momentum of inertia, C0,1= Resistance force coefficients,
σ1,2,3= Observer gains, m1= Vehicle mass, δth= Steering
angle threshold.
Main Loop:
ωt,m,ω̇t,m= Measured by wheel speed sensors, input,
ax1= Measured by IMU, input,
Vx, δ= Measured by CAN bus, input.
If isempty (ω̂t, ˙̂ωt, m̂2)
ω̂t = ˙̂ωt = 0,
m̂2 = Initial guess.
If Vx > 0, |δ| < δth
ω̃t = ωt,m − ω̂t,
˙̃ωt = ω̇t,m − ˙̂ωt,

M =

[
04×4 14×4

−I−1RT
t ax1σ3 −I−1RT

t ax1σ1

]
,

Md = eMTs ,[
ω̃t
˙̃ωt

]
= Md

[
ω̃t
˙̃ωt

]
,

Estimate the trailer mass:
mm

2 = Rt (Tt − Iω̇t,m)/ax1 −m1 − (C0 + C1V
2
x )/ax1,

m̂2 = (Rt (Tt − Iω̇t,m))/ax1 −m1 − (C0 + C1V
2
x )/ax1 − σ1ω̃t + σ2(mm

2 − m̂2)Ts, output.
Update variables:
ω̂t = ωt,m − ω̃t,
˙̂ωt = ω̇t,m − ˙̃ωt,
else:
m̂2 = m̂2, output.
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4.3 Machine Learning Based Approach

Machine learning based approach is another method to estimate the trailer mass using
collected data. Among the studies following this approach, a dual level reinforcement
estimator was proposed in [178] to estimate the mining haul trucks’ total mass. A neural
network approach was designed and tested to improve the accuracy of multiple sensor
weight in motion system [136]. In this work, due to the difficulty to inverse the model that
describes the dynamics between the vehicle and pavement interaction, the neural network
method was used to estimate the static truck weight. A DNN was considered in this work
to estimate the static truck weight and the results demonstrate an accurate estimation on
the truck weight [136]. However, the algorithm indication that is not generic and needs to
be trained for other vehicle types.

In design of a DNN based trailer mass estimator, the inputs of the DNN estimator need
to be selected properly. Proper sensors are required to measure these inputs and feed them
into the DNN. Sensors that are available on a test vehicle include: IMU, Wheel Speed
Sensor (WSS), CAN bus information, ultra-sonic sensor measurements, and engine torque
measurement. The vehicle longitudinal/lateral accelerations and yaw rate are measured by
the vehicle’s IMU. The wheel speed, wheel torque, and steering angle are measured from
the regular ABS wheel speed sensors, electric actuators, and CAN bus. The hitch angle is
measurable by the ultra-sound sensors that are mounted on the rear bumper of the vehicle
[39].

4.3.1 Deep Neural Networks Input Sensitivity Analysis

A sensitivity analysis over all of the measurable inputs is provided to check the importance
of the measurable vehicle states and parameters with respect to the trailer mass. In other
words, to realize how much effective each measurement data is with respect to the trailer
mass, the sensitivity analysis has been investigated. The Gradient Boosting Regression
Tree (GBRT) is used to evaluate the input importance. GBRT begins by training a decision
tree in which each observation is assigned an equal weight. By evaluating the first tree,
the weights of those observations that are difficult to classify and lower are increased. By
evaluating the weights for neurons the importance of the inputs with respect to the output
which is the trailer mass is generated. The importance of the inputs with respect to the
trailer mass is shown in Fig. 4.2.
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Figure 4.2: The input feature importance of the all available measurements for trailer mass
estimation.

As can be seen in Fig. 4.2, the hitch angle, lateral acceleration, and yaw rate for both
vehicle and trailer are less important and have less effect on the network for estimating
the trailer mass than the other available inputs. Therefore, there is no need to consider
all of the available inputs for the network since their effectiveness are not the same. The
vehicle-trailer equation of motion is considered to pick the right inputs for estimating trailer
mass. As can be seen in (4.8), if the inputs of the DNN set based on (4.8), the trained
DNN is able to estimate the presented function and provide the trailer mass estimation.
In order to drive (4.8), it is assumed that the vehicle-trailer system moves forward with
small steering angle (|δ| < δth, where δth is the steering angle threshold). Therefore, data
with large steering angles are removed from the training data-set. Moreover, it is obvious
that if the trailer has lateral slip, the hitch angle will not be small. The trailer lateral
slip causes the lateral tire forces which means the vehicle traction forces will take care of
both longitudinal and lateral movements of the trailer. Therefore, it is assumed that the
hitch angle is also small (|θ| < θth, where θth is the hitch angle threshold) to be able to
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consider the longitudinal equation of motion only. The data with large hitch angle values
are removed from the training data-set.

As can be seen in (4.6), the measurable inputs for the DNN are including: the longi-
tudinal acceleration, wheel speed, engine torque, and resistance force. Based on (4.7), the
resistance force is a quadratic function of longitudinal velocity. Therefore, the input vector
of the DNN is considered as follows:

At =
[
ax1 ax2 RT

t diag(ωt) TT
t C0 + C1V

2
x

]T
, (4.16)

where C0 and C1 are the total resistance force coefficients, described in (4.7), that are
related to the vehicle specification. As the vehicle-trailer is assumed to move forward with
small steering angle, the longitudinal acceleration of the vehicle is almost the same as the
longitudinal acceleration of the trailer. Thus, the final input vector for training and testing
the DNN is considered as follows:

At =
[
ax1 RT

t diag(ωt) TT
t C0 + C1V

2
x

]T
. (4.17)

The sensitivity analysis result for the selected inputs shown in (4.17) is illustrated in
Fig. 4.3. As Fig. 4.3 illustrates, longitudinal acceleration, wheel speeds, and engine torque
are the most important factor for trailer mass estimation while the resistance force model
has less influence on the trailer mass estimation. Given that the longitudinal acceleration,
wheel speeds, and engine torque are the most important factor, four back steps of them
are considered as extra inputs to the network.

4.3.2 Deep Neural Networks Structure

To estimate trailer mass, a 15 hidden layers (systematic experimentation is used to discover
what works best for the specific tractor-trailer data-set) neural network with different
neurons at each layer, decreasing from layer to layer, is considered. Each neuron’s output
is the input of the neurons in the next layer. The schematic view of the considered neural
network is shown in Fig. 4.4. For training the DNN, an activation function for each
neuron should be considered. As the inputs can take both positive and negative value, a
Leaky rectified linear unit function is considered for the neuron activation function. The
considered activation function is described as follows [179]:
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Figure 4.3: The input feature importance of the selected measurements for trailer mass
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Figure 4.4: The neural network structure.

f(x) =

{
x, x > 0

ax, Otherwise
, 0 < a� 1, (4.18)
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where the Leaky rectified linear function has a small slope for negative values. By setting
the inputs, activation function, number of layers/neurons, and output for the training set,
the training process starts to obtain weights and biases of the neurons. To deal with over-
fitting issue, L2 regularization, where it drops all features with no significant impact, has
been used.

CarSim

Simulation

Equinox test 
dataset

Training datasets

Tractor longitudinal acceleration
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Wheel speeds

Engine torque

Hitch angle
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4 Steps history record

Input normalization

Create input vector
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Figure 4.5: Overall trailer mass estimation procedure.

By utilizing the generated weights and biases, the estimated trailer mass is calculated
as follows:

m̂2 = f(b15,1 + w15,1

H14∑
h=1

L14,h)−m1,

Li,j = f(bi,j + wi,j

Hi∑
j=1

Li−1,j), (4.19)
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where i ∈ [1, 2, ..., 14], and H1×14 = [140, 130, ..., 20, 10]. First layer’s input vector is defined
as L0,(1,2,...,140) = [At; At−Ts ; At−2Ts ; At−3Ts ; At−4Ts ], where Ts represents the sampling rate.
The overall algorithm for DNN based trailer mass estimation is shown in Fig. 4.5.

As Fig. 4.5. illustrates, vehicle states including: vehicle longitudinal acceleration, steer-
ing wheel angle, wheel speeds, engine torque, and hitch angle measure with the sensors at
each time step. Then four previous time steps of the current time step of the measurement
signals record as a memory signal. By utilizing the towing vehicle parameters including:
the vehicle mass, tire sizes, and geometry, the DNN input vector produces. Then the men-
tioned assumptions check to ensure that the vehicle-trailer is moving forward and straight
and if the assumptions are violated, the algorithm will wait till the conditions satisfy. As
the vehicle steering wheel angle, hitch angle, and velocity turn into the acceptable range,
the generated weights and biases utilize to estimate trailer mass.

4.4 Data-set

To train and test the network both experimental and simulation test results are considered.
A high-fidelity CarSim model is used to collect the data for almost 50 maneuvers for two
different vehicles with different trailer attached to them. For instance, 10 Single Lane
Change (SLC) maneuvers are considered in CarSim including 5 tests with E-class SUV
and 5 tests with a pick-up truck. Moreover, at each test, the trailer payload and geometry,
CG location, and track width, have been changed to collect sufficient data.

For the experimental collected data, an electric Chevrolet Equinox AWD with an at-
tached trailer, which is shown in Fig. 4.6, has been used as a vehicle-trailer system. The
specifications of the vehicle and trailer are listed in Table 4.1. The vehicle-trailer sys-
tem is capable of collecting the required data for training/testing the designed DNN and
dynamic system model-based estimators by having the required sensors including: IMU,
Global-Positioning-System (GPS), wheel speed sensor, torque measurement sensor, and
potentiometer sensor. The longitudinal/lateral accelerations and yaw rate of the vehicle
and trailer are measured with a 6-axis IMU (and GPS) system RT2000. The wheel speed
and wheel torques which can be measured using the regular ABS wheel speed sensors, and
electric actuators, respectively.

Measured signals are communicated using a CAN-bus. Real-time acquisition and pro-
cessing of sensory information and the developed trailer mass estimation algorithm is re-
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Hitch angle sensor

Wheel speed 

sensor
Test trailer

Figure 4.6: AWD test vehicle with trailer

alized using the dSPACE MicroAutobox. The dSPACE compiles measurements for MAT-
LAB/Simulink, and the trailer mass estimation algorithm run in MATLAB/Simulink by
utilizing the provided measurements. The sampling frequency for the experiment is fixed
to 200 [Hz].

To train and test the network, the DNN inputs should be normalized to have a same
magnitude. To do so, each input of the network is normalized by its maximum value
over the entire training data-set to make sure that all the inputs are scaled from -1 to
1. Moreover, the DNN input vector must feed to the network by the same sampling rate.
Therefore, experimental signals are pre-processed (resampled, filtered and segmented). The
total number of tests for both experimental and simulation tests are listed in Table 4.2.

As can be seen in Table 4.2, several different maneuvers have been used to train/test
the network including: Single Lane Change (SLC), Double Lane Change (DLC), sine shape
steer, random steer, Step Steer (SS), and full turn maneuvers. 75% of the collected data
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Table 4.1: Vehicle-trailer parameters for trailer mass estimation.

Values

Parameters
E-class

SUV

Pick-up

truck
Equinox

m1, Vehicle’s Mass (kg) 1807 2249 2270

Iz1, Vehicle’s moment of

Inertia around z axes (kg.m2)
2687 5757 4605

a1, Vehicle’s CG to front axle (m) 1.18 1.4 1.42

b1, Vehicle’s CG to rear axle (m) 1.77 3.07 1.44

e, Vehicle’s rear axle to hitch-point (m) 1.17 1.2 1.14

Tw1, Front axle length (m) 1.57 1.7 1.62

Reff , Effective tire radius (m) 0.39 0.38 0.34

m2, Trailer’s Mass (kg) 1400 815 665

a2, Trailer’s CG to hitch-point (m) 2 1.5 1

b2, Trailer’s CG to axle (m) 1 2.5 0.8

Tw3, Trailer width (m) 1.8 1.8 1.35

are used to train the network (training data-set) while 25% of them are used to test the
network (testing data-set). The simulation and experimental results of the trailer mass
estimator are illustrated in next section.

4.5 Simulation and Experiment Tests

In this section, the presented trailer mass estimation algorithms are validated by both
simulation and experimental studies. Moreover, the performance of the designed observer
and DNN based algorithms are compared in this section.

57



Table 4.2: Test scenarios for trailer mass estimation

Equinox test CarSim simulation

Scenarios Amount Scenarios Amount

SLC 5 SLC 10

DLC 8 DLC 10

Sine 2 Sine 10

Random 5 Random 5

SS 7 SS 5

Full turn 4 Full turn 2

4.5.1 Designed Observer Results

The dynamic system model-based trailer mass estimator performance is examined by uti-
lizing a CarSim model with the parameters listed in Table 4.1. The simulation runs for
different trailer masses to evaluate the trailer mass estimation. In this simulation, the
vehicle-trailer starts moving straight with the initial speed of 20 km/h and keep accel-
erating for 12 seconds. The steering angle and longitudinal/lateral accelerations of the
vehicle are shown in Fig. 4.7. This simulation is conducted for two conditions of loaded
and unloaded trailer. The trailer is unloaded in test-1 and has 850 kg payload in test-2.
The simulation result is shown in Fig. 4.7.

As Fig. 4.7 illustrates, the estimated trailer mass value has almost 11% errors out of the
actual trailer mass for both loaded and unloaded trailer test. As seen in Fig. 4.7, from t=6s
to t=9.4s, the steering wheel angle and the hitch angle are larger than δth = θth = 0.1rad,
which means the assumption is not valid. Therefore, the last output at t=6s is kept for the
estimated trailer mass value (dashed lines from t=6s to t=9.4s). Moreover, as the stability
of the method is guaranteed mathematically, the results justify the convergence of the
trailer mass estimation error as well. To be able to make the estimator more accurate and
realistic, more test data with different setting including different road conditions, different
tire types, and different vehicle parameters should be considered.
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Figure 4.7: The trailer mass estimation based on the designed observer for a double lane
change maneuver: a) Steering wheel angle b) Vehicle longitudinal/lateral accelerations c)
Trailer mass estimation.

4.5.2 Deep Neural Network Estimation Results

An adaptive learning rate optimization algorithm called Adam optimizer is considered for
training the network as shown in Fig. 4.4. By training the DNN with a maximum iteration
of 1000 and batch size of 256, the weights and biases of the neurons are calculated. The
calculated weights and biases are used to estimate trailer mass over the testing data-set
(unseen data). The results for the trailer mass estimation is illustrated in Fig. 4.8.

As Fig. 4.8 illustrates, the Root Mean Square (RMS) of the trailer mass estimation
error is 69.57 kg, which is almost 10 percent errors out of the actual trailer mass (690 kg).
Moreover, as discussed in the previous section, to be able to estimate trailer mass, it is
assumed the steering angle is small. Therefore, as can be seen in Fig. 4.8 part (e), the
algorithm stops estimating the trailer mass for 1 second (from second 8 to 9) due to the
large steering angle and keeps the previous result until the steering angle value becomes
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Figure 4.8: The trailer mass estimation based on the designed neural network for double
lane change maneuvers (unseen experimental test data): a) Vehicle wheel speeds b) Steer-
ing wheel angle c) Vehicle longitudinal/lateral accelerations d) Trailer mass estimation e)
Estimation error.

small again.

The algorithm is also tested for a random steer maneuver and the results are shown
in Fig. 4.9. As can be seen in the results, the RMS of the trailer mass estimation error is
70.17 kg, which is 10.17 percent errors out of the actual trailer mass.

To investigate the performance of the designed DNN based trailer mass estimator, a
double lane change maneuver is considered and the results are shown in Fig. 4.10. As can
be seen in the results, the RMS of the trailer mass estimation error is 69.27 kg, which is
10.04 percent errors out of the actual trailer mass. It can be seen from the DNN results that
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Figure 4.9: The trailer mass estimation based on the designed neural network for random
steer maneuver (unseen experimental test data): a) Vehicle wheel speeds b) Steering wheel
angle c) Vehicle longitudinal/lateral accelerations d) Trailer mass estimation e) Estimation
error.

the error is in bias and is moving around 10% of the actual value. To solve the bias issue
there are four alternatives including: adding neuron layers, adding more training samples,
dropout, and decreasing regularization parameter. The proposed network is designed based
on these four alternatives, and the bias error of almost 10% was the best performance of the
network that we have achieved by testing the different network structures. The comparison
between the designed dynamic system model-based approach and DNN approach for trailer
mass estimation is investigated in the discussion section.
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Figure 4.10: The trailer mass estimation based on the designed neural network for step
steer maneuvers (unseen experimental test data): a) Vehicle wheel speeds b) Steering wheel
angle c) Vehicle longitudinal/lateral accelerations d) Trailer mass estimation e) Estimation
error.

4.5.3 Discussions

The estimated trailer mass results illustrate that both dynamic system model-based and
DNN approaches are capable of estimating trailer mass; however, their performances differ.
Due to the fact that the DNN inputs are designed based on the vehicle-trailer equation
of motion, the designed network is a function estimator between the measured inputs to
the output. The network is trained based on the data that contains low speed operation
of the vehicle-trailer to be able to estimate trailer mass at the beginning of the motion.
As has been mentioned, it is assumed that the steering angle is small. Therefore, if the
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Figure 4.11: The trailer mass estimation based on both the designed neural network and
observer for an acceleration and brake maneuver (unseen experimental test data): a) Ve-
hicle wheel speeds b) Vehicle longitudinal/lateral accelerations c) Estimated trailer mass
d) Estimation error.

driver applies large steering angle the data will not feed to the trained DNN. Similarly,
for harsh maneuvers when the steering angle is larger than the specified threshold, the
dynamic system model-based approach stop working. Moreover, it is assumed that the
vehicle-trailer is operating in a flat road. Therefore, the data will feed to the network as
soon as these assumptions become valid.

To compare the performance of the dynamic system model-based and DNN approaches
for estimating the trailer mass, an experimental test, involving a double lane change ma-
neuver, has been considered. The experimental test runs for 25 seconds. The wheel speeds
and longitudinal/lateral accelerations of the vehicle are shown in Fig. 4.11.

The estimation errors for both DNN and dynamic system model-based approaches are
shown in Fig. 4.11. As can be seen in Fig. 4.11, the error convergence rate with DNN
method is much higher than that for the dynamic system model-based approach. Frankly,
there is no settling time for the DNN method since its output is calculated by multiplying
the weights by the inputs. Moreover, the estimation performance for the dynamic system
model-based estimator is almost the same with the DNN approach. The dynamic system
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model-based approach estimation error increases for harsh maneuvers since the linearity
assumptions are violated. However, if the training data-set is rich enough and contains
adequate data for hash maneuvers, the estimation error for the DNN based estimator will
not increase as the network is trained for harsh maneuvers as well.

To compare the method with other existing machine-learning architectures, a Recurrent
Neural Network (RNN) is considered. To do so, a fifteen hidden layers with different
neurons at each layers (same as the proposed DNN, Fig. 4.4) is trained and tested for
estimating the trailer mass by considering the same input vector as presented in (4.17).
The NRMS [180] of the error for trailer mass estimation is shown in Table 4.3 for the
designed dynamic system model-based observer (OBS) and ML approaches (DNN and
RNN).

As Table 4.3 illustrates, the maximum error percentage with respect to different lon-
gitudinal velocities is less than 10.11%. The RNN and DNN approaches have almost
the same error percentage. Moreover, the percentage error for both the RNN and DNN
approaches are almost the same as the reinforcement learning approaches in [136, 178].
However, the algorithms in [136, 178] were tested and validated for one vehicle and there
is no confirmation for the designed neural network to be generic and transferable to other
vehicles without training. Given that the DNN is much easier to implement and has less
computational cost by comparing with RNN architecture, the proposed DNN method is
recommended for estimating the trailer mass. In average, the RNN takes two and half
hours to train while the DNN takes two hours to train with an Intel Core i7 machine, a
Nvidia GeForce 670 GPU, and 32 GB of RAM.

Table 4.3: NRMS of the errors for the dynamic system model-based and the DNN trailer
mass estimators.

