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Abstract

Raw data are usually required to be pre-processed for better representation or discrim-
ination of classes. This pre-processing can be done by data reduction, i.e., either reduction
in dimensionality or numerosity (cardinality). Dimensionality reduction can be used for
feature extraction or data visualization. Numerosity reduction is useful for ranking data
points or finding the most and least important data points. This thesis proposes sev-
eral algorithms for data reduction, known as dimensionality and numerosity reduction, in
machine learning and data science. Dimensionality reduction tackles feature extraction
and feature selection methods while numerosity reduction includes prototype selection and
prototype generation approaches. This thesis focuses on feature extraction and prototype
selection for data reduction. Dimensionality reduction methods can be divided into three
categories, i.e., spectral, probabilistic, and neural network-based methods. The spectral
methods have a geometrical point of view and are mostly reduced to the generalized eigen-
value problem. Probabilistic and network-based methods have stochastic and information
theoretic foundations, respectively. Numerosity reduction methods can be divided into
methods based on variance, geometry, and isolation.

For dimensionality reduction, under the spectral category, I propose weighted Fisher
discriminant analysis, Roweis discriminant analysis, and image quality aware embedding.
I also propose quantile-quantile embedding as a probabilistic method where the distribu-
tion of embedding is chosen by the user. Backprojection, Fisher losses, and dynamic triplet
sampling using Bayesian updating are other proposed methods in the neural network-based
category. Backprojection is for training shallow networks with a projection-based perspec-
tive in manifold learning. Two Fisher losses are proposed for training Siamese triplet
networks for increasing and decreasing the inter- and intra-class variances, respectively.
Two dynamic triplet mining methods, which are based on Bayesian updating to draw
triplet samples stochastically, are proposed. For numerosity reduction, principal sample
analysis and instance ranking by matrix decomposition are the proposed variance-based
methods; these methods rank instances using inter-/intra-class variances and matrix fac-
torization, respectively. Curvature anomaly detection, in which the points are assumed
to be the vertices of polyhedron, and isolation Mondrian forest are the proposed methods
based on geometry and isolation, respectively.

To assess the proposed tools developed for data reduction, I apply them to some appli-
cations in medical image analysis, image processing, and computer vision. Data reduction,
used as a pre-processing tool, has different applications because it provides various ways of
feature extraction and prototype selection for applying to different types of data. Dimen-
sionality reduction extracts informative features and prototype selection selects the most
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informative data instances. For example, for medical image analysis, I use Fisher losses and
dynamic triplet sampling for embedding histopathology image patches and demonstrating
how different the tumorous cancer tissue types are from the normal ones. I also propose
offline/online triplet mining using extreme distances for this embedding. In image pro-
cessing and computer vision application, I propose Roweisfaces and Roweisposes for face
recognition and 3D action recognition, respectively, using my proposed Roweis discriminant
analysis method. I also introduce the concepts of anomaly landscape and anomaly path
using the proposed curvature anomaly detection and use them to denoise images and video
frames. I report extensive experiments, on different datasets, to show the effectiveness of
the proposed algorithms. By experiments, I demonstrate that the proposed methods are
useful for extracting informative features and instances for better accuracy, representation,
prediction, class separation, data reduction, and embedding. I show that the proposed
dimensionality reduction methods can extract informative features for better separation of
classes. An example is obtaining an embedding space for separating cancer histopathology
patches from the normal patches which helps hospitals diagnose cancers more easily in an
automatic way. I also show that the proposed numerosity reduction methods are useful
for ranking data instances based on their importance and reducing data volumes without
a significant drop in performance of machine learning and data science algorithms.
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Chapter 1

Introduction

1.1 Problem Definition: Data Reduction

It is common for the popular deep learning approaches to use data augmentation to satisfy
the need to train huge number of parameters without overfitting, the increasing amount
of data requires some crucial data reduction methods for various motivations. In general,
data reduction is useful for:

• better storage efficiency,

• improving time of computation,

• better representation of data or discrimination of classes,

• removing outliers,

• even better recognition performance.

Data reduction approaches fall into two types, i.e., dimensionality reduction and nu-
merosity reduction which reduce the dimensionality and the sample size of data, respec-
tively (see Fig. 1.1). Numerosity reduction falls into prototype selection [28] and prototype
generation [129] where instances are selected in the former and selected or generated as new
instances in the latter. Dimensionality reduction approaches can be divided into feature
extraction and feature selection [59] where the features of data are completely changed to
another space with lower dimensionality in the former and the dimensionality of the trans-
formed data is a subset of the original dimensionality in the latter. This thesis focuses
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on prototype selection in numerosity reduction and feature extraction in dimensionality
reduction. In the following, we detail numerosity and dimensionality reduction further.

Assume there exists a set of n instances {xi}ni=1 in a d-dimensional Euclidean space,
∀i ∈ {1, . . . , n} : xi ∈ Rd. The instances together form a matrix X = [x1, . . . ,xn] ∈
Rd×n. In supervised learning, there are {(xi,yi)}ni=1 meaning that every instance xi has a
corresponding label yi ∈ R`, where ` is the dimensionality of the label. We can then form
the label matrix Y = [y1, . . . ,yn] ∈ R`×n. In classification, each instance belongs to one
of |C| classes where C is the set including labels of classes. The cardinality of the set of
instances in class c is denoted by nc.

In pattern recognition, data can be either expanded or reduced. This reduction or
expansion can be either in sample size (numerosity) or dimensionality. Table 1.1 shows
the nine possible permutations of changing data in terms of numerosity and dimension-
ality. Numerosity reduction and expansion are addressed by numerosity reduction and
data augmentation algorithms, respectively. On the other hand, dimensionality reduction
and expansion deal with dimensionality reduction and kernels, respectively. This thesis
tackles the two important fields of numerosity and dimensionality reduction for pattern
recognition and machine learning.

Table 1.1: The landscape of data reduction/expansion. The bold topics are tackled in this
proposal.

numerosity

increase decrease no change

d
im

en
si

on
al

it
y increase

data augmentation + numerosity reduction + kernels

kernels kernels

decrease
data augmentation + numerosity reduction + dimensionality reduction

dimensionality reduction dimensionality reduction

no change data augmentation numerosity reduction original

As Table 1.1 shows, this thesis contributes to five cells of this table:

• In the case of dimension increase and numerosity reduction, we have kernel numeros-
ity reduction. My proposed kernel CAD has this case.

• In the case of dimension decrease and numerosity increase, we have dimensionality
reduction with data augmentation. Using data augmentation with my proposed FDT,
FDC, BUT, and BUNCA cover this case.
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• In the case of dimension decrease and numerosity decrease, we have both dimension-
ality reduction and numerosity reduction. A combination of my proposed methods
of dimensionality reduction and numerosity reduction falls in this category.

• In the case of dimension decrease and no change in numerosity, we have dimension-
ality reduction. My proposed dimensionality reduction methods fall in this category.

• In the case of no change in dimension and numerosity reduction, we have numerosity
reduction. My proposed numerosity reduction methods fall in this category.

Figure 1.1: The taxonomy of data reduction. The red parts are tackled in this thesis.

1.2 Dimensionality Reduction and Manifold Learning

The task of dimensionality reduction has the goal to reduce the dimensionality of a dataset
from d to p ∈ (0, d] by mapping to a lower dimensional subspace or manifold [3]. In other

words, we want to have X̃ ∈ Rp×n from X ∈ Rd×n. In feature extraction for dimensional-
ity reduction, which I focus on, a new set of features is found for better representation or
discrimination of data. There are different names for dimensionality reduction in the lit-
erature, i.e., feature extraction, embedding, encoding, subspace learning, manifold learning,
and representation learning [59].

There exist several motivations for dimensionality reduction:

• According to the manifold hypothesis [24], data usually exist on a subspace or sub-
manifold unless it is random noise. Therefore, the whole d-dimensional space is not
required and a huge amount of it is unnecessary information. We can find the best
p-dimensional subspace to represent the data with the least possible reconstruction
error. This makes dimensionality reduction a data reduction method.

3



• Dimensionality reduction is useful for feature extraction. The extracted features are
useful for classification, representation, clustering, or revealing patterns in data.

• Dimensionality reduction is one of the useful methods for data visualization. Data
visualization can be used to reveal patterns by human visual system.

Note that previously in basic machine learning and dimensionality reduction, people
often used to extract features using dimensionality reduction and then apply the classifica-
tion, regression, or clustering task. However, modern deep learning is usually end-to-end.
Although modern deep learning is end-to-end, it extracts features and learns embedding
spaces in the layers of network; hence, deep learning can also be seen as dimensionality
reduction. Researchers usually visualize the extracted features of neural network to in-
terpret and analyze why deep learning is working properly on their data. The problem
of end-to-end models is their harder and more limited possibility of troubleshooting if the
performance is not satisfactory on some data. The insights and meaning of data com-
ing from representation learning are critical to understand model performance more fully.
Some of these insights can end up being useful for improving or understanding deep neural
networks and why they worked the way they did.

1.3 Numerosity Reduction and Prototype Selection

In numerosity reduction, the goal is to reduce the cardinality of a dataset from n to m ∈
(0, n] by ranking the instances from the most to least important in terms of representation,
discrimination, etc. In other words, we want to have X̂ ∈ Rd×m and Ŷ ∈ R`×m (if
supervised), where X̂ and Ŷ include the best m instances and their labels in terms of
representation of data and/or discrimination of classes. In numerosity reduction, a subset
of data points is found to best represent the underlying manifold or topology of data. The
selected subset of instances in numerosity reduction are called instances, prototypes, or
samples. It is noteworthy that dimensionality reduction is more well-known and probably
more effective than numerosity reduction in the literature and practical projects.

There exist several motivations for numerosity reduction:

• There usually exists some dummy information in data which is not completely useful
(or is sometimes even destructive) for discrimination or representation of data. In
other words, we usually have too much data and the data instances do not contribute
equal amounts of information to learning a discriminative or representative model and
thus could be sorted by this information if it can be quantified.
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• In some cases, a reduced set of data points can actually better represent the un-
derlying patterns or distributions in the data leading to better discrimination for
classification or prediction for regression. It can improve the signal to noise ratio.

• In some applications in edge computing, low-battery embedded systems, or space
exploration, there is limited possibility for storage or energy. In these domains, it is
qualitatively and quantitatively useful to store or transmit a portion of data which is
its best representation in terms of either more fitted regression or more discriminative
classification performance. The amount of portion can be decided according to the
amount of data reduction or drop in the representation performance.

Note that numerosity reduction, as well as dimensionality reduction, can be either
unsupervised or supervised. In unsupervised numerosity reduction, the most informative
instances for better representation of data cloud are important while in supervised nu-
merosity reduction, the instances most contributing to the labels are more important to
be selected.

1.4 Organization of the Thesis

As was introduced earlier, data reduction can be divided into dimensionality reduction and
numerosity reduction (see Fig. 1.1). In the following, I detail the organization of thesis in
each of these categories.

1.4.1 Dimensionality Reduction

The dimensionality reduction methods, focused on feature extraction, can be grouped into
three categories which are spectral dimensionality reduction, probabilistic dimensionality
reduction, and neural network-based dimensionality reduction. These categories are based
on the generalized eigenvalue problem, latent variables, and neural networks, respectively.
I propose different algorithms in each of these categories (see Fig. 1.2). In the next chapter,
I will explain why these methods are proposed and what problems they are tackling.

In the area of spectral dimensionality reduction, I propose WFDA, RDA, and some
methods in image quality aware embedding (see Fig. 1.2). WFDA weights the pairs of
classes in FDA to consider the different confusion of classes. RDA is a generalization of
several different subspace learning methods based on generalized eigenvalue problem. SSIM
kernel, ISCA, and LLISE are the proposed methods for image quality aware embedding.
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Figure 1.2: The overall structure of the thesis.

In the category of probabilistic dimensionality reduction, I propose QQE which deals with
the distribution of data and embedding. Neural network-based dimensionality reduction
methods can be either shallow or deep networks. For shallow networks, I propose the
backprojection algorithm for training the feedforward networks which can be used for
discriminating classes. For deep networks, I propose several methods for Siamese triplet
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networks [118]. Because of similarity of the goals of FDA, triplet loss [118], and contrastive
loss [65], I propose FDT and FDC losses for training triplet nets. Moreover, for the sake
of dynamic triplet sampling, I propose BUT and BUNCA which use Bayesian updating
theorem [101].

Note that in some of the proposed dimensionality reduction methods, I also propose
the kernel version of method. Here, I explain the intuitive reason for the proposal of kernel
variants. In the input space, the pattern of data may be nonlinear or complicated. Using
a pulling function, which maps data from the input space to a usually high dimensional
feature space, the pattern of data hopefully gets simpler or more linear. Therefore, using
the kernel variants of methods, I hope to deal with simpler data.

1.4.2 Numerosity Reduction

The numerosity reduction methods, focused on prototype selection, can be based on vari-
ance, geometry, or isolation (see Fig. 1.2). Based on variance, I propose PSA and IRMD.
PSA deals with the inter-class and intra-class variances of data for ranking the data in-
stances. IRMD decomposes the matrix of data and uses the informative bases of data
which can be the most variant directions of data, for example. As a method based on
geometry, I propose iCAD and kernel iCAD which make use of the polyhedron curvature
by looking at every data point as a vertex of polyhedron. Note that an opposite view to
numerosity reduction can help for the task of anomaly detection. Hence, I also propose
CAD which uses the concept of polyhedron curvature for anomaly detection. iMondrian
forest, which is a novel hybrid of isolation forest and Mondrian forest, is proposed for an
isolation-based anomaly detection method. Note that the iMondrian forest project is not
my main project and I was just a collaborator/coauthor in that project. In the next chap-
ter, I will explain why these methods are proposed and what problems they are tackling.
It is noteworthy that I also propose the kernel variants of some of the proposed numerosity
reduction methods. The reason for this is the same as the explained reason for kernel
variants of dimensionality reduction methods.

1.4.3 Applications

In addition to proposing methods in dimensionality reduction and numerosity reduction, I
also propose or use some data reduction methods for different applications. My application
methods can be divided into two main categories, i.e., medical image analysis (focused
on histopathology data [77]) and image processing & computer vision (see Fig. 1.2). I
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apply the proposed theoretical methods in some applications. In medical image analysis,
in collaboration with the KIMIA lab in the University of Waterloo, I worked on digital
histopathology image embedding, where histopathology refers to the diagnosis and study
of diseases of the body tissues. In the fields of image processing and computer vision, I
propose some methods for face and action recognition based on the proposed RDA, as well
as image denoising using the proposed CAD method.

In medical image analysis, I use Fisher losses, i.e. FDT and FDC losses, for embedding
of histopathology data. I also mine triplets based on extreme distances of histopathology
patches in both offline and online manners. The proposed BUT and BUNCA losses are also
applied to embed the histopathology patches. For image processing and computer vision, I
apply the proposed RDA subspace learning method in the fields of face recognition and 3D
action recognition, by proposing Roweisfaces and Roweisposes, respectively. Finally, the
concepts of an anomaly landscape and anomaly path are proposed, using CAD, for making
an anomaly normal or vice versa. These concepts can be used for image denoising. In the
next chapter, I will explain why these methods are proposed and what problems they are
tackling.

1.4.4 Outline of Thesis

Chapter 1 introduces the data reduction problem, its taxonomy, its related work, and the
open problems addressed in this thesis. Chapter 2 reviews the related work, introduces
the technical background, and reports the open problems in data reduction for machine
learning. Chapter 3 proposes several algorithms in the three categories of dimensionality
reduction, i.e., spectral dimensionality reduction, probabilistic dimensionality reduction,
and neural network-based dimensionality reduction. I also propose several algorithms in the
three categories of numerosity reduction, i.e. variance based, geometry based, and ensemble
methods, in Chapter 4. Some proposed applications of data reduction are demonstrated
in Chapter 5. The experimental results of the thesis are reported in Chapter 6. Finally,
Chapter 7 summarizes the thesis, concludes the thesis with some discussions, and highlights
the other open problems to indicate the possible future directions.
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Chapter 2

Related Work, Background, and
Open Problems

This chapter reviews the related work and explains the technical background. It also ex-
plains the open problems, in data reduction, which are tackled in this thesis and enumerates
the contributions of this thesis. In Section 2.1, the related work for dimensionality reduc-
tion and numerosity reduction are introduced. The technical background are explained in
Section 2.2. Then, Section 2.3 reports some open problems in dimensionality reduction and
numerosity reduction. The proposed algorithms in this thesis tackle these open problems;
hence, the contributions of this thesis are introduced.

2.1 Related Work

In this section, I review the related work for both dimensionality reduction and numerosity
reduction.

2.1.1 Related Work for Dimensionality Reduction

Dimensionality reduction methods can be divided into three categories, i.e., spectral di-
mensionality reduction, probabilistic dimensionality reduction, and neural network-based
dimensionality reduction which have geometric, probabilistic, and information-theoretic
points of view to dimensionality reduction, respectively.
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2.1.1.1 Spectral Dimensionality Reduction

The methods in spectral dimensionality reduction reduce to eigenvalue decomposition and
generalized eigenvalue problem [42]. They use a geometric approach and they unfold the
manifold in a lower dimensional subspace.

Some unsupervised methods within the spectral approach are PCA [35], MDS [16, 38],
Sammon mapping [113], LE [7, 87], Isomap [126], LLE [110, 114], and graph embedding
[63]. PCA [35] is a linear method for feature extraction. It captures the directions of data
with most variance. Dual PCA is also useful in case the dimensionality of data is high
where PCA might face some computational problems. Moreover, dual PCA provides inner
products required for the kernel trick used in kernel PCA. MDS [16] is also a linear method
if we use Euclidean distance for it. MDS tries to preserve the similarities of data points in
the embedded space and it is equivalent to PCA [85].

Sammon mapping [113], which is closely related to MDS [85], tries to preserve the
distances rather than similarities. Sammon mapping is a non-linear method [113]. Isomap
[126] is also related to MDS. It uses geodesic distance rather than Euclidean distance in the
formulation of kernel [16, 66]. Because of geodesic distance, Isomap is a non-linear method.
LLE [110, 114], however, has another point of view to non-linear manifold learning. It tries
to linearly reconstruct every data point by its neighbors in the original space and it uses the
same weights of linear reconstruction for embedding in the low dimensional space. Kernel
LLE [148] performs the stages of finding neighbors and linear reconstruction in the feature
space. LE [7], as another non-linear method, tries to preserve the similarities of data points
in the embedded space.

It can be shown that PCA, MDS, and Isomap are all kernel PCA with their own
kernels [66]. Therefore, the idea of Maximum Variance Unfolding (MVU) or Semi-Definite
Embedding (SDE) [136] proceeds from the question “why don’t we find the best possible
kernel which finds the kernel capturing the most variant direction of data to unfold it?”
MVU uses semi-definite embedding optimization and thus it is iterative and slow to train
relative to many spectral dimensionality reduction methods.

We can also have supervised dimensionality reduction methods which take the class la-
bels into account. A promising subspace learning method is Supervised Principal Compo-
nent Analysis (SPCA) [4] which uses the Hilbert-Schmidt Independence Criterion (HSIC)
[64]. HSIC is a measure whose idea is to calculate the dependence of two random variables
by measuring their correlation in Hilbert space. SPCA reduces to PCA if we do not con-
sider the relation of the class labels. Another supervised method is FDA [43] which uses
the within- and between-class scatters of data. FDA is equivalent to linear discriminant
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analysis [33]. Kernel FDA [99] performs FDA in the feature space by this rule that any
solution in the feature space must lie in the span of all the training vectors mapped to
the feature space. A problem with the spectral methods is not handling relatively large
number of instances because of the overhead of eigenvalue problems.

2.1.1.2 Probabilistic Dimensionality Reduction

The probabilistic dimensionality reduction methods have a probabilistic approach where
it is assumed that there is low dimensional latent variable which has caused the high
dimensional variable and we need to infer and discover that latent variable. Some of the
methods in this category use graphical models. The benefit of a probabilistic approach
over the spectral methods is handling missing data. Please note that I explain the neural
network-based probabilistic methods in the category of neural network-based methods for
the sake of better organization.

Some examples of probabilistic dimensionality reduction are factor analysis [27], whose
nonlinear extension is the variational autoencoder [81], probabilistic PCA, probabilistic
linear discriminant analysis, and probabilistic FDA which cast the spectral methods to the
probabilistic approach. Some other examples are Stochastic Neighbor Embedding (SNE)
[69] and t-SNE [94, 131] where Gaussian and Student-t distributions are considered for the
embedded space, respectively. A recent successful method is the Uniform Manifold Ap-
proximation and Projection (UMAP) [98] which optimizes over the probability of closeness
of graphs in the input and embedded spaces. An advantage of the probabilistic methods
is being relatively robust to noise because of their stochastic behaviour.

2.1.1.3 Neural Network-Based Dimensionality Reduction

The neural network-based dimensionality reduction category has an information theoretic
approach where the middle of the neural network or autoencoder is seen as a bottleneck
of information which keeps only the useful and important information.

Some examples are restricted Boltzmann machine and deep belief network [70] which are
fundamental dimensionality reduction methods in a network structure. They were proposed
in order to make the networks deep without the problem of vanishing gradients. Another
example is autoencoder where the latent embedding space is encoded by a middle layer of a
possibly deep autoencoder. There is also deep metric learning [80] which encodes data in an
embedding space trained by deep neural network. It tries to increase and decrease the inter-
and intra-class variances of data, respectively [60]. Note that metric learning can be seen
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as dimensionality reduction because it can be seen as linear or nonlinear projection onto
the embedding space and then applying Euclidean distance in that space. In variational
autoencoder [81], the latent space is tended to have a specific distribution such as Gaussian.
Another example is adversarial autoencoder [95] which uses a game-theoretic optimization
for encoding.

Recently, some deep metric learning methods have been proposed which focus on max-
imizing and minimizing the inter-class and intra-class variances of data [60]. A Siamese
network is a set of several (typically two or three) networks which share weights with each
other [118]. The weights are trained using a loss based on anchor, neighbor (positive),
and distant (negative) samples, where anchor and neighbor belong to the same class, but
the anchor and distant instances are in different classes. The loss functions used to train
a Siamese network usually make use of the anchor, neighbor, and distant samples, trying
to pull the anchor and neighbor towards one another and simultaneously push the anchor
and distant tiles away from each other. Two different loss functions, which are used for
training Siamese networks, are triplet loss [118] and contrastive loss [65] for networks with
three and two sub-networks, respectively. Neighborhood Component Analysis (NCA) [61]
and Proxy-Neighborhood Component Analysis (PNCA) [100] are also softmax forms of the
triplet loss which are used for training Siamese nets. Sampling triplets from data points
can be done using triplet mining. Some of the existing triplet mining methods are Batch
ALL (BA) [19], Batch Semi-Hard (BSH) [118], Batch Hard (BH) [68], Easiest Positive (EP)
[141], and Distance Weighted Sampling (DWS) [139]. A problem with the neural network-
based methods is their slower training pace compared to other categories of dimensionality
reduction. An advantage of this category is handling data with large number of instances.

2.1.2 Related Work for Numerosity Reduction

Numerosity reduction methods can be seen in two perspectives. If the important, infor-
mative, and usual points are aimed to be found, the task is named prototype selection. In
contrary, if the anomaly or unusual points are aimed to be found, we deal with the task of
anomaly detection. In this section, I review the related work for both of these approaches.

2.1.2.1 Prototype Selection

One of the methods of numerosity reduction is prototype selection [28] in which the infor-
mative instances from a dataset are selected and the rest is discarded. Prototype selection
is also known by other names such as instance selection, instance ranking, and numerosity
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reduction [76, 28]. In ENN [138], instances surrounded by a majority of neighbors from
other classes are removed. The DROP [137] removes instances one by one if the number
of neighbor instances which are correctly classified improves after omitting the instance.
Among DROP1 to DROP5 algorithms [137], DROP3 has the best accuracy-time trade-off;
however, its time complexity is not good. There are also some heuristic prototype selec-
tion methods such as Random Mutation Hill Climbing [123] which finds the best instances
using mutations and testing the accuracy fitness. Heuristic methods usually take a notice-
able amount of time to run. Some methods focus on the boundary and median points,
such as Stratified Ordered Sampling (SOS) [76] which concentrates on selecting boundary
instances and recursively finds the median instances. Shell Extraction (SE) [89] defines a
reduction sphere and removes the instances in it, resulting in a shell of boundary points.

2.1.2.2 Anomaly Detection

Local Outlier Factor (LOF) [11] is one of the well-known anomaly detection algorithms.
It defines a measure for local density for every data point according to its neighbors. It
compares the local density of every point with its neighbors and finds the anomalies. One-
class Support Vector Machine (SVM) [117] is another method which estimates a function
which is positive on the regions of data with high density and negative elsewhere. Therefore,
the points with negative values of that function are considered as anomalies. If the data
are assumed to have Gaussian distribution as the most common distribution, an Elliptic
Envelope (EE) can be fit to the data [109] and the points having low probability in the
fitted envelope are considered to be anomalies. Isolation forest [90] is an isolation-based
anomaly detection method which isolates the anomalies using an ensemble approach. The
algorithm takes advantage of the observation that many anomalous points will be very
easily isolated to a leaf of size one by a by a very simple tree splittings algorithm. In this
method, the ensemble includes isolation trees where the greater the depth of tree needed
to isolate a point, the more normal the point is judged to be.

2.2 Technical Background

In this section, I review technical background for the proposed methods in this thesis.
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2.2.1 Linear Subspace Learning Based on Generalized Eigen-
value Problem

In linear subspace learning, the d-dimensional data X ∈ Rd×n are projected onto the p-
dimensional (where p ≤ d) column space of a projection matrix denoted by U ∈ Rd×p. The
low dimensional projected data are U>X. Many of the linear subspace learning methods
have solutions based on generalized eigenvalue problem. These methods are in the spectral
dimensionality reduction category.

PCA rotates data to align with the most variant directions. In its subspace, the most
variant directions of data are preserved [74, 35]. The optimization problem in PCA is
expressed as [74, 35]:

maximize
U

tr(U>ST U), subject to U>U = I, (2.1)

where ST ∈ Rn×n is the total scatter or the covariance matrix:

Rn×n 3 ST := X̆X̆
>

= XHHX> = XHX>, (2.2)

where Rn×n 3H := I − (1/n)11> is the idempotent centering matrix and X̆ := XH .

On the other hand, FDA [25] maximizes the inter-class variance and minimizes the
intra-class variance in order to reduce the confusion of classes. For this, it maximizes the
Fisher criterion [43]:

maximize
U

tr(U>SB U), subject to U>SW U = I, (2.3)

where SB and SW are the between (inter-class) and within (intra-class) scatters, respec-
tively. The total scatter can be considered as the summation of the between and within
scatters [144]:

ST = SB + SW =⇒ SB = ST − SW . (2.4)

Therefore, the optimization in FDA can be:

maximize
U

tr(U>ST U), subject to U>SW U = I. (2.5)

SPCA [4] uses the empirical estimation of the HSIC [64]. It uses HSIC for the projected
data U>X and the labels Y and maximizes the dependence of them. Its optimization is
[4, 35]:

maximize
U

tr(U>XHKyHX
>U), subject to U>U = I, (2.6)

whereKy is the kernel matrix over the labels. Comparing Eqs. (2.1), (2.5), and (2.6) shows
that these methods belong to a family of methods based on eigenvalue and generalized
eigenvalue problems. This gave me a motivation to propose RDA.
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2.2.2 Structural Similarity Index

SSIM is useful for image quality assessment. It has been shown to be more effective
than MSE for image fidelity measures [134]. I require this for the proposed image quality
aware embedding methods (see Section 3.1.3). SSIM between two reshaped image patches

x̆1 = [x
(1)
1 , . . . , x

(q)
1 ]> ∈ Rq and x̆2 = [x

(1)
2 , . . . , x

(q)
2 ]> ∈ Rq, in color intensity range [0, 255],

is [135, 133]:

R 3 SSIM(x̆1, x̆2) :=

(
2µx1µx2 + c1
µ2
x1

+ µ2
x2

+ c1

)(
2σx1σx2 + c2
σ2
x1

+ σ2
x2

+ c2

)(
σx1,x2 + c3
σx1σx2 + c3

)
, (2.7)

where µx1 = (1/q)
∑q

i=1 x
(i)
1 , σx1 =

[(
1/(q − 1)

)∑q
i=1(x

(i)
1 − µx1)

2
]0.5

, σx1,x2 =
(
1/(q −

1)
)∑q

i=1(x
(i)
1 − µx1)(x

(i)
2 − µx2), c1 = (0.01× 255)2, c2 = 2 c3 = (0.03× 255)2, and µx2 and

σx2 are defined similarly for x̆2.

Because of c2 = 2 c3, the SSIM is simplified to SSIM(x̆1, x̆2) = s1(x̆1, x̆2)× s2(x̆1, x̆2),
where s1(x̆1, x̆2) := (2µx1µx2 + c1)/(µ

2
x1

+ µ2
x2

+ c1) and s2(x̆1, x̆2) := (2σx1,x2 + c2)/(σ
2
x1

+
σ2
x2

+ c2). Because of spatial variety of image statistics, the SSIM is usually computed
for patches of an image. A sliding window moves pixel by pixel on the two images and
calculates the SSIM(x̆1, x̆2) for every patch. I denote the reshaped vectors of the two
images by x1 ∈ Rd and x2 ∈ Rd, and a reshaped patch in the two images by x̆1 ∈ Rq and
x̆2 ∈ Rq. Therefore, an SSIM vector denoted by s(x1,x2) ∈ Rd is obtained whose i-th
element is SSIM for the patch around the i-th pixel.

Note that since c2 = 2 c3, SSIM can be simplified to SSIM(x̆1, x̆2) = s1(x̆1, x̆2) ×
s2(x̆1, x̆2), where:

s1(x̆1, x̆2) := (2µx1µx2 + c1)/(µ
2
x1

+ µ2
x2

+ c1), (2.8)

s2(x̆1, x̆2) := (2σx1,x2 + c2)/(σ
2
x1

+ σ2
x2

+ c2) (2.9)

If the vectors x̆1 and x̆2 have zero mean, i.e., µx1 = µx2 = 0, the SSIM becomes R 3
SSIM(x̆1, x̆2) = (2x̆>1 x̆2 + c)/(||x̆1||22 + ||x̆2||22 + c), where c = (q − 1) c2 [105]. I denote
the reshaped vectors of the two images by x1 ∈ Rd and x2 ∈ Rd, and a reshaped block in
the two images by x̆1 ∈ Rq and x̆2 ∈ Rq. The distance based on SSIM, which I denote by
||.||S, is [105, 12]:

R 3 ||x̆1 − x̆2||2S := 1− SSIM(x̆1, x̆2) =
||x̆1 − x̆2||22

||x̆1||22 + ||x̆2||22 + c
, (2.10)

where µx1 = µx2 = 0. There exists another SSIM distance, defined as [12]:

R 3 ||x̆i − x̆j||S :=
√

2− s1(x̆i, x̆j)− s2(x̆i, x̆j). (2.11)
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2.2.3 Quantile and Quantile-Quantile Plots

Quantile and quantile-quantile plots are used for visual statistical tests to see how different
from or similar to a references distribution the distribution of data is [103]. I require
them for my proposed QQE (see Section 3.2.1). In the following, I review the technical
background for quantile and quantile-quantile plots.

2.2.3.1 Quantile Function and Quantile Plot

The quantile function for a distribution is defined as [103]:

Q(p) := F−1(p) := inf{x | F (x) ≥ p}, (2.12)

where p ∈ [0, 1] is called position and F (x) is the CDF. The two-dimensional plot (p,Q(p))
is called the quantile plot. If we have a drawn sample, with sample size n, from a distri-
bution, the quantile plot is a sample (or empirical) quantile. The sample quantile plot is
(pi, Q(pi)),∀i ∈ {1, . . . , n}. For the sample quantile, we can determine the i-th position,
denoted by pi, as:

pi :=
i− α

n− α− β + 1
, (2.13)

where different values for α and β result in different positions.