Estimation

Technique

@ u=25

km/h [%]

@ u=35

km/h [%]

@ u=45

km/h [%]

@ u=55

km/h [%]

OBS 9.51 9.34 10.49 10.11

DNN 8.53 8.67 8.5 8.41

RNN 8.93 8.99 9.1 8.91
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The trailer mass estimation results shows that the DNN algorithm is generic, and if the
vehicle specifications change, the algorithm can still estimate the trailer mass since the ve-
hicle parameters, including the vehicle mass, tire sizes, and geometry, are considered in the
input vector. Therefore, the algorithm can estimate the trailer mass properly. Although
both the dynamic system model-based and DNN approaches are capable of estimating
trailer mass accurately, the DNN method’s estimation error might decrease if the network
were trained with a more-comprehensive data-set that contains more vehicle-trailer config-
uration information. In this research, three different types of vehicle have been considered
in the data-set used to train and test the network. Aiming to increase the accuracy of
the proposed method, training with a more-comprehensive data-set with different types of
vehicles and trailers is considered as a potential future work of this research.

4.6 Conclusions

In this chapter, two approaches have been introduced to estimate trailer mass: dynamic
system model-based and machine learning approaches. The stability of the dynamic system
model-based estimation algorithm was guaranteed mathematically, and the test results
indicated the convergence of the trailer mass estimation error. The test results for the
dynamic system model-based trailer mass estimator reported almost 12% errors. The
ML-based approach has high potential for trailer mass estimation and is applicable for
vehicle-trailers with different configurations since its inputs were designed based on the
vehicle-trailer dynamic model. The maximum error percentage for the DNN based trailer
mass estimator is 10%, almost the same with the model-based estimator error. As the
inputs of the DNN contain the vehicle parameter, including the vehicle mass, tire sizes, and
geometry, the designed DNN can be used for any towing vehicle with different specifications.
In other words, the trained DNN is generic, and so there is no need to re-train the network
for a new towing vehicle. In this chapter, three different types of vehicle were reflected in
the data-set used to train and test the network. The simulation results demonstrate that
the trailer mass estimation error is not affected as the towing vehicle specifications change.
To improve the trailer mass estimation results, more experiment results for training/testing
the method are needed.
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Chapter 5

Hitch Angle Estimation

5.1 Introduction

Hitch angle or articulated angle is the angle between the vehicle and trailer at the hitch
point. In this chapter, the estimation of the hitch angle is investigated to develop a reliable
estimation method for any unknown trailer connected to a towing vehicle with a ball-joint
coupling. The trailer axle location and trailer mass are identified/estimated first to make
the hitch angle estimation algorithm independent from the trailer type. To do so, the
following assumptions are made:

1. The vehicle geometric parameters such as CG location and vehicle length are known
or can be estimated.

2. In the vehicle-trailer system model, the pitch and bouncing motions, longitudi-
nal/lateral load transfers, and aerodynamic forces are ignored.

3. The road is assumed flat, no road angles.

These assumptions have been considered to simplify the estimation model. In this
chapter, three approaches have been proposed to calculate/estimate the hitch angle, (A)
using ultra-sonic sensors, (B) using kinematic approaches and (C) using dynamic equa-
tions. Ultimately, to estimate the hitch angle more accurately, the data fusion technique
is considered to combine the estimated hitch angle value generated by the approaches.
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Based on the designed algorithm for estimating the hitch angle, the estimated trailer
axle location, trailer front face angle, and trailer mass are used in the hitch angle estima-
tion algorithm to make the algorithm generic for any ball type trailer. It is shown that the
proposed integrated hitch angle estimation can be used for any unknown ball type trailers
without any prior information on the trailer parameters since the required parameters of
the trailer are estimated. The remaining of this chapter is as follows: In Section 5.2, the
methodology of the hitch angle estimation and algorithms to estimate the hitch angle are
described. In Section 5.3, the hitch angle estimation by using ultra-sonic sensors mea-
surements as well as the trailer front face angle estimation are introduced. The kinematic
equation for hitch angle is presented in Section 5.4. Moreover, the trailer axle location
estimation is developed in Section 5.4. The estimated trailer mass is used in the designed
hitch angle estimation algorithm based on the vehicle-trailer dynamic method and finally,
results with discussions are provided in Section 5.5.

5.2 Hitch Angle Estimation Using Ultra-sonic Sensors

It is assumed that the trailer has flat or symmetric V-nose frontal face. A general symmetric
V-nose surface can be defined to present the trailer frontal face, as schematically shown in
Fig. 5.1. Also, this shape can represent the trailer with flat frontal face when the trailer
front face angle, denoted by α in Fig.5.1, is zero. The trailer front face angle has impact
on the hitch angle, shown by φ in Fig. 5.1, calculation by ultra-sonic sensors data. Also,
to make the hitch angle estimation algorithm generic for any ball type trailer, the trailer
front face angle needs to be identified first.

To identify the trailer frontal face angle α, trigonometric relations in Fig. 5.1 can be
used. In Fig. 5.1, S1 to S4 denote the locations of the ultra-sonic sensors on the vehicle rear
bumper. a and b are the distances between the sensors. L1 and L2 denote the distances
of the hitch-point to the vehicle rear bumper and trailer front face, respectively. d1 to
d4 represent the distance values that ultra-sonic sensors 1 to 4 measures, respectively as
indicated in Fig. 5.1.

Different equations can be written to calculate the value of α based on multiple sensor
combinations. For instance, using the data from sensors 1 and 2, α can be calculated as
shown in (2.1).
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2

Hitch point

(a) (b)

Trailer

Figure 5.1: a) Ultra-sonic sensors location, b) Schematic view of the ultra-sonic sensors on
the vehicle rear bumper.

To identify the trailer frontal shape, the following two conditions are defined. As the
first step of the estimation process, these conditions should be satisfied:

1. For a specific period (n sampling time), the steering angle is almost zero:

|δ|n < δT , (5.1)

where, δ is the steering angle value and δT is a defined threshold close to zero.

2. For the same specific period (n sampling time), there is almost no changes in the
value of the sensor data:

|(∇di)|n<ε, (5.2)

where, ∇di, i ∈ {1, 2, 3, 4}, are the changes in the sensors’ data over n sampling periods
and ε is a threshold defined based on the cleanness of the sensor signals. As long as these
conditions are satisfied, it is guaranteed that the trailer is in line with respect to the vehicle.
Having these conditions satisfied and ϕ ∼= 0, the front face angle is determined by:

α = arcsin
d1 − d2

b
. (5.3)

Therefore, for symmetric V-nose shape, at least two sensors should work properly and
provide valid data to determine angle α. Having the trailer front face angle (α), the hitch
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angle estimates using the geometry of the vehicle-trailer. The following equations can be
written according to Fig. 5.1. Each equation is written to find the value of L2 based on
each sensor data (d1 to d4):

L2 =
1

cosα
[d1 −

L1

cos (ϕ̂+ α)
− (a+ b− L1tan (ϕ̂+ α))sin(ϕ̂+ α)] , (5.4)

L2 =
1

cosα
[d2 −

L1

cos (ϕ̂+ α)
− (a− L1tan (ϕ̂+ α))sin(ϕ̂+ α)] , (5.5)

L2 =
1

cosα
[d3 −

L1

cos (ϕ̂+ α)
+ (a+ L1tan (ϕ̂− α))sin(ϕ̂− α)] , (5.6)

L2 =
1

cosα
[d4 −

L1

cos (ϕ̂+ α)
+ (a+ b+ L1tan (ϕ̂− α))sin(ϕ̂− α)] , (5.7)

where, φ̂ is the estimated hitch angle. By equalizing each pair of equations (5.4) to (5.7), one
equation will be generated that estimates the hitch angle for different sensor combination.
Therefore, totally six equations will be generated for six different sensor combinations
among which two of them are explicit formula and the rest are implicit which are solved
by the Newton-Raphson method in this research. Therefore, the hitch angle estimation
block can be shown as seen in Fig. 5.2 where, φ̂; i, j ∈ {1, 2, 3, 4} is the estimated hitch
angle by utilizing ultra-sonic sensors number i and j. In hitch angle estimation block
with ultra-sonic sensors data, the sensor data and trailer frontal shape are the inputs
to the estimation block and the outputs are the six different estimated hitch angle from
different sensor combinations. These values can be compared in a voting block to identify
a more accurate hitch angle and detect any faulty sensors by some additional logics. The
considered voting block in this research is designed based on the cleanness and reliability
of the sensor signals.

5.3 Hitch Angle Estimation Using Kinematic Equations

The hitch angle can also be estimated based on the vehicle-trailer center of rotation by
taking the Ackermann steering geometry into account.
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[𝑑3 −

𝐿1

cos −ෞ𝜑 +𝛼2
− ൫𝑎 −
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Figure 5.2: Hitch angle estimation block with ultra-sonic sensors data.

5.3.1 Kinematic Model

The kinematic equation can be obtained by analysing the center of rotation as shown
in Fig. 5.3. The vehicle-trailer center of rotation is related to the steering angle. The
kinematic equation of the vehicle-trailer is a function of the vehicle steering angle and
longitudinal velocity. Given the longitudinal and lateral kinematics of the vehicle-trailer
system, the trailer velocity in both longitudinal and lateral directions are obtained based
on the vehicle velocity as:

Vx2 = Vx1 cos θkm + (Vx1 − (b1 + e)ω1) sin θkm,

Vy2 = Vx1 sin θkm − (Vy1 − (b1 + e)ω1) cos θkm. (5.8)

The hitch angle, shown by θkm, is calculated by the difference between the vehicle and
trailer yaw angle as follows:

θkm = β − α. (5.9)

By taking the derivative of (5.9), the hitch angle rate yields to:
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θ̇km = ω2 − ω1. (5.10)

Thus, by assuming no lateral slip for the trailer, the hitch angle rate is calculated as
[163]:

θ̇km =
Vx1 sin θkm

L2

− Vx1 tan δ

a1 + b1

(
1 +

e cos θkm
L2

)
, (5.11)

where δ is the steering angle and Vx1 is the vehicle longitudinal velocity. L1, b1, and e are
the constant geometrical values of the vehicle and L2 is the trailer wheel base, also known
as trailer axle location.

R1

a1

b1

β

L2

e

δω1

YR

XR

α

R2

p1

p2

𝑎1

𝜃𝑘𝑚

Vhx

R3

ω2

Vy2

Vx2

Figure 5.3: Vehicle-trailer center of rotations.

As can be seen in (5.11), the trailer axle location is the only parameter required to be
given/known from the trailer in the kinematic equation of the hitch angle. Therefore, to
make the hitch angle estimation algorithm generic for any ball type trailer, the trailer axle
location is estimated.
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5.3.2 Trailer Axle Location Estimation

Trailer axle location which is denoted by L2 in Fig. 5.3, needs to be identified because
when an unknown trailer is connected to a towing vehicle, L2 is needed for the kinematic
hitch angle equation as shown in (5.11). The trailer axle location is estimated by using a
gradient algorithm. The location of trailer axle is a constant trailer parameter. By utilizing
the calculated hitch angle from ultra-sonic sensors data, the axle location is estimated. In
this section, a parametric model of the trailer axle location is presented. To estimate the
trailer axle location, the discrete gradient algorithm with parameter projection is applied.
By discretizing (5.11), hitch angle kinematic equation yields to:

θ̂km,k =

(
V1x,k sin θ̂km,k

L2

− V1x,k tan δ

a1 + b1

(1 +
e cos θ̂km,k

L2

)

)
Ts + θ̂km,k−1. (5.12)

The estimated hitch angle from the ultra-sonic sensors, φ̂, is used to identify the trailer
axle location. Hence, θ̂km,k is replaced by ϕ̂k in (5.12). Then (5.12) is written in a Static
Parametric Model (SPM) to identify the trailer axle location as:

(
ϕ̂k − ϕ̂k−1

Ts
+
Vx1,k tan δ

a1 + b1

)
L2 = Vk sin ϕ̂k +

Vx1,ke cos ϕ̂k tan δ

a1 + b1

. (5.13)

The right hand side of (5.13) is the output signal and the regression signal, φk, is defined
as follows: (

ϕ̂k−ϕ̂k−1

Ts
+

Vx1,k tan δ

a1+b1

)
︸ ︷︷ ︸

φk

L2︸︷︷︸
ζ

=
(
Vx1,k sin ϕ̂k+

Vx1,ke cos ϕ̂k tan δ

a1+b1

)
︸ ︷︷ ︸

zk

. (5.14)

Since the measurement from the sensors are in the discrete domain, the discrete gradient
approach is used for estimating the trailer axle location. The axle location is bounded as
the axle location of most of the available trailers in the market is from 1 to 6 meters.
Therefore, a priori knowledge about the axle location is considered as 1 < L2 < 6. The
estimation error is defined as the difference between the actual and estimated axle location
value. By considering the SPM model for the trailer axle location which is shown in (5.14),
the estimation error yields to:
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εk = zk − ẑk =
zk − ζk−1φk

m2
s,k

, (5.15)

where m2
s,k = 1 + αφTk φk is the normalization factor. The discrete gradient algorithm with

parameter projection is considered to estimate the trailer axle location as:

ẑk = ζkφ̂k, (5.16)

ζ0 ≤ ζ∗ ≤ ζmax , ζ̄k = ζk−1 + αεkφk, (5.17)

ζk = ζ0 +
(
ζ̄k − ζ0

)
min

(
1,

ζmax∣∣ζ̄k − ζ0

∣∣
)
. (5.18)

The estimated trailer axle location, φ̂k, is then used in the hitch angle estimation
algorithm.

5.3.3 Hitch Angle Estimation Using Kinematic Equation

To estimate the hitch angle, the Extended Kalman Filter (EKF) is applied to the nonlinear
kinematic equation of hitch angle (5.11). The estimated trailer axle location is used in the
kinematic hitch angle equation to make the hitch angle estimation independent from the
trailer parameters. The discretized kinematic equation (5.12) is considered as the system
model in the following form:

xk = fk−1 (xk−1, uk−1, wk−1) = θkm,k−1 + wk−1

+

(
V1x,k sin θkm,k−1

L̂2

−V1x,k tan δ

a1 + b1

(
1 +

e cos θkm,k−1

L̂2

))
Ts,

yk = hk (xk, vk) = ϕk + vk, (5.19)

where the hitch angle is calculated based on the ultra-sonic sensors data. In addition,
wk ∼ (0, Qk) and vk ∼ (0, Rk) are the process and measurement noises with zero means
and the covariance of Qk and Rk, respectively. wk and vk are white and uncorrelated
noises (E(wk, w

T
j ) = Qkδk−j, E(vk, v

T
j ) = Rkδk−j, and E(vk, w

T
j ) = 0), where δk−j is the
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Kronecker delta function of k − j. By following the EKF approach, the linearized model
over the prediction value is determined as

Fk−1 = ∂fk−1

∂x

∣∣∣
x̂k−1

=
VkTs cos θ̂+

km,k−1

L̂2
+

eV1x,k tan δ sin θ̂+
km,k−1

a1+b1
+ 1,

Lk−1 = ∂fk−1

∂w

∣∣∣
x̂k−1

= 1.
(5.20)

Thus, the update EKF gain is calculated as:
kk = p−kH

T
k

(
Hkp

−
kH

T
k +MkRkM

T
k

)−1
,

x̂+
k = x̂−k + kk

(
yk − hk

(
x̂−k , 0

))
,

p+
k = (I − kkHk) p

−
k .

(5.21)

Eventually, the hitch angle is estimated by applying an EKF on the kinematic equation
shown in (5.19). The hitch angle kinematic equation in (5.19) is valid under the assumption
of no lateral slip for the trailer. This assumption is most likely valid for the low speed
operation. For the cases where the trailer has lateral slip, which occur often at high speed
operation, the dynamic equations of the vehicle-trailer system are considered to estimate
the hitch angle which is proposed in the next section.

5.4 Hitch Angle Estimation Using Dynamic Equations

The dynamic equations of the vehicle-trailer system are utilized to estimate the hitch
angle. To do so, by considering the vehicle-trailer system as a single unit, the dynamic of
the trailer is derived with respect to the vehicle motion, which is introduced in this section.

5.4.1 Vehicle-Trailer Dynamic Model

By considering the equations of motion of the vehicle-trailer system, the hitch angle is
written in the state space form. A 3-DoF model is considered to derive the dynamic
equations of the vehicle-trailer system. Fig. 3.1 illustrates a schematic representation of a
vehicle-trailer system. The equations of motion for the vehicle-trailer system is written as:

m1ax1 = Fx,rR + Fx,rL + (Fx,fR + Fx,fL) cos δ + FxT − (Fy,fR + Fy,fL) sin δ, (5.22)
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m1ay1 = (Fy,fR + Fy,fL) cos δ + Fy,rR + Fy,rL + FyT + (Fx,fR + Fx,fL) sin δ, (5.23)

m2ax2 = Fx,tR + Fx,tL − FxT cos θD + FyT sin θD, (5.24)

m2ay2 = Fy,tR + Fy,tL − FyT cos θD + FxT sin θD, (5.25)

where θD denotes the hitch angle value that is estimated by the dynamic approaches. In
equations (5.22) to (5.25), the longitudinal and lateral accelerations, yaw rate, and steering
angle are measurable. Moreover, the vehicle geometric parameters such as CG location and
vehicle length are known. The kinematic relationships of the vehicle-trailer systems are
obtained as:

ax1 = V̇x1 − ω1Vy1, (5.26)

ay1 = V̇y1 + ω1Vx1, (5.27)

ω2 = θ̇D + ω1, (5.28)

Vy2 = (Vy1 − (b1 + e)ω1) cos θD + Vx1 sin θD − a2ω2. (5.29)

The tire forces are determined using a bi-linear tire model. To simplify the model,
axle forces, Fyf and Fyr, are replaced by the lateral tire forces (Fyf = Fy,fR + Fy,fL and
Fyr = Fy,rR + Fy,rL). The linear relationships between the tire forces and slip angles are
presented in the following:

Fyf =

{
Cyfαf , |αf | < αmax

Cyfαmax, Otherwise
, Fyr =

{
Cyrαr, |αr| < αmax

Cyrαmax, Otherwise
, (5.30)

where αmax is 4 deg. Cyf and Cyr are the front and rear tire cornering stiffness of the
vehicle, respectively. αf = δ − (v1 + a1r1)/(u) and αr = −(v1 − b1r1)/(u) are the front
and rear tire side slip angles that are calculated in (3.10). Moreover, the longitudinal tire
forces are calculated based on the wheel dynamic as shown in (4.5) [165]. In the vehicle-
trailer system model, the pitch and bouncing motions, longitudinal/lateral load transfer,
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and aerodynamic forces are ignored. By combining (5.22) with the lateral tire model, the
dynamic hitch angle equations of a vehicle-trailer system can be written as:

((m1 +m2)ay1 − Fxf sin δ − Cyfαf cos δ − Cyrαr) tan θD

= (m1 +m2) ax1 − Fxf cos δ + Cyfαf sin δ − Fxr, (5.31)

where Fxf = Fx,fL +Fx,fR and Fxr = Fx,rL +Fx,rR are the front and rear axle longitudinal
tire forces, respectively. As can be seen in (5.31), the trailer mass is required for the
estimation of the hitch angle. To make the dynamic based hitch angle estimation algorithm
independent from the trailer type and trailer mass, the estimated trailer mass is considered
which is described in Chapter 4.

5.4.2 Hitch Angle Estimation Using Dynamic Equations

The hitch angle can also be estimated by considering the equations of motion of the vehicle-
trailer system. To do so, the hitch angle dynamic equation, shown in (5.31), is considered.
The recursive least square method can be applied to the dynamic hitch angle equation to
estimate the hitch angle. Based on this equation, the regression and the output signal are
defined as follows:

χk = tanθD,k, (5.32)

Φk = (m1+m̂2) ay1,k−Fxf,ksinδk−Cyfαf,kcosδk−Cyrαr,k, (5.33)

Zk = (m1 + m̂2) ax1,k−Fxf,kcosδk+Cyfαf,ksinδk−Fxr,k, (5.34)

where, Φk is the regression and Zk is the output signal. The recursive least-square algorithm
is written as follows:

χ̂k+1 = χ̂k +KK+1(Zk+1 − Φk+1χ̂k), (5.35)

Kk+1 =
PkΦk+1

λ+ Φk+1PkΦk+1

, (5.36)

Pk+1 = (1−Kk+1Φk+1)pk/λ. (5.37)
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The recursive least-square algorithm with forgetting factor, λ, guarantees thatXk → X∗k
as t → ∞, if Φk is persistently exciting. The X∗k is the tan of the actual hitch angle
value. To calculate the Φk and Zk, the vehicle longitudinal velocity, yaw rate and lateral
acceleration are measured by the vehicle IMU.

As mentioned, the hitch angle equation (5.11) is valid under the assumption of no lateral
slip for the trailer. Moreover, the calculated hitch angle based on the ultra-sonic sensors
is noisy and is not accurate in severe weather conditions. Therefore, in order to estimate
the hitch angle more accurately, the data fusion technique is considered as follows:

θ̂f =


θ̂Km if vx < vth
θ̂D if vx > vth & |δ| > δth
ϕ̂ Otherwise

, (5.38)

where vth and δth are the designed thresholds for the longitudinal velocity and steering angle
that above it the trailer slip angle might be large. Based on several tests and simulation
results, the vth and δth are chosen to be 30 km/h and 4 deg, respectively. The overall hitch
angle estimation scheme is illustrated in Fig. 5.4.
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Figure 5.4: Overall hitch angle estimation scheme.
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5.5 Simulation and Experimental Tests

In this section the presented hitch angle estimation is validated by both simulation and
experimental studies.

5.5.1 Simulation Results

A CarSim model with the parameters listed in Table 5.1 is used to evaluate the proposed
estimation algorithm. The simulation is run for different steering angles as well as different
velocities to evaluate the hitch angle estimation. The trailer axle location is also estimated,
simultaneously with the hitch angle. Therefore, both parameter and state estimations are
evaluated with the CarSim model.

Table 5.1: Vehicle-trailer parameters for hitch angle estimation

Parameters Description Value

m1 Vehicle’s mass (kg) 2260

Iz1 Vehicle’s yaw moment of inertia (kg.m2) 4160

a1 Vehicle’s CG to front axle (m) 1.21

b1 Vehicle’s CG to rear axle (m) 1.74

e Vehicle’s rear axle to hitch-point (m) 1.27

Tw1 Front axle length (m) 1.62

Tw2 Rear axle length (m) 1.57

Reff Effective tire radius (m) 0.34

m2 Trailer’s mass (kg) 665

a2 Trailer’s CG to hitch-point (m) 2

b2 Trailer’s CG to axle (m) 1

Tw3 Trailer width (m) 1.8

The first simulation investigates the proposed trailer mass estimation performance,
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with the vehicle-trailer going straight at an initial speed of 20 km/h, and accelerating.
This simulation is conducted for two conditions: a loaded and an unloaded trailer. The
trailer is unloaded in test-1, and has 220 kg payload in the test-2. The simulation result is
shown in Fig. 5.5.

As can be seen in Fig. 5.5, the trailer mass is estimated by the designed observer
introduced in Chapter 4. The trailer mass estimation steady state error is 7%. Given
that the trailer mass is a constant parameter of the trailer, it needs to be estimated per
operation. Since the trailer mass estimation convergence is guaranteed (Theorem 4.1 ), the
estimated trailer mass can be used for the hitch angle estimation.
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Figure 5.5: a) Trailer mass estimation, b) Vehicle-trailer longitudinal velocity.

To investigate the hitch angle estimation methods developed above, a Double Lane
Change (DLC) maneuver is applied (Fig. 5.6a). Since the ultra-sonic sensors’ data are not
available in the simulation, the hitch angle that would be calculated by ultra-sonic sensor
data is instead generated by adding white noise to the actual value of the hitch angle
provided by the CarSim model.

Since the sensors may fail to detect the trailer front face, the data generated between 5.5
and 7 seconds are removed. Moreover, two jumps in the data are added to the actual value
of the hitch angle at 1 and 14 seconds to cover the sensors’ false detections. Fig. 5.6b shows
the generated hitch angle by ultra-sonic sensor data. The estimated hitch angle based on
kinematic equation (5.21), is shown in Fig. 5.6c. This equation accurately estimates the
hitch angle while the assumption of no lateral slip for the trailer is valid. As can be seen in
the results, as speed increases, the assumption is no longer valid. Therefore, the kinematic
method for estimating hitch angle is not appropriate for high-speed operations. Moreover,
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Figure 5.6: a) Steering wheel angle, b) Generated hitch angle by ultra-sonic sensors, c)
Estimated hitch angle based on the kinematic model, d) Estimated hitch angle based on
the vehicle-trailer model, e) Estimated trailer axle location.

given that the estimated trailer axle location is used in the kinematic equation to estimate
the hitch angle, the estimated value becomes more accurate when the estimated trailer
axle location converges to its actual value as shown in Fig. 5.6e. The estimated hitch angle
with respect to the vehicle-trailer dynamic model is shown in Fig. 5.6d. The estimated
hitch angle based on the dynamic model of the vehicle-trailer (5.35) accurately follows the
actual hitch angle.

To estimate the hitch angle more accurately, the data fusion technique shown in Fig. 5.4
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is applied. Results are shown in Fig. 5.7.
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Figure 5.7: Estimated hitch angle based on the proposed algorithm by applying a double
lane change maneuver.

As Fig. 5.7 illustrates, the designed hitch angle estimation algorithm, follows the actual
hitch angle in both low and high-speed operations. Based on the data fusion technique
described in (5.38), the estimated hitch angle is provided by ultra-sonic sensors, kinematic
or dynamic approaches based on the vehicle-trailer operation conditions.

To further evaluate the algorithm, a step steer maneuver, shown in Fig. 5.8a, is con-
sidered. As mentioned in Section 5.4, to estimate the hitch angle, first the axle location is
estimated (Fig. 5.8b). The estimated axle location has the steady state error of 11%. To
utilize the estimated axle location in the hitch angle estimation algorithm, the axle location
estimator stops working when the axle location estimation error rate converges to a small
value. Therefore, a small steady state error remains for the estimated axle location.

As can be seen in the Fig. 5.8, the hitch angle estimation algorithm accurately estimates
the hitch angle with the maximum error of 16% for both high and low speed operations.
Prior estimation of the trailer front face angle, mass, and axle location, makes the hitch
angle estimation algorithm independent of trailer geometry. In other words, no matter what
the connected trailer geometry is, the hitch angle estimation algorithm works properly and
estimates the hitch angle with acceptable accuracy. When an unknown ball type trailer
connects to the towing vehicle, first information require about the trailer is estimated for
use in the hitch angle estimation algorithm.
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Figure 5.8: a) Steering wheel angle, b) Estimated trailer axle location, c) Estimated hitch
angle - multiple step steer maneuvers.

5.5.2 Experimental Tests: Ultra-Sonic Sensors

In order to evaluate the proposed method and validate the concept with real sensory data,
a test setup was created, as shown in Fig. 5.9. A board was used to represent the vehicle’s
rear bumper in full scale while two other boards, connected by a hinge joint, were used
to represent the trailer’s frontal face. The hinge joint allows setting different angles of
the trailer frontal face. Four locations were created on the single board as the locations
of the ultra-sonic sensors. These locations were almost the same as those on a vehicle’s
rear bumper. A potentiometer was also installed at the hitch location as a reference to
directly measure the hitch angle. The ultra-sonic sensors were from Senix Company model
TSPC-30S1-485, as shown in Fig. 5.9, with the optimum range of 3m, which can provide
analog outputs.

The sensors provide 0-5 V analog output that is read and transferred to a Mat-
lab/Simulink code. To validate the hitch angle estimation by the ultra-sonic sensors data,
the V-nose shape trailer with the front face angle of α = 8 deg is considered. Fig. 5.10a
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Figure 5.9: Ultra-sonic sensor test set-up.

and 5.10b show the results obtained from the estimation algorithm in terms of identified
trailer front shape and estimated hitch angle, respectively. As can be seen in Fig. 5.10a,
the algorithm detects the front shape correctly (α = 8 deg). However, in the first 2-2.5 sec-
onds, the algorithm is not working until the two conditions become satisfied, as described
before.

The results show a good match between the estimated and measured hitch angle.

5.5.3 Experimental Studies: Hitch Angle Estimation

Several experiments have been done on an electrified Chevrolet Equinox sport utility vehicle
(SUV) with a single axle trailer (Fig. 4.6) to verify the proposed estimation scheme. The
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(a) (b)

Figure 5.10: a) Identified trailer front shape, b) Comparison between the estimated hitch
angle and ground truth.

Chevrolet Equinox has an all-wheel-independent-drive configuration (AWD). The speci-
fications of the vehicle and trailer are listed in Table 4.1. To validate the hitch angle
estimation with the actual value of the hitch angle, a potentiometer is connected to the
ball joint at the hitch point. The longitudinal/lateral accelerations and yaw rate of the
vehicle are measured with a 6-axis IMU (and GPS) system RT2000. Estimation of the test
vehicle tire cornering stiffness and side slip angle was done in [181, 182, 155]. The hitch
angle estimation algorithm also requires the wheel speed and wheel torques which can be
measured using the regular ABS wheel speed sensors, and electric actuators, respectively.

Measured signals are communicated using a CAN-bus. Real-time acquisition and pro-
cessing of sensory information and the developed algorithm is realized using the dSPACE
MicroAutobox. The dSPACE compiles measurements for MATLAB/Simulink, and the
hitch angle estimation algorithm run in MATLAB/Simulink by utilizing the provided mea-
surements. The sampling frequency for the experiment is set to 200 [Hz]. It is worth men-
tioning that the ultrasound sensors had the lowest sampling frequency in our test set-up
[40 Hz]. Therefore, ultra-sonic sensor data has been re-sampled in post processing.

The step steer maneuver shown in Fig. 5.11, is applied to the test platform to investigate
the performance of the estimation algorithm. As can be seen in Fig. 5.11, the estimated
hitch angle follows the actual hitch angle with good agreement. Based on the data fusion
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Figure 5.11: a) Steering wheel angle, b) Vehicle longitudinal/lateral accelerations, c) Ve-
hicle longitudinal velocity, d) Estimated hitch angle - a step steer maneuver.

equation (5.38), the estimation algorithm for the hitch angle relies more on the kinematic
method since the vehicle-trailer unit operates at low speed. It is worth mentioning that
the small differences between the estimated and actual hitch angles right at the beginning
of the test (Fig. 5.11) is due to the misalignment of the trailer with the towing vehicle.

In the second test, a series of double lane change maneuvers are applied to the vehicle-
trailer system as shown in Fig. 5.12. As can be seen in the results shown in Fig. 5.12, there
is a good agreement between the estimated hitch angle and the hitch angle ground truth.

5.5.4 Discussions

Given the simulation/experimental results, the estimated hitch angle by ultra-sonic sensors
is accurate enough for normal environmental conditions. However, the humidity and sever
weather conditions may affect the results. To address this issue, the sensor reliability
signals were used in the voting block. Moreover, given that the axle location is a trailer
geometry parameter, there is no need to estimate it for all the operation time.

As can be seen in the simulation/experiment results, the hitch angle estimation algo-
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Figure 5.12: a) Steering wheel angle, b) Vehicle longitudinal/lateral accelerations, c) Vehi-
cle longitudinal velocity, d) Estimated hitch angle - multiple double lane change maneuvers.

rithm accurately determines hitch angle. The maximum error that the algorithm provides
is 16% for both high and low speed operations. Based on the experimental results, it can
be concluded that fusing the kinematic and dynamic methods to the hitch angle estimated
by the ultra-sonic sensors improves the hitch angle estimation since the sensors may fail
to detect the trailer face correctly.

In normal driving, it has been shown that the accuracy of the proposed hitch angle
estimation algorithm is not much affected by the trailer mass estimation error, however,
this may not be true in more severe driving, and an improved trailer mass estimation would
be required.

5.6 Conclusions

In this chapter, a complete solution for hitch angle estimation of a towing vehicle with a ball
type box trailer with a flat or symmetric V-nose frontal face was developed, evaluated, and
experimentally tested. For the proposed method, direct calculation of hitch angle based on
ultra-sonic sensors was first presented. Kinematics and dynamics of the vehicle-trailer were
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then used to develop algorithms for the hitch angle estimation. The trailer axle location,
mass, and front face angle were estimated to make the hitch angle estimation algorithm
independent of geometry.

It is shown that the hitch angle estimation can be used for ball type box trailers with
a flat or symmetric V-nose frontal face by first estimating the trailer axle location, mass,
and front face angle. The simulation and experimental studies showed promising results
in estimating the hitch angle.
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Chapter 6

Vehicle-Trailer Lateral Tire Forces and
Hitch-Forces Estimation

6.1 Introduction

In this chapter, the lateral vehicle tire force and hitch-force are estimated for a vehicle-
trailer combination. The contribution of this chapter is developing optimal real-time longi-
tudinal/lateral coupling force and lateral tire force estimators robust to surface friction and
independent to the power-train configuration and trailer geometry. The proposed hitch-
force estimation method is modular and can be used for any ball type trailer without any
priori information on the trailer parameters.

The difference between the proposed hitch-force estimation algorithm with other hitch-
force estimation techniques presented in the literature is that, the proposed hitch-force
estimation relies on the vehicle unit measurements (indirect measurements) that are avail-
able on the commercialized vehicles, while the reported hitch-force estimation techniques
in the literature are based on the direct hitch-force measurements coming from an embed-
ded sensor which may not be available on the conventional vehicles. Moreover, the existed
vehicle lateral tire force estimators in the literature are for vehicle unit itself and when a
trailer connects to a towing vehicle the vehicle lateral tire force estimators may not work
as the dynamic of the system changes.

The remaining of this chapter is as follows: In Section 6.2, a vehicle-trailer system
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model is presented in the state space form. In Section 6.3, algorithms to estimate the hitch-
forces are developed and discussed, and the state constraints are presented. The estimator
stability analysis and estimation error convergence rate are investigated in Section 6.4.
Finally, simulation and experimental results are provided in Section 6.5 with discussions.

6.2 System Model for Hitch Force Estimation

A 3-DoF model is considered to drive dynamic equation of a vehicle-trailer system. Fig. 3.1
illustrates a schematic representation of a vehicle-trailer system. In Fig. 3.1,m1,m2, Iz1 Iz2,
r1, and r2 are the mass, yaw moments, and yaw rate of the vehicle and trailer, respectively.
Longitudinal and lateral velocities at the vehicle Centers of Gravity (CG) are denoted
by u1 and v1, respectively. Fxf,i, Fxr,i, Fxt,i, Fyf,i, Fyr,i, and, Fyt,i with i ∈ (R,L) in
which R and L refer to the Right and Left side of the vehicle, are the longitudinal/lateral
tire forces at front and rear axles of the vehicle, and trailer’s axle, respectively. FxT and
FyT represent the coupling forces, also known as hitch-forces, in longitudinal and lateral
directions, respectively. The equations of motion for the vehicle-trailer system are as
follows:

m1ax1 =
∑

Fx = FxrL + FxrR + FxfL cos δ

+FxfR cos δ + FxT − FyfL sin δ − FyfR sin δ + wfx, (6.1)

m1ay1 =
∑

Fy = FyfL cos δ + FyfR cos δ + FyrL

+FyrR + FyT + (FxfL + FxfR) sin δ + wfy, (6.2)

Iz1ṙ1 =
∑

Mz = a1(FyfL + FyfR) cos δ − (FyrL + FyrR)b1

+a1(FxfL + FxfR) sin δ − (b1 + e)FyT + wr, (6.3)

where longitudinal and lateral accelerations at the vehicle and trailer CG are denoted by
ax1, ay1, ax2 and ay2, respectively.

Since the longitudinal/lateral load transfer, pitch and body-roll of the vehicle-trailer
have less influence on the yaw stability, they are neglected [150]. wfx, wfy, and wr represent
the longitudinal/lateral uncertainties due to the acceleration measurement, aerodynamic
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forces, inaccurate geometry and forces. Given that the uncertainties are mostly contributed
to the sensor measurements, the uncertainties of the model are assumed to be Gaussian.
In the planar kinematics equations (6.1) to (6.3), the steering angle, longitudinal/lateral
accelerations, and yaw rate are measurable. The vehicle geometric parameters such as CG
location and wheel base are assumed to be known, and the trailer geometric parameters
are unknown due to unavailability of such geometrical and inertial parameters for various
trailers in the market. The main goal is to estimate the lateral tire forces and hitch-point
forces by taking advantage of optimal state observers. Accordingly, by considering the
wheel dynamics, the longitudinal tire forces can be estimated [155]. The wheel dynamic
equation is given in (4.5). In [155], longitudinal forces were estimated based on the idea
of Proportional-Integral-Derivative, PID, observer. Therefore, the longitudinal tire forces,
FxfL, FxfR, FxrL, and FxrR, are assumed to be known in the proposed estimation algorithm.

To estimate the lateral tire forces and hitch-forces, the vehicle-trailer equations of mo-
tion, shown in equations (6.1) to (6.3), are considered. The longitudinal and lateral kine-
matics of the vehicle yield the following relations

ax1 = u̇1 − r1v1, (6.4)

ay1 = v̇1 + r1u1. (6.5)

By taking the time derivative of equations (6.4) and (6.5), and replacing u̇1 and v̇1 with
u̇1 = ax1 + r1v1 and v̇1 = ay1 − r1u1, (6.4) and (6.5) change to

ȧx1 = ü1 −
(∑

i Fyi
m1

− r1u1

)
r1 −

(∑
iMzi

Iz1

)
v1, (6.6)

ȧy1 = v̈1 +

(∑
i Fxi
m1

+ r1v1

)
r1 +

(∑
iMzi

Iz1

)
u1, (6.7)

where the vehicle-trailer equation of motion shown in equations (6.1) to (6.3) are used to
obtain equations (6.6) and (6.7). To simplify the model, a single-track model is considered
and the axle forces, Fxi and Fyi where i ∈ [f, r], are replaced by the tire forces in both
longitudinal and lateral directions (Fxi = FxiL+FxiR and Fyi = FyiL+FyiR). The left hand
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side of equations (6.6) and (6.7) can be obtained by taking time derivatives of equations
(6.1) and (6.2) as follows:

ȧx1 =
1

m1

[Ḟxf cos δ − Fxf δ̇ sin δ + Ḟxr + ḞxT−Ḟyf sin δ − Fyf δ̇ cos δ + w̄fx], (6.8)

ȧy1 =
1

m1

[Ḟyf cos δ − Fyf δ̇ sin δ + ḞyT + Ḟyr+Ḟxf sin δ + Fxf δ̇ cos δ + w̄fy]. (6.9)

Considering equations (6.1) to (6.3), equations (6.6) to (6.9) yield to

1

m1

[Ḟxf cos δ − Fxf δ̇ sin δ + ḞxT − Ḟyf sin δ + Ḟxr − Fyf δ̇ cos δ + w̄fx] =

ü1 − [
Fyf cos δ

m1

+
Fyr
m1

+
FyT
m1

+
Fxf sin δ

m1

+
wfy
m1

− r1u1]r1 − [
Fxf sin δa1

Iz1

+
Fyf cos δa1

Iz1
−Fyrb1

Iz1
− (b1 + e)FyT

Iz1
+
wr
Iz1

]v1, (6.10)

1

m1

[Ḟyf cos δ − Fyf δ̇ sin δ+ḞyT + Ḟxf sin δ + Ḟyr+Fxf δ̇ cos δ + w̄fy] =

v̈1 + [
Fxf cos δ

m1

+
Fxr
m1

+
FxT
m1

−Fyf sin δ

m1

+
wfx
m1

+ r1v1]r1 + [
Fxf sin δa1

Iz1

+
Fyf cos δa1

Iz1
− Fyrb1

Iz1
− (b1 + e)FyT

Iz1
+
wr
Iz1

]u1. (6.11)

Moreover, the time derivative of (6.3) results in

Iz1r̈1 = [(Ḟxf − Fyf δ̇) sin δ + (Ḟyf + Fxf δ̇) cos δ]a1 − Ḟyrb1 − (b1 + e)ḞyT + w̄r, (6.12)

where w̄fx, w̄fy,and w̄r are due to time derivatives of noise/uncertainties in the longitu-
dinal, lateral and yaw directions, respectively. The lateral/longitudinal accelerations and
yaw rate of the vehicle, measured by an Inertia-Measurement-Unit (IMU), and the longitu-
dinal/lateral velocities, measured by a Global-Positioning-System (GPS), are considered as
the measurement signals. As the considered system is non-autonomous, defining the state
vector as x =

[
Fyf , Fyr, FyT , FxT , Ḟyf , Ḟyr, ḞyT

]T
and the output (measurement) vector
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as y =
[
ax1, ay1, r1

]T
the system dynamics in equations (6.10) to (6.12) represent in state

space form for small steering angle δ as follows:

ẋ = A(δ)x + B + wx,

y = H(δ)x + D + vy, (6.13)

where wx and vy correspond to the process and measurement uncertainties, respectively, as
the model first and second derivatives are contributed with noises. The linearized system
model matrices around its main equilibrium point are obtained as follows:

A (δ) =


δ 0 0 0 0 a16 a17

a21 a22 a23 l1 −1 0 −1

a31 0 0 0 a35 a36 0

a41 a42 a43 0 δ 0 0

03×7

 , (6.14a)

B =



Iz1r̈1−a1Ḟxf δ−a1Fxf δ̇

a1

b21

−Iz1r̈1+a1Ḟxf δ+a1Fxf δ̇

(b1+e)

b41

03×1

 , (6.14b)

H (δ) =

 − δ
m1

0 0 1
m1

1
m1

1
m1

1
m1

0
a1

Iz1
− b1
Iz1
− e+b1

Iz1
0

03×3

 , (6.14c)

D =
[

Fxf+Fxr
m1

Fxf δ

m1

Fxf δa1

Iz1

]T
. (6.14d)

A(δ) and B matrix elements are presented in Appendix A. As can be seen in (6.14a), the
last three rows of the matrices A(δ) and B are zeros, meaning that the second derivative
of forces are assumed to be zero; however, as the first derivative of the forces are involved
in the system model, they are required to be presented in the state space vector.
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It is assumed that the vehicle-trailer longitudinal velocity is constant during the ma-
neuver. Therefore, given that the steering angle is bounded, matrices A(δ) and H(δ) are
time-varying and physically bounded.