For the multivariate quantile plot, spatial rank fulfills the role played by position in the
univariate case. Spatial rank ui ∈ Rd of xi ∈ Rd with respect to the sample {xj}nj=1 is
defined as [18]:

ui :=
1

n

n∑
j=1,j 6=i

xi − xj
‖xi − xj‖2

, (2.14)

whose term in the summation is a generalization of the sign function for the multivariate
vector [96]. The multivariate spatial quantile (or geometrical quantile) for the multivariate
spatial rank u ∈ Rd is defined as:

Q(u) := arg min
θ∈Rd

E(Φ(u,x− θ)− Φ(u,x)), (2.15)

where x ∈ Rd is a random vector, Φ(u, t) := ‖t‖2 + u>t, and u is a vector in unit ball,
i.e., u ∈ {v | v ∈ Rd, ‖v‖2 < 1} [18].
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2.2.3.2 Quantile-Quantile Plot

Assume we have two quantile functions for two univariate distributions. If we match their
positions and plot (Q1(p), Q2(p)),∀p ∈ [0, 1], we will have quantile-quantile plot or qq-plot in
short [103]. Again, this plot can be an empirical plot, i.e., (Q1(pi), Q2(pi)), ∀i ∈ {1, . . . , n}.
Usually, as a statistical test, we want to see whether the first distribution is similar to
the second empirical or theoretical distribution [103]. Note that if the qq-plot of two
distributions is a line with slope 1 (angle π/4) and intercept 0, the two distributions have
the same distributions [103]. The slope and the intercept of the line show the difference of
spread and location of the two distributions, respectively.

In order to extend the qq-plot to multivariate distributions, we can consider the marginal
quantiles. However, this fails to take the dependence of marginals into account [18]. There
exist different methods for a promising generalization. One of these methods is fuzzy qq-
plot [21] (note that it is not related to fuzzy logic). In a fuzzy qq-plot, a sample of size n is
drawn from the reference distribution and the data points of the two samples are matched
using optimization. An affine transformation is also applied to the observed sample in
order to have an invariant comparison to the affine transformation. In the multivariate qq-
plot, the matched data points are used to plot the qq-plots for every component; therefore,
we will have d qq-plots where d is the dimensionality of data. Note that these plots are
different from the d qq-plots for the marginal distributions. The technical detail of fuzzy
qq-plot is explained in the following.

2.2.3.3 Multivariate Fuzzy Quantile-Quantile Plot

Assume we have a dataset with size n and dimensionality d, i.e., {xi ∈ Rd}ni=1. We want
to transform its distribution as xi 7→ yi,∀i ∈ {1, . . . , n}. We draw a sample {yi ∈ Rd}ni=1

of size n from the desired (reference) distribution. Note that in case we already have
a reference sample {yi ∈ Rd}mi=1 rather than the reference distribution, we can employ
bootstrapping or oversampling if m > n and m < n, respectively, to have m = n. The
data points {xi}ni=1 and {yi}ni=1 are matched by [21]:

minimize
A,b,σ

n∑
i=1

‖xi −Ayσ(i) − b‖22, (2.16)

where A ∈ Rd×d and b ∈ Rd are used to make the matching problem invariant to affine
transformation. If P is the set of all possible permutations of integers {1, . . . , n}, we have
σ ∈ P . This optimization problem finds the best permutation regardless of any affine
transformation.
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In order to solve this problem, one can iteratively switch between solving for A, b, and
σ until there is no change in σ [21]. Given A and b, one can solve:

min.
σ

n∑
i=1

‖xi −Ayσ(i) − b‖22 ≡ min.
Ψ

n∑
i=1

n∑
j=1

C(i, j)Ψ(i, j), (2.17)

which is an assignment problem and can be solved using the Hungarian method [82]. The
C ∈ Rn×n and Ψ ∈ Rn×n are the cost matrix and a matrix with only one 1 in every row,
respectively. Note that Ψ(i, j) = 1 means that the xi and yj are matched. The C should
be computed before solving the optimization where C(i, j) := ‖xi −Ayj − b‖22.

According to the 1’s in the obtained Ψ, we have σ. Then given σ, one can solve:

minimize
A,b

n∑
i=1

‖xi −Ayσ(i) − b‖22, (2.18)

which is a multivariate regression problem. The solution is [26]:

R(d+1)×d 3 β := (Y̆
>
Y̆ )−1Y̆

>
X̆, (2.19)

where Rn×(d+1) 3 Y̆ :=
[
[yσ(1), . . . ,yσ(n)]

>,1n×1
]

and Rn×d 3 X̆ := X> = [x1, . . . ,xn]>.

We will have β = [A, b]>. Therefore, A and b are found where A> is the top d × d
sub-matrix of β and b> is the last row of β.

Note that it is better to set the initial rotation matrix to the identity matrix, i.e.
A(0) = I, for not having much rotation in assignment. In this way, only few iterations
suffice to solve the matching problem. This iterative optimization gives us the matching σ
and the samples {xi}ni=1 and {yi}ni=1 are matched. Then, we have d qq-plots, one for every
dimension. These qq-plots are named fuzzy qq-plots [21]. Considering the spatial ranks,
the quantiles are [18]:

QX(ui) = xi, ∀i ∈ {1, . . . , n}, (2.20)

QY (ui) = yσ(i), ∀i ∈ {1, . . . , n}. (2.21)

2.2.4 Siamese Network and Its Losses

Siamese network is composed of two or three networks sharing their weights which are used
for increasing and decreasing the inter- and intra-class variances of data in the embedding
space [60]. I require this for our proposed Fisher losses (see Section 3.3.2.1) and usage of
Siamese network for histopathology embedding (see Sections 5.1.2, 5.1.3, and 5.1.4). In
the following, I review the technical background for Siamese network and its popular loss
functions.
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2.2.4.1 Siamese Network

Siamese network is a set of several (typically two or three) networks which share weights
with each other [118]. The weights are trained using a loss based on anchor, neighbor
(positive), and distant (negative) samples, where anchor and neighbor belong to the same
class, but the anchor and distant tiles are in different classes. I denote the anchor, neighbor,
and distant samples by xa, xn, and xd, respectively. The loss functions used to train a
Siamese network usually make use of the anchor, neighbor, and distant samples, trying
to pull the anchor and neighbor towards one another and simultaneously push the anchor
and distant tiles away from each other. In the following, two different loss functions are
introduced for training Siamese networks.

2.2.4.2 Triplet Loss for Siamese Network

The triplet loss uses anchor, neighbor, and distant. Let f(x) be the output (i.e., embedding)
of the network for the input x. The triplet loss tries to reduce the distance of anchor and
neighbor embeddings and desires to increase the distance of anchor and distant embeddings.
As long as the distances of anchor-distant pairs get larger than the distances of anchor-
neighbor pairs by a margin α ≥ 0, the desired embedding is obtained. The triplet loss, to
be minimized, is defined as [118]:

`t =
b∑
i=1

[
‖f(xia)−f(xin)‖22−‖f(xia)−f(xid)‖22+α

]
+
, (2.22)

where xi is the i-th triplet sample in the mini-batch, b is the mini-batch size, [z]+ :=
max(z, 0) is the standard Hinge loss, and || · ||2 denotes the `2 norm.

2.2.4.3 Contrastive Loss for Siamese Network

The contrastive loss uses pairs of samples which can be anchor and neighbor or anchor
and distant. If the samples are anchor and neighbor, they are pulled towards each other;
otherwise, their distance is increased. In other words, the contrastive loss performs like
the triplet loss but one by one rather than simultaneously. The desired embedding is
obtained when the anchor-distant distances get larger than the anchor-neighbor distances
by a margin of α. This loss, to be minimized, is defined as [65]:

`c =
b∑
i=1

[
(1−y)||f(xi1)− f(xi2)||22 + y

[
−||f(xi1)− f(xi2)||22 + α

]
+

]
, (2.23)
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where y is zero and one when the pair {xi1,xi2} is anchor-neighbor and anchor-distant,
respectively.

2.2.5 Bayesian Updating Theorem

Bayesian updating theorem is used for updating the parameters of distribution after re-
ceiving some new data; hence, it is useful for online streaming data. I require this for
our proposed BUT and BUNCA (see Section 3.3.2.2) and usage of BUT and BUNCA for
histopathology embedding (see Sections 5.1.5). In the following, I review the technical
background for Bayesian updating and conjugate priors.

2.2.5.1 Bayesian Updating

Let X and θ be two random variables where θ is a parameter of the distribution of X.
According to Bayes’ rule, we have:

P(θ|X) =
P(X|θ)P(θ)

P(X)
=⇒ P(θ|X) ∝ P(X|θ)P(θ), (2.24)

which shows the relation of the posterior P(θ|X), likelihood P(X|θ), and prior P(θ). Given
some data X and the prior over the parameter of interest θ, we want to find the posterior
using Eq. (2.24). This is the basic idea behind Bayesian updating in which the posterior
over the parameter of interest is updated after receiving some new data, i.e., using the new
data X, we have P(θ) 7→ P(θ|X) [75].

2.2.5.2 Conjugate Priors

If the posterior distribution P(θ|X) and the prior distribution P(θ) are in the same probabil-
ity distribution family, they are called conjugate distributions and the prior is the conjugate
prior for the likelihood P(X|θ). Assume there already exist some data, denoted by X0,
and some new data, X ′, are received. The existing data X0 has a distribution with some
parameter(s) θ. The posterior of the parameter of interest, i.e., P(θ|X), can be updated
using the new data. Hence, this can be used to update the parameter(s) of the distribution
of X using the newly received data [75].

Let the data X have a multivariate normal (or Gaussian) distribution, so their like-
lihood is P(X|θ). Assume both the mean and covariance of likelihood are considered as
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random variables, so θ includes mean and covariance. Using the new data X ′, we want to
update the parameters, mean and covariance, of the normal distribution. In this case, the
likelihood P(X|θ) has a multivariate normal distribution, and for updating the posterior,
we should use the conjugate prior for the likelihood. The conjugate prior distribution for
the multivariate normal distribution with both random mean and covariance is the normal-
inverse-Wishart distribution [101]. In my analysis, I also require the skewed generalized
Student-t distribution. For the theory of relevant distributions for dynamic sampling,
please refer to [101, 119].

2.2.5.3 Updates of Parameters for Multivariate Normal Distribution

Assume the distribution of batch of n0 data instances, which we already have, is the
multivariate normal distribution with the mean µ0 and covariance matrix Σ0. If we have
n′ new data instances with mean µ′ and covariance matrix Σ′.

According to Bayesian updating, the mean and covariance of distribution of data can
be updated (see [119]). The mean and covariance matrix of the distribution of data can
be updated by the expectation of marginal distributions for the mean and covariance.
According to the expectations of these two distributions which can be found in [101, 119],
the updates of mean and covariance of the j-th class can be given as:

µ0 ← E(µ |x0) =
n′µ′ + n0µ

0

n′ + n0

, (2.25)

Σ0 ← E(Σ |x0) =
Υ−1

n′+n0−d−1
, ∀n′+n0>d+1, (2.26)

where:

Rd×d 3 Υ :=n′Σ′ + n0Σ
0 +

n′1n0

n′1 + n0

(µ0 − µ′)(µ0 − µ′)>, (2.27)

and µ′, µ0, Σ′, and Σ0 can be calculated by sample mean and sample covariance matrix
using the new batch of data. Note that for n′ + n0 ≤ d + 1, the covariance matrix can be
updated by Maximum Likelihood Estimation (MLE).

2.2.6 Matrix Decomposition and Factorization

Matrix decomposition factorizes the matrix X ∈ Rd×n into multiplication of two matrices
X = UV > where the columns of U ∈ Rd×k and V ∈ Rn×k can be interpreted as bases and
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corresponding coefficients, respectively, and k ∈ Z+, usually k := min(d, n). There exist
many different types of matrix decomposition such as eigenvalue decomposition, Singular
Value Decomposition (SVD), Nonnegative Matrix Factorization (NMF), PLU Decomposi-
tion, QR Decomposition, Cholesky Decomposition, and Dictionary Learning (DL). I use
these for my proposed IRMD (see Section 4.1.2).

SVD decomposes the matrix as X = ŨΛṼ
>

where columns of Ũ ∈ Rd×k are eigen-
vectors (ũ) of X>X, columns of Ṽ ∈ Rn×k are eigenvectors (ṽ) of XX>, Λ ∈ Rk×k is a
diagonal matrix, containing singular values. NMF targets decomposition of a matrix with
nonnegative entries X ∈ Rd×n

≥0 into X = UV > where U ∈ Rd×k
≥0 and V ∈ Rn×k

≥0 are also
nonnegative. PLU decomposition is a method for solving linear systems of equations based
on Gaussian elimination using elementary matrices. It decomposes matrix X ∈ Rd×n as
X = PL̃Ũ where P ∈ Rd×d is the permutation matrix. The matrices L̃ ∈ Rd×k and
Ũ ∈ Rk×n are lower and upper triangular matrices, respectively. The QR decomposi-
tion factorizes the matrix X ∈ Rd×n as X = QR where R ∈ Rk×n is upper triangular
and Q ∈ Rd×k is an orthogonal matrix whose columns, as basis vectors, span the same
space as the columns of X. The DL tries to decompose matrix into Rd×n 3 X = DR
where D ∈ Rd×k is the dictionary whose columns are basis vectors also called atoms, and
Rk×n 3 R = [r1, . . . , rn] is the representation (components).

2.2.7 Polyhedron Curvature

I require the concepts of polyhedron curvature and angular defect in my proposed CAD
algorithm (see Section 4.2.1). In the following, I introduce these concepts.

A polytope is a geometrical object in Rd whose faces are planar. The special cases of
polytope in R2 and R3 are called polygon and polyhedron, respectively. Some examples
for polyhedron are cube, tetrahedron, octahedron, icosahedron, and dodecahedron with
four, eight, and twenty triangular faces, and twelve flat faces, respectively. Consider a
polygon where τj and µj are the interior and exterior angles at the j-th vertex; we have
τj + µj = π. A similar analysis holds in R3 for Fig. 2.1-a. In this figure, a vertex of a
polyhedron and its opposite cone are shown where the opposite cone is defined to have
perpendicular faces to the faces of the polyhedron at the vertex. The intersection of a
unit sphere centered at the vertex and the opposite cone is shown in the figure. This
intersection is a geodesic on the unit sphere. According to Thomas Harriot’s theorem [97],
if this geodesic on the unit sphere is a triangle, its area is µ1+µ2+µ3−π = 2π−(τ1+τ2+τ3).
The generalization of this theorem from a geodesic triangular polygon (3-gon) to an k-gon
is µ1 + · · ·+ µk − kπ + 2π = 2π −

∑k
a=1 τa [97], where the polyhedron has k faces meeting
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Figure 2.1: Polyhedron curvature: (a) polyhedron vertex, unit sphere, and the opposite
cone, (b) large and small curvature, (c) a point and its neighbors normalized on a unit
hyper-sphere around it.

at the vertex.

Rene Descartes defined angular defect at a vertex x of a polyhedron as [17]: D(x) :=
2π−

∑k
a=1 τa. The total defect of a polyhedron is defined as the summation of the defects

over the vertices. It can be shown that the total defect of a polyhedron with v vertices,
e edges, and f faces is: D :=

∑v
i=1D(xi) = 2π(v − e + f). The term v − e + f is Euler-

Poincaré characteristic of the polyhedron; therefore, the total defect of a polyhedron is
equal to its Euler-Poincaré characteristic. According to Fig. 2.1-b, the smaller τ angles
result in sharper corner of the polyhedron. Therefore, I can consider the angular defect as
the curvature of the vertex.

2.2.8 Ensemble Methods

Isolation forest and Mondrian forest are two ensemble methods for batch anomaly detec-
tion and online classification, respectively. I require these two methods in my proposed
iMondrian forest algorithm (see Section 4.3.1). In the following, I introduce these methods.
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2.2.8.1 Isolation Forest

An iForest [90] is an ensemble of isolation trees. An isolation tree is an extremely random-
ized tree where the tree is a proper binary tree and its splitting dimension q and splitting
value p are randomly selected at every node. The tree grows until every leaf includes
exactly one data point, i.e., |X | = 1 in the leaf node. Let h(x) denote the path length
for a data point x in the tree where the path length is defined as the number of edges x
traverses from the root to the leaf it belongs to. The average height of an isolation tree is
log(n). As the structure of the isolation tree is equivalent to the binary search tree, the
estimation of average path length in isolation trees is: c(n) := 2h(n− 1)−

(
2 (n− 1)/n

)
,

where h(i) is the i-th harmonic number, defined as h(i) := ln(i) + 0.5772156649, where the
added constant is the Euler’s constant. The anomaly score of a point x is:

s(x) := 2−E(l(x))/c(n), (2.28)

where E(l(x)) is the expected path length for the data point x among the trees of the
forest:

E(l(x)) :=
1

|F|

|F|∑
t=1

lt(x), (2.29)

where lt(x) is the path length of x in the t-th tree and |F| is the population of trees in the
forest. The intuition of anomaly score in iForests is that the anomalies tend to be isolated
sooner, i.e., shallower in the tree.

2.2.8.2 Mondrian Forest

A Mondrian forest [83] is an ensemble of Mondrian trees which are based on the Mondrian
process. Mondrian processes [111] are families of random hierarchical binary partitions and
probability distributions over tree data structures. While Mondrian processes are infinite
structures, Mondrian trees are restrictions of Mondrian processes on a finite set of points.
Every node r in the Mondrian tree has a split time τr which increases with the depth of
the node. The split time is zero at the root and infinite at the leaves of the tree.

Let B̂r := (ˆ̀
r1, ûr1] × · · · × (ˆ̀

rd, ûrd] for the r-th node, where ˆ̀
rj and ûrj are the lower

and upper bounds of hyper-rectangular block B̂r along dimension j. The Mondrian tree
considers the smallest block containing the data points in a node; therefore, it defines
Br := (`r1, ur1] × · · · × (`rd, urd] where `rj and urj are the lower and upper bounds of
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the smallest hyper-rectangular block Br along dimension j. For a node indexed by r,
let `Xb

= [`r1, . . . , `rd]
> and uXb

= [ur1, . . . , urd]
>; thus, `Xb

:= min({x(b)
i | ∀i}) and

uXb
:= max({x(b)

i | ∀i}) where Xb = {x(b)
i } = {xi | xi ∈ Br}. For the r-th node, the

split time of a node is determined as τparent(j) + e where e is a random variable from an
exponential distribution with a rate which is a function of `Xb

and uXb
. Depending on

whether the split time of the node is smaller or greater than the split time of its parent,
it is put before or after the parent node in the tree. Mondrian trees can be updated with
new data making them suitable for online streaming domains.

2.3 Open Problems in Data Reduction & Contribu-

tions of Thesis

In this section, I list several open problems in different categories of dimensionality and
numerosity reduction and I explain which of my proposed methods have tackled those
problems. In this thesis, I build a taxonomy for data reduction (as seen in Fig. 1.2) and
try to fill the gaps and open problems in every category of this taxonomy. Moreover, I
apply the proposed methods to application domains. I look for insights into understanding
features, dimensions, and instances in data. Since the cutting edge of deep learning usually
does not do this analysis, I try to tie theoretical knowledge about manifolds into the modern
machine and deep learning. Note that Chapters 3 and 4 are my contributions and Chapter
5 is my contributions in different applications.

2.3.1 Open Problems & My Contributions in Dimensionality Re-
duction

There are several open problems in manifold learning (dimensionality reduction) which I
address in this proposal.

2.3.1.1 Open Problems in Spectral Dimensionality Reduction

• A problem with the supervised subspace learning methods is that they see the pairs
of classes with the same eye; although, the distances and confusion of classes are
different from each other. A weighting procedure can be useful for addressing this
issue; the proposed WFDA does this.
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• There exist several spectral dimensionality reduction methods which are based on the
generalized eigenvalue problem [42]. One can propose a novel spectral dimensionality
reduction method which uses the optimization of generalized eigenvalue problem. I
propose RDA which uses this general form of optimization and, therefore, generalizes
PCA, SPCA, and FDA.

• A problem is that most of the manifold learning methods, such as PCA, and LLE,
use MSE or `2 norm in their formulation. However, in image fidelity assessment, it is
shown that MSE is not promising enough [134]. SSIM [135, 133] has shown its merit
in image quality assessment. The SSIM considers luminance, contrast, and non-
structural distortions all together but gives more attention to structural distortions
which are more noticed by human vision. I tackle this problem by proposing image
structure manifold which captures the intrinsic features of an image in terms of
structural similarity and distortions and can discriminate the various types of image
distortions. Three methods, which are SSIM kernel, ISCA, and LLISE, are proposed
for learning this manifold.

2.3.1.2 Open Problems in Probabilistic Dimensionality Reduction

• An open problem of the dimensionality reduction methods is that these methods
either do not specify the distribution of the embedded data points in the embedded
space and merely focus on preserving the local or global distances, such as LLE
[110], Isomap [126], MVU [136], and Sammon mapping [113], or they only restrict
the distribution in the embedded space to be a specific distribution, such as SNE
[69] and t-SNE [94]. There is a lack of a method in the literature which gives the
user a freedom to choose the distribution in the embedding space. In this proposal,
I propose QQE which tackles this problem. The proposed QQE is capable of both
distribution transformation and manifold embedding where the desired distribution
can be chosen by the user.

2.3.1.3 Open Problems in Neural Network-based Dimensionality Reduction

• After the tremendous progress of neural networks trained by backpropagation [112],
it is a good time to move on to newer trainign algorithms for neural networks to have
more insights in neural nets; Geoffrey Hinton has said in one of his recent seminars.
My proposed backpropagation is a novel training algorithm for neural networks with
a projection based perspective.
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• Triplet [118] and contrastive [65] losses for training the Siamese triplet networks
have conceptual similarities with FDA because in both Siamese network and FDA,
the inter-class and intra-class variances are tried to be maximized and minimized,
respectively. For this similarity, one can propose a fusion of these methods for the
sake of deep metric learning. The proposed Fisher losses, FDT and FDC losses, are
the result of this fusion.

• There is a degree of freedom in triplet mining for training Siamese networks. It is
how the triplets are sampled. It is shown in [139] that sampling of the triplets also
matters in learning deep embeddings. With Siamese triplet networks, drawing more
informative and stable triplets from the pool of samples will lead to qualitatively more
salient embeddings. The sampling based triplet mining methods in the literature
sample the triplets from the existing embedded data instances [139] so it does not
use the stochastic information of the embedding space. By proposing BUT and
BUNCA, I draw the positive and negative samples for every anchor instance in a
dynamic manner stochastically.

2.3.2 Open Problems & My Contributions in Numerosity Re-
duction

There are several open problems in numerosity reduction and anomaly detection which I
address in this thesis.

2.3.2.1 Open Problems in Algorithms Based on Variance & Geometry

• As surveyed in [28], most of the numerosity reduction methods are proposed merely
for classification. However, regression and clustering are also important in pattern
recognition. Some of the proposed methods, such as DROP [137] and ENN [138],
cannot be used for regression and clustering while some other methods, such as SOS
[76] and SE [89], can be slightly modified to be useful for these tasks although their
papers only tackle classification. The proposed PSA, IRMD, and CAD are task
agnostic.

• Most of, but not all of, the numerosity reduction methods do not rank the data and
just retain a subset of data by removing the rest of data. The scoring or ranking
of data instances can have important information. For example, with the opposite
perspective to prototype selection, it can be used for anomaly or outlier detection.
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Also, it is common in eigenvalue based feature extraction methods, such as PCA, to
order the projection directions. This ordering can be applied in prototype selection
using ranking the instances. An example of existing methods which rank instances
is SOS. The proposed PSA, IRMD, and CAD are capable of ranking the instances.

• There is a gap in numerosity reduction and anomaly detection for methods based
on geometry. The proposed CAD and iCAD and their kernel variants are based
on polyhedron curvature and give a geometrical insight to the problem. Because of
this insight, the concepts of anomaly landscape and anomaly path are also proposed
which can be used for image denoising.

2.3.2.2 Open Problems in Algorithms Based on Ensemble Learning

• On one hand, isolation forest is an existing method for batch anomaly detection.
Isolation forest is not capable of handling streaming data. On the other hand, Mon-
drian forest is an existing method for online random forest. One can fuse these two
methods for having online anomaly detection. The proposed iMondrian forest is a
novel hybrid of isolation forest and Mondrian forest. iMondrian forest takes the idea
of isolation, using the depth of a node in a tree, and implements it in the Mondrian
forest structure. The result is a new data structure which can accept streaming data
in an online manner while being used for anomaly detection.

2.3.3 Open Problems & My Contributions in Applications of
Data Reduction

There are some open problems in applications of data reduction, which I tackle in this
thesis.

2.3.3.1 Open Problems in Medical Image Analysis

• Embedding the histopathology patches requires to embed the similar patterns close
to each other and put the different patterns far from one another. This results
in increasing the inter-class variance (variances of different patches) and decreasing
the intra-class variance (variances of similar patches) in the embedded data. This
reminds us of the intuition of FDA (see Section 2.2.1). Hence, one can embed the
histopathology data using the proposed Fisher losses.
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• Training the triplet Siamese networks requires triplets of anchor, positive, and neg-
ative patches. Most of the triplet mining methods, use extreme distances (near-
est/farthest neighbors) within the batch. There is gap of methods which use the
triplets with extreme distances in the whole dataset, in an offline manner. As the
patterns of histopathology data are similar and dissimilar in different tissue types,
this offline mining can be effective in histopathology triplet mining. I propose offline
triplet mining to tackle this issue.

• In online triplet mining, the triplets are usually sampled from the existing embed-
ded batch instances. However, one can consider the distribution of embedded data
stochastically and draw triplet samples from the distribution. The proposed BUT
and BUNCA algorithms are used for online triplet sampling for histopathology data.

2.3.3.2 Open Problems in Image Processing & Computer Vision

• Eigenfaces [130] and Fisherfaces [6] have been proposed in the literature for subspace
learning for the sake of face recognition. However, facial subspace learning based on
generalized eigenvalue problem can be generalized using the proposed RDA in this
thesis. My proposed Roweisfaces generalize the methods of eigenfaces and Fisherfaces
for face recognition.

• Fisherposes [56] is a 3D action recognition method which makes use of FDA for sub-
space learning for embedding the body poses. The proposed RDA can be used to
generalize this method for embedding the body poses for the sake of action recogni-
tion. The proposed Roweisposes generalizes eigenposes, supervised eigenposes, and
Fisherposes.

• There exist different image denoising methods; however, a possible approach for a
geometrical approach exists for image denoising. The proposed anomaly path, in the
CAD method, is used for image denoising using anomaly paths. This method has
a geometrical approach where the noisy images can be seen as a vertex with high
curvature in a polyhedron.

2.4 Summary of the Chapter

This chapter reviewed the related literature for spectral, probabilistic, and neural network-
based dimensionality reduction as well as the prototype selection and anomaly detection ap-
proaches for numerosity reduction. I explained the technical background of linear subspace
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learning based on generalized eigenvalue problem, SSIM, quantile-quantile plot, Siamese
network, triplet loss, contrastive loss, Bayesian updating theorem, matrix decomposition,
polyhedron curvature, isolation forest, and Mondrian forest. Finally, the open problems
and my contributions were explained in dimensionality reduction, numerosity reduction,
and application of data reduction. Please note that I have mentioned all required back-
ground in this chapter so that chapters 3 and 4 purely include all my contributions. More-
over, chapter 5 contains my proposed methods for applications of data reduction.
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Chapter 3

Proposed Algorithms for
Dimensionality Reduction

Dimensionality reduction tries to find a new set of features by finding a discriminative sub-
space or embedding space. In this chapter, I propose several algorithms for dimensionality
reduction. Note that the algorithms, which are proposed in this thesis, are developed based
on the mathematics and techniques developed in previous work, introduced in Chapter 2.
This chapter divides dimensionality reduction into three categories which are spectral (Sec-
tion 3.1), probabilistic (Section 3.2), and neural network-based (Section 3.3) dimensionality
reduction methods. In spectral category, it proposes WFDA (Section 3.1.1), RDA (Section
3.1.2), and image quality aware embedding (Section 3.1.3) where the last contains three
proposed methods, i.e., SSIM kernel (Section 3.1.3.2), ISCA (Section 3.1.3.3), and LLISE
(Section 3.1.3.4). This chapter also proposes QQE (Section 3.2.1) in the probabilistic di-
mensionality reduction group. It divides the neural network-based methods into shallow
and deep nets where backprojection (Section 3.3.1) is proposed for the former and Fisher
losses (FDT and FDC losses) (Section 3.3.2.1), as well as BUT and BUNCA (Section
3.3.2.2), are proposed in the latter. Note that some applications of these methods, in the
fields of medical image analysis, image processing, and computer vision, will be proposed
in Chapter 5.

3.1 Spectral Dimensionality Reduction

In the following, I propose new algorithms for spectral dimensionality reduction. My
proposed methods are WFDA, RDA, and image quality aware embedding (including SSIM
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kernel, ISCA, and LLISE).

3.1.1 Weighted Fisher Discriminant Analysis

In this section, I propose WFDA, including CW-FDA and AW-FDA, and Weighted Kernel
FDA (W-KFDA), including Cosine Weighted Kernel FDA (CW-KFDA), AW-KFDA.

3.1.1.1 Motivation and Formulation

FDA, explained in Section 2.2.1 treats all pairs of classes in the same way (see Eq. (2.3));
however, some classes might be much further from one another compared to other classes.
In other words, the distances of classes are different. Treating closer classes need more at-
tention because classifiers may more easily confuse them whereas classes far from each other
are generally easier to separate. Hence, a weighting procedure might be more appropriate.
The optimization in WFDA is:

maximize
U

tr(U>ŜB U),

subject to U>SW U = I,
(3.1)

where the SW ∈ Rd×d and SB ∈ Rd×d are the intra-class (within) and weighted inter-class
(between) scatters, respectively [43]:

SW :=
c∑

r=1

nr∑
i=1

nr(x
(r)
i − µ(r))(x

(r)
i − µ(r))> =

c∑
r=1

nr X̆r X̆
>
r , (3.2)

ŜB :=
c∑

r=1

c∑
`=1

αr` nr n`(µ
(r) − µ(`))(µ(r) − µ(`))> =

c∑
r=1

nrM rArNM>
r , (3.3)

where Rd×nr 3 X̆r := [x
(r)
1 − µ(r), . . . ,x

(r)
nr − µ(r)], Rd×c 3M r := [µ(r) − µ(1), . . . ,µ(r) −

µ(c)], and Rc×c 3 N := diag([n1, . . . , nc]
>). The mean of the r-th class is Rd 3 µ(r) :=

(1/nr)
∑nr

i=1 x
(r)
i . Also, R 3 αr` ≥ 0 is the weight for the pair of the r-th and `-th

classes, Rc×c 3 Ar := diag([αr1, . . . , αrc]). In FDA, we have αr` = 1, ∀r, ` ∈ {1, . . . , c}.
However, it is better for the weights to be decreasing with the distances of classes to
concentrate more on the nearby classes. I denote the distances of the r-th and `-th classes
by dr` := ||µ(r) − µ(`)||2. The solution of Eq. (3.1) is the generalized eigenvalue problem

(ŜB,SW ) [42].
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3.1.1.2 Cosine Weighted Fisher Discriminant Analysis

Literature has shown that cosine similarity works very well with FDA. Moreover, according
to the opposition-based learning [128], capturing similarity and dissimilarity of data points
can improve the performance of learning. A promising operator for capturing similarity and
dissimilarity (opposition) is cosine. Hence, I propose CW-FDA, as a manually weighted
method, with cosine to be the weight defined as:

αr` := 0.5×
[
1 + cos

(
](µ(r),µ(`))

)]
= 0.5×

[
1 +

µ(r)>µ(`)

||µ(r)||2||µ(`)||2
]
, (3.4)

to have αr` ∈ [0, 1]. Note that as I do not care about αr,r, because inter-class scatter for
r = ` is zero, I set αrr = 0.

3.1.1.3 Automatically Weighted Fisher Discriminant Analysis

In AW-FDA, at the same time where we want to maximize the Fisher criterion, the optimal
weights are found. Hence, there are c + 1 matrix optimization variables which are V and
Ak ∈ Rc×c,∀k ∈ {1, . . . , c}. Moreover, to use the betting on sparsity principle [26], I
can make the weight matrix sparse, so I use “`0” norm for the weights to be sparse. The
optimization problem is as follows

maximize
U ,Ar

tr(U>ŜB U),

subject to U>SW U = I,

||Ar||0 ≤ k, ∀r ∈ {1, . . . , c}.