Remark 6.1: The system shown in (6.13) is observable and the time-varying observ-
ability matrix of the system is given by [183, 184]

On =
[
τT1 τT2 · · · τn

]T
, τ 1 = H (δ) , τ i+1 = τ iA (δ) + τ̇ i. (6.15)

The system shown in (6.13) is observable and its observability is satisfied by holding
the full rank condition, O7 = 7, for the operating regions of the steering angle and its time
derivatives. The system shown in (6.13) is not observable for the case where δ = 0 and Kπ
for integer values of K, however, in this case (δ = 0), there is no lateral force on the tires.
Moreover, situations where δ = Kπ never happen due to the steering system’s geometrical
constraints. The discretized form of the system equations describes as follows:

xk+1 = Adxk + Bd + wk,

yk = Hxk + D + vk, (6.16)

where, Ad = eA(δ)Ts and Bd =
∫
eA(δ)τBdτ are the discretized form of the system matrices

A(δ) and B(δ). The process and the measurement noise becomes Gaussian with zero means
and the covariance of Qk ∈ R7×7 and Rk ∈ R3, respectively. The covariance Qk and Rk

matrices are considered as a tuning parameters for reducing the hitch-force estimation error.
wk and vk are white and uncorrelated noises (E(wk, w

T
j ) = Qkδk−j, E(vk, v

T
j ) = Rkδk−j,

and E(vk, w
T
j ) = 0), where δk−j is the Kronecker delta function of k − j. Moreover, the

measured accelerations usually come with noises and bias. A bias-removal method in low
or high frequencies and observer based approaches for removing the noises are used [185].

6.3 Force Estimation

A constrained observer for the lateral tire forces and hitch-forces is designed in this sec-
tion. Taking into account that the systems dynamic (6.14c) is time-varying with respect
to the steering angle, the suggested estimation method must be designed for the corre-
sponding uncertain Linear-Parameter-Varying (LPV) system. The lateral tire forces and
hitch-forces are estimated using the presented vehicle body dynamic, acceleration, and yaw
rate measurements.
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6.3.1 Constraints

Consider the system presented in (6.16). As mentioned, there is no lateral tire forces and
lateral hitch-forces when δ = 0. Moreover, by investigating the linear tire model, e.g.
Fyf = Cfαf where Cf is the tire cornering stiffness and αf = δ − (v1 + a1r1)/u1 is the tire
slip angle, it can conclude that the lateral tire forces magnitude are related to the vehicle
longitudinal velocity and as the longitudinal speed increases, the lateral tire forces become
larger. Therefore, based on the physical and dynamical considerations, the states satisfy
the following constraint:

|xk| < β|δ|u1, (6.17)

where β = [n1, n2, n3/(|δ|u1), n4/(|δ|u1), n5, n6, n7]T in which ni, i ∈ [1, 2, ..., 7] is the state
threshold designed parameter that is designed to keep the estimated state bounded for
harsh maneuvers which makes the vehicle-trailer unstable (e.g. trailer snaking and jack-
knifing). ni are the designed positive parameters that for the simulated and experimental
test vehicle are designed based on several tests in Section 6.5.

Moreover, the maximum longitudinal hitch-force occurs when the vehicle-trailer system
is in acceleration or deceleration conditions. The coupling forces, specially the longitudinal
hitch-force, are mainly contributed to the vehicle traction forces shown in (4.5). The
maximum value of the longitudinal hitch-force at time step k, i.e., x4,k, occurs when the
vehicle-trailer accelerate/decelerate with no steering angle. Therefore, a constraint on
longitudinal hitch-force is defined as follows:

x4,k < Rt(Tt − Iω̇t), (6.18a)

Rt =
[
R−1
eff,fL R−1

eff,fR R−1
eff,rL R−1

eff,rR

]
, (6.18b)

Tt =
[
TfL TfR TrL TrR

]T
, (6.18c)

ωt =
[
ω̇fL ω̇fR ω̇rL ω̇rR

]T
, (6.18d)

I =


Iω,fL 0 0 0

0 Iω,fR 0 0

0 0 Iω,rL 0

0 0 0 Iω,rR

 , (6.18e)
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where Tt represents the total effective torques at each corner, ω̇t represents the wheel rota-
tional acceleration at each corner, Rt and I are the effective radius and wheel momentum
of inertia of the tires, respectively. The defined constraints are considered in a designed
cost function to estimate the lateral tire forces and hitch-forces which is discussed in the
next subsection.

6.3.2 Lateral Tire Forces and Hitch-Force Estimations

For vehicle motion dynamics state/parameter identification and estimation, Unscented
Kalman Filter (UKF) and Extended Kalman Filter (EKF) techniques are typically utilized
[166, 168, 167]. The literature indicates that EKF has succeeded in precise estimation for
nonlinear model of the vehicle [170, 186]. The UKF addresses the state uncertainty distri-
bution approximation issues of the EKF method. The UKF is used in [172, 187] to include
non Gaussian noises as well. The UKF is an extension of the Unscented Transformation
(UT) which is a method for calculating the statics of the random variable [172].

The UT is used for predicting the system states which requires the state distribution.
The state distribution is resembled based on a Gaussian random variable, which is spread
through the system model (6.16). A minimal set of carefully chosen sample-points are
considered to predict the system states at the next time step. Sample-points which are a
set of deterministic vectors whose ensemble mean and covariance of the states are defined
as [173]

Σ
(i)
k−1 = x̂k−1 + x̃(i), i = 1, . . . , 2n, (6.19a)

x̃(i) =

(√
nP+

k−1

)T
i

, i = 1, . . . , n, (6.19b)

x̃(n+i) = −
(√

nP+
k−1

)T
i

, i = 1, . . . , n, (6.19c)

where n is the number of states. P+
k−1 is a posterior state estimation error covariance

which is defined later. The sample-points, provide the posterior mean and covariance up
to a second-order approximation [188]. The true mean and covariance of the measurement
and model random variable can be captured by propagating the sample-points to the
system model (6.16) as follows:

Σ
(i)
k = AdΣ

(i)
k−1 + Bd. (6.20)
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To obtain a prior state estimation, the sample-points are combined as follows:

ζ̂k =
1

2n

2n∑
i=1

Σ̂
(i)

k . (6.21)

A prior state estimation error covariance is obtained as follows:

P−k =
1

2n

2n∑
i=1

(
Σ̂

(i)

k − ζ̂k
)(

Σ̂
(i)

k − ζ̂k
)T

+ Qk−1. (6.22)

To be able to calculate the state covariance P+
k , the predicted measurement requires.

The predicted measurement obtains by propagating sample-points to vehicle-trailer system
model (6.16), and they merged to calculate the predicted measurement vector by the
following relations:

ŷ
(i)
k = HΣ̂

(i)

k + D,

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k . (6.23)

The covariance of the predicted measurement and state estimation error are described
as follow:

Py =
1

2n

2n∑
i=1

(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)T
+ Rk,

Pxy =
1

2n

2n∑
i=1

(
Σ̂

(i)

k − ζ̂k
)(

ŷ
(i)
k − ŷk

)T
. (6.24)

Eventually, a posterior state estimation error covariance, P+
k , is obtained as follow:

P+
k = P−k −Pxy(PxyP

−1
y )T . (6.25)

To be able to address the state constraints, an optimization argument is considered.
The optimization argument minimize the lateral tire forces and hitch-force estimations
errors with respect to the current measurement, predicted state values, and the state
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constraints. The following cost function is designed to estimate the lateral tire forces and
hitch-forces[189, 190, 191]

x̂k =min
x̂k

J(x̂k) =min
x̂k

(‖yk − ŷk)‖2
Z + ‖x̂k − ζ̂k‖2

N),

s.t.

x̂k = Adx̂k−1 + Bd + L (yk−1 −Hx̂k−1 −D) ,

|x̂k| < β|δ|u1,

x̂4,k < Rt(Tt − Iω̇t), (6.26)

where Z ∈ R3×3 and N ∈ R7×7 are positive definite weight matrices, L ∈ R7×3 is the
observer gain vector which is discussed in the next section. In the cost function (6.26),
the first term penalizes the difference between the predicted measurement and sensor mea-
surements, and the second term penalizes the difference between the state estimation and
prediction.

Remark 6.2: The estimated lateral tire forces and hitch-forces are obtained by solv-
ing the presented cost function with respect to the physical and dynamical constraints
described in (6.17), system model, and predicted states’ value.

To initiate the estimation algorithm, the states estimate and covariance terms are ini-
tialized as x̂0 = E [x0], P+

0 = E
[
(x0 − x̂0) (x0 − x̂0)T

]
, respectively. The overall algorithm

for lateral tire forces and hitch-force estimations is shown in Fig. 6.1.

The road friction coefficient affects the tire forces and since the tire forces are estimated
in real-time based on the wheel dynamics as describes in (4.5), the presented hitch-force
estimation algorithm is independent from the road friction coefficient. Moreover, the vehicle
acceleration measurements address the vehicle state changes with respect to varying road
friction coefficients. Given that the observability is a sufficient condition for implementation
of optimal filters (e.g. Kalman filter) or estimation algorithms, the estimation error of the
UT-based state observer is investigated in [175]. Due to the fact that the systems dynamic
(6.16) is time-varying with respect to the steering angle (LPV), evaluating the eigenvalues
does not lead to asymptotic stability. Therefore, the estimation stability analysis should
be done for the LPV systems. The estimation error convergence is investigated in the
following section.
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Figure 6.1: Overall force estimations scheme

6.4 Stability Analysis

The error dynamic is considered in this section to guarantee the stability of the esti-
mator. As mentioned, the measurements are the longitudinal/lateral accelerations and
yaw rate which are provided by IMU sensor. Sample-points propagation through the
system model, decreases the effect of noise caused by the measurement or model uncer-
tainties/disturbances considering the error between the actual and estimated measurement
values. As shown in the hitch-force estimation algorithm, the designed observer has the

98



following prediction process to correct the state estimation by using a sequence of mea-
surement

˙̂x = A(δ)x̂ + B + L (y −Hx̂−D) . (6.27)

The system dynamic shown in (6.27) is a linear parameter varying system. As men-
tioned, the bounded time-varying parameter is the steering angle δ ∈ [δl, δu], where δl and
δu are the lower and upper bounds of the steering angle, respectively. The state estimation
error dynamic ėf = ẋ− ˙̂x yields to

ėf = (A(δ)− LH(δ))︸ ︷︷ ︸
Ae(δ)

ef +
[

1 −L
]
Ω, (6.28)

where Ω =
[

v w
]T
.

Remark 6.3: The error dynamics (6.28) of the proposed estimator is affinely quadrat-
ically stable over all possible values of the steering angle if Ae(δm) is stable (δm is the
average value of δ over the parameter spam).

Proof.(Based on definition) The state matrix Ae(δ) is said to be affinely dependent
on the parameter δ when known and fixed matrices A0 and A1 exist such that Ae(δ) =

A0 + δA1, where A0 and A0 are obtained as follows:

A0 (δ) =


0 b1

a1

e+b1
a1

G7×4 −1 0 −1
−a1

e+b1

−b1
e+b1

0

04×3

 , (6.29)

A1 (δ) =



1− L11

m1
0

−l1 − L21

m1
0

− a1

e+b1
− L31

m1
0

−L41

m1
07×3 1 07×2

−L51

m1
0

−L61

m1
0

−L71

m1
0


, (6.30)

where G is presented in Appendix A. As mentioned, the steering angle and its rate are the
bounded time-varying parameter in the sets δp ∈ [δl, δu] and δ̇p ∈ [δ̇l, δ̇u]. The Lyapunov
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stability theory is considered to investigate the stability of the designed observer. The
Lyapunov candidate function V (ef , δ) is defined as follows:

V (ef , δ) = eTf P (δ)ef , (6.31)

where P (δ) = P0 + δP1. A linear system shown in (6.28) is affinely quadratically stable
over all possible values of the steering angle if Ae(δm) is stable and there exists an affine
positive definite Lyapunov function V (ef , δ) such that dV (ef , δ, δ̇)/dt < 0 for all initial
conditions x0 and the additional multi-convexity constraint AT1 P1 + P1A1 ≥ 0 [192]. The
condition V̇ < 0 yields to

ATe (δp)P (δp) + P (δp)Ae(δp) + P (δ̇p)− P0 < 0, (6.32)

for all (δ, δ̇) in the specified range. Given the test vehicle parameters listed in Table. 6.1
and observer gains L

L = 10

 0.6 0.74 16 0.6 9.2 41 0.6

0.74 0.6 21 9.2 0.6 3.1 0.55

16 21 0.6 41 3.1 0.6 0.6

T , (6.33)

which is obtained by several simulation tests to satisfy the stable Ae(δ) in (6.28), the sym-
metric matrix P (δp) is obtained by solving (6.32). �

As the error dynamics is affinely quadratically stable for the selected observer gains L,
there exist at least one possible solution for P (δp) that satisfies the condition in (6.32).
The observer gain value for the simulated and experimental test vehicle are used in Section
6.5.

6.5 Simulation and Experimental Test

In this section the presented lateral tire forces and hitch-force estimations algorithm is
validated by both simulation and experimental studies.

6.5.1 Simulation Results

To evaluate the proposed estimation algorithm, a vehicle-trailer model in CarSim with the
parameters listed in Table. 6.1 is used. The simulation runs with the sampling rate of
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200 Hz for different maneuvers on the road with different friction coefficients with various
velocities to evaluate the proposed hitch-forces and lateral tire force estimations algorithm
in different conditions. The process and measurement noise covariance matrices set to
Q = 29.82 × diag[0.01, 0.02, 0.05, 1, 1, 1, 1] and R = 1.982 × diag[0, 0, 1, 1, 1], for all the
tests.

The vehicle longitudinal/lateral accelerations and yaw rate are available through the
CarSim model and used in the designed estimator. The estimated vehicle lateral tire forces
and hitch-forces are compared with the actual values provided by CarSim for different
maneuvers.

Four test scenarios are considered to test the performance of the proposed algorithm.
The first scenario is multiple DLC maneuvers with driver gas/brake pedal inputs. The
vehicle-trailer model with the parameters listed in Table. 6.1 is used to evaluate the pro-
posed estimation algorithm.

Table 6.1: Vehicle-trailer parameters for force estimation

Description, (symbol) Units Value

Vehicle’s mass, (m1) kg 1860

Vehicle’s moment yaw of inertia, (Iz1) kg.m2 3397

Vehicle’s CG to front axle, (a1) m 1.21

Vehicle’s CG to rear axle, (b1) m 1.74

Vehicle’s rear axle to hitch-point, (e) m 1.27

Effective tire radius, (Reff ) m 0.39

Trailer’s mass, (m2) kg 465

Trailer’s moment of inertia, (Iz2) kg.m2 1764

Trailer’s CG to hitch-point, (a2) m 2

Trailer’s CG to axle, (b2) m 1

The second scenario is designed to test the proposed estimator accuracy with respect
to the different vehicle-trailer longitudinal velocity. To do so, the vehicle-trailer unit as
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described in Table. 6.1 is simulated in a DLC maneuver with different constant speeds of
25, 35, 45, and 55 km/h.

As mentioned, the hitch-force estimation algorithm is independent from the trailer mass
and geometry. Therefore, the third simulation scenario is considered to test the perfor-
mance of the hitch-force estimation algorithm with respect to different trailer configura-
tions. In this scenario, three trailers with different geometries and payload are considered
as listed in Table. 6.2.

Table 6.2: Trailer parameters

Axle location [m] Trailer length [m] Payload [kg]

Trailer 1 2 4 No load

Trailer 2 3 4 100

Trailer 3 2 3 200

For the fourth test scenario, a step-steer maneuver is considered. The vehicle-trailer
is simulated in a road surface with varying road friction coefficients to show the effect of
road friction coefficient into the force estimation results. The road friction coefficients set
to 0.5 and 0.85 for the right and left half of the simulated field, respectively.

DLC maneuver with driver gas/brake pedal inputs

For the first simulation scenario, a DLC maneuver, with high slip and lateral excitation is
conducted with the All Wheel Drive (AWD) simulated vehicle to show the accuracy of the
estimation algorithm. A series of double lane change maneuvers with the driver gas/brake
pedal inputs’ profile are shown in Fig. 6.2.

To account for noises and disturbances in actual measurement signals, a Gaussian noise
with zero mean and 0.01 covariance have been added to the CarSim longitudinal/lateral
acceleration measurement outputs as seen in Fig. 6.3 zoomed area. Fig. 6.3 illustrates the
noisy longitudinal and lateral accelerations of the DLC maneuver.

Estimated vehicle lateral tire forces and hitch-forces are illustrated in Fig. 6.4 by min-
imizing the presented cost function. The estimation results have delay for almost 60 mil-
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Figure 6.2: a) Steering wheel angle and vehicle longitudinal velocity, b) Gas/Brake pedal
inputs - DLC maneuver.
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Figure 6.3: Noisy measured longitudinal and lateral accelerations - DLC maneuver test.

liseconds since in the proposed estimation algorithm, the true mean and covariance of the
measurement and model random variable are captured by propagating the sample-points
to the system model and it increases the computational burden.

DLC maneuver with different constant velocities

The performance of the designed estimator with respect to different constant longitudinal
velocities are shown in Fig. 6.5. The aim of these simulations is to illustrate the effect of
longitudinal velocity on the lateral tire forces and hitch-force estimation results. To do
so, the steering wheel angle shown in Fig. 6.2.a is applied to the vehicle-trailer and the
vehicle-trailer drives with the constant longitudinal speeds of 25, 35, 45, and 55 km/h. The
estimated vehicle lateral tire forces and hitch-forces for the constant speed of 25 and 55
km/h are illustrated in Fig. 6.5.
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Figure 6.4: a) Lateral front tire force estimation b) Lateral rear tire force estimation c)
Longitudinal hitch-force estimation d) Lateral hitch-force estimation - DLC maneuver test.