(3.5)

I use alternating optimization to solve this problem:

U (τ+1) := arg max
U

(
tr(U>Ŝ

(τ)

B U)
∣∣U>SW U = I

)
, (3.6)

A(τ+1)
r := arg min

Ar

(
− tr(U (τ+1)>ŜB U

(τ+1))
∣∣ ||Ar||0 ≤ k

)
,∀r, (3.7)

where τ denotes the iteration.

Since I use an iterative solution for the optimization, it is better to normalize the
weights in the weighted inter-class scatter; otherwise, the weights gradually explode to
maximize the objective function. I use Ăr := Ar/||Ar||2F for weights.
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As discussed before, the solution to Eq. (3.6) is the generalized eigenvalue problem

(Ŝ
(τ)

B ,SW ). I use a step of gradient descent to solve Eq. (3.7) followed by satisfying the
“`0” norm constraint. The gradient is calculated using chain rule:

Rc×c 3 ∂f

∂Ar

= vec−1c×c

[
(
∂Ăr

∂Ar

)>(
∂ŜB

∂Ăr

)>vec(
∂f

∂ŜB
)
]
. (3.8)

For the derivation of the gradient, please see [55]. After the gradient descent step, to satisfy
the condition ||Ar||0 ≤ k, the solution is projected onto the set of this condition. Because
−f should be maximized, this projection is to set the (c− k) smallest diagonal entries of
Ar to zero [71]. After solving the optimization in Eq. (3.5), the p leading columns of U
are the OW-FDA projection directions that span the subspace.

3.1.1.4 Weighted Kernel Fisher Discriminant Analysis

The problem of treating the pairs of classes similarly also exists in kernel FDA. Here, for
the reason explained in Chapter 1, I also propose the kernel version of WFDA. I define the
optimization for W-KFDA as:

maximize
Y

tr(Y >∆̂B Y ),

subject to Y >∆W Y = I,
(3.9)

where the intra-class and weighted inter-class scatters in the feature space are, respectively,
defined as (see [43] for derivation):

∆W :=
c∑

r=1

nrKrHrK
>
r , (3.10)

∆̂B :=
c∑

r=1

c∑
`=1

αr` nr n`(ξ
(r) − ξ(`))(ξ(r) − ξ(`))> =

c∑
r=1

nr ΞrArN Ξ>r , (3.11)

where Rnr×nr 3 Hr := I − (1/nr)11> is the centering matrix, the (i, j)-th entry of Kr ∈
Rn×nr isKr(i, j) := k(xi,x

(r)
j ), the i-th entry of ξ(r) ∈ Rn is ξ(r)(i) := (1/nr)

∑nr

j=1 k(xi,x
(r)
j ),

and Rn×c 3 Ξr := [ξ(r) − ξ(1), . . . , ξ(r) − ξ(c)]. The solution to Eq. (3.9) is the generalized

eigenvalue problem (∆̂B,∆W ) and the p leading columns of Y span the subspace.
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3.1.1.5 Manually Weighted Kernel FDA

All the existing weighting methods, such as APAC [91], the POW method [92], CDM [146],
and the kNN method [147], can be used for weight in W-KFDA.

The CW-FDA can be used in the feature space to have CW-KFDA. For this, I propose
two versions of CW-KFDA: (I) In the first version, I use Eq. (3.4) or Ar := diag(αr`,∀`)
in the Eq. (3.10). (II) In the second version, I notice that cosine is based on inner product
so the normalized kernel matrix between the means of classes can be used instead to use
the similarity/dissimilarity in the feature space rather than in the input space. Let Rd×c 3
M := [µ1, . . . ,µc]. Let K̂i,j := Ki,j/

√
Ki,iKj,j be the normalized kernel matrix [1] where

Ki,j denotes the (i, j)-th element of the kernel matrix Rc×c 3K(M ,M) = Φ(M )>Φ(M ).

The weights are [0, 1] 3 αr` := K̂r,` or Ar := diag(K̂r,`,∀`). We set αr,r = 0.

3.1.1.6 Automatically Weighted Kernel Fisher Discriminant Analysis

Similar to AW-FDA, the optimization in AW-KFDA is:

maximize
Y ,Ar

tr(Y >∆̂B Y ),

subject to Y >∆W Y = I,

||Ar||0 ≤ k, ∀r ∈ {1, . . . , c},

(3.12)

where ∆̂B :=
∑c

r=1 nr Ξr ĂrN Ξ>r . This optimization is solved similar to how Eq. (3.5)
was solved where we have Y ∈ Rn×d rather than U ∈ Rd×d. Here, the solution to Eq. (3.6)

is the generalized eigenvalue problem (∆̂
(τ)

B ,∆W ). Let f(Y ,Ak) := −tr(Y >∆̂B Y ). The
Eq. (3.7) is solved similarly as in AW-FDA. For more details of gradient, please see [55].
After solving the optimization, the p leading columns of Y span the AW-KFDA subspace.
According to the representation theory [2], any solution must lie in the span of all the
training vectors, hence, Φ(U) = Φ(X)Y . The projection of some data X t ∈ Rd×nt is

Rp×nt 3 X̃ t = Φ(U )>Φ(X t) = Y >Φ(X)>Φ(X t) = Y >K(X,X t).

3.1.2 Roweis Discriminant Analysis

As was explained in Section 2.2.1, many of the linear spectral dimensionality reduction
methods are based on generalized eigenvalue problem. This gave me a hint to propose a
generalized subspace learning method based on the generalized eigenvalue problem [42].
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This generalization results in a family of infinite number of subspace learning algorithms.
I name this method RDA after Prof. Sam T. Roweis (rest in peace).

3.1.2.1 Methodology

RDA aims at maximizing tr(U>R1U) interpreted as the scatter of projection, while requir-
ing the manipulated projection directions to be orthonormal. Therefore, the optimization
of RDA is formulated as:

maximize
U

tr(U>R1U), subject to U>R2U = I, (3.13)

where R1 and R2 are the first and second Roweis matrices which I define as:

Rd×d 3 R1 := XHPHX>, (3.14)

Rd×d 3 R2 := r2 SW + (1− r2) I, (3.15)

respectively, where:

Rn×n 3 P := r1Ky + (1− r1) I. (3.16)

The r1 ∈ [0, 1] and r2 ∈ [0, 1] are the first and second Roweis factors. The solution to Eq.
(3.13) is the generalized eigenvalue problem (R1,R2) [42]. I define the Roweis criterion
which is maximized in RDA as tr(U>R1U)/tr(U>R2U). This criterion is a generalized
Rayleigh-Ritz quotient.

3.1.2.2 The Special Cases of RDA and the Roweis Map

Consider the Eqs. (3.14), (3.15), and (3.16). Consider the extreme cases of r1 and r2 and
compare the RDA optimization with the optimization of PCA, FDA, and SPCA instro-
duced in Chapter 2, i.e., compare Eq. (3.13) with Eqs. (2.1), (2.5), and (2.6), and notice
Eq. (2.2). By these comparisons, we see that:

r1 = 0, r2 = 0 =⇒ RDA ≡ PCA, (3.17)

r1 = 0, r2 = 1 =⇒ RDA ≡ FDA, (3.18)

r1 = 1, r2 = 0 =⇒ RDA ≡ SPCA. (3.19)

Hence, PCA, FDA, and SPCA are all special cases of RDA. In fact, RDA is a family of
infinite number of algorithms for subspace learning with different values of r1 and r2. I
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Figure 3.1: Roweis discriminant analysis: (a) The Roweis map including infinite number
of subspace learning methods and its special cases, (b) the map in its input and feature
spaces where the map in the feature space is pulled from the map in the input space, and
(c) the supervision level shown on the Roweis map.

define a map, named Roweis map, which includes the infinite number of special cases of
RDA where three of its corners are PCA, FDA, and SPCA. The rows and columns of the
Roweis map are the values of r1 and r2, respectively. Figure 3.1-a shows this map. As this
figure shows, every point in this map corresponds to a new subspace learning method with
some specific supervision level.

The case r1 = r2 = 1 is not yet proposed in the literature, where Eq. (3.13) is:

maximize
U

tr(U>XHKyHX
>U), subject to U>SW U = I, (3.20)

whose solution is the generalized eigenvalue problem (XHKyHX
>,SW ) [42]. This op-

timization uses the labels twice, once in the kernel over the labels and once in the within
scatter; hence, I name it Double Supervised Discriminant Analysis (DSDA).

3.1.2.3 Dimensionality of the RDA Subspace

One can solve the generalized eigenvalue problem (R1,R2) as U = eig(R−12 R1) [42], where
eig(.) stacks the eigenvectors column-wise. We have rank(R−12 R1) ≤ min

(
rank(R−12 ),

rank(R1)
)
≤ min(d, n − 1) (see [51] for the ranks of the Roweis matrices). Therefore,

min(d, n− 1) is an upper bound on the dimensionality of the RDA subspace.
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3.1.2.4 Kernel RDA

For the reason explained in Chapter 1, I also propose the kernel version of RDA. According
to representation theory [2], any pulled solution (direction) φ(u) ∈ H must lie in the span
of all the training vectors pulled to H, i.e., Φ(X) = [φ(x1), . . . ,φ(xn)] ∈ Rt×n. Hence
Rt 3 φ(u) =

∑n
i=1 θiφ(xi) = Φ(X)θ, where Rn 3 θ = [θ1, . . . , θn]> is the unknown

vector of coefficients, and φ(u) ∈ Rt is the pulled RDA direction to the feature space.
The pulled directions can be put together in Rt×p 3 Φ(U ) = [φ(u1), . . . ,φ(up)] to have
Rt×p 3 Φ(U) = Φ(X) Θ, where Rn×p 3 Θ = [θ1, . . . ,θp].

In order to have RDA in the feature space, I first kernelize the objective function of
the Eq. (3.13):

tr
(
Φ(U)>Φ(R1) Φ(U)

) (3.14)
= tr

(
Φ(U)>Φ(X)HPHΦ(X)>Φ(U)

)
= tr

[
Θ>

Φ(X)>Φ(X)HPHΦ(X)>Φ(X) Θ
]

= tr
(
Θ>KxHPHKx Θ

)
= tr

(
Θ>M Θ

)
,

where Rn×n 3Kx := Φ(X)>Φ(X) and:

Rn×n 3M := KxHPHKx. (3.21)

In order to kernelize the constraint in the Eq. (3.13), it is easier to first consider a one-
dimensional subspace and then extend it to multi-dimensional subspace. It can be shown
(see [48, Appendix A]) that φ(u)>Φ(SW )φ(u) = θ>

(∑c
j=1KjHjK

>
j

)
θ = θ>N θ, where

c is the number of classes, nj is the sample size of the j-th class, Rnj×nj 3 Hj := I −
(1/nj)11>, Rn×nj 3Kj := Φ(X)>Φ(Xj), and:

Rn×n 3N :=
c∑
j=1

KjHjK
>
j . (3.22)

If the subspace is one-dimensional, the constraint in the Eq. (3.13) is kernelized as

φ(u)>Φ(R2)φ(u)
(3.15)
= r2φ(u)>Φ(SW )φ(u) + (1 − r2)φ(u)>φ(u) = r2 θ

>Nθ + (1 −
r2)θ

>Kx θ = θ>
(
r2N + (1− r2)Kx

)
θ = θ>Lθ, where:

Rn×n 3 L := r2N + (1− r2)Kx. (3.23)

Similarly, I can extend to multi-dimensional subspace: tr
(
φ(U)>Φ(R2)φ(U )

)
= tr(Θ>

LΘ). Hence, the Roweis criterion is tr(Θ>M Θ)/tr(Θ>LΘ) in the feature space. The
optimization in kernel RDA is:

maximize
Θ

tr(Θ>M Θ), subject to Θ>LΘ = I, (3.24)
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whose solution is the generalized eigenvalue problem (M ,L). In kernel RDA, the directions
are n-dimensional while in RDA, we had d-dimensional directions.

In kernel RDA, the projection and reconstruction of the training and out-of-sample
data are X̃ = Φ(U)>Φ(X) = Θ>Kx, X̂ = Φ(U )Φ(U)>Φ(X) = Φ(X)ΘΘ>Kx, X̃ t =

Θ>Kt, and X̂ t = Φ(X)ΘΘ>Kt, where Φ(X) existing in the reconstructions are not
necessarily available so we do not have reconstruction in kernel RDA.

3.1.2.5 Dimensionality of the Kernel RDA Subspace

One can solve Eq. (3.24) as Θ = eig(L−1M ). We have rank(L−1M ) ≤ min
(
rank(L−1),

rank(M )
)
≤ min(n, c) − 1 (see [51] for the ranks of the Roweis matrices in the feature

space). Therefore, the dimensionality of the kernel RDA subspace is p ≤ min(n, c) − 1,
restricted by rank of L.

3.1.2.6 Special Cases of Kernel RDA

The Roweis map can have two layers, one for the input space and another for the feature
space. The top layer is the bottom layer pulled to the feature space (see Fig. 3.1-b).
Therefore, the four corners of Roweis map on the feature space can be considered as kernel
PCA [116], kernel FDA [99], kernel SPCA [4], and kernel DSDA. The whole map includes
the kernel methods of an infinite number of subspace learning algorithms.

Recall that PCA and SPCA (with r2 = 0) have two types of kernelization which are
using kernel trick (or dual of each method) and representation theory. This explains why
there exist two types of kernel SPCA [4]. Kernel PCA using the kernel trick is already
proposed [116] while the kernel PCA using representation theory is novel and proposed
here.

3.1.3 Image Quality Aware Embedding

In this section, I propose subspace and manifold learning methods for image quality aware
embedding. Three methods are proposed, named including SSIM kernel, ISCA, and LLISE.
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3.1.3.1 Image Structure Subspace/Manifold: Image Fidelity Assessment and
Manifold Learning?

It has been shown that MSE is not a promising measure for image quality, fidelity, or
similarity [134]. The distortions of an image or similarities of two images can be divided into
two main categories, i.e., structural and non-structural distortions [135]. The structural
distortions, such as JPEG blocking distortion, Gaussian noise, and blurring, are the ones
which are easily noticeable by Human Visual System (HVS), whereas the non-structural
distortions, such as luminance enhancement and contrast change, do not have large impact
on the visual quality of image.

SSIM [135, 133] has been shown to be an effective measure for image quality assess-
ment. It encounters luminance and contrast change as non-structural distortions and other
distortions as structural ones. Due to its performance, it has recently been noticed and
used in optimization problems for tasks such as image denoising, image restoration, con-
trast enhancement, image quantization, compression, etc, noticing that the distance based
on SSIM is quasi-convex under certain conditions [12].

So far, the fields of manifold learning and machine learning have largely used MSE and
Euclidean distance in order to develop algorithms for subspace learning. PCA is an exam-
ple based on Euclidean distance or `2 norm. However, MSE is not as promising as SSIM
for image structure measurement [134, 133] making these algorithms not effective enough
in terms of capturing the structural features of image. In this thesis, I introduce the new
concept of image structure subspace/manifold which is a subspace/manifold capturing the
intrinsic features of an image in terms of structural similarity and distortions, and can
discriminate the various types of image distortions. This subspace can also be useful for
parameter estimation for (or selection between) different denoising methods. The image
structure subspace/manifold opens a new research field for a combination of image pro-
cessing and manifold learning investigations. I propose SSIM kernel, ISCA, and LLISE
for learning this subspace/manifold. These new methods use SSIM or SSIM distance,
introduced in Section 2.2.2, in place of `2 norm or squared `2 norm.

3.1.3.2 SSIM Kernel

One can map the n data points {xi}ni=1, where xi ∈ Rd, to a higher-dimensional feature
space hoping to have the data fall close to a simpler-to-analyze manifold in the feature
space. Suppose φ : x → H is a function which maps the data x to the feature space.
In other words, x 7→ φ(x). Let t denote the dimensionality of the feature space, i.e.,
φ(x) ∈ Rt. We usually have t� d. If x belongs to the set X , i.e., x ∈ X , the kernel of two
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vectors x1 and x2 is k : X×X → R and is defined as k(x1,x2) := φ(x1)
>φ(x2). The kernel

matrix for two datasets X1 = [x1,1, . . . ,x1,n1 ] ∈ Rd×n1 and X2 = [x2,1, . . . ,x2,n2 ] ∈ Rd×n2

is:

Rn1×n2 3K(X1,X2) := Φ(X1)
>Φ(X2), (3.25)

where Φ(X1) := [φ(x1,1), . . . ,φ(x1,n1)] ∈ Rt×n1 and Φ(X2) is similarly defined. The
kernel between a matrix X ∈ Rd×n and a vector x ∈ Rd is Rn 3 k(X,x) := Φ(X)>φ(x).
I denote the kernel over dataset X by Kx := K(X,X) ∈ Rn×n.

The kernel can be written as [16, 38]:

Kx = −(1/2)HDH , (3.26)

where Rn×n 3H = I − (1/n)11> is the centering matrix, I and 1 are the identity matrix
and [1, . . . , 1]>, respectively, and D ∈ Rn×n is the distance matrix whose (i, j)-th element
is a distance measure between xi and xj. For example, if the distance measure for D is
||xi−xj||22, we will have Kx = HX>XH . The elements of D can be measured by a valid
distance metric [66]. Two examples of distance metrics are Euclidean distance (resulting
in metric MDS [16, 38] or PCA) and geodesic distance (resulting in Isomap [126]).

A valid distance metric based on SSIM is Eq. (2.11). Calculating this metric for every
patch, I will have a distance vector d(x1,x2) ∈ Rd between the two images x1 and x2. I
want to have a scalar distance between two images so we use this theorem: The `2 norm
of a vector of metrics is also a metric (see [12] for proof). Therefore, I define the distance
between two images x1 ∈ Rd and x2 ∈ Rd as:

R 3 d(x1,x2) := ||d(x1,x2)||2 =

[
d∑
i=1

(
di(x̆1, x̆2)

)2](1/2)
, (3.27)

where di(x̆1, x̆2) is the distance of Eq. (2.11) for the i-th patch. Note that Eq. (3.27) is
equivalent to the Frobenius norm of the distance map between the two images if we have
not reshaped the map to a vector. Calculating Eq. (3.27) between every two images of the
dataset X = [x1, . . . ,xn] ∈ Rd×n gives the symmetric distance matrix D ∈ Rn×n. Finally,
according to Eq. (3.26), I define the SSIM kernel :

Rn×n 3 Sx = S(X,X) := −(1/2)HDH , (3.28)

where D is calculated using Eq. (3.27). Similarly, as in Eq. (3.25), I can have the SSIM
kernel between two different datasets: S(X1,X2) = −(1/2)H1DH2 where D ∈ Rn1×n2
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is similarly calculated between the images, one from X1 and one from X2. Note that
H1 ∈ Rn1×n1 and H2 ∈ Rn2×n2 . The SSIM kernel measures the similarity of data points
which are images. Notice that the kernel here should not be confused with the filter kernel
in signal processing.

The SSIM kernel can be used in the spectral dimensionality reduction algorithms in
order to learn the image structure subspace which captures the intrinsic structural features
of an image and discriminates the different types of image distortions. For example, the
SSIM kernel can be used in MDS [16], kernel PCA [35], and LE [7].

3.1.3.3 Image Structural Component Analysis

Orthonormal Bases for One Image: My goal is to find a subspace spanned by p
directions for some desired p. Consider an image block x̆ ∈ Rq which is centered (its mean
is removed). I want to project it onto a p-dimensional subspace and then reconstruct it
back, where p ≤ q. Assume Rq×p 3 U := [u1, . . . ,up] is a matrix whose columns are
the projection directions spanning the subspace. The projection and reconstruction of
x̆ are U>x̆ and UU>x̆, respectively. I want to minimize the reconstruction error with
orthonormal bases of the subspace; therefore (similar to PCA optimization [35] but with
SSIM distance):

minimize
U∈Rq×p

||x̆−UU>x̆||2S,

subject to U>U = I.
(3.29)

This subspace is illustrated in Fig. 3.2. According to Eq. (2.10) and noticing the orthonor-
mality of projection directions, U>U = I, I have:

R 3 f(U) := ||x̆−UU>x̆||2S =
x̆>(I −UU>) x̆

x̆>(I +UU>) x̆+ c
. (3.30)

See [47] for derivation. The gradient of the f(U) is [47]:

Rq×p 3 G(U) :=
∂f(U)

∂U
=

−2 (1 + f(U))

||x̆||22 + ||UU>x̆||22 + c
x̆x̆>U . (3.31)

I partition a d-dimensional image into b = dd/qe non-overlapping blocks each of which is
a reshaped vector x̆ ∈ Rq. The parameter q is an upper bound on the desired dimensionality
of the subspace of block (p ≤ q). This parameter should not be a very large number due
to the spatial variety of image statistics, yet also not very small so as to be able to capture
the image structure. Also note that p is an upper bound on the rank of UU> ∈ Rq×q.

42



Figure 3.2: A schematic diagram of the core parts of the ISCA algorithm. Every block of
image is reconstructed using an ISCA subspace.

there are b instances of p-dimensional subspaces, one for each of the blocks. Considering
all the b blocks in an image, the problem in Eq. (3.29) becomes:

minimize
U i∈Rq×p

b∑
i=1

||x̆i −U iU
>
i x̆i||2S,

subject to U>i U i = I, ∀i ∈ {1, . . . , b},

(3.32)

where xi ∈ Rq and U i ∈ Rq×p are the i-th block and the bases of its subspace, respectively.

For solving this optimization, I use the Alternating Direction Method of Multipliers
(ADMM) [9, 104]. The updates are as (see [47] for details and derivations):

U
(k+1)
i := U

(k)
i − ηG(U

(k)
i )− η ρ (U

(k)
i − V

(k)
i + J

(k)
i ),

V
(k+1)
i := Qi diag

(
proxρ,h

(
σ(U

(k+1)
i + J

(k)
i )
))

Ω>i ,

J (k+1) := J (k) +U (k+1) − V (k+1),

(3.33)

where columns of Qi ∈ Rq×p and Ωi ∈ Rp×p are the left and right singular vectors of

(U
(k+1)
i + J

(k)
i ) and η > 0 is the learning rate. Iteratively solving Eq. (3.33) until con-

vergence gives us the U i for for the image blocks indexed by i. The p columns of U i are
the bases for the ISCA subspace of the i-th block. Unlike in PCA, the ISCA bases do
not have an order of importance but as in PCA, they are orthogonal capturing different
features of image structure. The i-th projected block is U>i x̆i ∈ Rp where its dimensions
are image structural components. Note that x̆i, whether it is a block in a training image
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or an out-of-sample image, is centered. It is noteworthy that if we consider only one block
in the images, the subscript i is dropped from Eq. (3.33).

Orthonormal Bases for a Set of Images: So far, if there is a set of n images, one
can find the subspace bases U i for the i-th block in each of them using Eq. (3.33). Now, I
want to find the subspace bases U i for the i-th block in all training images of the dataset.
In other words, I want to find the subspace for the best reconstruction of the i-th block
in all training images. For this goal, I look at the optimization problem in Eq. (3.32) as
an undercomplete auto-encoder neural network [62] with one hidden layer where the input
layer, hidden layer, and output layer have q, p, and q neurons, respectively. The U>i x̆
and U iU

>
i x̆ fill the role of applying the first and second weight matrices to the input,

respectively. The weights are U i ∈ Rq×p. Therefore, there will be b auto-encoders, each
with one hidden layer.

For training the auto-encoder, I introduce the blocks in an image as the input to this
network and update the weights U i,∀i based on Eq. (3.33). Note that I do this update
of weights with only ‘one’ iteration of ADMM. Then, I move to the blocks in the next
image and update the weights U i,∀i again by an iteration of Eq. (3.33). I do this for all
images one by one until an epoch is completed where an epoch is defined as introducing
the block in all training images of dataset to the network. After termination of an epoch,
I start another epoch to tune the weights U i,∀i again. After training the network, I have
one p-dimensional subspace for every block in all training images where the columns of the
weight matrix U i span the subspace. Note that because of ADMM, the auto-encoders are
trained simultaneously and in parallel. Again, the p columns of U i are the bases for the
ISCA subspace of the i-th block.

Kernel Image Structural Component Analysis: For the reason explained in Chap-
ter 1, I also propose the kernel version of ISCA. One can map the block x̆ ∈ Rq to
higher-dimensional feature space hoping to have the data fall close to a simpler-to-analyze
manifold in the feature space. The kernel matrix for the i-th block among the n images
is Rn×n 3 Ki := Φ(X̆ i)

>Φ(X̆ i) where Φ(X̆ i) := [φ(x̆1,i), . . . ,φ(x̆n,i)] ∈ Rt×n. After

calculating the kernel matrix, I normalize it [1] as Ki(a, b) := Ki(a, b)/
√
Ki(a, a)Ki(b, b)

where Ki(a, b) denotes the (a, b)-th element of the kernel matrix. Afterwards, the kernel
is double-centered as Ki := HKiH where Rn×n 3 H := I − (1/n)11>. The reason for
double-centering is that Eq. (2.10) requires φ(x̆i) and thus the Φ(X̆ i) to be centered (see
Eq. (3.34)). Therefore, in kernel ISCA, I center the kernel rather than centering x̆.

According to representation theory [2], we have Rt×p 3 Φ(U i) = Φ(X̆ i) Θi where every
column of Θi := [θ1, . . . ,θp] ∈ Rn×p is the vector of coefficients. As I did for ISCA, first

I consider learning the b subspaces for ‘one’ image, here. Considering Φ(U i) = Φ(X̆ i) Θi
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for the i-th block in the image, the objective function of Eq. (3.32) in feature space is∑b
i=1 ||φ(x̆i) − Φ(X̆ i) Θi Θ

>
i ki||S where Rn 3 ki := Φ(X̆ i)

>φ(x̆i). Note that Φ(X̆ i)
includes mapping of the i-th block in all the n images while φ(x̆i) is mapping of the i-th
block in the image we are considering. The constraint of Eq. (3.32) in the feature space is
Φ(U i)

>Φ(U i) = Θ>i KiΘi = I. Therefore, Eq. (3.32) in the feature space is:

minimize
Θi∈Rn×p

b∑
i=1

||φ(x̆i)−Φ(X̆ i) Θi Θ
>
i ki||2S,

subject to Θ>i Ki Θi = I, ∀i ∈ {1, . . . , b}.

(3.34)

Noticing the constraint Θ>i Ki Θi = I and using Eq. (2.10), I have:

R 3 f(Θi) := ||φ(x̆i)−Φ(X̆ i) Θi Θ
>
i ki||2S =

ki − k>i ΘiΘ
>
i ki

ki + k>i ΘiΘ
>
i ki + c

, (3.35)

where R 3 ki := φ(x̆i)
>φ(x̆i). See [47] for derivation. The gradient of the f(Θi) is [47]:

Rn×p 3 G(Θi) :=
∂f(Θi)

∂Θi

=
−2 (1 + f(Θi))

ki + k>i ΘiΘ
>
i ki + c

kik
>
i Θi. (3.36)

I can simplify the constraint Θ>i Ki Θi = I. As the kernel Ki is positive semi-definite,
I can decompose it as:

Rn×n 3Ki
SVD
= ΨΥΨ> = ΨΥ(1/2)Υ(1/2)Ψ> = ∆>∆,

where Rn×n 3 ∆ := Υ(1/2)Ψ>. Therefore, the constraint can be written as: Θ>i KiΘi =
Θ>i ∆>∆Θi = (∆Θi)

>(∆Θi) = I.

For solving this optimization, I use the ADMM [9, 104]. The updates are as (see [47]
for details and derivations):

Θ
(k+1)
i := Θ

(k)
i − ηG(Θ

(k)
i )− η ρ∆>(∆Θ

(k)
i −W

(k)
i + J

(k)
i ),

W
(k+1)
i := Qi diag

(
proxρ,h

(
σ(∆Θ

(k+1)
i + J

(k)
i )
))

Ω>i ,

J (k+1) := J (k) + ∆Θ(k+1) −W (k+1),

(3.37)

where columns of Qi ∈ Rq×p and Ωi ∈ Rp×p are the left and right singular vectors of

(∆Θ
(k+1)
i + J

(k)
i ). Iteratively solving Eq. (3.37) until convergence gives us the Θi for for
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Figure 3.3: A schematic diagram of the core parts of the LLISE algorithm. (a) Every block
of image is reconstructed linearly using the corresponding blocks of its nearest neighbors.
(b) Using the same obtained weights, the low-dimensional embedding block is obtained.

the image blocks indexed by i. The p columns of Θi are the bases for the kernel ISCA
subspace of the i-th block. The i-th projected block is Θ>i ki ∈ Rp and its dimensions are
the kernel image structural components. Note that ki, whether it is the kernel over a block
in a training image or an out-of-sample image, is normalized and centered. Again, with
the auto-encoder approach, one can solve these equations in successive epochs in order to
find the b subspaces for all the n training images.

3.1.3.4 Locally Linear Image Structural Embedding

In LLISE, I find a p-dimensional image structure manifold for every block. I denote the
i-th block in the j-th image by x̆j,i ∈ Rq. In LLISE, I first center every image block by
removing its mean.

k-Nearest Neighbors: For every block x̆i (i ∈ {1, . . . , b}), amongst the n images, a
kNN graph is formed using pairwise Euclidean distances between that i-th block in the
n images. Therefore, every block in every image has k neighbors. Let rx̆j,i ∈ Rq denote

the r-th neighbor of x̆j,i and let the matrix Rq×k 3 X̆j,i := [ 1x̆j,i, . . . , kx̆j,i] include the
neighbors of x̆j,i.

Linear Reconstruction by the Neighbors: For every block x̆i, I want the j-th
image to be linearly reconstructed by its k neighbors:

minimize
W̃ i

b∑
i=1

ε(W̃ i) :=
b∑
i=1

n∑
j=1

∣∣∣∣∣∣ x̆j,i − k∑
r=1

rw̃j,i rx̆j,i

∣∣∣∣∣∣2
S
,

subject to
k∑
r=1

rw̃
2
j,i = 1, ∀i ∈ {1, . . . , b}, ∀j ∈ {1, . . . , n},

(3.38)
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where Rn×k 3 W̃ i := [w̃1,i, . . . , w̃n,i]
> includes the weights for the i-th block in the images

and Rk 3 w̃j,i := [ 1w̃j,i, . . . , kw̃j,i]
> includes the weights of linear reconstruction of the i-th

block in the j-th image using its k neighbors. The second constraint ensures w̃>j,iw̃j,i =

||w̃j,i||22 = 1. Note that one may formulate the problem with the constraint
∑k

r=1 rw̃j,i = 1
as in LLE; however, with that constraint, the weights start to explode gradually after some
optimization iterations. This problem does not happen in LLE because LLE is solved in
closed form and not iteratively. This linear reconstruction is illustrated in Fig. 3.3-a.

Take f(w̃j,i) :=
∣∣∣∣x̆j,i −∑k

r=1 rw̃j,i rx̆j,i
∣∣∣∣2
S

= f(w̃j,i) = ||x̆j,i − X̆j,i w̃j,i||2S. According
to Eq. (2.10), the f(w̃j,i) is simplified to (see [46] for derivation):

R 3 f(w̃j,i) =
x̆>j,i x̆j,i + w̃>j,i X̆

>
j,i X̆j,i w̃j,i − 2 w̃>j,i X̆

>
j,i x̆j,i

x̆>j,i x̆j,i + w̃>j,i X̆
>
j,i X̆j,i w̃j,i + c

. (3.39)

The gradient of f(w̃j,i) with respect to w̃j,i is (see [46] for derivation):

Rk 3 ∇f(w̃j,i) =
2 X̆

>
j,i

((
1− f(w̃j,i)

)
X̆j,iw̃j,i − x̆j,i

)
x̆>j,i x̆j,i + w̃>j,i X̆

>
j,i X̆j,i w̃j,i + c

. (3.40)

For solving this optimization, I use the ADMM [9, 104]. The updates are as (see [46]
for details and derivations):

w̃
(ν+1)
j,i := w̃

(ν)
j,i − η∇f(w̃

(ν)
j,i )− η ρ (w̃

(ν)
j,i − ξ̃

(ν)

j,i + j
(ν)
j,i ),

ξ̃
(ν+1)

j,i := (w̃
(ν+1)
j,i + j

(ν)
j,i )/||w̃(ν+1)

j,i + j
(ν)
j,i ||2,

j
(ν+1)
j,i := j

(ν)
j,i + w̃

(ν+1)
j,i − ξ̃

(ν+1)

j,i ,

(3.41)

where η > 0 is the learning rate. Iteratively solving Eq. (3.41) until convergence gives the
w̃j,i for for the i-th block in the j-th image.

Linear Embedding: I find the embedding of the i-th block in every image using the
obtained weights of reconstruction:

minimize
Y i

b∑
i=1

n∑
j=1

∣∣∣∣yj,i − n∑
r=1

rwj,i yr,i
∣∣∣∣2
S
,

subject to
1

n

n∑
j=1

yj,iy
>
j,i = I,

n∑
j=1

yj,i = 0, ∀i ∈ {1, . . . , b},
(3.42)
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where I is the identity matrix, the rows of Rn×p 3 Y i := [y1,i, . . . ,yn,i]
> are the embedded

i-th block in the images, yr,i ∈ Rp is the i-th embedded block in the r-th image, and rwj,i
is the weight obtained from the linear reconstruction if xr,i is a neighbor of xj,i and zero
otherwise. The second constraint ensures the zero mean of embedded blocks. The first and
second constraints together satisfy having unit covariance for the embedded image blocks.
This linear embedding is illustrated in Fig. 3.3-b.

Suppose Rn 3 wj,i := [ 1wj,i, . . . , nwj,i]
> and let Rn 3 1j := [0, . . . , 1, . . . , 0]> be the

vector whose j-th element is one and other elements are zero. The Eq. (3.42) can be
restated as:

minimize
Y i

b∑
i=1

n∑
j=1

||Y >i 1j − Y >i wj,i||2S,

subject to
1

n
Y >i Y i = I, Y >i 1 = 0, ∀i ∈ {1, . . . , b}.

(3.43)

Let θj(Y i) := ||Y >i 1j − Y >i wj,i||S. According to Eq. (2.10), it is simplified to (see [46]):

R 3 θj(Y i) =
tr(Y >i M j,i Y i)

tr(Y >i Ψj,i Y i) + c
, (3.44)

where tr(.) is the trace of matrix, Rn×n 3M j,i := 1j1
>
j +wj,iw

>
j,i − 2 1jw

>
j,i, and Rn×n 3

Ψj,i := 1j1
>
j + wj,iw

>
j,i = M j,i + 2 1jw

>
j,i. The gradient of θj(Y i) with respect to Y i is

(see [46]):

Rn×p 3 ∇θj(Y i) =
2

tr(Y >i Ψj,i Y i) + c

(
M j,i − θj(Y i) Ψj,i

)
Y i. (3.45)

For solving this optimization, I use the ADMM [9, 104]. The updates are as (see [46]
for details and derivations):

Y
(ν+1)
i := Y

(ν)
i − η

n∑
j=1

(
∇θj(Y i)

)
− η ρ (Y i − V (ν)

i + J
(ν)
i ),

V
(ν+1)
i := Π(Y

(ν+1)
i + J

(ν)
i ),

J (ν+1) := J (ν) + Y (ν+1) − V (ν+1),

(3.46)

where Π(Y
(ν+1)
i + J

(ν)
i ) first removes the row mean of (Y

(ν+1)
i + J

(ν)
i ) and then sets the

singular values of (Y
(ν+1)
i + J

(ν)
i ) to n (see [46] for more details). Iteratively solving Eq.

(3.46) until convergence gives Y i for the image blocks indexed by i. The rows of Y i
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are the p-dimensional embedded image blocks in the LLISE manifold. Unlike LLE, the
first column of Y i is not ignored in LLISE because it is not based on `2 norm and thus
eigenvalue problem.

Embedding The Out-of-sample Data: There exist two methods in the literature
for extension of LLE to out-of-sample embedding. The first method is based on the concept
of eigenfunctions [8] and the second method uses linear reconstruction of the out-of-sample
data [114]. The first method cannot be used for LLISE because it does not result in
closed-form eigenvalue problem as in LLE. I use the second approach.

Suppose there are nt out-of-sample images and x̆
(t)
j,i denotes the i-th block in the j-th

out-of-sample image. For the i-th block in every out-of-sample image, I first find the k-NN

among the i-th block in training images. Let rx̆
(t)
j,i and Rq×k 3 X̆

(t)

j,i := [ 1x̆
(t)
j,i , . . . , kx̆

(t)
j,i ]

denote the r-th training neighbor of x̆
(t)
j,i and the matrix including the training neighbors

of x̆
(t)
j,i , respectively. I want to reconstruct every out-of-sample image block by its training

neighbors:

minimize
W̃

(t)

i

b∑
i=1

ε(W̃
(t)

i ) :=
b∑
i=1

nt∑
j=1

∣∣∣∣∣∣ x̆(t)
j,i −

k∑
r=1

rw̃
(t)
j,i rx̆

(t)
j,i

∣∣∣∣∣∣2
S
,

subject to
k∑
r=1

(rw̃
(t)
j,i )

2 = 1, ∀i ∈ {1, . . . , b}, ∀j ∈ {1, . . . , nt},

(3.47)

where Rnt×k 3 W̃
(t)

i := [w̃
(t)
1,i, . . . , w̃

(t)
nt,i

]> includes the weights, and Rk 3 w̃(t)
j,i := [ 1w̃

(t)
j,i , . . . ,

kw̃
(t)
j,i ]
> includes the weights of linear reconstruction of the i-th block in the j-th out-of-

sample image using the i-th block in its k training neighbors. Eq. (3.47) is similar to Eq.

(3.38) and is solved similarly. The embedding y
(t)
j,i of the i-th block in the j-th out-of-

sample image, i.e., x
(t)
j,i , is obtained by the linear reconstruction of the embedding of the

i-th block in its k training neighbors:

Rp 3 y(t)
j,i =

k∑
r=1

rw̃
(t)
j,i ry

(t)
j,i , (3.48)

where ry
(t)
j,i ∈ Rp is the embedding of rx̆

(t)
j,i which was found by the linear embedding of the

training data, Y i.

Kernel Locally Linear Image Structural Embedding: For the reason explained in
Chapter 1, I also propose the kernel version of LLISE. I normalize the kernel as K(a, b) :=
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K(a, b)/
√
K(a, a)K(b, b) where K(a, b) denotes the (a, b)-th element of the kernel matrix

[1]. Then, the kernel is double-centered as K := HKH . The reason for double-centering
is that Eq. (2.10) requires φ(x̆i) and thus the Φ(X̆ i) to be centered. Therefore, in kernel
LLISE, I center the kernel rather than centering x̆i. Kernel LLISE maps data to the feature
space and performs the steps of kNN and linear reconstruction in the feature space. For
kNN, the Euclidean distance in the feature space is used as [115]:

||φ(x̆a,i)− φ(x̆b,i)||2 =
√
k(x̆a,i, x̆a,i)− 2k(x̆a,i, x̆b,i) + k(x̆b,i, x̆b,i). (3.49)

For every block i amongst the images, we construct the k-NN graph.

For finding the reconstruction weights Rk 3 w̃j,i = [1w̃j,i, . . . , kw̃j,i]
>, the Eq. (3.38) is

used in the feature space:

minimize
W̃ i

ε(W̃ i) :=
b∑
i=1

n∑
j=1

∣∣∣∣∣∣φ(x̆j,i)−
k∑
r=1

rw̃j,iφ(rx̆j,i)
∣∣∣∣∣∣2
S
,

subject to
k∑
r=1

rw̃
2
j,i = 1, ∀i ∈ {1, . . . , b}, ∀j ∈ {1, . . . , n}.

(3.50)

Let fφ(w̃j,i) :=
∣∣∣∣φ(x̆j,i)−

∑k
r=1 rw̃ij φ(rx̆j,i)

∣∣∣∣2
S
. According to Eq. (2.10), I have [46]:

R 3 fφ(w̃j,i) =
kj,i + w̃>j,iKj,i w̃j,i − 2 w̃>j,i kj,i

kj,i + w̃>j,iKj,i w̃j,i + c
, (3.51)

where R 3 kj,i := φ(x̆j,i)
>φ(x̆j,i), Rk 3 kj,i := Φ(X̆j,i)

>φ(x̆j,i), and Rk×k 3 Kj,i :=

Φ(X̆j,i)
>Φ(X̆j,i). The gradient of fφ(w̃j,i) with respect to w̃j,i is [46]:

Rk 3 ∇fφ(w̃j,i) =
2
((

1− fφ(w̃j,i)
)
Kj,i w̃j,i − kj,i

)
kj,i + w̃>j,iKj,i w̃j,i + c

. (3.52)

I can use Eq. (3.41) for solving Eq. (3.50) with some slight changes. The linear embedding
in kernel LLISE is the same as the linear embedding in LLISE. The rows of obtained Y i

are the i-th embedded block of the images in kernel LLISE manifold.

For embedding every out-of-sample image, I solve this optimization problem:

minimize
W̃

(t)

i

b∑
i=1

ε(W̃
(t)

i ) :=
b∑
i=1

nt∑
j=1

∣∣∣∣∣∣φ(x̆
(t)
j,i )−

k∑
r=1

rw̃
(t)
j,i φ(rx̆

(t)
j,i )
∣∣∣∣∣∣2
S
,

subject to
k∑
r=1

(rw̃
(t)
j,i )

2 = 1, ∀i ∈ {1, . . . , b}, ∀j ∈ {1, . . . , nt},

(3.53)
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which is similar to Eq. (3.50) and is solved similarly.

3.2 Probabilistic Dimensionality Reduction

In the following, I propose new algorithms for probabilistic dimensionality reduction. My
proposed method is QQE which deals with CDF of data.

3.2.1 Quantile-Quantile Embedding

Using the quantile-quantile plot, introduced in Section 2.2.3, we propose QQE for giving
the choice of embedding distribution to user. Here, I provide my definition for distribution
transformation:

Definition 1 (distribution transformation) For a sample {x0
i }ni=1 of size n in Rd space,

the mapping x0
i 7→ xi, ∀i ∈ {1, . . . , n} is a distribution transformation where the distribu-

tion of {xi}ni=1 is the known desired distribution and the local distances of nearby points in
{x0

i }ni=1 are preserved in {xi}ni=1 as much as possible.

Distribution transformation can be performed in two approaches. In the first approach,
(i) the distribution of data is transformed to the “exact” reference distribution, (ii) while
in the second approach, only the “shape” of the reference distribution is considered to
transform to. Transformation to exact reference distribution means that all the moments
of data distribution, including mean and variance, will match those of the reference distri-
bution. However, transformation to the shape of reference distribution refers to an scale
and mean invariant transformation. In this case, the mean of data does not change much
and just the shape of data becomes similar to the reference shape. The scale or variance
of data does not change significantly but changes in a way to become roughly a multi-
plication of the scale or variance of reference distribution. In the following, I detail the
two approaches, respectively. Then, I introduce manifold embedding using QQE. Finally,
I explain the unsupervised and supervised approaches for QQE.

3.2.1.1 Distribution Transformation to Exact Reference Distribution

When the d qq-plots are obtained by the fuzzy qq-plot, I can use them to embed the
data for distribution transformation. Consider the transformation of an initial sample
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{x0
i }ni=1 to {xi}ni=1. I want the distribution of sample {xi}ni=1 to become the same as the

distribution of the reference sample {yσ(i)}ni=1 or the reference distribution. Therefore, the
qq-plot of every dimension should be a line with slope one and intercept zero [103]. Let
Ql(ui) ∈ R denote the l-th dimension of Rd 3 Q(ui) = [Q1(ui), . . . , Qd(ui)]

> which is
used for the i-th data point in the l-th qq-plot. Consider Ql(ui) for the matched data and
the reference sample, denoted by QX,l(ui) and QY,l(ui), respectively. In order to have the

line in the qq-plot, I should minimize
∑n

i=1

∑d
l=1

(
QX,l(ui)−QY,l(ui)

)2
. According to Eqs.

(2.20) and (2.21), this cost function is equivalent to
∑n

i=1

∑d
l=1(xi,l − yσ(i),l)

2 where xi,l
and yσ(i),l denote the l-th dimension of xi = [xi,1, . . . , xi,d]

> and yσ(i) = [yσ(i),1, . . . , yσ(i),d]
>,

respectively. In vector form, the cost function is restated as:

L1 :=
1

2

n∑
i=1

‖xi − yσ(i)‖22. (3.54)

On the other hand, according to our definition of distribution transformation, I should
also preserve the local distances of the nearby data points as far as possible to embed the
data locally [114]. For preserving the local distances, I minimize the differences of local
distances between the data and transformed data. Using the k-nearest neighbors (k-NN)
graph for the set {xi}ni=1. Let Ni denote the set containing the indices of the k neighbors
of xi. The cost to be minimized is:

L2 :=
1

a

n∑
i=1

∑
j∈Ni

wij
(
dx(i, j)− d0x(i, j)

)2
, (3.55)

where dx(i, j) := ‖xi − xj‖2, d0x(i, j) := ‖x0
i − x0

j‖2, and a :=
∑n

i=1

∑
j∈Ni

d0x(i, j) is the

normalization factor. The weight wij := 1/d0x(i, j) gives more value to closer points as
expected. Note that if k = n − 1, the Eq. (3.55) is the cost function used in Sammon
mapping [113]. I use this cost as a regularization term in our optimization. Therefore, the
optimization is:

minimize
X

L :=
1

2

n∑
i=1

(
‖xi − yσ(i)‖22 +

λ

a

∑
j∈Ni

wij
(
dx(i, j)− d0x(i, j)

)2)
, (3.56)

where λ>0 is the regularization parameter. The gradient of the cost function with respect
to xi,l is (see [52] for derivation):

∂L
∂xi,l

= (xi,l − yσ(i)) +
λ

a

∑
j∈Ni

dx(i, j)− d0x(i, j)
dx(i, j) d0x(i, j)

(xi,l − xj,l). (3.57)
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The second derivative of the cost function with respect to xi,l is (see [52] for derivation):

∂2L
∂x2i,l

= 1 +
λ

a

∑
j∈Ni

(dx(i, j)− d0x(i, j)
dx(i, j) d0x(i, j)

− (xi,l − xj,l)2(
dx(i, j)

)3 ). (3.58)

We use the quasi-Newton’s method for solving this optimization problem inspired by [113].
If we consider the vectors component-wise, the diagonal quasi-Newton’s method updates
the solution as:

x
(ν+1)
i,l := x

(ν)
i,l − η

∣∣∣ ∂2L
∂x2i,l

∣∣∣−1 ∂L
∂xi,l

, (3.59)

∀i ∈ {1, . . . , n},∀l ∈ {1, . . . , d}, where ν is the index of iteration, η > 0 is the learning
rate, and |.| denotes the absolute value guaranteeing that we move toward the minimum
and not maximum in the Newton’s method.

3.2.1.2 Distribution Transformation to the Shape of Reference Distribution

One can ignore the location and scale of the reference distribution and merely change the
distribution of the observed sample to look like the “shape” of the reference distribution
regardless of its location and scale. Recall that if the qq-plot is a line, the shapes of
the distributions are the same where the intercept and slope of the line correspond to
the location and scale [103]. Therefore, in my optimization, rather than trying to make
the qq-plot a line with slope one and intercept zero, I try to make it the closest line
possible. This line can be found by fitting a line as a least squares problem, i.e., a linear
regression problem. For the qq-plot of every dimension, I fit a line to the qq-plot. If I
define Rn 3 Q̆Y,l := [QY,l(u1), . . . , QY,l(un)]>, let Rn×2 3 Γl := [1n×1, Q̆Y,l]. Fitting a line
to the qq-plot of the l-th dimension is the following least squares problem:

minimize
βl

1

2

∥∥QX(ui)− Γl βl
∥∥2
2

(2.20)
=

1

2

∥∥xl − Γl βl
∥∥2
2
, (3.60)

whose solution is [26]:

R2 3 βl = (Γ>l Γl)
−1Γ>l xl, (3.61)

where Rn 3 xl := [x1,l, . . . , xn,l]
>. The n points on the line fitted to the qq-plot of the l-th

dimension are:

Rn 3 µl := Γl βl = [µσ(1),l, . . . , µσ(n),l]
>, (3.62)
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which are used instead of QY (ui), ∀i in our optimization. Defining Rd 3 µ̆(yσ(i)) :=

[µσ(i),1, . . . , µσ(i),d]
>, the optimization problem is:

minimize
Y

L :=
1

2

n∑
i=1

(
‖xi − µ̆(yσ(i))‖22 +

λ

a

∑
j∈Ni

wij
(
dx(i, j)− d0x(i, j)

)2)
. (3.63)

Similar to Eq. (3.57), the gradient is:

∂L
∂xi,l

= (xi,l − µσ(i),l) +
λ

a

∑
j∈Ni

dx(i, j)− d(0)x (i, j)

dx(i, j) d
(0)
x (i, j)

(xi,l − xj,l), (3.64)

and the second derivative is the same as Eq. (3.58). We again solve using diagonal quasi-
Newton’s method.

3.2.1.3 Manifold Embedding

QQE can be used for manifold embedding in a lower dimensional embedding space where
the embedding distribution can be determined by the user. As an initialization, the high
dimensional data are embedded in a lower dimensional embedding space using a dimension-
ality reduction method. Thereafter, the low dimensional embedding data are transformed
to a desired distribution using QQE.

Any dimensionality reduction method can be utilized for the initialization of data in
the low dimensional subspace. Some examples are PCA [35] (or metric MDS [16]), FDA
[43], Isomap [126], LLE [110], t-SNE [131], and deep features like triplet Siamese features
[118] and ResNet features [67]. After the initialization, a reference sample is drawn from
the reference distribution or is taken from the user. The dimensionality of the reference
sample is equal to the dimensionality of the low dimensional embedding space. I transform
the distribution of the low dimensional data to the reference distribution using QQE.
Again, the distribution transformation can be either to the exact or shape of the desired
distribution.

3.2.1.4 Unsupervised and Supervised Embedding

QQE, for both tasks of distribution transformation and manifold embedding, can be used
in either supervised or unsupervised manners. In an unsupervised manner, the distribution
of all the data points is transformed to the desired distribution; however, in the supervised
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manner, the data points of each class are transformed to have the desired distribution.
Hence, in the supervised case, the user can even choose different distributions for the
different classes. Note that in both unsupervised and supervised cases, the distribution
transformation can be either to the exact or shape of reference distribution. For the
supervised case in the distribution transformation task, the distribution of every class is
transformed; in the manifold learning task, the distribution of low dimensional data of
every class is transformed no matter whether the dimensionality reduction method for
initialization is unsupervised or supervised.

3.3 Neural Network-Based Dimensionality Reduction

In neural network-based dimensionality reduction, the network can be either shallow or
deep. For the shallow network, I propose the backprojection algorithm for training network
using a projection-based perspective. For deep networks, I propose Fisher losses for Siamese
nets and BUT/BUNCA methods for triplet mining.

3.3.1 Shallow Network: Backprojection

In this section, I propose backprojection for neural network-based dimensionality reduction
by shallow networks.

3.3.1.1 Projection and Backprojection in Network

In a neural network, every layer without its activation function acts as a linear projection.
Without the nonlinear activation functions, a network/autoencoder is reduced to a linear
projection/principal component analysis [35]. If U denotes the projection matrix (i.e.,
the weight matrix of a layer), U>x projects x onto the column space of U . The reverse
operation of projection is called reconstruction or backprojection and is formulated as
UU>x which shows the projected data in the input space dimensionality (note that it is
Uf−1(f(U>x)) if we have a nonlinear function f(.) after the linear projection). At the
initialization, a layer acts as a random projection which is a promising feature extractor.
Fine tuning the weights using labels makes the features more useful for discrimination of
classes.
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3.3.1.2 Definitions

Consider a training set X := {xi ∈ Rd}ni=1 and their one-hot encoded labels Y := {yi ∈
Rp}ni=1 where n, d, and p are the sample size, dimensionality of data, and dimensionality
of labels, respectively. I denote the dimensionality or the number of neurons in layer m
by dm. By convention, we have d0 := d and dn`

= p where n` is the number of layers and
p is the dimensionality of the output layer. Let the data after the activation function of
the m-th layer be denoted by x(m) ∈ Rdm . Let the projected data in the m-th layer be
Rdm 3 z(m) := U>m x

(m−1) where Um ∈ Rdm−1×dm is the weight matrix of the m-th layer.
Note that x(m) = fm(z(m)) where fm(.) is the activation function in the m-th layer. By
convention, x(0) := x. The data are projected and passed through the activation functions
layer by layer; hence, x(m) is calculated as:

Rdm 3 x(m) := fm(U>m fm−1(U
>
m−1 · · ·f 1(U

>
1 x))) = fm(U>m x

(m−1)). (3.65)

In a mini-batch gradient descent set-up, let {xi}bi=1 be a batch of size b. For a batch,
I denote the outputs of activation functions at the m-th layer by Rdm×b 3 X(m) :=
[x

(m)
1 , . . . ,x

(m)
b ].

Now, consider the one-hot encoded labels of batch, denoted by y ∈ Rp. I take the
inverse activation function of the labels and then reconstruct or backproject them to the
previous layer to obtain y(n`−1). I do similarly until the layer m. Let y(m) ∈ Rdm denotes
the backprojected data at the m-th layer, calculated as:

y(m) :=Um+1 f
−1
m+1(Um+2 f

−1
m+2(· · ·Un`

f−1n`
(y)))=Um+1 f

−1
m+1(y

(m+1)). (3.66)

By convention, y(n`) := y. The backprojected batch at the m-th layer is Rdm×b 3 Y (m) :=
[y

(m)
1 , . . . ,y

(m)
b ]. I use X ∈ Rd×b and Y ∈ Rp×b to denote the column-wise batch matrix

and its one-hot encoded labels.

3.3.1.3 Optimization

In the backprojection algorithm, I optimize the layers’ weights one by one. Consider the
m-th layer whose loss I denote by Lm:

minimize
Um

Lm :=
b∑
i=1

`(x
(m)
i − y(m)

i ) =
b∑
i=1

`
(
fm(U>m x

(m−1)
i )− y(m)

i

)
, (3.67)

where `(.) is a loss function such as the squared `2 norm (or MSE), cross-entropy, etc. The

loss Lm tries to make the projected data x
(m)
i as similar as possible to the backprojected
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1 Procedure: UpdateLayerWeights(U , X, Y , m)
2 Input: weights: U := {U r}n`

r=1, batch data: X ∈ Rd×b, batch labels: Y ∈ Rp×b,
layer: m ∈ [1, n`]

3 X(0) := X
4 for layer r from 1 to (m− 1) do

5 Z(r) := U>rX
(r−1)

6 X(r) := f r(Z
(r))

7 Y (n`) := Y
8 for layer r from (n` − 1) to m do

9 Y (r+1) := Π(Y (r+1))

10 Y (r) := U r+1 f
−1
r+1(Y

(r+1))

11 Um := Um − η (∂Lm/∂Um)
12 Return Um

Algorithm 1: Updating the weights of a layer in backprojection

data y
(m)
i by tuning the weights Um. This is because the output of the network is supposed

to be equal to the labels, i.e., x(n`) ≈ y. In order to tune the weights for Eq. (3.67), I use
a step of gradient descent. Using chain rule, the gradient is:

Rdm−1×dm 3 ∂Lm
∂Um

=
b∑
i=1

vec−1dm−1×dm

[(∂z(m)
i

∂Um

)>(∂fm(z
(m)
i )

∂z
(m)
i

)>∂`(fm(z
(m)
i ))

∂fm(z
(m)
i )

]
, (3.68)

whose terms are detailed in [50].

The procedure for updating weights in the m-the layer is shown in Algorithm 1. Until
the layer m, data is projected and passed through activation functions layer by layer. Also,
the label is backprojected and passed through inverse activation functions until the layer m.
A step of gradient descent is used to update the layer’s weights where η > 0 is the learning
rate. Note that the backprojected label at a layer may not be in the feasible domain of its
inverse activation function. Hence, at every layer, I should project the backprojected label
onto the feasible domain [106]. I denote projection onto the feasible set by Π(.).

3.3.1.4 Different Procedures

So far, I explained how to update the weights of a layer. Here, I detail updating the entire
network layers. In terms of the order of updating layers, I can have three different proce-
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dures for a backprojection algorithm. I can update layers from the first to the last layer
(i.e., forward procedure), from the last layer to the first layer (i.e., backward procedure),
and going back and forth (i.e., forward-backward procedure). One alternative approach is
to make updating of layers dependent only on the weights tuned by previous mini-batch.
In that approach, the training of layers can be parallelized within mini-batch.

3.3.1.5 Kernel Backprojection Algorithm

For the reason explained in Chapter 1, I also propose the kernel version of backprojec-
tion. Suppose φ : X → H is the pulling function to the feature space. Let t denote
the dimensionality of the feature space, i.e., φ(x) ∈ Rt. Let the matrix-form of X and
Y be denoted by Rd×n 3 X̆ := [x1, . . . ,xn] and Rp×n 3 Y̆ := [y1, . . . ,yn]. The ker-
nel matrix for the training data X̆ is defined as Rn×n 3 K̆ := Φ(X̆)>Φ(X̆) where
Rt×n 3 Φ(X̆) := [φ(x1), . . . ,φ(xn)]. I normalize the kernel matrix [1] as K̆(i, j) :=

K̆(i, j)/
[
K̆(i, i)K̆(j, j)

]1/2
where K̆(i, j) denotes the (i, j)-th element of the kernel matrix.

According to representation theory [2], the projection matrix U 1 ∈ Rd×d1 can be expressed
as a linear combination of the projected training data. Hence, I have Rt×d1 3 Φ(U 1) =
Φ(X̆) Θ where every column of Θ := [θ1, . . . ,θd1 ] ∈ Rn×d1 is the vector of coefficients.
The projection of the pulled data is Rd1×n 3 Φ(U 1)

>Φ(X̆) = Θ>Φ(X̆)>Φ(X̆) = Θ>K̆.

In the kernel backprojection algorithm, in the first network layer, I project the pulled
data from the feature space with dimensionality t to another feature space with dimen-
sionality d1. The projections of the next layers are the same as in backprojection. In
other words, kernel backprojection applies backprojection in the feature space rather than
the input space. In a mini-batch set-up, I use the columns of the normalized kernel corre-
sponding to the batch samples, denoted by {ki ∈ Rn}bi=1. Therefore, the projection of the
i-th data point in the batch is Rd1 3 Θ>ki. In kernel backprojection, the dimensionality of
the input is n and the kernel vector ki is fed to the network as input. By replacing the xi
by ki, Algorithm 1 is applicable for kernel backprojection. In the test phase, I normalize
the kernel over the matrix [X̆,xt] where xt ∈ Rd is the test data point. Then, I take
the portion of normalized kernel which corresponds to the kernel over the training versus
test data, denoted by Rn 3 kt := Φ(X̆)>Φ(xt). The projection at the first layer is then
Rd1 3 Θ>kt.
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3.3.2 Deep Network

In this section, I propose algorithms for neural network-based dimensionality reduction by
deep networks. The proposed methods are Fisher losses, including FDT and FDC, and
triplet mining using Bayesian updating, including BUT and BUNCA.

3.3.2.1 Fisher Loss for Training Siamese Network

The triplet and contrastive loss functions, introduced in Section 2.2.4, are used for training
Siamese networks. These loss functions increase and decrease the inter-class and intra-class
variances of embedded data, respectively. The same goal is tackled by FDA (see Section
2.2.1). This motivated me to propose Fisher loss functions for Siamese networks.

Network Structure for Our Proposed Losses: Consider any arbitrary neural
network as the backbone. This network can be either a multi-layer perception or a con-
volutional network. Let q be the number of its output neurons, i.e., the dimensionality
of its embedding space. I add a fully connected layer after the q-neurons layer to a new
embedding space (output layer) with p ≤ q neurons. Denote the weights of this layer by
U ∈ Rq×p. I name the first q-dimensional embedding space as the latent space and the
second p-dimensional embedding space as the feature space. My proposed loss functions
are network-agnostic as they can be used for any network structure and topology of the
backbone. The overall network structure for the usage of the proposed loss functions is
depicted in Fig. 3.4.

Consider a triplet {xa,xn,xd ∈ Rd} or a pair {x1,x2 ∈ Rd}. I feed the triplet or
pair to the network. I denote the latent embedding of data by {oa,on,od ∈ Rq} and
{o1,o2 ∈ Rq} while the feature embedding of data is denoted by {f(xa), f(xn), f(xd) ∈ Rp}
and {f(x1), f(x2) ∈ Rp}. The last layer of network is projecting the latent embedding to the
feature space where the activation function of the last layer is linear because of unsupervised
feature extraction. Hence, the last layer acts as a linear projection f(x) = U>o. During
the training, the latent space is adjusted to extract some features; however, the last-layer
projection fine-tunes the latent features in order to have better discriminative features.

Fisher Discriminant Triplet Loss: As in neural networks, the loss function is usually
minimized, I minimize the negative of Fisher criterion:

minimize
U

− J = tr(U>SW U)− tr(U>SB U). (3.69)

This problem is ill-defined because by increasing the total scatter of embedded data, the
inter-class scatter also gets larger and this objective function gets decreased. Therefore,
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Backbone

Latent space

Feature space

Figure 3.4: The network structure for the proposed Fisher loss functions.

the embedding space scales up and explodes gradually to increase the term tr(U>SB U).
In order to control this issue, I penalize the total scatter of the embedded data, denoted
by ST ∈ Rd×d:

min
U

tr(U>SW U)−tr(U>SB U)+ε tr(U>ST U), (3.70)

where ε ∈ (0, 1) is the regularization parameter. The total scatter can be considered as the
summation of the inter- and intra-class scatters (see Eq. 2.4). Hence:

tr(U>SW U )− tr(U>SB U) + ε tr(U>ST U) = tr
(
U>(SW − SB + εST )U

)
(2.4)
= tr

(
U>((ε+ 1)SW + (ε− 1)SB)U

) (a)
= (2− λ) tr(U>SW U)− λ tr(U>SB U),

(3.71)

where (a) is because (0, 1) 3 λ := 1− ε. It is recommended for ε and λ to be close to one
and zero, respectively because the total scatter should be controlled not to explode. For
example, a good value can be λ = 0.1.

I want the inter-class scatter term to get larger than the intra-class scatter term by a
margin α > 0. Hence, the FDT loss, to be minimized, is defined as:

`FDT =
[
(2− λ) tr(U>SW U)−λ tr(U>SB U)+α

]
+
, (3.72)

where we defer the mathematical definition of intra- and inter-class scatter matrices in our
loss functions to the following sections.

Fisher Discriminant Contrastive Loss: Rather than the triplets of data, one can
consider the pairs of samples. For this goal, I propose the FDC loss function defined as:

`FDC =(2− λ) tr(U>S̃W U ) +
[
−λ tr(U>S̃B U ) + α

]
+
, (3.73)
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where the intra- and inter-class scatter matrices, which will be defined in the following
sections, consider the anchor-neighbor and anchor-distant pairs.

Scatter Matrices in FDT: Let the output embedding of the backbone, i.e. the
second-to-last layer of total structure, be denoted by o ∈ Rq. We call this embedding
the latent embedding. Consider the latent embeddings of anchor, neighbor, and distant,
denoted by oa, on, and od, respectively. If having a mini-batch of b triplets, I can define
Rq×b 3 OW := [o1a − o1n, . . . ,oba − obn] and Rq×b 3 OB := [o1a − obd, . . . ,oba − obd] where
oi is the i-th sample in the mini-batch. The intra- and inter-class scatter matrices are,
respectively, defined as:

Rq×q 3 SW :=
b∑
i=1

(oia − oin)(oia − oin)> = OW O
>
W , (3.74)

Rq×q 3 SB :=
b∑
i=1

(oia − oid)(oia − oid)> = OBO
>
B. (3.75)

The ranks of the intra- and inter-class scatters are min(q, b − 1). As the subspace of
FDA can be interpreted as the eigenspace of S−1W SB, the rank of the subspace would be
min(q, b − 1) = b − 1 because we usually have b < q. In order to improve the rank of the
embedding subspace, I slightly strengthen the main diagonal of the scatter matrices [99]:

SW := OW O
>
W + µW I, (3.76)

SB := OBO
>
B + µB I, (3.77)

where µW , µB > 0 are small positive numbers, e.g., 10−4. Hence, the embedding subspace
becomes full rank with q ≥ p.