As Fig. 6.5 illustrates, although the lateral tire forces and hitch-force estimations error in
the DLC maneuver (This maneuver uses only the steering angle shown in Fig. 6.2.a, not the
torque/brake inputs in Fig. 6.2.b) increase by increasing the longitudinal speed, the Nor-

malized Root Mean Square (NRMS) of the error defined by ζ̄ = (

√
Σ
Np
i=1(p̂i − pi)2/Np)/pm

where the measured and estimated signals are denoted by p and p̂, respectively, Np is the
number of colected signal samples during a driving scenario, and pm = max

i=1...Np
|pi| illustrate

the maximum value of the measured signals. The NRMS of the estimator with respect to
different longitudinal velocities is less than 24 percent as shown in Table. 6.3.

The hitch-force estimation error is mainly because of the delay in the estimator. The
delay in the estimator makes the difference between the actual and estimated value large
since the estimated forces’ value are almost 60 milliseconds before the current actual forces’
value. Moreover, the force estimation errors may have several resources and the most
possible one is the lack of accurate system model, for instance, the roll dynamic and the
aerodynamic forces, which have not been modeled in the presented vehicle-trailer model
could cause the error.
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Figure 6.5: a) Lateral front tire force estimation b) Lateral rear tire force estimation c)
Longitudinal hitch-force estimation d) Lateral hitch-force estimation - different velocities
test.

DLC maneuver with different trailer payloads/geometries

To test the proposed algorithm with respect to different trailer types as described in Ta-
ble. 6.2, the steering wheel angle shown in Fig. 6.2.a, and the gas/brake pedal, shown in
Fig. 6.2.b, were applied to the vehicle-trailer. Fig. 6.6 shows the estimated hitch-forces
and lateral tire forces with respect to the different trailer geometries/payloads.

The estimated hitch-forces and lateral tire forces are presented in Fig. 6.6. As can
be seen in Fig. 6.6, the maximum hitch-force estimation error with respect to the three
different trailers, describes in Table. 6.2, is almost 14 present. By changing the trailer
geometry/mass, the hitch-force estimation error remains in an acceptable region which is
less than 15 percent. The error acceptable region is defined based on the vehicle-trailer sta-
bility control purposes. If the force estimation errors are less that 15 percent, the stability
controller unit is able to make the trailer unit stable [60]. The proposed algorithm can esti-
mate the lateral tire forces and hitch-forces for ball type box trailers with different masses
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Table 6.3: NRMS of the errors for the longitudinal/lateral hitch-forces and lateral tire force
estimations at dry and wet road.

Estimated

force

@ u1=25

km/h [%]

@ u1=35

km/h [%]

@ u1=45

km/h [%]

@ u1=55

km/h [%]

Dry road

Fyf 3.51 3.34 3.49 4.11

Fyr 5.91 6.55 8.88 9.09

FxT 4.62 4.67 4.5 5.9

FyT 19.1 20.2 22.5 23.9

Wet road

Fyf 3.51 3.3 3.5 4.21

Fyr 6.01 6.68 9.21 9.5

FxT 4.62 4.6 4.6 6.2

FyT 19.26 20.19 22.7 24.5

and geometries since the designed estimator relies on the vehicle’s measurements. As the
observability of the system is satisfied, the changes in the trailer parameters can cause
changes in the vehicle acceleration and yaw rate trend that are utilized in the proposed
estimation algorithm.

Step-steer maneuver with varying road friction coefficient

The proposed hitch-force estimation algorithm is evaluated in a field with different friction
coefficients. A Step-Steer (SS) maneuver with the driver gas/brake pedal inputs shown in
Fig. 6.7 is considered.

The longitudinal and lateral accelerations of the SS maneuver correspond with noises
(Gaussian noise with zero mean and 0.01 covariance) are shown in Fig. 6.7. The noises
have been added to the actual acceleration results provided by CarSim to account for noises
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Figure 6.6: a) Lateral front tire force estimation b) Lateral rear tire force estimation c)
Lateral hitch-force estimation - different trailer geometries/masses tests.
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Figure 6.7: Noisy measured longitudinal and lateral acceleration - SS maneuver.

and disturbances in actual measurement signals by sensors. The simulation runs for 15
seconds and the initial speed is 40 km/h, Fig. 6.8a, on a road surface with varying friction
coefficient as illustrates in Fig. 6.9.
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Figure 6.8: a) Steering wheel angle and vehicle longitudinal velocity, b) Gas/Brake pedal
input - SS maneuver.

−20 −10 0 10 20 30 40 50
−10

0

10

20

30

40

50

60

X (m)

Y
 (

m
)

µ=0.85 µ=0.5

Figure 6.9: Vehicle-trailer path on the simulated test field with a dual-friction coefficient
surface.

The performance of the lateral tire force and hitch-force estimations algorithm on a
varying friction test field is shown in Fig. 6.10. As Fig. 6.10 illustrates, by changing the
road friction coefficient from 0.85 to 0.5, oscillations occur on the actual lateral tire forces
and hitch-forces in the transient mode. The oscillations (Fig. 6.10.b zoomed area) occur
since by changing the road friction coefficient, the slip ratio changes in both longitudinal
and lateral directions which affect the tire forces. The proposed hitch-force estimator can
be used to compensate for oscillations due to slippery surfaces (Fig. 6.10) since the road
friction coefficient affects the tire forces which are estimated based on the wheel dynamics
shown in (4.5).
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Figure 6.10: a) Lateral front tire force estimation b) Lateral rear tire force estimation c)
Longitudinal hitch-force estimation d) Lateral hitch-force estimation - varying friction road
test.

6.5.2 Experimental Studies: Force Estimations

Electrified vehicles have a significant impact on the chassis system, energy, climate issue,
and active actuation controls [193]. The test vehicle is an electrified Chevrolet Equinox
sport utility vehicle (SUV) with a single axle trailer as shown in Fig. 4.6. As the vehicle is
electrified, the driving and braking torque on each wheel are measurable. Each motor has
up to ±1600Nm and an ABS module is available on this vehicle. The longitudinal/lateral
accelerations and yaw rate of the vehicle are measured with a 6-axis IMU (and GPS) system
RT2000. The main parameters of the vehicle are listed in Table. 4.1.

Steering wheel angle sensor, located in the steering column, is to provide steering angle
and rate of turn. A Global-Positioning-System (GPS) is installed on the vehicle to measure
the longitudinal and lateral speed of the vehicle accurately. A 6-axis IMU is mounted inside
of the vehicle, close to the CG location. Measured signals are communicated using a CAN-
bus. Real-time acquisition and processing of sensory information and the developed hitch-
force estimation algorithm is realized using the dSPACE MicroAutoBox II. As mentioned
before, the dSPACE compiles measurements for MATLAB/Simulink, and the lateral tire
fores and hitch-force estimations algorithm runs in MATLAB/Simulink by utilizing the
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provided measurements. The sampling frequency for the experiment is fixed to 200 [Hz].
The trailer is designed to be adjustable in payload and CG location to test the performance
of the hitch-force estimation algorithm with respect to different trailer types.

Ground truth is a critical part of state estimation to validate the estimation algorithm.
To find the lateral tire forces’ ground truth, the force sensors mounted on each wheel are
used. Measuring the hitch-force ground truths are not easy since the forces are internal.
The hitch-forces can be measured directly using force transducers; however, it is costly
and calibrating the sensor for this purpose is going to be time consuming. As the direct
measurement of the hitch-forces are not available, the indirect measurement is used for the
hitch-force ground truths. To do so, the vehicle runs for two exactly the same maneuvers,
one time with the trailer attached to the vehicle and one time without the trailer. As the
vehicle tire forces are measured by sensors, the hitch-forces are obtainable by following
the vehicle equations of motion. The longitudinal hitch-force ground truth is obtainable
by making the difference between the total longitudinal tire forces on the two exactly the
same tests. The calculated hitch-forces are compared with the estimated value to check
the performance of the proposed estimator. To make sure that the two maneuvers are
exactly the same, road cones are used to guide the driver to make the two exactly the same
tests with and without the trailer (e.g. when vehicle-trailer reaches to a specific cone, stop
accelerating). The performance of the proposed lateral tire forces and longitudinal/lateral
hitch-force estimator in the experimental test are shown in Fig. 6.12.

The first experimental test is designed to test the performance of the longitudinal hitch-
force estimation. To do so, the vehicle (Equinox) starts from a stationery point, u1 = 0,
and keep accelerating till the speed reaches to 26 km/h, then it runs forward with constant
speed. The described experimental test is conducted for two conditions: the vehicle with
trailer and the vehicle without the trailer. Fig. 6.11c illustrates the longitudinal velocity
of the two tests (with and without the trailer attached to the vehicle). As can be seen in
Fig. 6.11c, the two tests are close to each other. Therefore, the longitudinal hitch-force
ground truth is obtainable by comparing the longitudinal tire forces, Fig. 6.11b, of these
two tests. The estimated longitudinal hitch-force compared with the longitudinal hitch-
force ground truth is shown in Fig. 6.11d. The longitudinal hitch-force ground truth is not
accurate at the beginning of the test, from t=0 to t=1.8, as the two test accelerating time
were not the same at the beginning. As can be seen the hitch-forces is estimated by the
vehicle sensor measurement without any priori information required from the trailer.
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Figure 6.11: a) Measured longitudinal acceleration b) Total longitudinal vehicle tire forces
c) Longitudinal velocity d) Longitudinal hitch-force estimation - experimental test on dry
road.

To test the performance of the lateral tire forces and hitch-force estimations algorithm,
the second experimental test is considered. In this test, the vehicle with trailer starts from
a stationery point and keep accelerating to reach the speed of 25 km/h. Then the vehicle-
trailer runs with the constant speed and while the speed is constant, a double lane change
maneuver applies as shown in Fig. 6.12a. The estimated front and rear lateral tire forces
compared with the ground truth are shown in Fig. 6.12b and Fig. 6.12c, respectively.

As can be seen, the lateral tire forces are estimated for the vehicle-trailer configura-
tion, and the estimated longitudinal and lateral hitch-forces are shown in Fig. 6.12d and
Fig. 6.12e, respectively. Although the hitch-forces ground truth are not available for the
second experiment test, the estimated hitch-forces values make sense with respect to the
vehicle-trailer equations of motion (the absolute magnitude of the hitch-forces and longitu-
dinal/lateral tire forces satisfy the vehicle-trailer equations of motion in both longitudinal
and lateral directions).
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Figure 6.12: a) Measured longitudinal and lateral acceleration b) Lateral front tire force
estimation c) Lateral rear tire force estimation d) Longitudinal hitch-force estimation e)
Lateral hitch-force estimation - experimental test on dry road.

6.5.3 Discussions

The unscented transformation was used to predict the states at the current time step based
on the estimated states value at the previous time step. On the other hand, an stable
observer was also used to estimate the states value simultaneously. Then, the optimization
problem found the optimum agreement between these two state estimations based on the
state constraints. The proposed state estimators with the state constraints, (6.26) can
handle dry and slippery roads with error NRMS εn <9.5% for the longitudinal hitch-force
and lateral tire forces. In spite of low excitation, which is challenging for current lateral
force estimators in production vehicles, especially for vehicle-trailer combination, and the
observed oscillations in the measured lateral acceleration due to several passing through
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dry and wet surfaces, the proposed algorithm exhibits accurate estimates in the transient
mode which is promising.

The developed estimation algorithm provided the estimated lateral hitch-force value
with NRMS εn <24% error, however, the large percentage of error was mainly because of
the 60 millisecond delay in the estimator. With respect to the results, it was concluded
that estimating the lateral hitch-force with the vehicle measurement unit is challenging
and the proposed estimator is not able to address the large lateral slip for the trailer
caused by large trailer payload for heavy trailers. Therefore, the estimation algorithm for
the lateral hitch-force estimation needs to improve. To improve the lateral hitch-force
estimation, the states of the trailer should be measured/provided or estimated (e.g. hitch
angle measurement or trailer parameter estimation). Then, the hitch-force estimation
algorithm can improve/modify by utilizing estimated trailer parameters which is one of
the suggested future research directions in this area to continue this work.

6.6 Conclusions

In this chapter, the proposed vehicle-trailer dynamic model was used to estimate the lon-
gitudinal/lateral hitch-forces and lateral tire forces. To make the estimation algorithm
generic, the presented model was derived in a way that it can address the hitch-forces and
lateral tire forces without any priori information from the trailer. It was shown that the
presented hitch-forces algorithm was independent of trailer mass and geometry, and can
estimate the hitch-forces for any ball type trailers. Uncertainty of the model was studied
and the proposed observer was utilized to estimate the states of the system. The stability of
the proposed model-based estimator was investigated. The estimation error is converged,
as the system was observable and the system matrices were bounded. Moreover, it has
been shown that the proposed algorithm is capable of estimating the hitch-forces and lat-
eral tire forces on dry, wet, and icy roads as the selected measurement signals are able to
address the effect of road surfaces on the model. The proposed approach was implemented
in both high-fidelity CarSim simulator software and experimental set-up for valuation. The
proposed estimator provided hitch-force estimated value with the maximum error of about
9 percent.
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Chapter 7

Vehicle-Trailer Lateral Velocity
Estimation

7.1 Introduction

Vehicle velocity in both lateral and longitudinal directions plays an important role in sta-
bility control systems. To measure the longitudinal/lateral velocities, Global-Positioning-
Systems (GPSs) can be used; however, they suffer from poor accuracy, signal availability,
and refreshing frequency in the most commonly used GPSs in vehicles. Variety approaches
has been proposed for lateral velocity estimation in the literature. Based on the literature,
the current lateral velocity estimators are all for single vehicle units that cannot be used
for vehicle-trailer combinations. When a trailer connects to the towing vehicle the vehicle
lateral velocity estimators exist on the literature may not work as the dynamic of the sys-
tem changes. Thus, the lateral velocity estimation needs to be investigated individually
for vehicle-trailer configuration. Therefore, the contribution of this chapter is developing
an optimal real-time vehicle-trailer lateral velocity estimator robust to the road condition.
The proposed vehicle-trailer lateral velocity estimation is designed based on the developed
vehicle-trailer lateral dynamics. In this model, the LuGre tire model is used, and the
non-linearity of the model for large slip angles described in Chapter 3 is investigated.

This chapter is organized as follows: In Section 7.2, the vehicle-trailer system model is
presented in the state space form. An observer is designed for the lateral velocity estimation
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in Section 7.2 with stability analysis. Finally, the proposed lateral velocity estimator is
validated by simulation and experimental tests with discussion in Section 7.3.

7.2 Vehicle-Trailer Lateral Velocity Estimation

In this section, the proposed lateral velocity estimator design for the vehicle-trailer system
based on the lateral dynamics presented in the previous chapter, is proposed. As described
in Chapter 3, the lateral dynamics (3.29) addresses the non-linear behaviour of the system.
Therefore, to estimate the lateral velocity, the lateral dynamics model (3.29) is considered
where the state vector is x = [v1, r1, θ̇, θ]

T . As the conventional vehicles have Inertia-
Measurement-Unit, IMU, the lateral acceleration ay1 and yaw rate of the vehicle r1 are
measurable by the vehicle’s IMU. Moreover, the hitch angle θ is also measurable by the
ultra-sound sensors that are mounted on the rear bumper of the vehicle [39, 41]. Thus, the
measurement vector is defined as y = [ay1, r1, θ]

T which can be written as follows:

ẋ = Āx + B̄δ,

y = Cyx + Dyδ, (7.1a)

Cy =

 βf + βr + βt Cy,12 −βt l2 −βtu
0 1 0 0

0 0 0 1

 , (7.1b)

Dy =
[
βf 0 0

]T
, (7.1c)

Cy,12 = a1βf − b1βr − (l2 + c)βt +m2u, (7.1d)

βf = Λf

m1gb1 − m2ga2e
l2

l1
, βt = Λt

m2ga2

l2
, (7.1e)

βr = Λr

(
m1ga1 +

m2ga2(l1 + e)

l2

)
, (7.1f)
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where, Λi, i ∈ [f, r, t] are defined in (3.22). The time-varying observeability matrix of the
system (7.1a) is given by [184]

On =
[
τT1 τT2 · · · τn

]T
, (7.2a)

τ 1 = Cy, τ i+1 = τ iĀ + τ̇ i. (7.2b)

The system (7.1a) is observable, and its observeability is satisfied by holding the full
rank condition (O4 = 4). The system (7.1a) is not observable for the case where the
wheel speed is zero; however, in this case, there is no lateral velocity for the vehicle-trailer
unit. Given the nonlinear behavior of the system, the system is linearized around the
equilibrium point using zero order hold technique and then the discretized form of the
system is obtained. The discretized form of the system model (7.1a) is expressed as

xk+1 = Adxk + Bdδk + wk, (7.3a)

yk = Cyxk + Dyδk + vk, (7.3b)

where the subscript k for k = 0, 1, 2, . . . denotes the value of a variable at discretized time
instant t = kTs with sampling time Ts, Ad = eĀTs and Bd =

∫ Ts
0
eĀτB̄dτ . Given that the

measurements and system contain noises and uncertainties, wk and vk are used to denote
the process and measurement noise, respectively.

wk and vk are assumed to be uncorrelated Gaussian processes with zero mean and
the covariances of Q ∈ R4×4 and R ∈ R3×3, respectively, satisfying E(wk, w

T
j ) = Qδk−j,

E(vk, v
T
j ) = Rδk−j, and E(vk, w

T
j ) = 0, where δk−j is the Kronecker delta function of k− j.

Here, a bias-removal method is used for removing the measurement biases so that the above
zero-mean Gaussian noise assumption holds [185].

The state x is proposed to be estimated, based on the discretized model (7.3) with
the above assumptions. The Unscented Transformation (UT) is a method for calculating
the statics of the random variable [171]. The UT is used for predicting the system states
which requires the state distribution [166]. The state distribution is resembled based on a
Gaussian random variable, which is spread through the system model (7.3). A minimal set
of carefully chosen sample-points are considered to predict the system states at the next
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time step. Sample-points which are a set of deterministic vectors whose ensemble mean
and covariance of the states are defined as [173]

Σ
(i)
k−1 = x̂k−1 + x̃

(i)
k−1, i = 1, . . . , 2n, (7.4a)

x̃
(i)
k−1 =

(√
nP+

k−1

)T
i

, i = 1, . . . , n, (7.4b)

x̃
(n+i)
k−1 = −

(√
nP+

k−1

)T
i

, i = 1, . . . , n, (7.4c)

where n = 4 is the dimension of the state xk in (7.3), x̃
(i)
k−1 denotes the sample-points that

are obtained by the unscented transformation, and P+
k−1 is a posteriori state estimation

error covariance matrix which is defined later. The sample-points, provide the posterior
mean and covariance up to second-order approximation [188]. The true mean and covari-
ance of the measurement and model random variable can be captured by propagating the
sample-points to the system model (7.3) as follows:

Σ
(i)
k = AdΣ

(i)
k−1 + Bdδk−1. (7.5)

To obtain a priori state estimation, the sample-points are combined as

ζ̂k =
1

2n

2n∑
i=1

Σ̂
(i)

k . (7.6)

A priori state estimation error covariance matrix is shown in (6.22). To calculate the
state covariance P+

k , the predicted measurement is required. The predicted measurements
are obtained by propagating sample-points through the vehicle-trailer system model (7.3),
and they are merged to calculate the predicted measurement vector as follows:

ŷ
(i)
k = CyΣ̂

(i)

k + Dyδk, (7.7a)

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k . (7.7b)
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The covariance of the predicted measurement and state estimation error are described
as

Py,k =
1

2n

2n∑
i=1

(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)T
+ R, (7.8)

Pxy,k =
1

2n

2n∑
i=1

(
Σ̂

(i)

k − ζ̂k
)(

ŷ
(i)
k − ŷk

)T
. (7.9)

Eventually, a posterior state estimation error covariance matrix, P+
k , is obtained in the

following form:

P+
k = P−k −Pxy,k(Pxy,kP

−1
y,k)

T . (7.10)

As shown in (7.5), the unscented transformation is used to predict the states at the
current time step based on the estimated states value at the previous time step. To
be able to address the state constraints, an optimization argument is considered. The
optimization argument minimizing the lateral velocity estimation errors with respect to
the current measurement, predicted state values, and state constraints. The following cost
function is designed to estimate the lateral vehicle velocity:

J(x̂k) = ‖yk − ŷk)‖2
N + ‖x̂k − ζ̂k‖2

S, (7.11)

where ‖.‖N and ‖.‖S are the Euclidean norms weighted by N ∈ R3×3 and S ∈ R4×4,
respectively. In the cost function (7.11), the first term penalizes the difference between the
predicted measurement and sensor measurements, and the second term shows the difference
between the state estimation and prediction. The lateral velocity estimation are obtained
by minimizing the objective function (7.11) subject to the vehicle-trailer model as follows
[189, 190, 191]:

min
x̂k

J(x̂k),

s.t.

x̂k = Adx̂k−1 + Bdδk−1 + L (yk−1 −Cyx̂k−1 −Dy) ,

|x̂3,k − x̂2,k| ≤ β1|r2|,
|x̂k − x̂k−1| < β2,

|x̂1,k| < β3|δk|u, (7.12)
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where r2 represents the trailer yaw rate. L ∈ R4×3 is the observer gain vector which is
discussed in the next subsection.