Scatter Matrices in FDC: As in the regular contrastive loss, I consider the pairs of
anchor-neighbor and anchor-distant for the FDC loss. Let y be zero and one when the pair
{xi1,xi2} is an anchor-neighbor or anchor-distant pair, respectively. The latent embedding
of this pair is denoted by {oi1,oi2}. The intra- and inter-class scatter matrices in the FDC
loss are, respectively, defined as:

S̃W :=
b∑
i=1

(1− y)(oi1 − oi2)(oi1 − oi2)> + µW I = ÕW Õ
>
W + µW I, (3.78)

S̃B :=
b∑
i=1

y(oi1 − oi2)(oi1 − oi2)> + µB I = ÕB Õ
>
B + µB I, (3.79)
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where ÕW :=[{oi1 − oi2 | y = 0}] and ÕB :=[{oi1 − oi2 | y=1}].

Note that in both FDT and FDC loss functions, there exist the weight matrix U and
the intra- and inter-class scatter matrices. By back-propagation, both the last layer and
the previous layers are trained because U in loss affects the last layer, and the scatter
matrices in loss impact all the layers.

3.3.2.2 Triplet Mining Using Bayesian Updating

For training a triplet Siamese network, triplets, containing anchor, positive, and negative,
should be sampled. Here, I aim to draw the positive and negative samples for every anchor
instance in a dynamic manner. The main idea is to sample the positive and negative
instances of triplets for every anchor in a mini-batch of data from some distributions
rather than from the embedded data points themselves. This gives the triplet network more
opportunity to explore the embedding space for increasing and decreasing the inter- and
intra-class variances because the triplet information is not restricted to only the embedded
data but is instead stochastic.

Preliminaries and Notations: Consider a q-dimensional training dataset {zi}ni=1

where zi ∈ Rq. The class labels of instances are {yi}ni=1. Suppose I have c number of
classes in the dataset. I use the mini-batch (of size b) stochastic gradient descent for
training the network. Let nj denote the training sample size per class in a mini-batch. I
show the i-th training instance of the j-th class in a mini-batch by z′ji . Let x′ji ∈ Rd denote
the embedding of z′ji by the triplet network where the dimensionality of embedding space
is d.

The data for each class are accumulated by receiving new mini-batches of data. Let nj0
denote the sample size of accumulated data for the j-th class so far. The sample size per j-th
class in a mini-batch is denoted by n′j. In this work, we have n′1 = · · · = n′c = n′ = db/ce
and n1

0 = · · · = nc0 = n0 because we take the same sample size per class in the mini-
batch. This n′ is the sample size of new incoming data per class in every mini-batch. The
accumulated data for the j-th class so far are denoted by x0,j. Also, µj and Σj are the
mean and covariance of the distribution of the j-th class, respectively.

Sampling Algorithm: I assume a multivariate normal distribution for the embedded
data of every class. This assumption makes sense according to the central limit theorem
and the fact that the normal distribution is the most common continuous distribution. In
the first batch, where there is not already any embedding of training data, I use Maximum
Likelihood Estimation (MLE) to estimate the distribution parameters. The mean and
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1 Procedure: TrainTripletNetwork({zi}ni=1, {yi}ni=1)
2 Input: training data: {zi}ni=1, training labels: {yi}ni=1

3 for all required epochs do
4 for all batches in epoch do
5 {xi}bi=1 ← Feed {zi}bi=1 to the triplet network
6 for class j from 1 to c do
7 if it is first mini-batch then

8 µ0,j := (1/n′)
∑n′

i=1 x
′j
i

9 Σ0,j := (1/n′)
∑n′

i=1(x
′j
i − µ0,j)(x′ji − µ0,j)>

10 else

11 µ′j := (1/n′)
∑n′

i=1 x
′j
i

12 µ0,j := (n′µ′j + n0µ
0,j)/(n′ + n0)

13 if n′ + n0 > d+ 1 then

14 Υ := n′Σ′j + n0Σ
0,j + n′n0

n′+n0
(µ0,j − µ′j)(µ0,j − µ′j)>

15 Σ0,j := Υ−1/(n′ + n0 − d− 1)

16 else

17 Σ0,j := (1/n′)
∑n′

i=1(x
′j
i − µ′j)(x

′j
i − µ′j)>

18 for instance i from 1 to b do
19 anchor ← xi
20 for class j from 1 to c do
21 if j = yi then
22 Sample (c− 1) positive instances ∼ N (µ0,j,Σ0,j)
23 else
24 Sample a negative instance ∼ N (µ0,j,Σ0,j)

25 Minimize the triplet/NCA loss with the (b× (c− 1)) triplets.

Algorithm 2: Dynamic Triplet Sampling with Bayesian Updating

covariance of the embedded data of every class are estimated by the sample mean and
covariance matrix, respectively.

In later batches after the first batch, we do have some existing data per class, denoted
by nj0,∀j. According to Bayesian updating, the mean and covariance of distribution of
every class can be updated (see [119]). I update the mean and covariance matrix of the
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distribution of every class by the expectation of marginal distributions for the mean and
covariance. According to the expectations of these two distributions which can be found
in [119], the updates of mean and covariance of the j-th class can be performed by Eqs.
(2.25) and (2.26), respectively.

The proposed dynamic triplet sampling is summarized in Algorithm 2. The mean and
covariance of every class are estimated by MLE at the initial batch. In the following
batches, Bayesian updating is exploited for updating the mean and covariance of classes.
After the means and covariances are updated, I sample the triplets. For every instance
of a batch, considered as an “anchor”, a negative instance is sampled from each different
class resulting in (c− 1) negatives per anchor. Accordingly, (c− 1) positive instances are
also sampled from the same class of anchor. Overall, (b× (c− 1)) triplets are sampled in
every mini-batch while the distributions of classes are being updated dynamically.

Optimization of the Loss Functions: The proposed dynamic triplet sampling can
be used for either triplet or NCA loss functions, introduced in Section 2.2.4. I name these
methods by BUT and BUNCA, respectively.

3.4 Summary of the Chapter

This chapter was on dimensionality reduction and proposed several new algorithms in differ-
ent categories of dimensionality reduction, i.e., spectral, probabilistic, and neural network-
based algorithms. In spectral dimensionality reduction category, I proposed WFDA, RDA,
and image quality aware embedding (including SSIM kernel, ISCA, and LLISE). QQE was
proposed as a probabilistic dimensionality reduction method. The neural network-based
methods were divided into shallow and deep networks where backprojection was proposed
for the former and Fisher losses (FDT and FDC losses) and BUT/BUNCA triplet mining
approaches were proposed for the latter.

Among the categories of dimensionality reduction, spectral methods are fast but cannot
usually handle large volumes of data. The probabilistic methods are more robust to outliers
usually. The neural network-based methods have the advantage of being able to handle
larger volumes of data. The proposed dimensionality reduction methods can be used for
feature extraction from data. This feature extraction can be used to find an embedding
space for better representation of data or separation of classes.
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Chapter 4

Proposed Algorithms for Numerosity
Reduction

Numerosity reduction reduces the number or cardinality of data instances by either ranking
them or discarding the non-informative ones. In this chapter, I propose several algorithms
for numerosity reduction. Note that the algorithms, which are proposed in this thesis,
are developed based on the mathematics and techniques developed in previous work, in-
troduced in Chapter 2. This chapter divides numerosity reduction into three categories
which are variance-based (Section 4.1), geometry-based (Section 4.2), and isolation-based
(Section 4.3) methods. In variance-based category, it proposes PSA (Section 4.1.1) and
IRMD (Section 4.1.2). This chapter proposes CAD (Section 4.2.1) in the geometry-based
numerosity reduction group. In isolation-based category, it proposes iMondrian forest (Sec-
tion 4.3.1). Note that some applications of these methods, in the field of image processing
and denoising, will be proposed in Chapter 5.

4.1 Algorithms Based on Variance

In the following, I propose new algorithms for variance-based numerosity reduction. My
proposed algorithms are PSA and IRMD.
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4.1.1 Principal Sample Analysis

Assume there exist C classes indexed by j = {1, . . . , C}. The N training samples are
denoted by X, and the N j training samples from the jth class are denoted by Xj. The
PSA algorithm consists of four stages: preprocessing, finding sets of major samples, ranking
major samples, and ranking minor samples (see Fig. 4.1). This algorithm is mostly based
on intra-class and inter-class variances of data and in this manner, it is similar to the
approach of FDA. In the PSA algorithm, I denote dimensionality of data by D.

4.1.1.1 Preprocessing

PSA applies regression on the samples of every class. However, this requires at least (D−1)
samples in every class to regress data on a (D − 1)-dimensional space of samples of the
class. Therefore, the number of samples of every class must be at least (D − 1). If this
condition does not exist for a class, either the number of samples of the class should be
increased or the dimensionality of data should be decreased.

4.1.1.2 Finding Sets of Major Samples

Regression Score: A good representative set of samples should contain samples which
can predict all the data points in the class with minimum error. Inspired by RANdom
SAmple Consensus (RANSAC), N j

M samples of the jth class, denoted by Xj
M , are randomly

selected from the samples Xj for several iterations. As in RANSAC, a regression method
such as linear regression [26] is applied to the selected samples for several iterations, but
with a difference. In our problem, there does not exist any label as required by regression.
To overcome this challenge, regression is performed (D − 1) times where each one of the
dimensions is considered once as the label for regression and the rest of dimensions form
the observations for regression. In every iteration of RANSAC, the regression is performed
on all N j samples of the class and also on the N j

M major samples:

All samples: βja =
(

(X j[−d])>X j[−d]
)−1

(X j[−d])>X j[d], (4.1)

Major samples: βjM =
(

(X j
M [−d])>X j

M [−d]
)−1

(X j
M [−d])>X j

M [d]. (4.2)

If the selected samples form a good representative of the all the data for class j, the two
vectors βja and βjM are closely parallel and have cosine close to 1. Therefore, the regression
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Figure 4.1: Overall structure for principal sample analysis

score sj,RM of major samples is:

sj,RM = cos(βjM , β
j
a) =

(βjM)>βja
||βjM ||2||β

j
a||2

. (4.3)

Variance Score: The major samples are supposed not to be close to each other because
very nearby samples share similar information and therefore are redundant. The scatter
of major samples of class j is:

Sj,νM =

Nj
M∑

i=1

(xjM,i − x
j
M)(xjM,i − x

j
M)>, (4.4)

where xjM,i is the ith sample in the set Xj
M , and xjM = (1/N j

M)
∑Nj

M
i=1 x

j
M,i is the mean of

samples in set Xj
M . As the eigenspace of the scatter matrix carries information about the

variance of the data [26], the variance score is:

sj,νM = tr(Sj,νM ) ∝ Var(xjM), (4.5)

where tr(.) is the trace of matrix.

Between Scatter Score: The major samples are supposed to be farther from the
other classes for the sake of more discrimination. Therefore, the between scatter of major
samples of the jth class are:

Sj,BM =
C∑

c=1,c 6=j

Nc∑
k=1

wck(x
j
M − x

c
k)(x

j
M − x

c
k)
>, (4.6)

where C is the number of classes, xck is the kth sample of class c, xjM is the mean of major
samples in class j, and wck is the weight associated with xck, calculated as:

wck =
1

2

(
1 + cos(xck, x

c)
)

=
1

2

(
1 +

xc>k x
c

||xck||2||xc||2
), (4.7)
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where xc is the mean of class c. This weighting, which is in the range [0, 1], gives more
weight to the samples close (parallel) to the mean of its own class. The between scatter
score is:

sj,BM = tr(Sj,BM ). (4.8)

Within Scatter Score: Although it is better for the major samples to be sparse, as
explained in variance score, they should also be close to each other to represent the core of
the class. The within scatter of the major samples of the jth class is:

Sj,WM =

Nj
M∑

i=1

Nj
M∑

k=1,k 6=i

wjM,k(x
j
M,i − x

j
M,k)(x

j
M,i − x

j
M,k)

>, (4.9)

where weight wjM,k is the same as equation (4.7) if substituting xck and xc with xjM,k and

xjM respectively. The within scatter score is:

sj,WM = tr(Sj,WM ). (4.10)

Ranking Sets: The score of a set of major samples (set score) is finally calculated as,

sjM = sj,RM × s
j,ν
M × s

j,B
M × (1/sj,WM ), (4.11)

because a better set should have larger regression score, larger variance score, larger be-
tween scatter score, and smaller within scatter score. The algorithm is performed for every
class j. In every iteration, the set score of selected samples is found and finally the set of
samples having the best set score is returned.

4.1.1.3 Ranking Major Samples

Between Scatter Score: The major samples are supposed to be far from the other
classes. The between scatter of a major sample xjM,i in class j from the samples of other
classes is:

Sj,BM,i =
C∑

c=1,c 6=j

Nc∑
k=1

wck(x
j
M,i − x

c
k)(x

j
M,i − x

c
k)
>, (4.12)

where weight wck is the same as equation (4.7). The between scatter score of a sample in
the set is then found as,

sj,BM,i = tr(Sj,BM,i). (4.13)
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Within Scatter Score: It is better for the major samples to be close to the samples
of their own class. The within scatter of a major sample xjM,i in class j from the samples
of its own class is:

Sj,WM,i =
Nj∑
k=1

wjk(x
j
M,i − x

j
k)(x

j
M,i − x

j
k)
>, (4.14)

where weight wjk is the same as equation (4.7) if substituting xck and xc with xjk and xj

respectively. The within scatter score of a sample in the set is:

sj,WM,i = tr(Sj,WM,i ). (4.15)

Ranking: The score of a major sample is:

sjM,i = sj,BM,i × (1/sj,WM,i ), (4.16)

because the better sample in the major set is farther from the samples of other classes and
is closer to samples of its own class. This score is found for every sample in the best major
set of the class and the major samples are ranked by these scores.

4.1.1.4 Ranking Minor Samples

Between Scatter Score: It is better for the minor samples to be far from the major
samples of other classes. Here, the major samples of other classes are assumed to be
proper and purer representatives of their classes; thus, the found major samples are used
rather than whole samples of other classes. The between scatter score of a minor sample
xjm,i in class j from the major samples of other classes is:

Sj,Bm,i =
C∑

c=1,c 6=j

Nc
M∑

k=1

wcM,k(x
j
m,i − xcM,k)(x

j
m,i − xcM,k)

>, (4.17)

where xcM,k is the indexed sample in the sorted major samples according their score (i.e.,
xcM,1 has the best rank in set of majors). The weight wcM,k is:

wcM,k =
N c
M − k + 1

N c
M(N c

M + 1)/2
, (4.18)

which gives larger weight to better ranked major samples because they are more important
to their class. The between scatter score of a minor sample is:

sj,Bm,i = tr(Sj,Bm,i). (4.19)
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Within Scatter Score: The minor samples should also be close to the major samples
of their own class. The within scatter of a minor sample from the major samples of its
class is:

Sj,Wm,i =

Nj
M∑

k=1

wjM,k(x
j
m,i − xjM,k)(x

j
m,i − xjM,k)

>, (4.20)

where weight wjk is the same as equation (4.18) if substituting N c
M with N j

M . The within
scatter score of a minor sample is:

sj,Wm,i = tr(Sj,Wm,i ). (4.21)

Ranking: The score of a minor sample is:

sjm,i = sj,Bm,i × (1/sj,Wm,i ), (4.22)

because a better minor sample is farther from the major samples of other classes and is
closer to major samples of its own class. This score is found for every minor sample of
class and the minor samples are ranked by the scores. Finally, in every class, the ranks of
minor samples are concatenated after the ranks of major samples to have the ranks of all
samples in the class.

4.1.1.5 Principal Sample Analysis for Regression and Clustering Tasks

One can extend PSA to be useful for regression and clustering tasks as well as classification.
Applying slight changes to PSA makes it useful for regression and clustering tasks. In
regression and clustering, there exists merely one set or class of data; hence, the between
scatter scores in PSA should be set to 1 because we do not have several classes to compute
their between scatters. Moreover, calculation of scatters in PSA can be simplified to iterate
over only one existing class which is the whole dataset. For regression case, the regression
score can also be simplified because the labels of regression are now available enabling us to
omit the loop over the (D−1) dimensions in PSA. Finally, PSA can be used for regression
and clustering after these changes.

4.1.2 Instance Ranking by Matrix Decomposition

In this section, I propose Instance Ranking by Matrix Decomposition (IRMD). The general
idea of IRMD is that the more important data points fall close to the more informative
directions of data. These informative directions can be found with the help of matrix
decomposition. In the following, I explain the details of this proposed method.
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4.1.2.1 Instance Ranking Using Matrix Decomposition

As was explained in Section 2.2.6, the matrix decomposition factorizes a matrix into the
product of two matrices X = UV >. The matrices U ∈ Rd×k and V ∈ Rn×k can be
interpreted as kernel or similarity over columns (instances) and rows (features) of X,
respectively. From another perspective, U and V can be considered as bases and coef-
ficients of instances, respectively. Comparing the p-th columns in X = UV >, I have
xp =

∑k
j=1 V (p, j)uj ∈ span{u1, . . . ,uk}; therefore, columns of U are the bases for col-

umn space or range of X, i.e., columns of U span the space of instances. In SVD, for
example, the columns of U are principal components of X showing its maximum varia-
tions. The idea is that the basis vectors capture the most informative directions in the
data in terms of some type of information such as variation. Hence, it is expected that the
more important instances are more similar to these basis vectors. Therefore, the instances
can be ranked based on their similarity to the basis vectors. There are several basis vectors
so I fuse their information into one similarity score as explained in the following.

Measuring Similarity with Basis Vectors: Suppose that u is a basis vector and x is
an instance. The cosine is used for the similarity metric because it can be written in simple
closed-form matrix operations. If the two vectors x and u are already normalized and have
unit length, the cosine is reduced to the inner product cos(x,u) = x>u. Thus, I normalize

the instances (columns of X), i.e., X̃(:, j) = X(:, j)/||X(:, j)||2, ∀j ∈ {1, . . . , n}, where

X̃ is the normalized dataset. I assume that basis vectors U are already orthonormal;
otherwise, they should be normalized as well which is the case with the basis of NMF, DL,
and PLU decomposition. Having k basis vectors as columns of U ∈ Rd×k and n instances
as columns of X ∈ Rd×n, the cosine of basis vectors and instances are Rn×k 3 cos(X,U) =

X̃
>
U .

I would like these scores to be positive in order to be ready for fusion, so I use |X̃
>
U |ε ∈

Rn×k in range [ε, 1] where the safe absolute value |A|ε := max(|A|, ε) prevents the elements
of matrix A from being zero and ε is a small positive number (e.g., 0.001). The intuition
of absolute value is that in measuring similarity with a basis vector, I should care only
about the direction of the basis vector and not its sign of direction. The intuition of safe
absolute value is that I want to fuse the k scores of every instance by multiplication so
having a small score regarding one of the basis should not spoil all scores.

In order to fuse the scores of similarities of every instance with different basis vectors, I
use weighted product of scores, |s1|w1

ε ×· · ·×|sk|wk
ε . This can be written in logarithmic form,

−(w1 log |s1|ε+· · ·+wk log |sk|ε), which gives a closed-form matrix where the negative signs
cancel with those obtained from logarithms of scores in range [ε, 1]. Finally, the overall

71



score of every instance with respect to the k basis vectors can be obtained as the entries
of:

Rn 3 s = − log
(
|X̃
>
U |ε
)
w, (4.23)

where Rk 3 w = [w1, . . . , wk] contains the weights regarding the k basis vectors. In case
the eigenvalues are obtained (such as SVD, SPCA, and FDA) or are not obtained (such
as NMF, DL, PLU and QR decompositions) from decomposition or subspace learning, I

use wi = 1/λi∑
j 1/λj

and wi = 2i
k(k+1)

, ∀i = 1, . . . , k, respectively. When having eigenvalues,

the basis vectors and eigenvalues are sorted in descending order. Note that smaller weight
gives more importance as the range of |si|ε is [ε, 1]. Moreover, as the weights should
be positive, if there are any negative eigenvalue, I shift all values to become positive
λi ← λi − 2λkI(λk < 0) where I(.) is the indicator function (1 if its condition is satisfied
and 0 otherwise).

Unsupervised Cases: In unsupervised learning, we are given a dataset X with-
out labels. The matrix U can be obtained from its decomposition, i.e., in SVD: X =

(Ũ)(ΛṼ
>

) = UV >, in NMF: X = UV >, in PLU: X = (PL̃)(Ũ ) = UV >, in QR:
X = (Q)(R) = UV >, and in DL: X = (D)(R) = UV > (see Section 2.2.6). To be more

clear, for example for SVD, I take left singular matrix Ũ to be U and ΛṼ
>

to be V >.
The scores of instances are calculated using Eq. (4.23).

Regression Cases: In regression, there exist some independent variables X ∈ Rd×n

(I call them observations) and some dependant variables, or labels, Y ∈ R`×n. The goal
of regression is to predict the Y from given X. Instance ranking may help regression in
terms of finding the most important instances for this prediction. Considering merely X
takes into account the distribution and variation of data regardless of the labels. On the
other hand, considering only Y ignores the effect of X and concentrates on the output
labels to be predicted and the relation of instances in terms of labels. These two scenarios
have their own merits so I fuse them. The explained methodology for unsupervised cases
can be applied once to X and once on Y . Let the scores obtained from processing X
and Y be sX and sY , respectively. The fusion of these scores can be done by multiplying
these two scores which are both positive: Rn 3 s = sX � sY , where � denotes Hadamard
product.

Classification Cases: In classification, the dataset X ∈ Rd×n and the corresponding
possible labels Y ∈ R`×n exist, while every column of Y encodes one of the |C| classes.
Every important instance should be a satisfactory representative of its own class. Let the
instances of class c be denoted by Xc. If UXc denotes the basis matrix obtained from

decomposition of Xc and X̃c is the normalized Xc, the scores of instances in class c are
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obtained as Rnc 3 sXc = − log
(
|X̃
>
c UXc|ε

)
w.

On the other hand, the instances should be important in terms of discrimination of
classes. Here, as in the case of regression, I cannot find the scores for solely the labels
Y . The reason is that the labels of a class are all similar and the rank of Y will be
only |C| with so many repetitive columns if it is one-hot encoded. Therefore, I put the
labels Y alongside X to yield a new matrix. However, in order to bias instances of
every class to fall closer to each other in the space, it is best to choose Y to be encoded
by one-hot encoding resulting in E ∈ R|C|×n. Finally, concatenating X and E results in
D := [X>,E>]> ∈ R(d+|C|)×n. The same approach is used for finding the scores of instances

based on D: Rn 3 sD = − log
(
|D̃
>
UD|ε

)
w, where D̃ and UD are the normalized D and

basis vectors from decomposition of D, respectively. Finally, the two scores sX and sD
are fused similarly as before: Rn 3 s = sX � sD, and the reduced dataset (X̂ and Ŷ ) is
obtained.

4.1.2.2 Instance Ranking Using Subspace Learning

The goal of subspace learning is to project data form the original d-dimensional space
to a lower dimensional subspace with dimensionality k. The projection is formulated as
U>X where U ∈ Rd×k is the projection matrix. Interestingly, the projection matrix can
be considered as the basis matrix in the matrix decomposition. The reason for this claim
is that assuming Rk×n 3 V > := U>X, the reconstruction of matrix X can be written as
X ≈ UU>X = UV >, which is the matrix decomposition of X. Therefore, the columns
of the projection matrix U can be interpreted as the basis vectors with which the instances
can be compared. Hence, considering the projection matrix as U , we can have scores for
all the unsupervised, regression, and classification cases.

4.2 Algorithm Based on Geometry

I propose Curvature Anomaly Detection (CAD) and Kernel Curvature Anomaly Detec-
tion (K-CAD) for anomaly detection and iCAD and Kernel Inverse Curvature Anomaly
Detection (K-iCAD) for numerosity reduction. These methods have a geometry-based
approach.

The main idea of these methods is as follows. Every data point is considered to be the
vertex of a hypothetical polyhedron (see Fig. 2.1-a). For every point, we find its kNN. The
k neighbors of the point (vertex) form the k faces of a polyhedron meeting at that vertex.
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Then, the more curvature that point (vertex) has, the more anomalous (or less important
in terms of numerosity reduction) it is because it is far away (different) from its neighbors.
The concept of polyhedron curvature was introduced in Section 2.2.7. Please note that
this view to anomaly detection and numerosity reduction is completely novel.

4.2.1 Curvature Anomaly Detection

Because of the idea explained above, anomaly score sA is proportional to the curvature.
Since, according to the equation of angular effect (see Section 2.2.7), the curvature is
proportional to minus the summation of angles, one can consider the anomaly score to be
inversely proportional to the summation of angles. Without loss of generality, I assume the
angles to be in range [0, π] (otherwise, I take the smaller angle). The less the angles between
two edges of the polyhedron, the more their cosine. As the anomaly score is inversely
proportional to the angles, I can use cosine for the anomaly score: sA(xi) ∝ 1/τa ∝ cos(τa).
I define the anomaly score to be the summation of cosine of the angles of the polyhedron
faces meeting at that point: sA(xi) :=

∑k
a=1 cos(τa) =

∑k
a=1(x̆

>
a x̆a+1)/(||x̆a||2||x̆a+1||2)

where x̆a := xa − xi is the a-th edge of the polyhedron passing through the vertex xi, xa
is the a-th neighbor of xi, and x̆a+1 denotes the next edge sharing the same polyhedron
face with x̆a where x̆k+1 = x̆1.

Note that finding the pairs of edges which belong to the same face is difficult and time-
consuming so I relax this calculation to the summation of the cosine of angles between all
pairs of edges meeting at the vertex xi:

sA(xi) :=
k−1∑
a=1

k∑
b=a+1

x̆>a x̆b
||x̆a||2||x̆b||2

, (4.24)

where x̆a := xa−xi, x̆b := xb−xi, and xa and xb denote the a-th and b-th neighbor of xi.
In Eq. (4.24), I have omitted the redundant angles because of symmetry of inner product.
Note that the Eq. (4.24) implies that I normalize the k neighbors of xi to fall on the unit
hyper-sphere centered at xi and then compute their cosine similarities (see Fig. 2.1-c).

The mentioned relaxation is valid for the following reason. Take two edges meeting
at the vertex xi. If the two edges belong to the same polyhedron face, the relaxation is
exact. Consider the case where the two edges do not belong to the same face. These two
edges are connected with a set of polyhedron faces. If we tweak one of the two edges to
increase/decrease the angle between them, the angle of that edge with its neighbor edge
on the same face also increases/decreases. Therefore, the changes in the additional angles
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of relaxation are consistent with the changes of the angles between the edges sharing the
same faces.

After scoring the data points, one can sort the points and find a suitable threshold
visually using a scree plot of the scores. However, in order to find anomalies automatically,
I apply K-means clustering, with two clusters, to the scores. The cluster with the larger
mean is the cluster of anomalies because the higher the score, the more anomalous the
point. For finding anomalies for out-of-sample data, I find kNN for the out-of-sample
point where the neighbors are from the training points. Then, I calculate the anomaly
score using Eq. (4.24). The K-means cluster whose mean is closer to the calculated score
determines whether the point is normal or anomaly.

4.2.2 Kernel Curvature Anomaly Detection Algorithm

For the reason explained in Chapter 1, I also propose the kernel version of CAD, named
K-CAD) to work on data in the feature space. In K-CAD, the two stages of finding kNN
and calculating the anomaly score are performed in the feature space. The kernel over
two vectors x1 and x2 is the inner product of their pulled data, i.e., R 3 k(x1,x2) :=
φ(x1)

>φ(x2). The Euclidean distance in the feature space is [115]: ||φ(xi) − φ(xj)||2 =√
k(xi,xi)− 2k(xi,xj) + k(xj,xj). Using this distance, I find the k-NN of the dataset in

the feature space.

After finding k-NN in the feature space, I calculate the score in the feature space. I pull
the vectors x̆a and x̆b to the feature space so x̆>a x̆b is changed to k(x̆a, x̆b) = φ(x̆a)

>φ(x̆b).
Let Ki ∈ Rk×k denote the kernel of neighbors of xi whose (a, b)-th element is k(x̆a, x̆b).
The vectors in Eq. (4.24) are normalized. In the feature space, this is equivalent to
normalizing the kernel k(x̆a, x̆b) := k(x̆a, x̆b)/

√
k(x̆a, x̆a) k(x̆b, x̆b) [1]. If K ′i denotes the

normalized kernel Ki, the anomaly score in the feature space is:

sA(xi) :=
k−1∑
a=1

k∑
b=a+1

K ′i(a, b), (4.25)

where K ′i(a, b) is the (a, b)-th element of the kernel. The K-means clustering and out-of-
sample anomaly detection are similarly performed as in CAD.

My observations in experiments showed that the anomaly score in K-CAD is ranked
inversely for some kernels such as RBF, Laplacian, and polynomial (different degrees)
in various datasets. In other words, for example, in K-CAD with linear (i.e., CAD),
cosine, and sigmoid kernels, the more anomalous points have greater score but in K-CAD
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with RBF, Laplacian, and polynomial kernels, the smaller score is assigned to the more
anomalous points. I conjecture that the reason lies in the characteristics of the kernels. I
defer more investigations for the reason as a future work. In conclusion, for the mentioned
kernels, one should either multiply the scores by −1 or take the K-means cluster with
smaller mean as the anomaly cluster.

4.2.3 Inverse Curvature Anomaly Detection Algorithm

If the anomaly detection uses scores, one can see instance ranking and numerosity re-
duction in the opposite perspective of anomaly detection. Therefore, the ranking scores
can be considered as the anomaly scores multiplied by −1: sR(xi) := −1 × sA(xi) =
−
∑k−1

a=1

∑k
b=a+1(x̆

>
a x̆b)/(||x̆a||2||x̆b||2). I sort the ranking scores in descending order. The

data point with larger ranking score is more important. As the order of ranking scores is
inverse of the order of anomaly scores, I name this method iCAD.

Prototype selection can be performed in two approaches: (I) the data points are sorted
and a portion of the points having the best ranks is retained, or (II) a portion of data
points is retained as prototypes and the rest of points are discarded. Some examples of the
fist approach is IRMD, PSA, SOS, and SE. DROP3 and ENN are examples for the second
approach. The iCAD can be used for both approaches. The first approach is ranking the
points with the ranking score. For the second approach, I apply K-means clustering, with
two clusters, to the ranking scores and take the points of the cluster with larger mean.

4.2.4 Kernel Inverse Curvature Anomaly Detection Algorithm

For the reason explained in Chapter 1, I also propose the kernel version of iCAD. One can
perform iCAD in the feature space to have Kernel iCAD (K-iCAD). The ranking score
is again the anomaly score multiplied by −1 to reverse the ranks of scores: sR(xi) :=
−1×sA(xi) = −

∑k−1
a=1

∑k
b=a+1K

′
i(a, b). Again, there are two approaches where the points

are ranked or K-means is applied on the scores. Note that for what was mentioned before,
I do not multiply by −1 for some kernels including RBF, Laplacian, and polynomial.
Note that iCAD and K-iCAD are task agnostic and can be used for data reduction in
classification, regression, and clustering. For classification, I apply the method for every
class while in regression and clustering, the method is applied on the entire data.
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4.3 Algorithm Based on Isolation

As was explained in Section 2.2.8, isolation forest and Mondrian forest are proposed for
batch anomaly detection and online classification, respectively. Here, I combine them in
order to propose iMondrian forest for batch and online anomaly detection.

4.3.1 iMondrian Forest: Batch Processing

Training: The iMondrian forest is an ensemble of iMondrian trees. Algorithm 3 shows
this ensemble where X := {xi}ni=1 is the batch of data and |F| is the number of trees in the
forest. Inspired by [90], the data in a batch can be subsampled with subsampling size ψ =
256 for growing the tree. If subsampling is used, X denotes the sample of data and n = ψ.
The iMondrian tree is grown recursively as detailed in Algorithm 4. As with Mondrian
trees, bounds of hyper-rectangular blocks are defined Br := (`r1, ur1]×· · ·× (`rd, urd] along

each of d dimensions for the r-th node. Let Xb := {x(b)
i } := {xi | xi ∈ Br} be the subset

of data which exist in the smallest block enclosing the node. For a node, the lower and
upper bounds of Br along the features are denoted by `Xb

and uXb
, respectively.