Based on the linear hitch coupling shown in (3.6) the solution of the cost function
should satisfy |x̂3,k − x̂2,k| ≤ β1|r2| where β1 is the design constraint weight. Moreover,
by following the dynamical constraints, the second state constraint is considered to avoid
sudden changes in the state estimation results. The β2 weight is the state difference
threshold that is designed based on the several simulation tests. Given that there is no
lateral velocity when δ = 0, and the lateral velocity becomes larger by increasing the
longitudinal velocity in the lateral movements, the state threshold design parameter, β3, is
considered as shown in (7.12) to limit the estimator with a physical constraint.

The lateral velocity estimation is obtained by solving the presented cost function with
respect to the physical and dynamical constraints, system model, and predicted states’
values.

To initiate the estimation algorithm, the states estimate and covariance terms are ini-
tialized as x̂0 = E [x0], P+

0 = E
[
(x0 − x̂0) (x0 − x̂0)T

]
, respectively. The overall algorithm

for lateral velocity estimation is shown in Fig. 7.1.
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Figure 7.1: Overall lateral velocity estimation procedure.
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Given that the observeability is a sufficient condition for implementation of optimal
filters (e.g. Kalman filter) or estimation algorithms, the estimation error of the UT-based
observer was investigated in [175].

7.3 Simulation and Experimental Studies

In this section, the presented vehicle-trailer lateral dynamics is analysed, and the proposed
lateral velocity estimation scheme is validated by both simulation and experimental studies.

7.3.1 Simulation Results

In this subsection, the effect of non-linear term H(t), shown in (3.25), is first analysed to
investigate its magnitude with respect to the slip angles. This analysis can be used for
state-observer purposes to cancel the effect of this non-linear term by tuning the observer
gains as it is a function of vehicle-trailer slip angles. To analyse the effect of slip angle
on non-linear term H(t) for pure-slip model, a vehicle-trailer model in CarSim with the
parameters listed in Table. 7.1 is used.

Fig. 7.2, illustrates the magnitude of the non-linear term H(t) with respect to the
vehicle front, rear, and trailer slip angles.

The magnitude of the norm H(t) with respect to the slip angle pairs of (αf , αr), (αf , αt),
(αr, αt), and (αf , αr, αt) is shown in Fig. 7.2. As can be seen in Fig. 7.2, the norm H(t)

is an ellipsoid shape function in 3-D space and bounded with respect to the slip angles.
It has been shown in [156], the norm H(t) is bounded in the absence of trailer, and now
as can be seen in Fig. 7.2, the term H(t) is also bounded for vehicle-trailer system. As
H(t) is bounded, the state-observer or controller weights/gains can be tuned based on this
analysis.

To evaluate the proposed lateral velocity estimation algorithm, several tests have been
performed. The vehicle lateral acceleration, yaw rate, steering angle, longitudinal velocity,
and trailer yaw rate are available through the CarSim model and used in the designed
estimator. The estimated vehicle lateral velocity is compared with the actual values pro-
vided by CarSim for different maneuvers. There are two tests considered in the simulation
section. First, a multi-double lane change maneuver, with high slip and lateral excitation
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Figure 7.2: Effect of vehicle-trailer slip angles on ||H(t)|| on dry road, u = 55[km/h].
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Table 7.1: Vehicle-trailer parameters

Description (symbol) Units Value

Vehicle’s mass (m1) kg 1860

Vehicle’s yaw moment of inertia (Iz1) kg.m2 3397

Vehicle’s CG to front axle (a1) m 1.21

Vehicle’s CG to rear axle (b1) m 1.74

Vehicle’s rear axle to hitch-point (e) m 1.27

Effective tire radius (Reff ) m 0.39

Trailer’s mass (m2) kg 2175

Trailer’s yaw moment of inertia (Iz2) kg.m2 4920

Trailer’s CG to hitch-point (a2) m 2.8

Trailer’s CG to axle (b2) m 0.8

is conducted with an All Wheel Drive (AWD) simulated vehicle with trailer with the pa-
rameters listed in Table. 7.1 to evaluate the lateral velocity estimation algorithm. A series
of double lane change maneuvers with the driver gas/brake pedal inputs’ profile are shown
in Fig. 7.3.

To account for noises and disturbances in actual measurement signals, a Gaussian
noise with zero mean and 0.01 covariance have been added to the CarSim measurement
outputs as seen in Fig. 7.4a zoomed area. Fig. 7.4 illustrates the noisy longitudinal/lateral
accelerations and the vehicle/trailer yaw rate of the DLC maneuver.

Estimated vehicle lateral velocity is illustrated in Fig. 7.5 by minimizing the presented
cost function with respect to the state constraints and the measurement prediction. By
propagating the sample-points to the vehicle-trailer system model, the lateral velocity
is estimated by the proposed estimation algorithm. As can be seen in the results, the
suggested lateral velocity scheme provides appropriate correspondence with actual lateral
velocity provided by CarSim.

The performance of the designed estimator with respect to different constant longitu-
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Figure 7.3: a) Steering wheel angle and vehicle longitudinal velocity, b) Gas/Brake pedal
inputs - DLC maneuver.
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Figure 7.4: a) Noisy measured longitudinal/lateral accelerations b) Vehicle and trailer yaw
rate - DLC maneuver test.
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Figure 7.5: a) Lateral velocity estimation b) Lateral velocity estimation error - DLC ma-
neuver test.

dinal velocities on dry and wet roads is also tested. The aim of these simulations is to
illustrate the effect of longitudinal velocity on the lateral velocity estimation results as the
longitudinal velocity, u, exists in the system matrices and can change the system charac-
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teristic equation. To do so, the steering wheel angle shown in Fig. 7.3a is applied to the
vehicle-trailer and the vehicle-trailer drives with the constant longitudinal velocities of 25,
35, 45, and 55 km/h. The simulation runs for both dry and wet roads and the NRMS of the
error for lateral velocity estimation is shown in Table. 7.2. The critical velocity obtained
by analyzing the location of the eigenvalues of the system model shown in (7.1a) is 15.9
m/s while the critical velocity obtained by analyzing the understeer coefficient shown in
(3.13b) is 14.6 m/s. Therefore, the simulation tests run for the longitudinal speeds listed
in Table. 7.2. Moreover, the process and measurement noise covariance matrices set to
Q = 23diag[0.1, 0.22, 0.01, 0.57] and R = 1.98diag[1, 0.1, 0.1], for all the tests.

Table 7.2: NRMS of the errors for the lateral velocity estimator at dry and wet roads.

Road

condition

@ u=25

km/h [%]

@ u=35

km/h [%]

@ u=45

km/h [%]

@ u=55

km/h [%]

Dry 6.52 6.33 6.47 7.09

Wet 6.54 6.64 7.51 9.19

As Table. 7.2 illustrates, the maximum error percentage with respect to different lon-
gitudinal velocities is less than 9.21%. The lateral velocity estimation errors reported in
Table. 7.2, may have several resources and the most possible one is the lack of accurate
system model, for instance, the roll dynamics and the aerodynamic forces, which have not
been modeled in the presented vehicle-trailer model could cause the error. Moreover, as
mentioned in Chapter 3, the LuGre tire model requires tire parameters that are obtained
by tire experiment tests. As there are six tire parameters in the model, if the measurement
has some error, the error will propagate and accumulate thought the system model.

For the second test, an Step Steer (SS) maneuver on a varying friction surface with the
driver gas/brake pedal input shown in Fig. 7.6 is considered.

The vehicle-trailer is simulated in a road surface with varying road friction coefficient to
show the effect of road friction coefficient changing in the vehicle lateral velocity estimation
results. The proposed lateral velocity estimation algorithm is evaluated in a simulated test
field with different friction coefficients. The road friction coefficients set to 0.5 and 0.85
for the right and left half of the field, respectively as illustrated in Fig. 7.6c.
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Figure 7.6: a) Steering wheel angle and vehicle longitudinal velocity, b) Gas/Brake pedal
inputs c) Vehicle-trailer path on the simulated test field with a dual-friction coefficient
surface input - SS maneuver.

The lateral acceleration of the SS maneuver correspond with noises (Gaussian noise with
zero mean and 0.01 covariance) and vehicle and trailer yaw rates are shown in Fig. 7.7.
The simulation runs for 15 seconds with the initial speed of 40 km/h on a road surface
with varying friction coefficient as illustrated in Fig. 7.6c.

The performance of the lateral velocity estimation algorithm on a varying friction test
field is shown in Fig. 7.8. As Fig. 7.8 illustrates, by changing the road friction coefficient
from 0.85 to 0.5, oscillations occur on the actual lateral velocity due to the vehicle and
trailer lateral slippage in the transient mode. The oscillations occur since by changing the
road friction coefficient, the slip ratio changes in both longitudinal and lateral directions
which affect the slip angle.

As the slip angle is modeled in the vehicle-trailer lateral dynamics, the proposed lateral
velocity estimator can be used to compensate for oscillations due to slippery surfaces since
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Figure 7.7: a) Measured longitudinal/lateral accelerations b) Vehicle and trailer yaw rate
- SS maneuver.
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Figure 7.8: a) Lateral velocity estimation b) Lateral velocity estimation error - SS maneu-
ver.

the tire model updates as the road friction coefficient changes as described in (3.14a).
Therefore, the proposed estimation algorithm is capable of estimating the lateral velocity
on dry, wet, and icy roads; however, the road friction coefficient is assumed to be given
which may not be available all the time.

7.3.2 Experimental Studies

The test vehicle is an electrified Chevrolet Equinox sport utility vehicle (SUV) with a single
axle trailer as shown in Fig. 4.6. As mentioned, the torque on each wheel is measurable
directly from the each motor drive. Each motor can provide up to ±1600Nm, and the
longitudinal/lateral accelerations and yaw rate of the vehicle are measured with a 6-axis
IMU (and GPS) system RT2000. The longitudinal/lateral accelerations and yaw rate of the
trailer are also measurable by a 3-axis convectional IMU mounted on the trailer. The main
parameters of the vehicle and trailer are listed in Table. 4.1. Identification/Estimation of
the LuGre tire parameters was done by analysing the test vehicle standard tire experimental
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curves in [155].

A sensor located in the steering column is used to measure the steering angle. A
Global-Positioning-System (GPS) is installed on the vehicle to measure the longitudinal
and lateral velocities of the vehicle accurately. A 6-axis IMU is mounted inside of the
vehicle, close to the CG location. Measured signals are communicated using a CAN-
bus. Real-time acquisition and processing of sensory information and the developed lateral
velocity estimation algorithm is realized using a dSPACE. The sampling frequency for the
experiment is fixed to 200 [Hz], and the lateral velocity reference, ground truth, is provided
by the GPS sensor.

Two step steer maneuvers are considered in the experimental studies to validate the
proposed lateral velocity estimation. The vehicle-trailer is tested in a test track with the
two step steer maneuvers, with lateral excitation in both positive and negative directions,
to validate the proposed vehicle lateral velocity estimation scheme. The path of the vehicle-
trailer in the testing is shown in Fig. 7.9a, and the steering wheel angle, longitudinal/lateral
accelerations, and vehicle yaw rate are shown in Fig. 7.9.

The test duration is 20 seconds and the vehicle (Equinox) with trailer starts from a
stationery point, u = 0, and accelerates till the speed reaches 34 km/h, then two step steers
are applied while it runs forward with the constant speed. The performance of the lateral
velocity estimation algorithm is shown in Fig. 7.9e.

The estimated lateral velocity compared with the ground truth is shown in Fig. 7.9e.
The results show that the developed lateral velocity estimator provides reliable and ac-
curate estimation for a vehicle-trailer system. The experimental results of the measured
accelerations and vehicle yaw rate are depicted in Fig. 7.9 for this maneuver. Fluctua-
tions of the measured lateral acceleration and sudden changes of the vehicle yaw rate in
Fig. 7.9 substantiate the arduous characteristics of the driving scenario. As can be seen in
the results, the proposed algorithm estimates the vehicle lateral velocity with error NRMS
εn <5.3%. The actual, ground truth, lateral velocity measured by GPS signal has settling
time error for the first step steer maneuver which happens because of the device’s internal
estimator drift. The maximum estimation error percentage occurs at t = 5 sec; however,
the ground truth signal has the settling time error at that time. As confirmed via the
above experimental results, the suggested lateral velocity estimator provides appropriate
correspondence with GPS measurements.

The proposed lateral velocity estimator with the state constraints, (7.12) can handle
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Figure 7.9: a) Vehicle-trailer path on the test field b) Steering wheel angle c) Measured
longitudinal/lateral accelerations d) Vehicle yaw rate e) Lateral velocity estimation.

dry and slippery roads with error NRMS εn <9.5% for the vehicle lateral velocity as
shown in Table. 4.1. In spite of low excitation, which is challenging for current lateral
velocity estimators in production vehicles, especially for vehicle-trailer combination, and
the transient mode for passing through dry/wet to wet/dry surfaces, the new algorithm
exhibits accurate estimates that is promising and can estimate the vehicle lateral velocity
in the transient mode too. However, it is worth mentioning that the road friction coefficient
is assumed to be given which may not be available all the time.
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Although the developed estimation algorithm estimates the lateral velocity of the ve-
hicle, the trailer lateral velocity can be found directly from (3.5).

7.4 Conclusions

In this chapter, the steady-state LuGre model was utilized to model the vehicle-trailer
lateral dynamics. It was shown that the non-linear term H(t) in (3.25) contains yaw rate,
hitch angle rate, and lateral velocity. Therefore, the vehicle-trailer lateral dynamics with
the pure-slip LuGre tire model was expressed in an LPV system, which is practical for the
control/estimation applications for mitigating the effect of non-linear terms.

The proposed vehicle-trailer model was then used to estimate the lateral velocity of the
vehicle. To make the estimation algorithm generic, the presented model was derived in a
way that it can address both small and large slip angles. Uncertainty of the model was
studied and the stability of the lateral velocity estimation error dynamic model was inves-
tigated using an affine quadratic stability approach. The proposed system is observable
and as the stability of the lateral velocity estimation error dynamics is guaranteed, the
estimation error is converged. It was also shown that the proposed method is capable of
estimating the lateral velocity on dry and wet roads. The proposed estimation algorithm
was implemented in both high-fidelity CarSim software and also experimental set-up for
valuation. The results showed a strong agreement between the estimated and measured
lateral velocities in several maneuvers.
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Chapter 8

Road Angle Estimation for
Vehicle-Trailer Systems

8.1 Introduction

As the road bank and grade angles significantly affect the vehicle longitudinal/lateral dy-
namics, recent developments in vehicular active safety systems have emphasized on the
need for real-time estimation of the road angles [82, 95]. Although road angle estimation
has been investigated for vehicles, scholarly work on road angle estimation for vehicle-trailer
is very scarce.

In [194], a vehicle roll dynamic model was considered to estimate road bank angles,
while the steady-state approximation of the bank angle was used as a reference to obtain
the estimation error and tune the observer gains. An unknown input sliding mode observer
was used in [195] to estimate the road bank angle by considering a linear single track vehicle
model. In this observer, it was assumed that the tire cornering stiffness and road friction
were known, which may not be the case in certain situations. A similar method was
proposed to estimate the vehicle velocity with road angle adaptation in [196].

The road and vehicle roll/pitch angles both appear in the vehicle roll/pitch dynamics
[197]. Therefore, in [198, 199], the road angles were separated from the vehicle roll/pitch
angles by considering the vehicle roll/pitch dynamic model and applying a nonlinear ob-
server. Similarly, an unknown input observer was used in [200] to estimate the road angles,
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however, the road angles were assumed to be constant.

Alternatively, the global positioning system (GPS) data were used in some road an-
gle measurement studies, however, these studies suffer from poor accuracy, signal losses,
frequency variations, and lack of signal reception in some geographical areas in the most
commonly used GPSs in vehicles. A two antenna GPS receiver was used in [201] to estimate
the parameters that impact the vehicle roll stability, including the road bank angle and roll
dynamics parameters. By combining vehicle roll and pitch dynamic models and taking the
advantage of switching observer scheme, the road angles were estimated in [202], however,
the vehicle roll angle, which was assumed to be available, may not be measurable/accessible
for commercial vehicles.

The remainder of this chapter is organized as follows: In Section 8.2, the vehicle-trailer
pitch/roll dynamics are analyzed, and the proposed model-based road angle estimation
approach is described. In Section 8.3, the overall structure of the proposed non-model-
based approach is presented and a machine learning based road angle estimator is designed
using Recurrent Neural Network (RNN) with Long-Short-Term-Memory (LSTM) gates.
A sensitivity analysis with respect to all available measurements from the vehicle-trailer
system, which are used as the inputs to the network, is also presented in Section 8.3, along
with a discussion of selection of the inputs of the network on this sensitivity analysis. In
Section 8.4, training and testing the designed LSTM-RNN estimator with a set of real-
time vehicle-trailer system data is explained. The road angle estimation results with the
model-based and machine learning approaches are presented and compared in Section 8.5
with discussion.

8.2 Model-Based Estimator

In this section, the vehicle-trailer roll/pitch dynamic models linked with the road angles are
analyzed to develop a reliable estimator for the road bank/grade angles for a vehicle-trailer
systems. To do so, first, the vehicle and trailer body angles are estimated by utilizing the
corner displacements measured by the suspension height sensors. Then, the vehicle-trailer
roll and pitch dynamics are employed to relate the vehicle’s frame, body, and road angles.

It is assumed that using an IMU attached to the vehicle body, the body roll, pitch,
and yaw rates are measurable. The vehicle body roll and pitch rates are related to the
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road angle rates over the roll and pitch dynamics. Thus, an Unknown Input Observer
(UIO) approach is considered to estimate the road bank and grade angles based on the
vehicle-trailer responses. More details are presented in the following subsections.
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Figure 8.1: Height sensors and sprung mass kinematics of a vehicle-trailer system.

8.2.1 Vehicle-Trailer Roll and Pitch Angle Kinematics

As the vehicle-trailer roll and pitch dynamics are incorporated with road angles, the vehicle-
trailer roll/pitch dynamics are considered to estimate the road angles. To do so, the vehicle
roll and pitch angles should estimate first. The vehicle roll and pitch rates are measured
by an IMU attached to the vehicle unit. As the measured vehicle roll and pitch angle
rates have noises, the vehicle roll and pitch angles cannot be estimated by integrating
the measured values. Therefore, the vehicle-trailer roll/pitch sprung mass kinematics are
used to find the vehicle-trailer roll and pitch angles based on the vehicle-trailer corner
displacements. The vehicle-trailer sprung mass model is illustrated in Fig. 8.1. In Fig. 8.1,
the vehicle and trailer corner normal displacements Zij, ij ∈ [fL, fR, rL, rR] are measured
by suspension height sensors.