In order to split a block, I sample a random variable e from an exponential distribution
with the rate λ =

∑d
j=1(uXb

(j)−`Xb
(j)) which is the linear dimension of Br. I set the split

time of a node to the split time of its parent plus e. I sample the dimension of the split,
q, from a discrete distribution proportional to (uXb

(j)− `Xb
(j)). I sample the value of the

split, p, from a continuous uniform distribution U(`Xb
(q),uXb

(q)). The tree is grown until
every node contains a single data point, i.e., |X | = 1.

1 Procedure: BatchTraining(X , |F|)
2 Input: X = {xi}ni=1, |F|: number of trees
3 for tree t from 1 to |F| do
4 F ← F ∪ iMondrianTree(root, X , 0)

5 Return Forest F

Algorithm 3: Batch training in iMondrian forest

Evaluation: After growing the iMondrian trees in the forest, I calculate the path length
of every tree for a data point x as in Algorithm 5. The path length for the t-th tree, lt(x),
is the number of edges traversed by the point from the root to the node containing point
x. I calculate the expected path length in the iMondrian forest using Eq. (2.29) and the
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1 Procedure: iMondrianTree(r, X , τparent)
2 Input: r: node pointer, X = {xi}ni=1, τparent: split time of the parent node

3 Xb = {x(b)
i } = {xi | xi ∈ Br}

4 `Xb
← min({x(b)

i | ∀i})
5 uXb

← max({x(b)
i | ∀i})

6 if |Xb| > 1 then

7 e ∼ Exp
(
λ =

∑d
j=1(uXb

(j)− `Xb
(j))

)
8 τ ← τparent + e
9 q ← sample from {1, . . . , d} with distribution ∝ (uXb

(j)− `Xb
(j)) for the j-th

dimension
10 p ∼ U(`Xb

(q),uXb
(q))

11 Xleft ← {x ∈ Xb | x(q) < p}
12 Xright ← {x ∈ Xb | x(q) ≥ p}
13 Left ← iMondrianTree(leftChild(r), Xleft, τ)
14 Right ← iMondrianTree(rightChild(r), Xright, τ)
15 Return internalNode{leftChild: Left, rightChild: Right, splitDim: q,

splitVal: p, time: τ , dimmin: `Xb
, dimmax: uXb

, population: |Xb|}
16 else
17 Return leafNode{time: ∞, dimmin: `Xb

, dimmax: uXb
, population: 1}

Algorithm 4: Constructing iMondrian tree

1 Procedure: PathLength(x, t, l)
2 Input: x: data point, t: iMondrian tree, l: current path length (initialized to

0)
3 q ← t.splitDim
4 p← t.splitVal
5 if x(q) < p then
6 Return PathLength(x, t.leftChild, l + 1)
7 else
8 Return PathLength(x, t.rightChild, l + 1)

Algorithm 5: Calculation of path length

anomaly score for point x using Eq. (2.28). For determining whether a point in the dataset
is normal or an anomaly, one can either use the threshold s = 0.5 as in [90] or K-means
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1 Procedure: ExtendIMondrianForest(X (n), F)

2 Input: X (n) = {x(n)
i }mi=1: new data, F : Forest

3 for x
(n)
i ∈ X (n) do

4 for tree t ∈ F do

5 ExtendIMondrianTree(t.root, x
(n)
i , 0)

Algorithm 6: Extension of iMondrian forest

clustering. In the threshold approach, the point is determined as anomaly if s(x) > 0.5.
In the K-means approach, I assign the scores of training data into two clusters and take
the points in the cluster with greater mean as the anomaly points. The theoretical reason
for threshold 0.5 is that the expected path length for the data point (Eq. (2.29)) is the
estimation of the average path length (see c(n) in Section 2.2.8.1) when s = 0.5 (see p.
415 in [90], same holds for iMondrian). The empirical reason is that the results of s = 0.5
and K-means are almost the same (as I will show in the experiments in Chapter 6).

In batch processing, for an out-of-sample data point, I feed the data point to the trees
of iMondrian forest and calculate the score using Eq. (2.28). Then, I can use the threshold
s = 0.5 again or assign the point to the cluster whose mean is closer to the score of the
point. My experiments showed that both the threshold and clustering approaches have
almost equally good performance for batch processing.

4.3.2 iMondrian Forest: Online Processing

Training: A major advantage of iMondrian forests is their ability to be updated online
for new data. Let X (n) := {x(n)

i }mi=1 denote the m new data points. I process data points
one-by-one to extend each tree in the forest (see Algorithm 6). Algorithm 7 describes how
I extend each iMondrian tree for xn. The tree is extended recursively starting from the
root. The lower and upper errors of deviation of a point from the smallest block contained
by the node r are calculated as Rd 3 e` := max(r.dimmin − x(n),0) and Rd 3 eu :=
max(x(n) − r.dimmax,0), respectively, where dimmin and dimmax are the upper and lower
bounds of the block along different dimensions. I sample a random variable e from an
exponential distribution with the rate λ =

∑d
j=1(e`(j) + eu(j)).

In the case where the split time of the node r is greater than the split time of its
parent plus e, a new node is created above the node r. Note that it started from the root
and is moving downwards so the new node is added before the current node for which a
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1 Procedure: ExtendIMondrianTree(r,x(n), τparent)

2 Input: r: node pointer, new data point: x(n), τparent: split time of the parent
node

3 e` ← max(r.dimmin − x(n),0)

4 eu ← max(x(n) − r.dimmax,0)

5 e ∼ Exp
(
λ =

∑d
j=1(e`(j) + eu(j))

)
6 if τparent + e < r.τ then
7 q ← sample from {1, . . . , d} with distribution ∝ (e`(j) + eu(j)) for the j-th

dimension

8 if x(n)(q) > r.dimmax(q) then
9 p ∼ U

(
r.dimmax(q),x

(n)(q)
)

10 else if x(n)(q) < r.dimmin(q) then
11 p ∼ U

(
x(n)(q), r.dimmin(q)

)
12 newNode ← internalNode{splitDim: q, splitVal: p, time: τparent + e, dimmin:

min(r.dimmin,x
(n)), dimmax: max(r.dimmax,x

(n)), population: r.population
+ 1}

13 newNode.parent ← r.parent

14 if x(n)(q) > p then
15 newNode.leftChild ← r

16 newNode.rightChild ← iMondrianTree (rightSibling(r), x(n),
newNode.time)

17 else
18 newNode.leftChild ← iMondrianTree (leftSibling(r), x(n), newNode.time)
19 newNode.rightChild ← r

20 else
21 r.dimmin ← min(r.dimmin,x

(n))

22 r.dimmax ← max(r.dimmax,x
(n))

23 if x(r.splitDim) ≤ r.splitVal then
24 ExtendIMondrianTree(r.leftChild,x(n), r.τ)
25 else
26 ExtendIMondrianTree(r.rightChild,x(n), r.τ)

Algorithm 7: Extension of iMondrian tree
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condition holds. In this case, I randomly pick a split dimension q from the distribution
proportional to (e`(j) + eu(j)). If the value on dimension q of the data point is greater
than the upper bound of the current block, then the split value p is sampled from the
uniform distribution U

(
r.dimmax(q),x

(n)(q)
)
. If the value is lower, then p is sampled from

U
(
x(n)(q), r.dimmin(q)

)
. Depending on the split value and the feature of data point, I

create an iMondrian tree as the left or right sibling of the node r.

In the case where the split time of the node r is less than the split time of its parent
plus e, I simply descend down the tree and call the extending function recursively for the
left or right of the node r depending on the split dimension and split values of the children.

Evaluation: After the extension of the trees of iMondrian forest, I can process data points
through the forest to calculate their anomaly scores using Eq. (2.28). This can be done
for all the new points and any other out-of-sample points. Whenever the trees have been
updated, I should also ideally process previous batches of data through the forest again to
recalculate their anomaly scores. This is expected since more data will lead to an improved
model and a better structure for detection of false negative or positive points. However,
for performance reasons, in practice this recalculation of scores could be done for just
a window of the latest points. For online processing, our experiments showed that the
threshold s = 0.5 is not necessarily the best threshold and K-means clustering works more
better. Hence, I use K-means to cluster all the training points into two clusters and set
the cluster with greater mean as anomalous. The out-of-sample points are assigned to the
cluster whose mean is closer to their score.

4.4 Summary of the Chapter

This chapter was on numerosity reduction and proposed several new algorithms in differ-
ent categories of numerosity reduction, i.e., variance-based, geometry-based, and isolation-
based algorithms. In variance-based numerosity reduction category, I proposed PSA and
IRMD. CAD was proposed as a geometry-based numerosity reduction method. The algo-
rithm proposed in the isolation-based methods category was iMondrian forest.

In the variance-based numerosity reduction methods, the variances of data between
the similar and dissimilar points as well as the most informative directions of data are
considered. The geometry-based methods have an interesting visual perspective to data.
The isolation-based methods have an isolation point of view where the anomalies or less
important points fall away from other points and can be isolated. The proposed numerosity
reduction methods can be used for ranking data instances by the importance or information.
They may also be useful for outlier and anomaly detection.
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Chapter 5

Proposed Algorithms for
Applications of Data Reduction

To asses my proposed methods, this chapter proposes some applications for data reduction
and reports their experimental results. Dimensionality reduction can be used in differ-
ent applications for extracting informative features from raw data. Moreover, numerosity
reduction and prototype selection can be used for selecting the most informative data in-
stances in various applications. Two main categories of applications, i.e., medical image
analysis (Section 5.1), image processing, and computer vision (Section 5.2), are introduced.
In medical image analysis, I focus on histopathology data where Fisher loss (Section 5.1.3),
triplet mining based on extreme distances (Section 5.1.4), and BUT / BUNCA (Section
5.1.5) for histopathology are proposed. In image processing and computer vision, I pro-
pose Roweisfaces for face recognition (Section 5.2.1), Roweisposes for 3D action recognition
(Section 5.2.2), and image denoising by anomaly path (Section 5.2.3).

5.1 Medical Image Analysis

In this section, I propose algorithms for application of dimensionality reduction on medical
image analysis. The histopathology projects which I worked on were funded by the available
grant and data we had. I worked on histopathology project because it is a search problem
on images for ranking. Moreover, histopathology has very large data as gigapixel images;
hence, compact and meaningful embeddings are required to learn patterns of data and im-
prove search and classification. Here, first, I introduce the utilized histopathology datasets.
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Then, I explain the proposed using Siamese network for histopathology embedding, Fisher
losses (FDT and FDC) for histopathology embedding, triplet mining for histopathology
embedding, and dynamic triplet mining (using BUT/BUNCA) for histopathology embed-
ding.

5.1.1 Datasets

For the experiments, I used different challenging histopathology datasets. In the following,
I introduce the characteristics of these datasets.

CRC1 dataset: One of the histopathology datasets is the Colorectal Cancer 1 (CRC1)
dataset [79]. This dataset is available at this link: click here. There exist 5000 histological
images of 150×150 pixels in this dataset. It contains tissue patches from eight tissue types
of colorectal cancer tissue slides. The tissue types are background (empty), adipose tissue,
mucosal glands, debris, immune cells (lymphoma), complex stroma, simple stroma, and
tumor epithelium. Some sample patches of CRC1 tissue types can be seen in Fig. 5.3.

CRC2 dataset: One of the histopathology datasets is the Colorectal Cancer 2 (CRC2)
dataset [78]. This dataset is available at this link: click here. There exist 100,000 histolog-
ical images of 224 × 224 pixels in this dataset. It includes nine classes of tissues, namely
adipose, background, debris, lymphocytes, mucus, smooth muscle, normal colon mucosa
(normal), cancer-associated stroma, and colorectal adenocarcinoma epithelium (tumor).

TCGA dataset: Another histopathology dataset is The Cancer Genome Atlas (TCGA)
dataset [15]. This dataset is available at this link: click here. TCGA Whole Slide Images
(WSIs) come from 25 different organs for 32 different cancer subtypes. We use the three
most common sites, which are prostate, gastrointestinal, and lung [15, 77]. These organs
have a total of 9 cancer subtypes, i.e., Prostate adenocarcinoma (PRAD), Testicular germ
cell tumors (TGCT), Oesophageal carcinoma (ESCA), Stomach adenocarcinoma (STAD),
Colonic adenocarcinoma (COAD), Rectal adenocarcinoma (READ), Lung adenocarcinoma
(LUAD), Lung squamous cell carcinoma (LUSC), and Mesothelioma (MESO).

5.1.2 Siamese Network for Histopathology Embedding

I use the triplet loss and Siamese network, introduced in Chapter 2, for medical image
analysis. In this section, I report the experimental result and analysis on medical images.
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Figure 5.1: An example of the type 1 triplet generation from a sample WSI (from COAD
subtype) from TCGA dataset.

5.1.2.1 Triplet Generation from TCGA Data

The TCGA dataset includes WSIs and not labeled patches. Hence, for generating triplets,
one cannot simply take the patches from tissue types. The triplet is composed of anchor,
positive (neighbor), and negative (distant) patches, in which anchor and neighbor are de-
fined as similar and anchor and distant as dissimilar pairs. Inspired by [72], I utilized
spatial correlation as one of the approaches to define the similarity among patches ex-
tracted from WSIs. In other words, I assumed that similar patterns usually emerge in an
adjacent neighborhood, while the dissimilar layouts often appear in the spatially remote
neighborhood. More specifically, a neighbor patch was selected within a certain range of
the anchor’s patch center of the same WSI. On the other hand, I used several alternatives
for choosing the distant patch. The distant sample was chosen from (1) the same WSI as
long as it was spatially remote, (2) another WSI associated with the same cancer subtype,
(3) another WSI associated with other subtypes of the same organ, or (4) another WSI
associated with another organ. An example of a type 1 triplet generation is depicted in
Fig. 5.1.

5.1.2.2 Embeddings

First, I split the CRC1 dataset into 60% and 40% portions. I trained a triplet Siamese
network with the ResNet-18 [67] as backbone. I trained the triplet network with the
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triplets from the train set of CRC1. The embedding of the test set of CRC1 data with
this network is shown in Fig. 5.2-a. I applied UMAP [98] to visualize the 128-dimensional
representations in 2D.

The triplets extracted from the CRC training set were sampled in a supervised manner
as the labels of tissues were used. However, as I described in Section 5.1.2.1, the triplets of
TCGA data were sampled using the spatial and tissue type information in an unsupervised
manner. As a result, I trained extra two models on triplets extracted from TCGA. The first
one was trained on all three anatomical sites while the second model was only trained on
the gastrointestinal data from TCGA as the CRC1 data is also related to this anatomical
site (organ). Similarly, the CRC1 test embeddings encoded by these models are shown in
Figs. 5.2-b and 5.2-c, respectively. As these figures show, the CRC1 tissues have been well
separated.

(a) (b) (c)

Figure 5.2: CRC1 test embeddings by (a) trained network with CRC1 training triplets,
(b) trained network with TCGA training triplets (three organs), (c) trained network with
TCGA training triplets (gastrointestinal organ).

5.1.3 Fisher Loss for Histopathology Embedding

I use the Fisher losses, introduced in Chapter 3, for medical image analysis. In this section,
I report the experimental result and analysis on medical images.
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Figure 5.3: Application of Fisher Loss for histopathology data: Embedding of the CRC1
test data for different loss functions (top row: CRC1, bottom row: TCGA).

5.1.3.1 Processing on Datasets

I split the CRC1 data into train/test sets with 60%–40% portions. Using the training set,
I extracted 22,528 triplets by considering the tissue types as the classes. For the TCGA
data, by sampling patches from slides, I extracted 22,528 triplets to test the proposed losses
with a large triplet sample size. The anchor and neighbor patches were selected from one
WSI, but I used four ways of extraction of the distant patch, i.e., from the same WSI but
far from the anchor, from another WSI of the same cancer subtype as an anchor, from
another cancer subtype but the same anatomic site as anchor, and from another anatomic
site.

5.1.3.2 Visualization of Embedding of Histopathology Data

I used λ = 0.1 in the FDT and FDC losses. I also used UMAP [98] for visualizing the
128-dimensional embedded data. For embedding the histopathology data, I performed two
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Table 5.1: Experiments for Fisher losses on the CRC1 and TCGA datasets: Accuracy of
1-NN search for different loss functions.

CRC1 TCGA-CRC

triplet 95.75% 95.50%
FDT (λ = 0.01) 96.45% 97.60%
FDT (λ = 0.1) 96.05% 96.40%
FDT (λ = 0.8) 95.35% 95.95%
contrastive 95.55% 96.55%
FDC (λ = 0.01) 94.25% 96.55%
FDC (λ = 0.1) 96.40% 98.10%
FDC (λ = 0.8) 97.00% 97.05%

different experiments. In the first experiment, I trained and tested the Siamese network
using the CRC1 data. The second experiment was to train the Siamese network using
TCGA data and test it using the CRC1 test set. The latter, which we denote by TCGA-
CRC, is more difficult because it tests generalization of the feature space, which is trained
by different data from the test data, although with a similar texture. Figure 5.3 shows the
embeddings of the CRC1 test sets in the feature spaces trained by CRC1 and TCGA data.
The embeddings by all losses, including FDT and FDC, are acceptable, noticing that the
histopathology data are hard to discriminate even by a human (see the sample patches
in Fig. 5.3). As expected, the empty and adipose data, which are similar, are embedded
closely. Comparing the TCGA-CRC embeddings of contrastive and FDC losses shows
FDC has discriminated classes slightly better. Overall, the good embedding in TCGA-
CRC shows that the proposed losses can train a generalizing feature space, which is very
important in histopathology analysis because of the lack of labeled data [73].

5.1.3.3 Numerical Comparison of Embeddings

The accuracy rates of the 1-NN search for the embedding test set of histopathology data
by different loss functions are reported in Table 5.1. As the results show, in most cases, the
FDT and FDC losses have outperformed the triplet and contrastive losses, respectively.

5.1.4 Triplet Mining for Histopathology Embedding

I use the triplet loss and triplet mining, introduced in Chapter 2, for medical image analysis.
In this section, in addition to the existing offline triplet mining methods, I propose online
mining and report the experimental result and analysis on medical images.
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5.1.4.1 Online Mining by Extreme Distances

In addition to the triplet mining methods, reviewed in Chapter 2, I propose four additional
online methods based on extreme distances. In the mini-batch, I consider every instance
once as an anchor and take its nearest/farthest same-class instance as the easiest/hardest
positive and its nearest/farthest other-class instance as the hardest/easiest negative in-
stance. Hence, four different cases, i.e., Easiest Positive Easiest Negative (EPEN), Easiest
Positive Hardest Negative (EPHN), Hardest Positive Easiest Negative (HPEN), and Hard-
est Positive Hardest Negative (HPHN), exist. Considering the extreme values, especially
the farthest, was inspired by the opposition-based learning [128]. HPHN is equivalent to
BH, already explained. I can also have a mixture of these four cases (i.e., assorted case)
where for every anchor in the mini-batch, one of the cases is randomly considered. The
proposed online mining loss functions are as follows:

LEPEN :=
c∑
i=1

w∑
a=1

[
m+ min

p∈{1,...,w}\{a}
D(yia, y

i
p)− max
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D(yia, y
j
n)
]
+
, (5.1)
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LHPEN :=
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i
p)− max

j∈{1,...,c}\{i}
n∈{1,...,w}

D(yia, y
j
n)
]
+
, (5.3)

LAssorted :=
c∑
i=1
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i
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j∈{1,...,c}\{i}
n∈{1,...,w}

D(yia, y
j
n)
]
+
, (5.4)

where m is the margin, [·]+ is the standard Hinge loss, and min /max denotes random
selection between the minimum and maximum operators.

5.1.4.2 Offline Triplet Mining by Extreme Distances

In the offline triplet mining approach, the processing of data is not performed during
the training of the triplet network but beforehand. The extreme distances are calculated
only once on the whole training dataset and not repeatedly in the mini-batches during
the training. The histopathology patterns in the input space cannot be distinguished,
especially for the visually similar tissues [73]. Hence, I work on the extreme distances in
the feature space trained using the class labels. The block diagram of the proposed offline
triplet mining is depicted in Fig. 5.4. In the following, I explain the steps of mining.
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Figure 5.4: Block diagram for the offline triplet mining approach.

Training Supervised Feature Space: I first train a feature space in a supervised
manner. For example, a deep network with a cross-entropy loss function can be used for
training this space where the embedding of the one-to-last layer is extracted. I want the
feature space to use the labels for better discrimination of classes by increasing their inter-
class distances. Hence, I use a set of training data, call it X1, for training the supervised
network.

Distance Matrix in the Feature Space: After training the supervised network, I
embed another set of the training data, denoted by X2 (where X1∪X2 = X and X1∩X2 =
∅), in the feature space. I compute a distance matrix on the embedded data in the feature
space. Therefore, using a distance matrix, I can find cases with extreme distances. I
consider every x ∈ X2 as an anchor in a triplet where its nearest or farthest neighbors from
the same and other classes are considered as its positive and negative instances, respectively.
Again, there are four different cases with extreme distances, i.e., EPEN, EPHN, HPEN,
and HPHN, in addition to the assorted case where one of the extreme cases is randomly
selected for a triplet. There might exist some outliers in data whose embeddings fall
much apart from others. In that case, merely one single outlier may become the hardest
negative for all anchors. To prevent this problem, for every data instance in X1 embedded
in the feature space, I standardize the distances from other instances using the Z-score
normalization. I consider the instances having distances above the 99-th percentile (i.e.,
normalized distances above the threshold 2.3263) as outliers and ignore them.

Training the Triplet Network: After preparing the triplets in any of the extreme
cases, a triplet network [118] is trained using the triplets for learning an embedding space
for better discrimination of dissimilar instances while holding the similar instances close
enough. I call the spaces learned by the supervised and triplet networks as the feature
space and embedding space, respectively (see Fig. 5.4).
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Table 5.2: Results of offline triplet mining on the training and test data

Train Test
R@1 R@4 R@8 R@16 Acc. R@1 R@4 R@8 R@16 Acc.

EPEN 92.60 97.66 98.85 99.48 95.87 89.86 96.78 98.20 99.11 94.58
EPHN 94.82 98.46 99.27 99.70 97.10 94.50 98.41 99.25 99.67 97.21
HPEN 93.22 96.93 97.71 98.35 96.16 87.11 97.01 98.83 99.59 94.10
HPHN 81.62 89.73 93.15 95.78 91.19 42.71 71.07 86.13 95.32 71.25
assorted 86.40 93.65 95.93 97.66 92.53 88.56 97.31 98.95 99.52 94.60

Table 5.3: Results of online triplet mining on the training and test data

Train Test
R@1 R@4 R@8 R@16 Acc. R@1 R@4 R@8 R@16 Acc.

BA [19] 95.13 98.45 99.20 99.60 97.73 82.42 93.94 96.93 98.58 90.85
BSH [118] 95.83 98.77 99.42 99.65 98.00 84.70 94.78 97.34 98.75 91.74
HPHN [68] 91.52 97.14 98.60 99.34 96.09 86.65 95.80 97.81 99.04 93.20
NCA [61] 96.45 98.92 99.40 99.69 98.40 78.93 92.58 96.39 98.47 89.65
PNCA [100] 93.59 98.06 99.04 99.53 97.08 80.45 93.02 96.34 98.42 88.72
EP [141] 84.30 94.30 96.94 98.38 92.78 74.00 90.35 95.00 97.93 85.88
EP-D 86.11 95.90 97.86 99.00 93.30 77.23 92.14 96.18 98.49 87.95
DWS [139] 84.43 94.78 97.27 98.59 92.25 83.74 94.36 96.72 98.33 92.20
EPEN 87.44 95.89 97.84 98.90 94.03 85.48 95.40 97.65 98.92 92.57
EPHN 95.44 98.68 99.22 99.57 97.90 85.34 94.80 97.49 98.81 91.77
HPEN 89.53 96.67 98.21 99.15 95.04 85.38 95.30 97.55 98.82 92.56
assorted 93.73 97.98 99.02 99.57 97.12 86.57 96.18 98.25 99.30 93.44

5.1.4.3 Comparison of Embeddings

Using the Recall@k (R@k) measure, I compared the offline and online triplet mining based
on extreme distances with the baseline methods, introduced in Chapter 2, in Tables 5.2
and 5.3, respectively. The baseline methods which I compared with are BA [19], BSH
[118], BH [68], EP [141], DWS [139], NCA [61], and PNCA [100]. I also compared with
EP-D where we use Euclidean distance rather than inner product in EP. As these tables
show, the offline mining can generate a better statistical representation of the population
by working on the whole dataset.

5.1.5 Dynamic Triplet Sampling for Histopathology Embedding

I use dynamic triplet sampling using BUT and BUNCA, introduced in Chapter 3, for
medical image analysis. In this section, I report the experimental result and analysis on
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Figure 5.5: 2D visualization of test embeddings: (a) CRC2 using BUT and (b) CRC2 using
BUNCA.

medical images.

5.1.5.1 Experimental Setup

For the experiments, I used the CRC2 dataset [78]. I split the training data into 70%
and 30% portions for training and validation sets. I used ResNet-18 network [67] as the
backbone of triplet network. Using the validation set, early stopping was employed, and
the maximum number of epochs was set to 50. The batch size was 45, where every batch
contains five instances per class (i.e., n′ = 5). The learning rate was set to 10−5, and the
dimensionality of the embedding space was 128.

5.1.5.2 Visualization of Embedding Spaces

The 2D visualization of spaces was performed using UMAP [98] applied to the embedded
data. Figure 5.5 illustrates the embedding of test sets of the CRC2 data using the BUT and
BUNCA sampling methods. The obtained embedding spaces for the histopathology data
are meaningful. The histopathology patches with similar patterns have been embedded
close to each other as expected. In embedding using the BUT approach (see Fig. 5.5-
a), the patches are embedded from smoothest to roughest patterns in a circular manner.
These patches, with smoothest to roughest [79] patterns, are adipose (with thin stripes of
fat), mucus, smooth muscle, debris, stroma, tumor, normal, and lymphocyte (with a rough

91



Figure 5.6: Histopathology image retrieval in the embedded spaces learned using the BUT
and BUNCA approaches. The retrievals are sorted from left to right.

pattern). Moreover, the background patch with no pattern is separated from the tissues,
as expected. In embedding using the BUNCA approach (see Fig. 5.5-b), the patches with
a considerable amount of roughness are embedded closely. For example, adipose, mucus,
stroma, and smooth muscle, which are smoother, fall close to each other while tumor,
normal, lymphocyte, and debris, with diverse patterns, are embedded close to each other.
Again, the background patches are embedded far from the tissue types. The meaningfulness
of the learned embedded spaces shows the effectiveness of the proposed BUT and BUNCA
approaches.

5.1.5.3 Retrieval of Histopathology Patches

Query retrieval can be very useful for histopathology data in hospitals where similar patches
are extracted from the database to rely on already diagnosed cases. The type of disease or
tissue can be found out by a majority vote amongst the retrievals [77]. Figure 5.6 shows
retrievals for two different tissue types, which are tumor and mucus. The former has more
complex patterns, in contrast to the latter one. As the figure shows, the retrievals are very
similar to the pattern of query patch.
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Table 5.4: Comparison of BUT and BUNCA approaches with the baselines on the CRC2
dataset.

R@1 R@4 R@8 R@16
BA [19] 38.54 66.76 80.64 89.97
BSH [118] 30.85 60.39 77.73 90.33
BH [68] 79.09 92.60 96.00 97.95
EP [141] 69.94 87.88 93.20 96.38
DWS [139] 76.06 91.31 95.34 97.58
NCA [61] 77.87 92.25 95.92 98.01
PNCA [100] 78.85 92.24 95.80 97.78

BUT 79.14 92.32 95.60 97.65
BUNCA 78.67 92.28 95.64 97.71

5.1.5.4 Comparison with Baseline Methods

The results for the CRC2 histopathology data are reported in Table 5.4 and are compared
to the baseline approaches, which we compared with, are BA [19], BSH [118], BH [68], EP
[141], DWS [139], NCA [61], and PNCA [100]. On this data, the performance of BUNCA
is closer to BUT. In most cases, BUT has the best performance against all the baseline
approaches. On this dataset, BUNCA performs better than BA, BSH, EP, DWS, NCA,
and is comparable with PNCA. Overall, these two tables demonstrate the effectiveness of
the proposed mining approaches for triplet training.

5.2 Image Processing and Computer Vision

In this section, I propose algorithms for application of dimensionality reduction in image
processing and computer vision. The proposed methods are Roweisfaces, Roweisposes, and
image denoising by anomaly path inspired by CAD.

5.2.1 Face Recognition: Roweisfaces

I use the RDA subspace learning method, introduced in Chapter 3, for facial image recog-
nition and embedding. In this section, I report the experimental result and analysis on
facial images.
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5.2.1.1 Rowiesfaces and Special Cases

I used the ORL face dataset [127] (see Section 6.1.1.1 for explanation of this dataset). The
data were standardized to have zero mean and unit variance. I divided the dataset into two
classes of images having and not having eye glasses. I trained nine special cases, r1, r2 ∈
{0, 0.5, 1}, of RDA and kernel RDA using the facial dataset. I name the facial eigenvectors,
or ghost faces, in RDA as Roweisfaces. The existing special cases of Roweisfaces in the
literature are eigenfaces (r1 = r2 = 0) [130], Fisherfaces (r1 = 0, r2 = 1) [6], and supervised
eigenfaces (r1 = 1, r2 = 0) [4, 35]. For r1 = r2 = 1 in Roweisfaces, I use the name double
supervised eigenfaces. I name facial embedding using kernel RDA as kernel Roweisfaces
whose existing special cases are kernel eigenfaces (r1 = r2 = 0) [142], kernel Fisherfaces
(r1 = 0, r2 = 1) [143], kernel supervised eigenfaces (r1 = 1, r2 = 0) [4, 35]. For r1 = r2 = 1
in kernel Roweisfaces, I use the name kernel double supervised eigenfaces.

The eigenvectors in kernel PCA are n-dimensional and not d-dimensional so one can
show the ghost faces only in Roweisfaces and not kernel Roweisfaces. The trained Rowe-
isfaces are shown in Fig. 5.7 for the special cases. The PCA case has captured different
features such as eyes, hair, lips, nose, and face border. However, the more I consider the
labels by increasing r1 and r2, the more features related to eyes and cheeks are extracted
because of the more discrimination of having or not having glasses. Increasing r1 tends to
extract more features like Haar wavelet features which are useful for face feature detection
(see Viola-Jones face detector [132]). Increasing r2, however, fades out the irrelevant fea-
tures leaving merely the eyes which are important. The double supervised eigenfaces have
a mixture of Haar features and fading out unimportant features.

5.2.1.2 Projections in Rowiesfaces

The top two dimensions of projection of the facial images into the RDA and kernel RDA
(with RBF kernel for Kx) subspaces are shown in Fig. 5.8. As expected, kernel RDA
separates the classes better that RDA. Also, the larger the supervision level, the better
the separation. For the same reasons explained for Fig. 6.3, the two classes are collapsed
into one-dimensional lines for r2 = 1 in kernel RDA.

5.2.1.3 Reconstructions in Rowiesfaces

As explained before, data cannot be reconstructed in kernel RDA but it can be done in
RDA. Some reconstructed images for the facial dataset in Roweisfaces are shown in Fig.
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Figure 5.7: The Roweisfaces: the eight leading eigenvectors for the special cases in the
Roweis map where the first, fifth, and eighth eigenvectors of every case are at the top-left,
bottom-left, and bottom-right, respectively.

5.9. The quality of reconstruction falls down as r2 is increased. I explain the reason in
the following. The reconstruction error for XA is ||XA − U U>XA||2F where A is a
symmetric matrix. Minimizing this error where the bases are orthonormal is:

minimize
U

||XA−U U>XA||2F ,

subject to U>U = I,
(5.5)

whose Lagrangian is simplified to L = tr(A2X>X −XA2X>UU>) noticing the con-
straint. Setting the derivative of Lagrangian to zero results in XA2X>U = UΛ which
is the eigenvalue problem for XA2X>. Comparing this to the solution of Eq. (3.13) and
noticing Eq. (3.14) shows we can have A2 = HPH , r2 = 0, and R2 = I for minimization
of reconstruction error. Hence, the best setting for reconstruction is to have r2 = 0. In ad-
dition, if r1 = 0, the objective in Eq. (5.5) becomes the error between X̆ and X̂ = UU>X̆
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Figure 5.8: The first two dimensions of the projected data in (a) Roweisfaces and (b) kernel
Roweisfaces.

Figure 5.9: The reconstructed images after projection into the RDA subspaces.

which is the reconstruction error of centered data. This explains why PCA (with r2 = 0)
is the best linear method for reconstruction.
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5.2.2 Action Recognition: Roweisposes

I use the RDA subspace learning method, introduced in Chapter 3, for 3D action recog-
nition. In this section, I report the experimental result and analysis on action recognition
datasets.

5.2.2.1 Review of Fisherposes

The Fisherposes method [56] is an action recognition approach which uses 3D skeletal data
as input and constructs a Fisher subspace, for discrimination of body poses, using FDA.
Instead of using the raw data, it applies some pre-processing on the 3D data. These pre-
processing steps include skeleton alignment by translating the hip joint to the origin and
aligning the shoulders to cancel the orientation of body. Moreover, the scales of skeletons
are removed and some informative joints are selected amongst all the available joints.

After the pre-processing step, different body poses are selected out of the dataset where
every action can be decomposed into a sequence of some of these poses. The body poses
are considered as classes and the instances of a body pose are used as the data of that
class. The information of joints in a body pose are concatenated to form a vector. Using
these data vectors, the FDA subspace is trained to discriminate the body poses of an action
recognition dataset.

Using Euclidean distance of the projected frame onto the FDA subspace from the
projection of training data, the pose of a frame is recognized. Windowing is also applied to
eliminate the frames which do not belong to any of the poses well enough. The distance of
projection onto the subspace is used as a criterion for windowing. Finally a Hidden Markov
Model (HMM) [44] is used to learn the sequences of recognized poses as different actions.
For some datasets in which some actions contain similar poses without consideration of
movement of body, histogram of trajectories is also used to discriminate those actions.

5.2.2.2 Roweisposes

I propose Roweisposes for action recognition. This method is based on basic subspace
learning approaches which make use of generalized eigenvalue problem [42]. This method,
which uses RDA [51], generalizes the Fisherposes method [56]. Some of the special cases
of Roweisposes are based on PCA, SPCA, and DSDA and I name them eigenposes, super-
vised eigenposes, and double supervised eigenposes, respectively. The Roweisposes method
includes infinite number of subspace learning methods for embedding the body poses useful
for action recognition.
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5.2.2.3 Datasets

For validating the effectiveness of the proposed Roweisposes, I used three publicly available
datasets following the paper [56]. In the following, I introduce the characeristics of these
datasets.

TST Dataset: The first dataset is the TST fall detection [29] which includes two
categories of normal and fall actions. The normal actions are sitting, grasping, walking,
and lying down, and the fall actions are falling front, back, side, and falling backward
which ends up sitting. The number of subjects performing the actions are 11.

UTKinect Dataset: The UTKinect dataset [140] contains 10 actions which are walk-
ing, sitting down, standing up, picking up, carrying, throwing, pushing, pulling, waving,
and clapping hands. This dataset has 10 subjects performing these actions.

UCFKinect Dataset: The UCFKinect dataset [22] includes 16 actions which are
balancing, climbing ladder, ducking, hopping, kicking, leaping, punching, running, stepping
back, stepping front, stepping left, stepping right, twisting left, twisting right, and vaulting.
The number of subjects in this dataset is 16.

5.2.2.4 Performance of Roweisposes

The average of accuracies over the cross validation folds are reported in Table 5.5. The first
part of table reports the related work and the state-of-the-art performances on the TST,
UTKinect, and UCFKinect datasets. The second part of table contains the performances
of the four extreme cases of Roweisposes which are eigenposes (with r1 = 0, r2 = 0),
Fisherposes (with r1 = 0, r2 = 1), supervised eigenposes (with r1 = 1, r2 = 0), and
double supervised eigenposes (with r1 = 1, r2 = 1). The third part of table reports the
performance of some of the middle special cases of Roweisposes in the Roweis map. These
cases are (r1 = 0, r2 = 0.5), (r1 = 1, r2 = 0.5), (r1 = 0.5, r2 = 0), (r1 = 0.5, r2 = 1), and
(r1 = 0.5, r2 = 0.5).

Regarding comparison of the special cases of Roweisposes against each other, it is seen
that, except some exceptions, higher supervision level mostly results in better performance.
In other words, usually, Fisherposes and supervised eigenposes have superior or comparable
performance than eigenposes. This is especially true for the UTKinect dataset while in the
other datasets, the performances are comparable. This is expected because more level of
supervision make more use of the labels and thus improves the recognition by learning a
more discriminative subspace for poses. The performance of double supervised eigenposes
is not necessarily much better than the other cases. This fact has been shown to be also
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Table 5.5: Comparison of the special cases of Rowiesposes with other action recognition
methods. The rates are average accuracy.

TST UTKinect UCFKinect

Roweisposes (r1 = 0, r2 = 0) 81.44% 38.50% 87.19%
Roweisposes (r1 = 0, r2 = 1) [56] 76.14% 82.50% 79.22%
Roweisposes (r1 = 1, r2 = 0) 82.20% 70.50% 86.80%
Roweisposes (r1 = 1, r2 = 1) 76.52% 79.00% 71.72%
Roweisposes (r1 = 0, r2 = 0.5) 79.17% 83.50% 80.02%
Roweisposes (r1 = 1, r2 = 0.5) 80.68% 82.50% 86.25%
Roweisposes (r1 = 0.5, r2 = 0) 79.92% 41.00% 88.36%
Roweisposes (r1 = 0.5, r2 = 1) 80.30% 82.50% 69.45%
Roweisposes (r1 = 0.5, r2 = 0.5) 81.82% 80.50% 86.25%

true for facial image and the MNIST dataset in the paper [51]. That paper shows that only
in some regression problems, which is not the case study of this paper, DSDA outperforms
other cases.

The performance of the cases r1 = 0, r2 = 1 is slightly different than what is reported
for Fisherposes in paper [56]. This has two small reasons. The first reason is that FDA
as a special case of RDA uses the optimization problem (2.5) but the Fisherposes method
in paper [56] uses optimization with the between scatter. The second reason is that this
paper uses Euclidean distance for simplicity of the method and elimination of hyperparam-
eters. The paper [56] uses a regularized Mahalanobis distance instead. I defer trying the
Roweisposes method with Mahalanobis distance to the future work. The middle special
cases of Roweisposes also show that the performance of this method is almost stable in
most cases of Roweisposes in the Roweis map.

5.2.3 Image Denoising by Anomaly Path

I use the CAD anomaly detection method, introduced in Chapter 4, for image and video-
frame denoising. In this section, I propose anomaly path using CAD and report the
experimental result and analysis on some video images/frames.

5.2.3.1 Anomaly Landscape and Anomaly Paths

I define anomaly landscape to be the landscape in the input space whose value at every
point xi in the space is the anomaly score computed by Eq. (4.24) or (4.25). The point xi
in the space can be either the training or out-of-sample point but the kNN is obtained from
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the training data. We can have two types of anomaly landscape where all the training data
points or merely the non-anomaly training points are used for kNN. In the latter type, the
training phase of CAD or K-CAD are performed before calculating the anomaly landscape
for the whole input space.

I also define the anomaly path as the path that an anomalous point has traversed from
its not-known-yet normal version to become anomalous. Conversely, it is the path that an
anomalous point should traverse to become normal. In other words, an anomaly path can
be used to make a normal sample anomalous or vice-versa. At every point on the path, I
calculate the kNN again because the neighbors may change slightly during the path. For
anomaly path, I use the second type of anomaly landscape where the path is like going
up/down the mountains in this landscape. For finding the anomaly path for every anomaly
point, I use gradient descent where the gradient of the Eq. (4.24) is used:

∂sA(xi)

∂xi
=

k−1∑
a=1

k∑
b=a+1

[
1

||x̆a||2||x̆b||2

[
− (x̆a + x̆b) + x̆>a x̆b

( x̆a
||x̆a||22

+
x̆b
||x̆b||22

)]]
. (5.6)

See [49] for derivation. The anomaly path can be computed in CAD and not K-CAD
because the gradient in K-CAD cannot be computed analytically. The anomaly path can
have many applications one of which is image denoising as explained in our experiments.

5.2.3.2 Visualization of Anomaly Landscape

For several synthetic datasets, I show the anomaly landscape and anomaly paths for CAD in
Fig. 6.28. The K-CAD does not have anomaly paths as mentioned before. The landscapes
in this figure are of the second type and the paths are shown by red traces which simulate
climbing down the mountains in the landscape.

5.2.3.3 Image Denoising

One of the applications for anomaly path is image denoising where several similar reference
images exist; for example, in video where neighbor frames exist for a frame. For experiment,
I used the first 100 frames of Frey face dataset. I selected one of the frames and applied
different types of noises, i.e., Gaussian noise, Gaussian blurring, salt & pepper impulse
noise, and JPEG blocking to it all with the same mean squared errors (MSE = 625). To
make the experiment more difficult, I removed the non-distorted frame from dataset. Figure
5.10 shows the iterations of denoising for different noise types where k = 3 is used. The

100



Figure 5.10: Image denoising using anomaly paths: the most left image is the original
image and the first to fourth rows are for Gaussian noise, Gaussian blurring, salt & pepper
impulse noise, and JPEG blocking. The numbers are the iteration indices.

distorted images were considered as anomalous instances. The neighbor frames were found
for the distorted image and the anomaly path was used to gradually convert the distorted
image to a normal image using its neighbors. As this figure shows, every distorted image
traverses the anomaly path and gradually becomes more and more normal until it converges
to the normal version of image. These experiments show that the proposed anomaly path
can be used for image denoising especially in video frames where the neighbor images
exist for every frame. Hence, one can use the proposed image denoising method for noise
filtering in videos. I showed by this experiment that the proposed video image denoising
can remove various distortions and noises such as Gaussian noise, Gaussian blurring, salt
& pepper impulse noise, and JPEG blocking.

5.3 Summary of the Chapter

In this chapter, I proposed some applications for data reduction and reported their simu-
lation results. I proposed different applications of data reduction including medical image
analysis, image processing, and computer vision. In medical image analysis, I focused
on histopathology data where Fisher loss, triplet mining based on extreme distances, and
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BUT and BUNCA triplet mining approaches were proposed for histopathology. In image
processing and computer vision, I proposed Roweisfaces for face recognition, Roweisposes
for 3D action recognition, and image denoising by anomaly path.

Note that the proposed data reduction methods are very useful for gigapixel images
such as histopathology because they have huge dimensionality due to the number of pixels
and huge numerosity as they need to be divided into many patches. Moreover, note that
ghost faces are very important especially in facial recognition and computer vision. I
proposed Roweisfaces as ghost faces in RDA for facial recognition. The proposed anomaly
path can also be used for converting anomalous data instance to normal or vice-versa. It
can also be used for video image denoising which is a very important topic in image and
video processing.

102



Chapter 6

Experiments and Analysis

This chapter reports the experimental results on the proposed algorithms in data reduction,
excluding the results on applications already reported in Chapter 5. It reports the sim-
ulation results on WFDA (Section 6.1.1.1), RDA (Section 6.1.1.2), SSIM kernel (Section
6.1.1.3), ISCA (Section 6.1.1.4), LLISE (Section 6.1.1.5), QQE (Section 6.1.2.1), back-
projection (Section 6.1.3.1), Fisher losses (Section 6.1.3.2), and BUT/BUNCA (Section
6.1.3.3) in dimensionality reduction. In numerosity reduction, it also reports the results
on PSA (Section 6.2.1.1), IRMD (Section 6.2.1.2), CAD (Section 6.2.2.1), and iMondrian
(Section 6.2.3).

6.1 Experiments for Dimensionality Reduction

In this section, I report the experiments for the proposed algorithms in spectral, proba-
bilistic, and neural network-based dimensionality reduction.

6.1.1 Experiments for Spectral Dimensionality Reduction

In this section, I report the experiments for the proposed algorithms in spectral dimension-
ality reduction including WFDA, RDA, and image quality aware embedding (SSIM kernel,
ISCA, and LLISE).
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Table 6.1: Experiments for WFDA: Accuracy of 1NN classification for different obtained
subspaces. In each cell of input or feature spaces, the first and second rows correspond to
the classification accuracy of training and test data, respectively.

FDA APAC POW CDM kNN kNN kNN CW-FDA CW-FDA AW-FDA AW-FDA AW-FDA

(k = 1) (k = 3) (k = c− 1) version 1 version 2 (k = 1) (k = 3) (k = c− 1)

Input 97.01% 97.01% 97.01% 74.62% 97.76% 97.76% 97.01% 97.01% – 97.76% 97.01% 96.26%

space 92.42% 93.93% 96.96% 45.45% 96.96% 98.48% 92.42% 92.42% – 87.87% 93.93% 93.93%

Feature 97.01% 97.01% 97.01% 91.79% 95.52% 97.76% 97.01% 97.01% 97.01% 100% 100% 100%

space 83.33% 86.36% 89.39% 77.27% 80.30% 83.33% 83.33% 84.84% 87.87% 100% 100% 100%

6.1.1.1 Experiments for Weighted FDA

Dataset: For experiments, I used the public ORL face recognition dataset [127]. This
dataset includes 40 classes, each having ten different poses of the facial picture of a subject,
resulting in 400 total images. For computational reasons, I selected the first 20 classes and
resampled the images to 44× 36 pixels. Please note that massive datasets are not feasible
for the KFDA/FDA because of having generalized eigenvalue problem. The data were split
into training and test sets with 66%/33% portions and were standardized to have mean
zero and variance one.

Evaluation of the Embedding Subspaces: For the evaluation of the embedding
subspaces, I used the 1-Nearest Neighbor (1NN) classifier because it is useful to evaluate the
subspace by the closeness of the projected data samples. The training and out-of-sample
(test) accuracy of classifications are reported in Table 6.1. In the input space, kNN with
k = 1, 3 have the best results but in k = c− 1, AW-FDA outperforms it in generalization
(test) result. The performances of CW-FDA and AW-FDA with k = 1, 3 are promising,
although not the best. For instance, AW-FDA with k = 1 outperforms weighted FDA
with APAC, POW, and CDM methods in the training embedding, while it has the same
performance as kNN. In most cases, AW-FDA with all k values has better performance
than FDA, which shows the effectiveness of the obtained weights compared to the equal
weights in FDA. Also, the sparse k in AW-FDA outperforming FDA (with dense weights
equal to one) validates the betting on sparsity.

Comparison of Fisherfaces: In the feature space, where we used the radial basis
kernel, AW-KFDA has the best performance with entirely accurate recognition. Both
versions of CW-KFDA outperform regular KFDA and KFDA with CDM, and kNN (with
k = 1, c − 1) weighting. They also have better generalization than APAC, kNN with
all k values. Overall, the results show the effectiveness of the proposed weights in the
input and feature spaces. Moreover, the existing weighting methods, which were for the
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Figure 6.1: Experiments for WFDA: the leading Fisherfaces in (a) FDA, (b) APAC, (c)
POW, (d) CDM, (e) kNN, (f) CW-FDA, and (g) AW-FDA.

input space, have outstanding performance when used in our proposed weighted KFDA
(in feature space). This shows the validness of the proposed weighted KFDA even for the
existing weighting methods.

Figure 6.1 depicts the four leading eigenvectors obtained from the different methods,
including the FDA itself. These ghost faces, or so-called Fisherfaces [6], capture the critical
discriminating facial features to discriminant the classes in subspace. Note that Fisherfaces
cannot be shown in kernel FDA as its projection directions are n dimensional. CDM has
captured some pixels as features because its all weights have become zero for its possible
flaw which is perfect classification (see Fig. 6.2). The Fisherfaces, in most of the methods
including CW-FDA, capture information of facial organs such as hair, forehead, eyes, chin,
and mouth. The features of AW-FDA are more akin to the Haar wavelet features, which
are useful for facial feature detection [132].

Comparison of the Weights: I show the obtained weights in different methods in
Fig. 6.2. The weights of APAC and POW are too small, while the range of weights in the
other methods is more reasonable. The weights of CDM have become all zero because the
samples were purely classified (recall the flaw of CDM). The weights of kNN method are
only zero and one, which is a flaw of this method because, amongst the neighbors, some
classes are closer. This issue does not exist in AW-FDA with different k values. Moreover,
although not all the obtained weights are visually interpretable, some non-zero weights
in AW-FDA or AW-KFDA, with e.g. k = 1, show the meaningfulness of the obtained
weights noticing the similarity of some facial classes. For example, the non-zero pairs
(2, 20), (4, 14), (13, 6), (19, 20), (17, 6) in AW-FDA and the pairs (2, 20), (4, 14), (19, 20),
(17, 14) in AW-KFDA make sense visually because of having eyeglasses so their classes are
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Figure 6.2: Experiments for WFDA: the weights in (a) APAC, (b) POW, (c) CDM, (d)
kNN with k = 1, (e) kNN with k = 3, (f) kNN with k = c−1, (g) CW-FDA, (h) AW-FDA
with k = 1, (i) AW-FDA with k = 3, (j) AW-FDA with k = c − 1, (k) CW-KFDA, (l)
AW-KFDA with k = 1, (m) AW-KFDA with k = 3, (n) AW-KFDA with k = c − 1. The
rows and columns index the classes.

106



close to one another.

6.1.1.2 Experiments for RDA

Visualization for Synthetic Nonlinear Datasets: One of the applications of subspace
learning is data visualization. For the first experiment, I created two synthetic datasets
which are highly nonlinear. The two datasets are binary XOR and concentric rings having
two dimensions and two classes. The sample size in every dataset is 400 where 70% and
30% of the data are used for training and out-of-sample (test), respectively. The datasets
are shown in Fig. 6.3.

As these datasets are highly nonlinear, RDA does not separate the classes as well as
kernel RDA. Therefore, the first two dimensions of the embedding in nine special cases
of kernel RDA (with RBF kernel for Kx) are illustrated in Fig. 6.3. Note that I used
the Kronecker delta kernel for Ky inspired by [4]. As this figure shows, kernel PCA does
not perform as well as kernel SPCA, kernel FDA, and kernel DSDA. Overall, the larger
the Roweis factors get, the better the two classes are separated which is expected because
the supervision level is increased. By sweeping r2 = 0 → 1, the two classes are almost
collapsed into two one dimensional lines because the rank of kernel RDA is restricted by
c−1 = 1 when r2 = 1 but this restriction does not exist for r2 = 0. Another interpretation
is because of taking the within scatter into account when r2 is closer to one so the classes
are collapsed. Moreover, these figures show that RDA is capable of handling out-of-sample
data well enough.

RDA for Classification and Regression: For evaluating RDA on classification and
regression, I evaluated nine special cases of RDA on the MNIST [84] and some regression
benchmarks [4], respectively. For the sake of brevity, I do not report the results in this
thesis. The reader can refer to [48] and [51] to see the results. The results showed that
RDA and kernel RDA mostly perform better in classification for larger supervision levels,
as expected. In regression, the results showed that DSDA works better than the other
special cases because of having larger supervision level.

6.1.1.3 Experiments for SSIM Kernel

Dataset: I made a dataset out of the standard Lena image. Six different types of dis-
tortions were applied on the original Lena image (see Fig. 6.4), each of which had 20
images in the dataset with different MSE values. Therefore, the size of training set is 121
including the original image. The six used distortions are stretching contrast, Gaussian
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Figure 6.3: Visualization using RDA: the first two dimensions of the projected data in
kernel RDA for (a) binary XOR dataset and (b) concentric rings dataset.

noise, enhancing luminance, Gaussian blurring, salt & pepper impulse noise, and JPEG
distortion. For every type of distortion, 20 different levels of MSE, i.e., from MSE = 45
to MSE = 900 with step 45, were generated in order to have images on the equal-MSE or
iso-error hypersphere [133]. This dataset is also used for the ISCA and LLISE experiments.

Comparison of Kernels: I experimented with the basic subspace learning methods
using different kernels including my proposed SSIM kernel. The baseline kernels are Radial
Basis Function (RBF) exp(−γ ||x1−x2||22), linear kernel x>1 x2, polynomial (γ x>1 x2 + 1)3,
sigmoid tanh(γ x>1 x2 + 1), cosine x>1 x2/(||x1||2||x2||2), and geodesic kernel (Eq. (3.26)
with geodesic distance matrix), where γ := 1/d. Figures 6.5 and 6.6 show the subspaces
obtained from experiments using different kernels.

As can be seen in Fig. 6.5, the image structure subspace propagates the different types
of distortions out from the non-distorted original image while the distortions mostly exist on
separate trajectories. The more distorted an image is, the further from the original image it
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Figure 6.4: Examples from the training dataset: (a) original image, (b) contrast stretched,
(c) Gaussian noise, (d) luminance enhanced, (e) Gaussian blurring, (f) salt & pepper
impulse noise, and (g) JPEG distortion.

is projected or embedded. The subspace obtained using the SSIM kernel discriminates the
different distortions much more properly compared to other kernels. In kernel PCA using
SSIM, the first dimension puts the luminance enhancement and contrast stretching (non-
structural distortions) apart from the structural distortions. Moreover, the third dimension
separates the Gaussian blurring as a structural distortion. The fourth dimension shows
that the distortions have tilted around this direction in the image distortion subspace. In
linear and polynomial kernels, Gaussian noise is not separated from the original image.
Also, contrast stretching and impulse noise are treated similarly in a linear kernel. In a
polynomial kernel, contrast stretching, impulse noise, and JPEG distortion are not properly
separated. The fourth dimension in both linear and polynomial kernels are not promising
discriminators. Moreover, in SSIM kernel, the distances of embedded images are almost
equal which is expected because the steps of MSE levels of images were equal. This is
while most of the other kernels could not preserve the equal distances of images in the
embedding space.

According to Fig. 6.5, the results of the SSIM kernel and RBF kernel look very similar,
but not identical, especially in the first dimensions. We provide the reason here: Let
d := ||x1 − x2||2 and r = d2. The Taylor series expansion of RBF kernel is:

exp(−γr) ≈ 1− γr +
γ2

2
r2 − γ3

6
r3 + · · · (6.1)

On the other hand, the SSIM kernel is Sx ∝ −D (Eq. (3.28)). Every element ofD is based
on d(x1,x2) in Eq. (3.27). We have d(x1,x2) ∝ di(x̆1, x̆2). Therefore, Sx ∝ −di(x̆1, x̆2) =
−
√
r where r = (di(x̆1, x̆2))

2. By Taylor series expansion, we have:

Sx ∝ −
√
r ≈ − 5

16
− 15

16
r +

5

16
r2 − 1

16
r3 + · · · (6.2)

Comparing Eqs. (6.1) and (6.2) gives the hint for why SSIM and RBF kernels had similar
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Figure 6.5: Image structure subspaces: The first to fourth rows correspond to SSIM kernel,
RBF kernel, linear kernel (or dual PCA or MDS [16]), and polynomial kernel in kernel PCA,
respectively. More transparent points correspond to more distorted images.

results. Note that the r in the RBF kernel is based on Euclidean distance while the r in
SSIM kernel is based on SSIM distance.
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Figure 6.6: Image structure subspaces: The first and second rows correspond to sigmoid
kernel and cosine kernel in kernel PCA, respectively. The third row is for geodesic kernel
(Isomap) [126]. The fourth and fifth rows correspond to LE using SSIM kernel and RBF
kernel [7], respectively. More transparent points correspond to more distorted images.
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Figure 6.7: The projected images onto the subspace of kernel PCA using SSIM kernel. The
image with a thick red frame is the original image.

It is also noteworthy that the proposed SSIM kernel is a universal kernel. Paper [124]
has shown that according to the Stone-Weierstrass theorem, the universal kernels can be
expanded in certain types of Taylor or Fourier series. The RBF kernel is an example. Eqs.
(6.1) and (6.2) show that the SSIM kernel can be expanded by Taylor series similar to the
RBF kernel. Hence, it is a universal kernel, so it can be used in generative models such as
generative moment matching networks [88].

In Fig. 6.6, we can see that the sigmoid kernel does not properly discriminate stretching
contrast and impulse noise. Moreover, the Gaussian noise is not well separated from the
original image. The cosine kernel separates these two but does not preserve the almost
uniform distance of different intensities of a distortion, as we had for SSIM kernel. In the
first two dimensions of Isomap, on the other hand, the image with Guassian noise and
the original image are not separated, and contrast stretching, impulse noise, and JPEG
distortion are not discriminated. In the second, third, and fourth dimensions of Isomap,
we see that very high amount of JPEG distortion is noticed while low value of JPEG
distortion is not respected.

Figure 6.6 also includes the subspaces of LE using SSIM kernel and RBF kernel [7].
The LE using SSIM kernel strongly outperforms the LE using RBF kernel because its
second and third dimensions discriminate contrast stretching (non-structural distortion)
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Figure 6.8: Out-of-sample images with different types of distortions having MSE = 500:
(1) stretching contrast, (2) Gaussian noise, (3) luminance enhancement, (4) Gaussian blur-
ring, (5) impulse noise, (6) JPEG distortion, (7) Gaussian blurring + Gaussian noise, (8)
Gaussian blurring + luminance enhancement, (9) impulse noise + luminance enhancement,
(10) JPEG distortion + Gaussian noise, (11) JPEG distortion + luminance enhancement,
and (12) JPEG distortion + stretching contrast.

from Gaussian blurring (structural distortion). The first and second dimensions of LE
using SSIM kernel also show much better scatter of data points in the subspace. That
is while LE fails to discriminate the distortions properly. Finally, for the sake of better
visualization of what the scatter plots in Figs. 6.5 and 6.6 mean, see Fig. 6.7.

Out-of-sample Projection: For out-of-sample projection using the SSIM kernel, I
created 12 test images with MSE = 500 having different distortions. Figure 6.8 shows the
test images where the distortions are reported in the caption of figure. Some of the test
images have a combination of different distortions in order to evaluate the image structure
subspace with harder out-of-sample images. This dataset is also used for the ISCA and
LLISE experiments.

The projection of these out-of-sample images onto the kernel PCA subspace obtained
using SSIM kernel is shown in Fig. 6.9. As expected, the images 1 to 6 which have
solely one type of distortion fall close enough to the projected training samples of their
distortion. Note that in dimensions 3 and 4 of projection, some points might be thought
to fall onto each other but a 3D imagination shows that they are apart in the other
dimension. As expected, the images having a combination of two distortions fall between
the two embedded distortions. This shows that the learned embedding space is meaningful
and interpretable. For example, image 7 falls between the projection of Gaussian blurring
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Figure 6.9: Experiments for SSIM kernel: Projection of out-of-sample images onto the
image structure subspace. The pink square points are the out-of-sample images.

and Gaussian noise. Likewise, image 8 falls between projection of Gaussian blurring and
luminance enhancement, image 9 falls between impulse noise and luminance enhancement,
image 10 falls between JPEG distortion and Gaussian noise, image 11 falls between JPEG
and luminance, and image 12 falls between JPEG and stretching contrast. Note that for
example, image 12 falls closer to JPEG distortion than to contrast stretching because JPEG
distortion is a structural distortion and carries more amount of image quality distortion. In
conclusion, the image structure subspace also supports distortion of out-of-sample images
even if they have a combination of different distortions.

Note that the proposed image structure subspace can be very useful for image process-
ing, machine learning, and classification. It provides and opens a new field of research
for further investigations. One can use metric learning in this learned subspace for image
processing purposes.

6.1.1.4 Experiments for ISCA

Training: In our experiments for ISCA, the parameters used were ρ = 1 and η = 0.1,
and for kernel ISCA, we used ρ = 0.1 and η = 0.1. These parameters should be set small
enough to have progress in optimization without oscillating behaviour. I took q = 64
(8× 8 blocks), p = 4, and d = 512× 512 = 262144. One of the dimensions of the trained
U = ∪bi=1U i, V = ∪bi=1V i, and J = ∪bi=1J i for ISCA are shown in Fig. 6.10. The dual
variable J has captured the edges because edges carry much of the structure information.
As expected, U and V are close (Lena can be seen in them by noticing scrupulously).
Note that the variables in kernel ISCA are not q-dimensional and thus cannot be displayed
in image form.
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Figure 6.10: Experiments for ISCA: the first dimension of the trained (a) U , (b) V , and
(c) J for ISCA.

Figure 6.11: Experiments for ISCA: confusion matrices for recognition of distortion types
with a 1NN classifier used in the subspace. Matrices (a) and (e) correspond to ISCA and
PCA (or linear-kernel PCA), respectively. Matrices (b) to (d) are for kernel ISCA with
linear, RBF, and sigmoid kernels. Matrices (f) and (g) are for kernel PCA with RBF and
sigmoid kernels. The 0 label in matrices correspond to the original image and the labels 1
to 6 are the distortion types with the same order as in Fig. 6.4.

Projections and Comparisons: In order to evaluate the trained ISCA and kernel
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Table 6.2: Experiments for ISCA: recognition of distortions for out-of-sample images.
Letters O, C, G, L, B, I, and J correspond to original image, contrast stretch, Gaussian
noise, luminance enhanced, blurring, impulse noise, and JPEG distortion, respectively.

image 1 2 3 4 5 6 7 8 9 10 11 12

distortion C G L B I J B + G B + L I + L J + G J + L J + C

ISCA
69.3% O 49.1% G 69.7% O 99.8% B 30.3% G 96.4% J 55.2% B 98.7% B 48.9% G 39.4% J 96.4% J 97.9% J

30.2% C 27.2% I 29.6% C 0.2% J 23.8% I 3.6% B 19.9% G 1.3% J 33.3% I 32.9% B 3.6% B 2.1% B

kernel ISCA (linear)
88.1% C 59.2% G 99.8% L 95.9% B 37.4% G 80.4% J 40.8% G 93.4% B 45.6% I 38.7% G 70.2% J 74.1% J

11.2% I 25.2% I 0.1% O 3.4% J 32.3% I 17.6% B 33.4% B 5.8% J 39.4% G 21.7% J 27.0% B 25.0% B

kernel ISCA (RBF)
72.0% C 79.1% G 99.2% L 70.6% B 39.6% I 74.3% J 44.8% G 88.1% L 48.2% L 33.1% G 82.8% L 43.1% J

10.9% I 5.0% B 0.5% G 13.1% C 36.4% C 13.5% C 28.5% B 6.6% B 37.7% G 21.6% L 8.9% G 30.0% B

kernel ISCA (sigmoid)
80.3% C 76.3% G 99.6% L 76.2% B 38.5% I 79.3% J 47.9% G 81.7% L 52.1% L 37.9% G 80.7% L 43.9% J

7.6% I 6.8% I 0.2% G,B 10.6% J 36.5% C 10.6% C 24.6% B 9.8% B 26.6% G 19.8% L 11.3% G 31.0% B

ISCA subspaces, I projected the training images onto these subspaces. For projecting an
image, each of its blocks was projected onto the subspace of that block. After projecting all
the images, I used the 1-Nearest Neighbor (1NN) classifier to recognize the distortion type
of every block. The 1NN is useful to evaluate the subspace by closeness of the projected
distortions. The distortion type of an image comes from a majority vote among the blocks.
The linear, RBF, and sigmoid kernels were tested for kernel ISCA. The confusion matrices
for distortion recognition are shown in Fig. 6.11. Mostly kernel ISCA performed better
than ISCA because it works in feature space; although, ISCA performed better for some
distortions like contrast stretching and blurring. Moreover, I compared with PCA and
kernel PCA. PCA showed weakness in contrast stretching. RBF and sigmoid kernels in
kernel PCA did not perform well for JPEG distortion and contrast stretching, respectively.
As expected, ISCA and kernel ISCA have performed better than PCA and kernel PCA in
JPEG distortion which is a structural distortion.

Out-of-sample Projections: For out-of-sample projection, I created 12 test images
with MSE = 500 having different distortions and some having a combination of different
distortions (see Fig. 6.8). I did the same 1NN classification for these images. Table 6.2
reports the top two votes of blocks for every image with the percentage of blocks voting for
those distortions. ISCA did not recognize luminance enhancement well enough because, for
Eq. (2.10), the block is centered while in kernel ISCA, the block is centered in feature space.
Overall, both ISCA and kernel ISCA performed very compelling even in recognizing the
combination of distortions. This shows that the learned subspaces are capable of handling
a mixture of distortions.