The auxiliary coordinates (xa, ya, za) are obtained by rotating the global coordinates
about the zG axis by the vehicle, not trailer, yaw angle ψ, whereas the vehicle frame
coordinate (xf , yf , zf ) is a right-handed orthogonal axis system located at the vehicle
center of gravity [203], and it is parallel to the road surface. The suspension height sensor
position vectors for both vehicle and trailer are described in the frame coordinate system
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(xf , yf , zf ) as follows:

prL =
[
−b1

T1

2
ZrL

]T
, (8.1)

prR =
[
−b1 −T1

2
ZrR

]T
, (8.2)

pfL =
[

a1
T1

2
ZfL

]T
, (8.3)

pfR =
[

a1 −T1

2
ZfR

]T
, (8.4)

ph =
[
−(e+ b1) 0 Zh

]T
, (8.5)

Zh =
(ZrL + ZrR)

2

(
1− e

(
(ZfL+ZfR)

2
− (ZrL+ZrR)

2

(a1 + b1) (ZrL+ZrR)
2

))
, (8.6)

where a1, b1, and e are the front axle to CG, rear axle to CG and hitch point distances,
respectively. The vehicle and trailer track width are illustrated by T1 and T2, respectively.
By having the hitch point to vehicle CG, the trailer corner displacement vector in vehicle
coordinates is found as:

ptL =

 phx − lt cosψ + T2

2
sinψ

phy + lt sinψ + T2

2
cosψ

phz + ZtL

 , (8.7)

ptR =

 phx − lt cosψ − T2

2
sinψ

phy + lt sinψ − T2

2
cosψ

phz + ZtR

 , (8.8)

where a2 and b2 are the trailer CG to hitch point and trailer axle distances, respectively.
Relative position vector γij, ij,mn ∈ [fL, fR, rL, rR, tL, tR] between the two corners for
both vehicle and trailer can be calculated from:

γij,mn = pmn − pij. (8.9)
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The normal vectors for the vehicle and trailer sprung mass at each corner are then
obtained as the cross product of two relevant position vectors at each corner.

Nij = γij,mn × γij,pq
ij,mn, pq ∈ [fL, fR, rL, rR, tL, tR], (8.10)

where Nij = [N x
ij,N

y
ij,N z

ij]
T is the sprung mass normal vector at each corner that can be

used to estimate the vehicle and trailer roll/pitch angles. The vehicle and trailer roll/pitch
angles, ψvij , ψtij , θvij , and θtij can be obtained using the corresponding normal vector Nij

as follows:

ψ̄vij = arccos
N x
ij

||N ||
, ij ∈ [fL, fR, rL, rR], (8.11)

ψ̄tij = arccos
N x
ij

||N ||
, ij ∈ [tL, tR, ], (8.12)

θ̄vij = arccos
N y
ij

||N ||
, ij ∈ [fL, fR, rL, rR], (8.13)

θ̄tij = arccos
N y
ij

||N ||
, ij ∈ [tL, tR, ]. (8.14)

As can be seen in (8.14), by using different combinations of the suspension sensors,
four vehicle roll/pitch angle estimates and two trailer roll/pitch angle estimates can be
obtained. Then a data fusion technique can be used to increase the accuracy as ψ̄vij are
all equal to ψ̄v. Therefore, a weighted average will be used to have reliable estimates in
case of existing outlier data due to uneven surfaces at each corner as follows:

ψ̄v = Σijβijψ̄vij , θ̄v = ΣijΓij θ̄vij , (8.15)

where
∑

Γij = 1 and
∑
βij = 1 are the weight for the obtained roll and pitch angles based

on the ij corner measurements. To check the possibility of being an outlier on sensor
measurements because of road disturbances, such as bumps and uneven surfaces at each
corner, the vehicle body angle rate measurements provided by an IMU attached to the

134



vehicle body is considered as explained in [204]. For instance, if only one of the tires faces
with uneven surfaces or road bumpers, the Γ or β weights corresponding to that corner
becomes zero. The estimated vehicle and trailer roll/pitch angles estimation, ψ̄v, θ̄v are
used to estimate the road grade and bank angles by applying an unknown input observer
which is explained in the next subsection.

8.2.2 Unknown Input Observer

As the vehicle-trailer roll and pitch dynamics are incorporated with road angles, the vehicle-
trailer roll/pitch dynamics are considered to estimate the road angles. The estimated vehi-
cle roll/pitch angles provided from vehicle-trailer roll and pitch angle kinematic equations
(8.16) to (8.19) are utilized in the vehicle-trailer roll and pitch dynamic models to estimate
the road angles.

The road bank and grade angles are estimated using unknown input observers (UIO) in
this subsection. A general form of the UIO is used to estimate the unknown inputs which
are representing the road angles with implementation of the vehicle body angles and their
rates as outputs. Vehicle-trailer roll and pitch dynamic models are used for the proposed
UIO as shown in Fig. 8.2.
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Figure 8.2: Roll and pitch models of a vehicle-trailer system with the road angles.

As can be seen in Fig. 8.2, the road bank and grade angles are denoted by ψr and
θr, respectively. By considering the vehicle-trailer roll and pitch motions, the vehicle and
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trailer roll/pitch dynamics can be expressed as:

(Ix1 +ms1h
2
rc1

)ψ̈v = Cψ1ψ̇v + kψ1ψv + (ms1hrc1) (−ay1 + g sin(ψv + ψr)) , (8.16)

(Ix2 +ms2h
2
rc2

)ψ̈t = Cψ2ψ̇t + kψ2ψt + (ms2hrc2) (−ay2 + g sin(ψt + ψr)) , (8.17)

(Iy1 +ms1h
2
pc1

)θ̈v = Cθ1 θ̇v + kθ1θv + (ms1hpc1) (ax1 + g sin(θv + θr)) , (8.18)

(Iy2 +ms2h
2
pc2

)θ̈t = Cθ2 θ̇t + kθ2θt + (ms2hpc2) (ax2 + g sin(θt + θr)) , (8.19)

where the vehicle and trailer roll/pitch angles of the sprung mass are denoted by ψv,
ψt, θv, and θt, respectively. The distances between the roll/pitch axes and the center of
gravity are denoted by hrc and hpc, respectively. The moments of inertia about the roll
and pitch axes parallel to the frame coordinate system are shown by Ix, Iy. Roll/pitch
stiffness Kψ, Kθ and damping Cψ, Cθ are used for derivation of the roll and pitch dynamics.
The system roll and pitch models presented in (8.16) to (8.19), can now be formed in

the conventional state space form where the states are xψ =
[

ψv ψ̇v ψt ψ̇t

]T
and

xθ =
[

θv θ̇v θt θ̇t

]T
. Thus, the state space form of the model can be represented by

ẋq = Aqxq +Bquq and yq = Cqxq +Dquq where q ∈ [ψ, θ] as:

Aq =

[
Mq 02×2

02×2 Nq

]
, Bq =


0 0
Hq1
Sq1

0

0 0

0
Hq2
Sq2

 , (8.20)

Mq =

[
0 1
−kq1
Sq1

−Cq1
Sq1

]
, Nq =

[
0 1
−kq2
Sq2

−Cq2
Sq2

]
, (8.21)

where Sψi = Ixi + msih
2
rci
, Sθi = Iyi + msih

2
pci
, Hψi = msihrci , Hθi = msihpci , i ∈ [1, 2].

The system matrices Aq, Dq are with appropriate dimensions where [Bq, Dq] is full-column
rank. Unknown input vector uq, q ∈ [ψ, θ] is the vehicle-trailer roll and pitch dynamic
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unknown inputs, which are defined as follows:

uψ =

[
V̇y + rVx + g sin(ψv + ψr)

V̇y − a2(θ̈ − ṙ1)− V̇xθ − cṙ1 + rVx + g sin(ψt + ψr)

]
,

uθ =

[
−V̇x + rVy + g sin(θv + θr)

rVy − V̇x − (a2 + c)r − a2rθ̇ − Vxrθ + g sin(θt + θr)

]
, (8.22)

where θr and ψr represent the road grade and bank angles. To estimate the road angles
via unknown input observer technique, the discretize form of the system model is required.
To do so, the step-invariance method [205] is considered to discretize the system equations
of motion as follows:

xψ[k + 1] = Āψxψ[k] + B̄ψuψ[k],

xθ[k + 1] = Āθxθ[k] +Bθuθ[k], (8.23)

where Āψ = eĀψTs and B̄d =
∫ Ts

0
eĀτB̄dτ are the discretized form of the system matrices

Ā and B̄, respectively. By having the discretized system equations of motion, an unknown
input observer [206, 207, 208, 209] is designed to estimate the road bank θr and grade ψr
angles (unknown inputs uq) using vehicle body’s roll/pitch angles θv, ψv and their rates
θv, ψv as measurements where the derivation of the vehicle roll/pitch rates are discussed
in [204] by considering the vehicle road-body kinematics.

To design a feasible observer and to uniquely recover the unknown input uq[k] from the
initial state x[0], the output signals up to time step k+L are considered, which means the
observer has an L-delay inverse. The upper bound of the inherent delay L is defined as
L = n− null(Dq) + 1 [204]. Thus, the output equation is calculated as follows:

yq[0 : L] = Oqx[0] + Jquq[0 : L], (8.24)

where
yq[0]

yq[1]
...

yq[L]

 =


C̄q
C̄qĀq
...

C̄qĀ
L
q

x[0] +


D̄q 0 · · · 0

C̄qB̄q D̄q · · · 0

C̄qĀqB̄q C̄qB̄q · · · 0
...

... . . . ...
C̄qĀ

L−1
q B̄q C̄qĀ

L−2
q B̄q · · · D̄q




uq[0]

uq[1]
...

uq[L]

 ,
(8.25)
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where Jq and Oq are the invertibility and observability matrices for pair Aq and Cq, re-
spectively. The unknown input observer for a positive arbitrary L results in the following
estimator, which provides the states x̂θ[k], x̂ψ[k] as well as unknown inputs ūθ[k], ūψ[k]:

x̂ψ[k + 1] = Eqx̂ψ[k] + Fqyq[k : k + 1],

ûq[k] =

[
B̄q

D̄q

]−1 [
x̂q[k + 1]− Āqx̂q[k]

yq[k]− C̄qx̂q[k]

]
, (8.26)

where Eq and Fq are observer gain matrices that obtain by pole placement. For the test
vehicle-trailers with parameters listed in Table. 4.1, the observer gain matrices Eq and Fq
are obtained as follows [204, 210]:

Eψ =


4.25e− 4 2.31e− 5 4.05e− 4 2.01e− 5

−1.53e− 6 2.9e− 4 2.53e− 6 2.8e− 4

3.15e− 4 2.31e− 5 3.95e− 5 2.01e− 5

−1.03e− 5 2.9e− 5 2.93e− 6 1.8e− 4

 ,

Eθ =


3.895e− 4 2.05e− 5 4.05e− 4 2.01e− 5

0.94e− 6 2.34e− 4 2.53e− 6 1.9e− 4

3.59e− 4 1.95e− 5 2.35e− 5 1.91e− 5

0.94e− 6 2.74e− 4 2.03e− 6 1.5e− 4

 . (8.27)

The road bank angle θ̂r is then obtained by employing the estimated unknown input
ûθ from (8.26) and the vehicle’s roll/pitch angle from (8.15) as follows:

θ̂r[k] = arcsin
ûθ[k]− V̇y[k]− r[k]Vx[k]

g
− θ̄v[k],

ψ̂r[k] = arcsin
ûψ[k] + V̇x[k]− r[k]Vy[k]

g
− ψ̄v[k]. (8.28)

As can be seen in (8.28), the estimated vehicle roll/pitch angles and their rates are
used for the road grade and bank angle estimations. To estimate the vehicle roll/pitch
angles, the suspension height sensor measurements are used. However, as the suspension
height sensor measurements are incorporated with noises, taking the time derivative of the
estimated vehicle roll/pitch angles (8.15) to calculate the roll/pitch angle rates is not a
proper choice. Therefore, the vehicle roll and pitch angle rates provided by vehicle’s IMU
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are used by considering the transformation between the vehicle’s frame and body coordinate
as illustrated in [204]. As mentioned, there are two alternatives for estimating the road
angles including model-based and non-model-based approaches. The overall algorithm that
contains both model-based and non-model-based approaches for road angle estimation is
shown in Fig. 8.3.

Vehicle-trailer sprung mass 
kinematic model

Vehicle-trailer roll/pitch dynamics 
with unknown input observer

Model-base

𝜙𝑣, 𝜙𝑇 , 𝜓𝑣, 𝜓𝑇

𝑍𝑖𝑗

𝑟1, 𝑉𝑥, 𝑉𝑦 , 𝜃
𝜙𝑟 , መ𝜃𝑟

LSTM for road grade and bank 
angle estimation

6 axis IMU

𝜙𝑟 , መ𝜃𝑟

Machine Learning 

Figure 8.3: Overall road angle estimation procedure.

The following section investigates the non-model-based method for estimating the road
bank and grade angles.

8.3 Machine Learning Based Approach

An observer is designed to estimate road angles and the stability of the designed observer
was formally established in Section 8.2. As an alternative approach, a neural network is
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also designed, trained, and tested for road angle estimations in this section. To be able to
design a network that can differentiate between the road and body angles, the vehicle roll
and pitch angles are considered in the network output signals. In this section, the vehicle-
trailer roll and pitch dynamics are used to define appropriate inputs for the network.

8.3.1 Input Feature Selection - Sensitivity Analysis

A sensitivity analysis over all of the measurable inputs is provided to check the importance
of the measurable vehicle states and parameters with respect to the road angles. The
Gradient Boosting Regression Tree (GBRT) is used to evaluate the input importance.
GBRT begins by training a decision tree in which each observation is assigned an equal
weight. By evaluating the first tree, the weights of those observations that are difficult
to classify, are increased. By evaluating the weights for neurons, the importance of the
inputs with respect to the outputs which are vehicle roll/pitch and road bank/grade angles
is generated. The importance of the inputs with respect to the road and vehicle angles are
shown in Fig. 8.4.
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Figure 8.4: The input feature importance of the all available measurements for road angle
estimation.
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As can be seen in Fig. 8.4, the hitch angle, longitudinal acceleration, and yaw rate of
the vehicle are less important and have less effect on the network for estimating the vehicle
roll/pitch angles and road angles than the other available inputs. Therefore, there is no
need to consider all of the available inputs for the network since their effectiveness are not
the same.

Moreover, the vehicle-trailer pitch and roll dynamic models shown in (8.16) to (8.19)
indicate that the road grade/bank angles have direct relation with vehicle roll and pitch
angles. Thus, by considering both the vehicle-trailer roll/pitch dynamics and sensitivity
analysis results, the input vector to train/test the network is considered as follows:

At =
[
ψ̇v θ̇v r ax ay Vx Vy δ

]T
. (8.29)

In order to propose a generic method to estimate the vehicle roll/pitch angles as well
as the road angles, the vehicle parameters should be incorporated in the model. Hence,
the input vector is normalized by the vehicle parameters which are mostly related to the
outputs. As can be seen in (8.16) to (8.19), the vehicle CG height, mass, and wheel-base
are the vehicle parameters that present in the vehicle-trailer roll/pitch dynamic models.
Therefore, the input vector At shown in (8.29) is normalized over these parameters and
rewritten as follows:

At =
[
ψ̇v
hrc1

θ̇v
hrc1

r
a1+b1

ax
ms1

ay Vx Vy δ
]T
. (8.30)

As the vehicle-trailer is a dynamic system, the history of the data should be considered
for training/testing the network. As a result, a long short term memory neural network is
considered as describe in the next subsection.

8.3.2 Long Short-Term Memory Structure

In conventional neural networks, there are only full connections between adjacent layers,
but no connection among the nodes within the same layer. This type of network may fall
into failure when dealing with the temporal–spatial problems. In Recurrent Neural Network
(RNN), the feedback is from a hidden unit activation of last time step to current time step.
The feedback connection gives RNN the ability to memorize the information of previous
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inputs and to model the temporal contextual information as shown in Fig. 8.5. Although,
RNNs can be trained in principle since it is provided with all the relevant information, it
could be difficult due to the resulting long-term dependencies [211, 212] vanishing problem,
and exploding gradients issues that occur when calculating back-propagation across long
time steps. Therefore, to make an accurate state estimation, a long-term sequence is
demanded.
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Figure 8.5: The LSTM structure with input/output gates.

Long Short-Term Memory (LSTM) network is a special kind of RNN with a unit of
computation called memory cell, which replaces traditional nodes in the hidden layer of an
RNN [213, 214]. By treating the hidden layer as a memory unit, LSTM network can cope
with the correlation within time series in both short and long terms. The structure of the
memory unit is shown in Fig. 8.5. As Fig. 8.5 illustrates, the memory cell in LSTM model
is a composite unit that contains input gate layer, forget gate layer, update gate layer, and
output gate layer. Each gate yields a state variable at time t as follows [215]:
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it = σ(wxixt + whiht−1 + bi),

ft = σ(wxfxt + whfht−1 + bf ),

ot = σ(wxoxt + whoht−1 + bo),

gt = tanh(wxcxt + whcht−1 + bc),

ct = ft � ct−1 + it � gt,
ht = Ot � tanh(ct), (8.31)

where σ(x) = 1
1+e−x

is the sigmoid function; it, ft, ot, and gt are input gate vector, forget
gate vector, output gate vector, and state update vector, respectively; wxi, wxf , wxo, wxc,
whi, whf , who, whc are the weight vectors for linear combination; bi, bf , bo, and bc are the
relative bias; � is element-wise multiplication.

8.3.3 Data Set

To train and test the network both experimental and simulation test results are considered.
A high-fidelity CarSim model is used to collect the data for almost 165 maneuvers for
three different vehicles with different trailers attached to them as shown in Table. 8.1. For
instance, 27 Single Lane Change (SLC) maneuvers are considered in CarSim including 7
tests on flat road and 7 tests on banked/graded roads with E-class-SUV, 7 tests on flat
road and 6 tests on banked/graded roads with Pick-up truck.

Moreover, at each test, the trailer parameters including weight and geometrical pa-
rameters have been changed to collect sufficient data. The simulated vehicle-trailers are
driven on the road with both grade and bank angles. As the vehicle with trailer drives over
the simulated path, all the available information including vehicle/trailer responses and
surrounding environment data such as the local road grade and bank angles are collected
to be used as a ground truth for evaluating the estimation results.

For the experimental collected data, an electric Chevrolet Equinox AWD with a trailer
shown in Fig. 4.6, has been used as the test vehicle-trailer systems. The specifications of
the vehicle and the trailer are listed in Table. 4.1. The Equinox-trailer system is capable
of collecting the required data for training/testing the designed LSTM and model-based
estimator by having the required sensors including: 6-axis IMU, GPS, wheel speed sensor,
torque measurement sensor, and potentiometer sensor. The longitudinal and lateral veloc-
ities/accelerations and roll/pitch/yaw rates of the vehicle and trailer are measured with a

143



Table 8.1: Test scenarios for road angle estimation

Simulation [CarSim] Equinox test

Maneuvers Amount Maneuvers Amount

DLC 29 DLC 9

SLC 27 SLC 7

Sine 29 Sine 8

SS 14 SS 7

Random 13 Random 5

Full-turn 12 Full-turn 4

6-axis IMU (and GPS) system RT2000. The wheel speed and wheel torques which can be
measured using the regular ABS wheel speed sensors, and electric actuators, respectively.

As the electric Equinox with trailer is driven on the test field which has both grade and
bank angles, all the available sensory measurement data are collected to train the designed
network. To compare the estimation results, the vehicle roll and pitch angles ground truth
are obtained by the 6-axis IMU attached to the vehicle. For the ground truth road angle
values, the GPS data right at each corners of the test field are collected and the test field
bank and grade angles are calculated.

8.4 Simulation and Experiment Tests

In this section, the presented road angle estimation algorithms are validated by both sim-
ulation and experimental tests. Moreover, the performance of the designed observer and
machine learning based algorithms in these tests are compared.

8.4.1 Model-Based Estimation Results

The model-based road angle estimator performance is examined by utilizing a CarSim
model with the parameters listed in Table. 4.1. The simulations were conducted on road
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settings with different slopes to evaluate the road angle estimation. The road angle esti-
mation algorithm requires steering wheel angle, suspension deflection at each corner, hitch
angle, and longitudinal/lateral velocities, which can be measured using the CAN bus,
suspension height sensor, ultra-sonic sensors, and GPS units, respectively. The required
variables can be estimated using various techniques in the literature, e.g. [110]. In the
simulation presented next, the vehicle-trailer starts moving straight on a road with 20 de-
gree grade angle with a constant speed of 40 km/h (CarSim longitudinal controller) for 15
seconds. The steering angle and longitudinal/lateral accelerations of the vehicle are shown
in Fig. 8.6 for this test.
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Figure 8.6: a) Steering wheel angle, b) Vehicle longitudinal/lateral accelerations, c) Vehicle-
trailer suspension deflection, for multi-double-lane-change maneuvers on a road with 15%
slope.

The algorithm runs in real-time and uses the measured/estimated data while the
vehicle-trailer is running with constant velocity and the steering angle profile shown in
Fig. 8.6. The simulation results for road angle estimation is shown in Fig. 8.7.

As can be seen in Fig. 8.6c, the suspension height sensors measure the vehicle and trailer
suspension deflection at each corner and these data are used to estimate the vehicle roll and
pitch angles as illustrated in Fig. 8.7b. By utilizing the corner suspensions deflections data
and the estimated vehicle roll and pitch angle, the road slope is estimated. As Fig. 8.7c and
Fig. 8.7d illustrate, the estimated road grade and bank angles have almost 9% errors out of
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Figure 8.7: a) Vehicle-trailer simulated path, b) Vehicle-trailer roll and pitch angle, c)
Road bank angle estimation results, d) Road grade angle estimation results for multi-
double-lane-change maneuvers on a road with 7% slope.

the actual road grade/bank angles. Moreover, as the stability of the method is guaranteed
mathematically, the results justify the convergence of the road angle estimation error as
well for both grade and bank angles.

The algorithm is also tested on a road with varying slopes. In this test the vehicle-trailer
follows the same speed and maneuver as used in the first simulation. The vehicle-trailer
path, acceleration, and suspension height measurements are shown in Fig. 8.8.

As can be seen in Fig. 8.8, the road slope is estimated on a road with varying slopes
by utilizing the corner suspension deflections data and the estimated vehicle roll and pitch
angles. As Fig. 8.8d and Fig. 8.8e illustrate, the estimated road grade and bank angles have
almost 10% errors with respect to the actual road angles. The algorithm performance is
also tested for step-steer, double lane change, and random-steer maneuvers on a road with
higher/lower grade and bank angles and the estimation NRMS are reported in Table. 8.2.
It is worth mentioning that the same accuracy for small road angles that are reported in
[204] is expected since the proposed model-based estimator is an extension of the road
angle estimator presented in [204] for vehicle unit only.
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Figure 8.8: a) Vehicle-trailer simulated path, b) Vehicle-trailer roll and pitch angle, c)
Road bank angle estimation results, d) Road grade angle estimation results for multi-
double-lane-change maneuvers on a road with 20% slope.

8.4.2 ML-Based Estimation Results

As mentioned in Section 8.3, a recurrent neural network with long-short-term-memory cell
is used to estimate the road grade/bank angles as well as the vehicle roll and pitch angles.
An adaptive learning rate optimization algorithm called Adam optimizer is considered
for training the network. By training the network with the data-set that contains both
simulation and experimental test data, the road and vehicle angles are estimated by feeding
the test data (unseen data) to the network described in Section 8.3. In average, the RNN
takes three hours to train with an Intel Core i7 machine, a Nvidia GeForce 670 GPU, and
32 GB of RAM. However, it has a very fast running time and can be implemented for
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real-time testing.
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Figure 8.9: a) Steering wheel angle b) Vehicle longitudinal/lateral accelerations, for a
double-lane-change maneuvers on a road with 15% slope.
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Figure 8.10: a) Vehicle-trailer simulated path, b) Vehicle-trailer roll and pitch angle, c)
Road bank angle estimation results, d) Road grade angle estimation results for a double-
lane-change maneuvers on a road with 15% slope.

To investigate the performance of the designed RNN based road angle estimator, a
double lane change maneuver is considered as illustrated in Fig. 8.9. The vehicle roll/pitch
angles as well as the road grade and bank angle estimations are shown in Fig. 8.10. As can
be seen in Fig. 8.10, the NRMS of the road angle estimation error is 8%, which is almost
the same with the model-based estimation NRMS. Moreover, the NRMS of the pitch/roll
angle estimations error is 6.4 percent errors, which means the ML based algorithm can
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estimate the roll and pitch angles with the same accuracy that model-based estimator has.
This happens because the input measurement signals contain signals related to the vehicle
body and can address the vehicle motion more precisely whereas the road angles have less
impact on the vehicle dynamic.

The comparison between the designed model-based and RNN estimators for the road
angles is investigated in the discussion section. The algorithms have been tested for a
step-steer, double lane change, and random steer maneuvers and the results are reported
in Table. 8.2.

8.5 Discussions

The estimated road angle results illustrate that both model-based and RNN approaches are
capable of estimating road angles; however, their performances differ. Due to the fact that
the RNN inputs are designed based on the vehicle-trailer roll and pitch dynamic models,
the designed network is a pre-existed function estimator between the measured inputs to
the outputs.

To compare the performance of the model-based and RNN road angle estimators, a
maneuver involving a random steering, has been considered. The test runs for 25 seconds.
The estimation errors for both RNN and model-based approaches are reported in Table. 8.2.

As can be seen in Table. 8.2, the NRMS error of RNN is less than the model-based
estimator. This is because the error convergence rate in RNN method is much higher than
that for the model-based approach. In fact, there is no settling time for the RNN method
since its output is calculated by multiplying the predefined weights by the inputs.

The model-based estimator error increases for harsh maneuvers since the linearity as-
sumptions are violated. However, if the training data-set is rich enough and contains
adequate data for hash maneuvers, the estimation error for the RNN based estimator will
not increase as the network is trained for harsh maneuvers as well. The road angle esti-
mation results show that the RNN algorithm is generic and, if the vehicle specifications
change, the algorithm can still estimate the road angle since the vehicle parameters, in-
cluding the vehicle mass, wheel-base, and CG height, are considered in the input vector.
Therefore, the algorithm can estimate the road angle properly.
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Table 8.2: NRMS of the errors for the road angle estimators at dry and wet roads.

Estimated

force

@ u1=25

km/h [%]

@ u1=35

km/h [%]

@ u1=45

km/h [%]

@ u1=55

km/h [%]

Dry road

UIO 3.51 3.34 3.49 4.11

RNN-LSTM 5.91 6.55 8.88 9.09

Wet road

UIO 3.51 3.3 3.5 4.21

RNN-LSTM 6.01 6.68 9.21 9.5

The simulation was run for both dry and wet roads, and the NRMS of the error for
road angle estimation is shown in Table. 8.2. As Table. 8.2 illustrates, the maximum error
percentage with respect to different longitudinal velocities is less than 9.5%. The road angle
estimation errors may have several resources, and the most possible one is the lack of an
accurate system model. For instance, the vehicle-trailer roll and pitch dynamic models have
more degrees of freedom than considered in the presented vehicle-trailer model. Moreover,
as mentioned in Section 8.3, the spring and damper coefficients in both roll and pitch
dynamic models have been obtained by simulation/experiment tests, which may cause the
errors and decrease the accuracy.

The error of RNN method could further decrease if the network were trained with a
more-comprehensive data-set with more vehicle-trailer configuration information. In this
research, three different types of vehicle have been considered in the data-set used to train
and test the network. There is no doubt that increasing the accuracy of the method requires
more data with different types of vehicles and trailers.

8.6 Conclusions

In this chapter, two approaches have been introduced to estimate road angle: model-
based and machine learning approaches. For model-based approach, we have proposed
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a road angle estimation methodology that includes an unknown input observer for the
roll and pitch dynamics of the vehicle with trailer. Observer gain matrices were designed
to guarantee a fast convergence rate by system pole placement. Road disturbances and
outliers were isolated in the proposed method through the use of a dynamic threshold based
on the longitudinal and lateral excitations of the vehicle. Fast convergence and robustness
against harsh excitations, road disturbances, and outliers are among the advantages of the
proposed methodology. The test results for the model-based road angle estimator reported
almost 11% errors.

Moreover, it has been shown that the ML-based approach has high potential for the
road angle estimation and is applicable for vehicle-trailers with different configurations
since its inputs were designed based on the vehicle-trailer roll/pitch dynamic models and
normalized by the vehicle wheel-base, mass, and CG height. Thus, re-training of the
network is not needed for different towing vehicles. Moreover, since the vehicle roll/pitch
angles are coupled with the road angles, to be able to differentiate between these angles,
the vehicle roll and pitch angles are also considered as the outputs of the network. Thus,
with supervised training, the RNN is trained to differentiate between them. The maximum
error percentage for the ML-based road angle estimator was 8%.

A comparison of the performances of the developed unknown input observer and the
machine learning based estimator supports the following conclusions:

• Both the proposed model and non-model-based algorithms can estimate road angles
in various driving conditions.

• Neither the model-based nor the non-model-based approach requires any information
about the road friction, tire forces, and tire parameters, a promising finding that
confirms that the algorithms can perform reliably for different road conditions.

The simulation results demonstrate that the road angle estimation error is not affected
as road friction changes. Improving the ML-based estimator will need more experimental
data for training and testing.

151



Chapter 9

Conclusion and Future Works

9.1 Conclusions

The main objective of this research was to design real-time state and parameter estima-
tion algorithms for vehicle-trailer systems. To make the estimation algorithm practical
and implementable on most of the vehicle-trailer systems, a design for estimating trailer
parameters and states was proposed using common sensors available in vehicle-trailer sys-
tems.

In the design of the estimators, it was shown that adding a non-linear tire model to
improve the fidelity of the model could improve the estimation accuracy. By considering the
LuGre tire model in the vehicle-trailer model, the system model became non-linear, which
was shown how to separate the linear and nonlinear parts. Based on the proposed model,
solutions for estimating the states and parameters of an unknown trailer were developed.

One of the main challenges for estimating vehicle-trailer parameters/states was chang-
ing the trailer parameters such as mass due to the payload during the operation. To tackle
this challenge, two approaches were introduced to estimate trailer mass: dynamic system
model-based and machine learning approaches. In the design of the estimators, it was
shown that the stability of the dynamic system model-based estimation algorithm was
guaranteed mathematically, and the test results indicated the convergence of the trailer
mass estimation error with the accuracy of almost 12% . Moreover, it has been shown that
the ML-based approach has high potential for trailer mass estimation and is applicable
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for vehicle-trailers with different configurations since its inputs were designed based on
the vehicle-trailer dynamic models. It has been shown that how selecting and normalizing
the input feature is important. As the inputs of the DNN contain the vehicle parameters,
including the vehicle mass, tire sizes, and geometry, it has been shown that the designed
DNN can be used for any towing vehicle with different specifications. The maximum error
percentage for the DNN based trailer mass estimator was 10%.

Given that the hitch angle has an important role in vehicle-trailer states/parameters
estimation as it relates the vehicle’s states that most of them are measurable with the
trailer states, a complete and comprehensive solution for hitch angle estimation of a towing
vehicle with a ball type trailer with a flat or symmetric V-nose frontal face was developed,
evaluated, and experimentally tested in this thesis. In the design of hitch angle estimator,
first the direct calculation of hitch angle based on ultra-sonic sensors was considered. Due
to the ultra-sonic sensors failure in severe weather conditions, kinematics and dynamics
of the vehicle-trailer were then used to develop algorithms for the hitch angle estimation.
Given that the kinematics and dynamics of the vehicle-trailer were dependent of trailer
axle location, mass, and front face angle, their estimated values were used in the proposed
hitch angle estimation algorithm to make the algorithm independent of trailer’s geometry.

The proposed vehicle-trailer dynamic model in Chapter 3 was utilized to estimate the
longitudinal/lateral hitch-forces and lateral tire forces. To make the estimation algorithm
generic, the presented model was derived in a way that it can address the hitch-forces
and lateral tire forces without any priori information require from the trailer. Although
trailer mass estimation is available, it was shown that the presented hitch-forces algorithm
was independent of trailer mass and geometry, and can estimate the hitch-forces for any
ball type trailers. Uncertainties of the model were studied and the proposed observer was
utilized to estimate the states of the system, and the stability of the proposed model-based
estimator was investigated. In the design, it has been shown that the estimation error was
converged, as the system was observable and the system matrices were bounded. Moreover,
it has been shown that the presented algorithm was capable of estimating the hitch-forces
and lateral tire forces on dry, wet, and icy roads as the selected measurement signals were
able to address the effect of road surfaces on the model.

Given the vehicle-trailer dynamic models introduced in the third chapter, the vehicle-
trailer lateral dynamics with the pure-slip LuGre tire model was expressed in an LPV
system, which is practical for the control/estimation applications for mitigating the effect of
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non-linear terms. In the design, it has been shown that how much important the nonlinear
part is. Then, the proposed vehicle-trailer model was used to estimate the lateral velocity
of the vehicle. To make the estimation algorithm generic, the presented model was derived
in a way that it can address both small and large slip angles. Moreover, the stability of the
lateral velocity estimation error dynamic model was investigated using an affine quadratic
stability approach.

Additionally, an unknown input observer and ML-based approaches were designed to
estimate the road grade and bank angles based on the roll and pitch dynamics of the vehicle-
trailer system. In the design, observer gain matrices were designed to guarantee a fast
convergence rate by system pole placement. Road disturbances and outliers were isolated
in the provided method through the use of a dynamic threshold based on the longitudinal
and lateral excitations of the vehicle. It has been shown that the ML-based approach has
high potential for road angle estimation and is applicable for vehicle-trailers with different
configurations since its inputs were designed based on vehicle-trailer roll/pitch dynamic
models and normalized by the vehicle wheel-base, mass, and CG height. Thus, re-training
of the network is not needed for different towing vehicles. The maximum error percentage
for the ML-based road angle estimator was 8%, which was almost the same with the
model-based estimator error.

To conclude, seven estimation algorithms have been developed in this thesis to estimate
the trailer parameters including, trailer mass, axle location, frontal face angle, hitch an-
gles, hitch forces, tire forces, lateral velocity, and road angles. To estimate the mentioned
parameters and states both model-based and non-model-based approaches have been con-
sidered.

9.2 Future Works

Suggestions are made in this section are for potential future works to enhance the accuracy
of the developed vehicle-trailer state and parameter estimators.

More accurate models for vehicle-trailers: The accuracy of the proposed lateral
velocity, trailer mass, hitch forces, hitch angle, and road angles estimation approaches
can be enhanced by employing a general chassis model and more precise vehicle dynamic
model with higher degrees of freedom. The main purpose of such model is to estimate ve-
hicle/trailer parameters and states more accurately with implementation of an integrated
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parameter/state observers to overcome estimation errors due to uncertainties in the model
and road conditions. The mentioned methodology provides a better modeling of the vehi-
cle/trailer behaviours by considering a vehicle/trailer model close to the actual behaviour.
However, this will increase the computational cost of the state estimators.

Moreover, in order to design a reliable tire force estimator to address demanding cases
with combined longitudinal and lateral excitations, a precise vehicle model is needed.
Specifically, the imprecision of the vehicle dynamics can be rooted in an inaccurate tire
forces due to not considering the camber angle at each corner. The current corner-based
lateral velocity estimation does not include the camber angle effect, but the tire forces
and consequently the vehicle’s planar and roll dynamics are indeed affected by the camber
angle at each corner. Therefore, incorporation of the tires’ camber angles into the vehicle
planar kinetics can result in better performance of the current lateral velocity and force
estimators.

Improve the model of the unknown input observer for combined bank and
grade cases: Road-body kinematics has been investigated in this thesis to increase the
accuracy of the measurement in the road angle estimator by defining the correlation be-
tween the road angle rates and the pitch/roll rates of the vehicle-trailer system. However,
there are some errors for the combined bank and grade cases which stems from separated
vehicle roll and pitch dynamics in the observer model. Therefore, considering the coupled
roll and pitch dynamics in the unknown input observer structure can improve the accuracy
of the estimator.

Moreover, tire forces and the vehicle-trailer lateral/longitudinal dynamics have not been
integrated into the roll/pitch dynamics for the bank/grade angle estimations because of
unavailability of road friction information. Employing road classification data in the tire
forces and the expected vehicle-trailer responses facilitates estimation of the road angles.
This is because of distinguishing between the measured accelerations due to road angles and
the ones due to the vehicle kinematics in various maneuvers. Consequently, by including
tire forces, which are obtained from road friction information, the road angles can be
estimated more accurately.

The closed-form lateral dynamics with combined-slip model for the stability
controllers: The suggested general forms of the vehicle-trailer lateral models in Section
3.2 provide a framework to achieve analytical solutions for vehicle-trailer’s optimal stability
control problems. This has a significant advantage over the cascaded methods that need
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slip ratio/angles to overcome with the forces and then to calculate vehicle-trailer states
by solving lateral dynamics and tire forces. This is more pronounced for designing sta-
bility controllers in vehicle-trailer configuration to handle harsh maneuvers, over-steering
characteristics of the vehicle-trailer, and several high-slip cases.

Using hybrid estimators for vehicle-trailer states/parameters: Vehicle/Trailer
parameters such as mass, moment of inertia, and CG location are not fixed and can change
in any vehicle-trailer system. Therefore, the designed estimator needs to actively estimate
these parameters. To estimate the vehicle/trailer states and parameters both model-based
and non-model-based techniques can be considered. Such hybrid methods are gaining
tractions in the academia and industry. Hybrid methods are built upon understandings
of the nature of the system, and the network needs to be constructed in a way that
captures the physical principles without significantly increase the network complexity and
thus causes much slower training. For instant, a model-based technique has been used to
estimate the hitch angle (Chapter 5). The proposed algorithm was required the trailer
mass. In this thesis, ML-based algorithms have been used to estimate the trailer mass and
road angles (Chapters 4 and 8). Now, a hybrid method can be designed to combine these
two algorithms together.
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Appendix A

A(δ), B(δ), and G matrix elements are obtained as follows:

a21 = −l1δ +
a1u1m1

Iz1
, a42 = −a22 − l1, a31 = − a1δ

(e+ b1)
, a35 = − a1

(e+ b1)
,

a41 = −l1 −
a1v1m1

Iz1
, a36 =

−b1

e+ b1

, a22 = −−b1u1m1

Iz1
, a23 = −(e+ b1)u1m1

Iz1
,

a43 = −a23 − l1, a17 =
e+ b1

a1

, a16 =
b1

a1

, (A.1)

b21 = m1v̈1 + Fxfr1 + Fxrr1 +m1v1r
2
1 +

m1u1Fxfδa1

Iz1
− Ḟxfδ − Fxf δ̇,

b41 = m1ü1 + Fxfδr1 +m1v1r
2
1 − Ḟxf −

m1v1Fxfδa1

Iz1
− Ḟxrδ̇, (A.2)

G =



−L12+a1L13

m1
−L12

m1
+ L13b1

Iz1
G13 G14

−L22+a1L23

m1
G22 G23 G24

−L32+a1L33

m1
−L32

m1
+ L33b1

Iz1
G33 G34

a41 − L42+a1L43

m1
G42 G43 G44

−L52+a1L53

m1
−L52

m1
+ L53b1

Iz1
G53 G54

−L62+a1L63

m1
−L62

m1
+ L63b1

Iz1
G63 G64

−L72+a1L73

m1
−L72

m1
+ L73b1

Iz1
G73 G74


, (A.3)
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G22 = −a23 −
L22

m1

+
L23b1

Iz1
, G42 = a42 −

L42

m1

+
L43b1

Iz1
,

G13 = −L12

m1

+
L13(e+ b1)

Iz1
, G14 = −L11

m1

,

G23 = a23 −
L22

m1

+
L23(e+ b1)

Iz1
, G24 = r1 −

L21

m1

,

G33 = −L32

m1

+
L33(e+ b1)

Iz1
, G34 = −L31

m1

,

G43 = a43 −
L42

m1

+
L43(e+ b1)

Iz1
, G44 = −L41

m1

,

G53 = −L52

m1

+
L53(e+ b1)

Iz1
, G54 = −L51

m1

,

G63 = −L62

m1

+
L63(e+ b1)

Iz1
, G64 = −L61

m1

,

G73 = −L72

m1

+
L73(e+ b1)

Iz1
, G74 = −L71

m1

. (A.4)
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