Reconstruction: The images can be reconstructed after projection onto the ISCA sub-
space. For reconstruction, every block is reconstructed as U iU

>
i x̆i ∈ Rq where the mean of
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Figure 6.12: Experiments for ISCA: reconstruction of images in ISCA. Reconstruction of
the training images (a), (b), and (c) are shown in (d), (e), and (f), respectively. The
reconstruction of out-of-sample images shown in Fig. 6.8 are shown in the second and
third rows.

block should be added to the reconstruction. Similar to kernel PCA, reconstruction cannot
be done in kernel ISCA because Θi Θ

>
i ki ∈ Rn 6= Rq. Figure 6.12 shows reconstruction

of some of training and out-of-sample images. As expected, the reconstructed images, for
both training and out-of-sample images, are very similar to the original images.

6.1.1.5 Experiments for LLISE

Embedding the Training Images: I embedded the blocks in the training images. In
kNN, I used k = 10. For linear reconstruction, I used ρ = η = 0.1 in LLISE and 10ρ =
η = 0.1 in kernel LLISE. For linear embedding, I used ρ = η = 0.01. These parameters
should be set small enough to have progress in optimization without oscillating behaviour.
I took q = 64 (8 × 8 blocks), p = 4, and d = 512 × 512 = 262144. In order to evaluate
the obtained embedded manifold, I used the 1NN classifier to recognize the distortion
type of every block. Again, the distortion type of an image comes from a majority vote
among the blocks. The polynomial (γ x̆>1 x̆2 + 1)3, RBF exp(−γ ||x̆1 − x̆2||22), and sigmoid
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Figure 6.13: Experiments for LLISE: confusion matrices for recognition of distortion types
with a 1NN classifier used in the embedded space. Matrices (a) and (e) correspond to
LLISE and LLE, respectively. Matrices (b) to (d) are for kernel LLISE and (f) and (g)
are for kernel LLE with polynomial, RBF, and sigmoid kernels, respectively. The 0 label
corresponds to the original image and the labels 1 to 6 are the distortion types with the
same order as in Fig. 6.4.

tanh(γ x̆>1 x̆2 + 1) kernels were tested for kernel LLISE, where γ := 1/q. The confusion
matrices for distortion recognition are shown in Fig. 6.13. Also, the LLISE and kernel
LLISE are compared with LLE and kernel LLE in this figure. Except for impulse noise,
LLISE and kernel LLISE had better performance compared to LLE and kernel LLE. In
other distortions, especially in JPEG distortion and contrast stretch, the performances of
LLE and kernel LLE were not acceptable because LLE uses `2 norm rather than SSIM
distance.

Out-of-sample Embedding: For linear reconstruction, I used ρ = η = 0.1 in LLISE
and 10ρ = η = 0.1 in kernel LLISE. The same 1NN classification was done for the test
images. Table 6.3 reports the top two votes of blocks for every image with the percentage
of blocks voting for those distortions. This table also shows the recognition of distortions
using LLE and kernel LLE. Note that LLE does not perform block-wise and thus it has
only one recongnition label for the whole image. As expected for LLISE and kernel LLISE,
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Table 6.3: Experiments for LLISE: recognition of distortions for out-of-sample images.
Letters O, C, G, L, B, I, and J correspond to original image, contrast stretch, Gaussian
noise, luminance enhanced, blurring, impulse noise, and JPEG distortion, respectively.

image 1 2 3 4 5 6 7 8 9 10 11 12

distortion C G L B I J B + G B + L I + L J + G J + L J + C

LLISE
42.9% C 42.2% G 35.6% L 44.5% B 31.2% G 43.2% J 46.8% G 41.3% B 55.9% G 33.5% G 39.6% J 40.7% J

22.8% L 29.3% I 29.6% C 15.7% J 28.4% I 16.8% B 34.4% I 14.7% J 39.6% I 26.5% I 16.3% B 16.3% L

kernel LLISE (polynomial)
69.7% C 23.7% L 97.5% L 74.3% B 45.4% C 76.6% J 20.7% G 78.1% L 35.1% G 27.7% L 76.9% L 45.1% J

14.7% I 21.3% G 0.8% C 14.5% J 19.5% I 13.9% B 17.9% B 5.7% I 23.5% L 16.6% G 7.0% B 28.6% B

kernel LLISE (RBF)
62.1% C 25.6% L 72.6% L 58.1% B 42.3% C 59.6% J 23.7% B 58.1% L 33.3% L 26.5% L 57.8% L 40.0% J

12.0% I 16.1% B 9.5% C 16.3% J 17.0% I 16.4% B 18.5% J 11.9% B 24.7% G 19.6% J 13.0% B 24.8% B

kernel LLISE (sigmoid)
63.0% C 28.5% L 92.4% L 68.5% B 51.9% C 55.6% J 39.2% B 77.8% L 57.0% L 31.1% L 76.1% L 42.8% J

14.5% I 24.5% C 3.5% B 15.5% J 14.0% I 19.7% B 19.5% L 10.7% B 12.6% C 24.6% B 10.8% B 29.4% B

LLE C L L B C J B C C L L B

kernel LLE (polynomial) L C L B C J B L L B L J

kernel LLE (RBF) L C C J C J B L L B L J

kernel LLE (sigmoid) C L L B C J J C L C C C

in most cases, at least one of the two top votes recognized the type of distortion(s) the
out-of-sample images had. However, LLE and kernel LLE performed poorly on the out-
of-sample images. This shows the effectiveness of the proposed LLISE and kernel LLISE
even for a mixture of distortions.

6.1.2 Experiments for Probabilistic Dimensionality Reduction

In this section, I report the experiments for the proposed algorithms in probabilistic di-
mensionality reduction including QQE.

6.1.2.1 Experiments for QQE

Discussion on Impact of Hyperparameters: For all experiments of QQE, I set λ = 0.1,
η = 0.01, and k = 10. QQE is not yet applicable on out-of-sample data so these parameters
cannot be determined by validation; however, here, I briefly discuss the impact of these
hyperparameters. The learning rate η should be set small enough to have progress in
optimization without oscillating behaviour. I empirically found η = 0.01 to be good for
different datasets. The larger number of neighbors k results in slower pacing of optimization
because of Eqs. (3.57) and (3.58). Very small k, however, does not capture the local
patterns of data [114]. The value k = 10 is fairly proper. The regularization parameter
λ determines the importance of distance preserving compared to the quantile-quantile
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Figure 6.14: Experiments for QQE: Distribution transformation of S-shape and uniform
data to each other. The first and second pair of rows correspond to transformation of shape
and exact distributions, respectively. The arrows show the direction of gradual changes.

Figure 6.15: Experiments for QQE: Distribution transformation using (a) CDF of reference
distribution: (b) the reference data, (c) Gaussian data, and (d) transformed data.

plot of distributions. The larger this parameter gets, the less important the distribution
transformation becomes compared to preserving distances; hence, the slower the progress
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Figure 6.16: Experiments for QQE: Distribution transformation of facial images without
eyeglasses to the shape of images with eyeglasses. The arrow shows the direction of gradual
changes.

of optimization gets. The value λ = 0.1 was empirically found to be proper for different
datasets.

Distribution Transformation for Synthetic Data: To visually show how distri-
bution transformation works, I report the results of QQE on some synthetic datasets. In
the following, I report several different possible cases for distribution transformation.

Standard Reference Distributions: A simple option for the reference distribution
is a standard probability distribution. As an example, I drew a sample of size 1000 from the
two dimensional uniform distribution in range [0.5, 1.5] in both dimensions. This sample
is depicted at the right hand side of Fig. 6.14. I also created an S-shape dataset, with
mean zero and scale three, illustrated at the left hand side of Fig. 6.14. This S-shape
distribution is chosen as an example of non-standard (or strangely) distributed data which
is complicated to process. This strange shape illustrates the progress of QQE iterations
properly. As this figure shows, in transforming the S-shape data to the shape of uniform
distribution, the dataset gradually expands to fill the gaps and become similar to uniform
without changing its mean and scale. In transforming to the exact uniform distribution,
however, the mean and scale of data change gradually, by translation and contraction, to
match the moments of the reference distribution.

Given Reference Sample: We may have a reference sample which we want to trans-
form the distribution of data to its distribution. An example is the S-shape data shown
in Fig. 6.14 where we transform the uniform data to its distribution. In shape transfor-
mation, two gaps appear first to imitate the S shape and then the stems become narrower
iteratively. In exact transformation, however, the mean and scale of data also change.

121



PC
A

FD
A

Is
om

ap
t-S

N
E

Initialization Unsupervised Supervised

Dataset

LL
E

Exact

Figure 6.17: Experiments for QQE: Unsupervised and supervised exact manifold embed-
ding of the synthetic data with different initializations. Transformation to exact reference
distribution is also shown. The initialization of LLE is scaled by constant to be in range
of other embeddings.

Note that exact transformation is harder than shape transformation because of change of
moments; thus, some points jump at initial iterations and then converge gradually. I defer
a more robust QQE to the future work.

Given Cumulative Distribution Function: Instead of a standard reference dis-
tribution or a reference sample, the user can give a desired CDF for the distribution to

122



PC
A

FD
A

Is
om

ap
t-S

N
E

LL
E

Initialization Unsupervised Supervised Exact
R

es
N

et
Si

am
es

e 
N

et

Figure 6.18: Experiments for QQE: Unsupervised and supervised exact manifold embed-
ding of the image data with different initializations. Transformation to exact reference
distribution is also shown. The initialization of LLE is scaled by constant to be in range
of other embeddings.
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Figure 6.19: Experiments for QQE: Some iterations of unsupervised manifold embedding
initialized by PCA and t-SNE. The arrow shows the direction of gradual changes.

(a)

(b)

Figure 6.20: Experiments for QQE: Separation and discrimination of classes in synthetic
and image data. The arrow shows the direction of gradual changes.

have. The reference sample can be sampled using the inverse CDF. The CDF can be mul-
tivariate; however, for the sake of visualization, Fig. 6.15-a shows an example multi-modal
univariate CDF. I used this CDF and uniform distribution for the first and second dimen-
sion of the reference sample, respectively, shown in Fig. 6.15-b. QQE was applied on the
Gaussian data shown in Fig. 6.15-c and its distribution changed to have a CDF similar to
the reference CDF (see Fig. 6.15-d).

Distribution Transformation for Image Data: The distribution transformation
can be used for any real data such as images. I divided the ORL facial images [127]
into two sets of with and without eyeglasses. The set with eyeglasses was taken as the
reference sample and we transformed the set without glasses to have the shape of reference
distribution. Figure 6.16 illustrates the gradual change of two example faces from not
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having eyeglasses to having them. The glasses have appeared gradually in the eye regions
of faces.

Manifold Embedding for Synthetic Data: To test QQE for manifold embedding,
I created a three dimensional synthetic dataset having three classes shown in Fig. 6.17.
Different dimensionality reduction methods, including PCA [35], FDA [43], Isomap [126],
LLE [110], and t-SNE [131], were used for initialization (see Fig. 6.17). I used uniform
distribution as reference and transformed the embedded data in unsupervised manner. As
Fig. 6.17 shows, the embeddings of the entire dataset have changed to have the shape of
uniform distribution but the order and adjacency of classes/points differ according to the
initialization methods. On the other hand, the supervised QQE has made the shape of dis-
tribution of every class uniform, depicted in Fig. 6.17. Finally, supervised transformation
of the embedded data to the exact reference distributions, which are uniform distributions
with different means, are shown in Fig. 6.17. In exact transformation, the order of points
differ depending on the initialization method but the data patterns are similar so I show
only one result.

Image Manifold Embedding: QQE can be used for manifold embedding of real
data such as images. For the experiments, I sampled 10000 images from the MNIST digit
dataset [84] with 1000 images per digit. This sampling is because of computational reasons
for the time complexity of QQE. I used different initialization methods, i.e., PCA [35], FDA
[43], Isomap [126], LLE [110], t-SNE [131], ResNet-18 features [67] (with cross entropy loss
after the embedding layer), and deep triplet Siamese features [118] (with ResNet-18 as the
backbone network). Any embedding dimensionality can be used but here, for visualization,
I took it to be two.

Figure 6.18 shows the experiments. For unsupervised QQE, I took ring stripe, filled
circle, uniform (square), Gaussian mixture model, triangle, diamond, and thick square as
the reference distribution for embedding initialized by PCA, FDA, Isomap, LLE, t-SNE,
ResNet, and Siamese net, respectively. As shown in Fig. 6.18, the shape of embedding has
changed to the desired while the local distances are preserved as much as possible. Figure
6.19 illustrates some iterations of changes in PCA and t-SNE embeddings as examples.

For supervised transformation to the shape of references distributions, I used different
distributions to show that QQE can use any various references for different classes. Helix,
circle, S-shape, uniform, and Gaussian were used for the digits 0/1, 2/3, 4/5, 6/7, 8/9,
respectively. Figure 6.18 depicts the supervised transformation to shapes of distributions.
Moreover, I set the means of reference distribution to be on a global circular pattern. This
resulted in the transformation to the exact reference distributions shown in Fig. 6.18. The
embedded digit images are also shown in this figure.
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QQE for Separation of Classes: QQE can be used for separation and discrimina-
tion of classes; although, it does not yet support out-of-sample data. For this, reference
distributions with far-away means can be chosen where transformation to the exact dis-
tribution is used. Hence, the classes move away to match the first moments of reference
distributions. I experimented this for both synthetic and image data. A two dimensional
synthetic dataset with three mixed classes was created as shown in Fig. 6.20. The three
classes are gradually separated by QQE to match three Gaussian reference distributions
with apart means.

For image data, I used the ORL face dataset [127] with two classes of faces with and
without eyeglasses. The distribution transformation was performed in the input (pixel)
space. The two dimensional embeddings, for visualization in Fig. 6.20, were obtained
using UMAP [98]. The dataset was standardized and the reference distributions were set
to be two Gaussian distributions with apart means. As the figure shows, the two classes
are mixed first but gradually the two classes are completely separated by QQE.

6.1.3 Experiments for Neural Network-Based Dimensionality Re-
duction

In this section, I report the experiments for the proposed algorithms in neural network-
based dimensionality reduction including backprojection, Fisher losses (FDT and FDC),
and dynamic triplet mining (BUT and BUNCA).

6.1.3.1 Experiments for Backprojection

Datasets: For experiments, I created two synthetic datasets with 300 data points each,
one for binary-class and one for three-class classification (see Figs. 6.21 and 6.22). For
more difficulty, I set different variances for the classes. The data were standardized as a
preprocessing. I limit myself to introduction of this new approach with small synthetic
experiments. Validation on larger real-world datasets is ongoing research in our research
lab.

Neural Network Settings: I implemented a neural network with three layers whose
number of neurons are {15, 20, p} where p = 1 and p = 3 for the binary and ternary
classification, respectively. In different experiments, I used MSE loss for the middle layers
and MSE or cross-entropy losses for the last layer. Moreover, I used Exponential Linear
Unit (ELU) [14] or linear functions for activation functions of the middle layers while
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Figure 6.21: Discrimination of two classes by different training algorithms with various
activation functions and loss functions. The label for each row indicates the activation
functions and the loss functions for the middle then the last layers.

sigmoid or hyperbolic tangent (tanh) were used for the last layer. The derivative and
inverse of these activation functions are as the following:

ELU: f(z) =

{
ez − 1, z ≤ 0
z, z > 0

, f ′(z) =

{
ez, z ≤ 0
1, z > 0

, f−1(y) =

{
ln(y + 1), y ≤ 0
y, y > 0

,

Linear: f(z) = z, f ′(z) = 1, f−1(y) = y,

Sigmoid: f(z) =
1

1 + e−z
, f ′(z) = f(1− f), f−1(y) = ln(

y

1− y
),

Tanh: f(z) =
ez − e−z

ez + e−z
, f ′(z) = 1− f 2, f−1(y) = 0.5 ln(

1 + y

1− y
).

Note that we bound the output values of the inverse functions f−1(.) for computational
reasons in computer programming. Mostly, a learning rate of η = 10−4 was used for
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Figure 6.22: Experiments for Backprojection: Discrimination of three classes by different
training algorithms with various activation functions and loss functions.

backprojection and backpropagation and η = 10−5 was used for kernel backprojection.
These learning rates should be set small enough to have progress in optimization without
much oscillation.

Comparison of Procedures: The performance of different forward, backward, and
forward-backward procedures in backprojection and kernel backprojection are illustrated
in Fig. 6.21. In these experiments, the RBF kernel was used in kernel backprojection.
Although the performance of these procedures are not identical but all of them are promis-
ing discrimination of classes. This shows that all three proposed procedures work well for
backprojection in the input and feature spaces. In other words, the algorithm is fairly
robust to the order of updating layers.

Comparison to Backpropagation: The performances of backprojection, kernel
backprojection, and backpropagation are compared in the ternary classification shown
in Fig. 6.22. In Fig. 6.22, the linear kernel was used. The results for binary classifica-
tion are shown in Fig. 6.21. Comparison to backpropagation in these figures shows that
backprojection’s performance nearly matches that of backpropagation.

In the different experiments, the mean time of every epoch was often 0.08, 0.11, and
0.2 seconds for backprojection, kernel backprojection, and backpropagation, respectively,
where the number of epochs were fairly similar in the experiments. This shows that back-
projection is faster than backpropagation. This is because backpropagation updates the
weights one by one while backprojection updates layer by layer.
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Figure 6.23: Experiments for Fisher losses: Embedding of the training and test sets of
MNIST dataset in the feature spaces of different loss functions.

6.1.3.2 Experiments for Fisher Loss

Visual Comparison of Emebddings: For the experiments, I used the public MNIST
dataset [84]. In the experiments, I used ResNet-18 [67] as the backbone in our Siamese
network structure (see Fig. 3.4). In our experiments, I set q = 300, p = 128, b = 32, and
α = 0.25. The learning rate was set to 10−5 in all experiments.

The embeddings of the train/test sets of the MNIST dataset in the feature spaces of
different loss functions are illustrated in Fig. 6.23 where λ = 0.1 was used for FDT and
FDC. I used UMAP [98] for visualizing the 128-dimensional embedded data. As can be
seen, both embeddings of train and test data by the FDT loss are much more discriminating
than the embedding of triplet loss. On the other hand, comparing the embeddings of
contrastive and FDC losses shows that their performances are both good enough as the
classes are well separated. Interestingly, the similar digits usually are embedded as close
classes in the feature space, and this shows the meaningfulness of the trained subspace.
For example, the digit pairs (3, 8), (1, 7), and (4, 9) with the second writing format of digit
four can transition into each other by slight changes, and that is why they are embedded
close together.
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Table 6.4: Experiments for Fisher losses on the MNIST data: Accuracy of 1-NN search for
different loss functions.

Accuracy

triplet 82.21%
FDT (λ = 0.01) 82.76%
FDT (λ = 0.1) 85.74%
FDT (λ = 0.8) 79.59%
contrastive 89.99%
FDC (λ = 0.01) 78.47%
FDC (λ = 0.1) 89.00%
FDC (λ = 0.8) 87.71%

Numerical Comparison of Embeddings: In addition to visualization, I can assess
the embeddings numerically. For the evaluation of the embedded subspaces, we used the
1-Nearest Neighbor (1-NN) search because it is useful to evaluate the subspace by the
closeness of the projected data samples. The accuracy rates of the 1-NN search for the
embedding test data by different loss functions are reported in Table 6.4. I report the
results for different values of λ ∈ {0.01, 0.1, 0.8} in order to analyze the effect of this
hyper-parameter. As the results show, in most cases, the FDT and FDC losses have
outperformed the triplet and contrastive losses, respectively. Moreover, I see that λ = 0.1
is often better performing. This can be because the large value of λ (e.g., 0.8) imposes less
penalty on the total scatter, which may cause the embedding space to expand gradually.
The very small value of λ (e.g., 0.01), on the other hand, puts too much emphasis on the
total scatter where the classes do not tend to separate well enough, so they do not increase
the total scatter.

Comparison of the Latent and Feature Spaces: The last layer of network (see
Fig. 3.4) behaves as a linear projection of the latent space onto the feature space. This
projection fine-tunes the embeddings for better discrimination of classes. The latent em-
bedding of the MNIST train set for both FDT and FDC loss functions can be seen in Fig.
6.24. Comparing them to the feature embeddings of the MNIST train set in Fig. 6.23
shows that the feature embedding discriminates the classes much better than the latent
embedding.

6.1.3.3 Experiments for BUT & BUNCA

Experimental Setup: For the experiments, I used the MNIST dataset [84]. I split the
training data into 70% and 30% portions for training and validation sets. The test set with
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Figure 6.24: Experiments for Fisher loss: The latent embedding of MNIST training for (a)
FDT and (b) FDC.

10,000 images was used for the test. The batch size was 50 where every batch contains
five instances per class (i.e., n′ = 5). The rest of setup was like those reported in Section
5.1.5.1.

Visualization of Embedding Spaces: The 2D visualization of spaces was performed
using UMAP [98] applied to the embedded data. Figure 6.25 illustrates the embedding of
test sets of the MNIST and CRC data using the BUT and BUNCA sampling methods. As
apparent in this figure, the learned embedding spaces are interpretable. In embeddings of
MNIST data, the similar digits, in the style of writing, fall close to one another. Closely
embedded digits by BUT (see Fig. 6.25-a) are the digits 1 and 7, 7 and 9, 3 and 8, and
4 (second style of writing) and 9. Likewise, closely embedded digits by BUNCA (see Fig.
6.25-b) are the digits 0 and 6, 1 and 7, 7 and 9, 3 and 8, and 2 and 3 (because continuing
the underneath curve of 2 results in 3).

Query Retrieval: For the evaluation of the embedding space, one can see the embed-
ded instances as a database where nearby cases can be retrieved as matched cases for a
query instance. The retrievals are extracted using the nearest neighbors in the embedding
space. Because of representation learning, the retrievals are expected to be similar to the
query in terms of pattern. In Fig. 6.26, I illustrate the top ten retrievals for query examples
for the MNIST data. The retrievals in the embedding spaces using both BUT and BUNCA
approaches are shown to visually verify the similarity matching.

In Fig. 6.26, the retrievals for a digit 4 with the second style of writing are depicted. As
expected, the retrievals are very similar to the pattern of the query image. Compared to the
last retrievals, the first retrievals are more similar to the query as expected. For this query
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Figure 6.25: 2D visualization of test embeddings: (a) MNIST using BUT and (b) MNIST
using BUNCA.

Figure 6.26: MNIST image retrieval (for digit 4) in the embedded spaces learned using the
BUT and BUNCA approaches. The retrievals are sorted from left to right.

example in the BUNCA approach, one of the retrievals is wrong, but it is interpretable.
The second writing style of digit “4” is very similar to digit “9” and can be morphed into
it by a slight change.

Comparison with Baseline Methods: In Table 6.5, I compare the proposed BUT
and BUNCA approaches with the existing triplet mining methods in the literature. This
table reports the Recall@k (R@k) measure on the embedded test data, for different values
of k. The baseline approaches, which I compare with, are BA [19], BSH [118], BH [68],
EP [141], DWS [139], NCA [61], and PNCA [100]. Among these methods, DWS is a
sampling method that samples from the existing instances in the mini-batch in contrast to
my proposed approach, which samples from the distribution of data.

Table 6.5 reports the results for the MNIST dataset. The proposed BUT approach
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Table 6.5: Experiments for BUT and BUNCA: Comparison of the proposed triplet mining
approaches with the baselines on the MNIST dataset.

R@1 R@4 R@8 R@16
BA [19] 79.31 93.53 96.55 98.21
BSH [118] 78.95 92.61 96.09 98.17
BH [68] 85.75 95.31 97.43 98.63
EP [141] 73.34 90.09 95.08 97.68
DWS [139] 76.44 91.35 95.72 97.68
NCA [61] 85.40 95.48 97.46 98.76
PNCA [100] 83.71 94.69 97.31 98.55

BUT 88.03 96.25 98.15 99.09
BUNCA 78.67 92.44 95.77 98.02

outperforms all other methods. Moreover, BUNCA performs better than EP and DWS,
where DWS is also a sampling approach for triplet mining. This table demonstrates the
effectiveness of the proposed mining approaches for triplet training.

6.2 Experiments for Numerosity Reduction

In this section, I report the experiments for the proposed algorithms in numerosity reduc-
tion based on variance, geometry, and isolation.

6.2.1 Experiments for Algorithms Based on Variance

In this section, I report the experiments for the proposed algorithms in the variance-based
numerosity reduction including PSA and IRMD.

6.2.1.1 Experiments for PSA

I compare PSA with SRS, SDM, and the entire dataset (100% of samples). In SRS, all
samples of a class have equal probability of selection and the sampling from instances of
a class is without replacement. In all experiments of SRS, sampling is performed 20 times
and the average result is considered as the result of that fold in cross validation. In SDM,
the samples of a class are ranked by their distance from the mean of the class in ascending
order. The selection of samples is done from the best ranked samples which are closest to
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Table 6.6: Experiments for PSA: Results on MNIST dataset

Portion SVM LDA QDA RF LR NB

PSA

6% 47.97% 84.52% 94.83% 61.14% 86.24% 84.86%

50& 65.42% 84.49% 95.01% 61.47% 86.80% 85.46%

90% 71.90% 84.55& 94.95% 61.76% 86.85% 85.32%

SRS

6% 52.70% 84.32% 94.36% 60.07% 86.33% 84.83%

50% 69.91% 84.55% 94.98% 60.30% 86.85% 85.28%

90% 72.13% 84.55% 95.01% 60.44% 86.85% 85.34%

SDM

6% 64.46% 77.97% 74.33% 57.27% 73.95% 68.69%

50% 71.08% 81.31% 87.48% 57.43% 82.73% 78.44%

90% 75.21% 83.95% 93.91% 60.20% 86.71% 84.14%

Entire Data 100% 76.22% 84.51% 95.03% 60.67% 86.78% 85.30%

the mean. Note that for PSA, SRS, and SDM, I experiment with different amounts of data
reduction, retaining 6%, 20%, 60% (or 50%), 90%, and 100% of the data before carrying
out classification. I set the appropriate portions according to the size of each dataset. Six
different classifiers are used for verifying the effectiveness of the proposed method when
using any classifier; I use Support Vector Machines (SVM), Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF), Logistic Regression
(LR), and Gaussian Naive Bayes (NB).

The MNIST dataset [84] was used for experiments. PCA is applied on the image data
as a preprocessing step. The accuracy rates of experiments on this dataset are reported
in Table 6.6. As shown in this table, PSA with portion 90% outperforms using the entire
data for LDA, RF, LR, and NB classifiers. It is interesting that PSA even outperforms
using the entire dataset in portions 6% (using LDA and RF) and 50% (using RF, LR,
and NB). In the cases LDA (6%), QDA and NB (6% and 50%), and RF (6%, 50%, and
90%), PSA strongly outperforms SRS. Moreover, in all portions using all classifiers except
SVM, PSA strongly outperforms SDM in this dataset. To better compare PSA, SRS, and
SDM, see Fig. 6.27 which depicts the top ranked samples of every class in MNIST dataset
using these three methods. For SRS, the random samples of one of the runs are shown.
Comparing PSA and SDM, PSA has captured more diverse samples because of taking both
similarities and variances into account, while SDM gives top ranks to the samples close to
mean and thus the top ranks are very similar. Comparing PSA and SRS, more diverse but
‘better’ representative samples of digits are selected by PSA. For PSA, this is specifically
seen for digits 1 (different slopes), 2 and 3 (styles), 4 (two different types of writing), 5, 6,
7, and 8 (styles), and 9 (slopes).
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Figure 6.27: Experiments for PSA: Top ranked samples of MNIST dataset using (a) PSA,
(b) SRS, and (c) SDM methods.

6.2.1.2 Experiments for IRMD

Datasets: Several datasets with various characteristics, taken from the machine learning
repository, are used for experiments in this section. For classification cases, I used the Page
Blocks dataset. The Facebook metrics dataset was used for regression experiments. For
clustering cases, two datasets, Isolet and Iris, were utilized. These datasets are available in
the UCI machine learning repository [20]. There is enough variety in the selected datasets
in terms of number of instances, features, and classes. Note that in the Facebook Metrics
dataset, we have d = 7 and ` = 12. The Isolet dataset includes negative values so NMF
cannot be used for it. For all experiments, datasets were shuffled and the results are the
average of values in 10-fold cross validation.

Classification Cases: Table 6.7 reports the results of experiments for classification.
In Tables 6.7, 6.8, and 6.9, underlined bold, bold, and underlined values show the best,
the second best, and the third best values, respectively. The rates are accuracy and the re-
ported times (in seconds) are the average times over folds for computing ranking/reduction.
Our proposed methods are compared with our own implementations of SOS [76], SE [89],
ascending Sorted By Distance from Mean (SDM), ENN [138], DROP3 [137], and NR sce-
nario. Three classifiers, 1-Nearest Neighbor (1NN), Linear Discriminant Analysis (LDA),
and SVM are used with three different levels of reduction each, i.e., 20%, 50%, and 70%.
Note that in ENN and DROP3, the amount of reduction cannot be selected and thus in
highlighted comparisons for different reduction levels, I exclude them. In comparing time
of ranking, SDM usually is the best because its scoring is merely sorting distances. As
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Table 6.7: Experiments for IRMD: Comparison of instance selection methods in classifica-
tion. Rates are accuracy and times are in seconds. Numbers in parentheses for ENN and
DROP3 show the percentage of retained data.

Page Block Dataset

SVD NMF PLU QR DL SPCA FDA SOS SE SDM ENN DROP3 No Reduction (NR)

Time: 5.74E−2 2.31E+1 5.96E−2 6.05E−2 3.28E+1 4.67E−1 4.04E−2 5.43E−1 1.51E−1 2.95E−2 3.90E−1 4.20E+3 ×

1NN

20% data: 37.56% 73.83% 56.45% 92.08% 41.23% 83.02% 73.77% 1.93% 34.27% 33.12% (95.61%) (1.98%)

95.57%50% data: 64.59% 87.74% 71.97% 93.51% 67.02% 89.34% 83.55% 1.35% 95.19% 58.03% 95.66% 48.45%

70% data: 85.05% 91.81% 84.83% 94.09% 77.74% 92.56% 88.45% 1.20% 95.28% 75.05%

LDA

20% data: 92.89% 93.23% 92.65% 90.17% 93.16% 93.45% 93.18% 0.36% 93.71% 92.34%

94.53%50% data: 93.62% 93.73% 93.53% 93.87% 93.66% 94.04% 94.55% 0.25% 94.55% 94.24% 94.79% 80.26%

70% data: 94.00% 94.04% 93.89% 94.06% 94.00% 94.18% 94.51% 0.25% 94.48% 94.40%

SVM

20% data: 71.64% 65.87% 82.52% 90.11% 70.48% 64.18% 69.22% 2.52% 89.07% 71.09%

89.76%50% data: 71.09% 86.48% 83.17% 91.85% 82.07% 83.33% 82.21% 1.99% 94.24% 84.27% 94.86% 87.33%

70% data: 91.10% 90.31% 90.46% 91.44% 83.09% 88.08% 87.99% 1.53% 94.37% 89.20%

Table 6.8: Experiments for IRMD: Comparison of instance selection methods in regression.
The values are mean absolute error and times are in seconds.

Facebook dataset

SVD NMF PLU QR DL SPCA SOS SE SDM NR

Time: 7.62E−3 1.63E+0 6.51E−3 7.01E−3 1.24E+1 6.41E−3 1.40E−2 8.40E−3 4.81E−3 ×

LR

20% data: 8.09E+3 2.94E+4 1.62E+4 5.28E+3 1.57E+4 5.71E+3 6.07E+3 1.89E+4 7.50E+3

5.81E+350% data: 6.45E+3 1.15E+4 8.95E+3 4.85E+3 8.61E+3 5.20E+3 6.25E+3 6.59E+3 5.69E+3

70% data: 6.08E+3 8.34E+3 6.90E+3 4.95E+3 6.76E+3 5.80E+3 5.90E+3 5.83E+3 5.30E+3

RF

20% data: 8.64E+3 2.80E+4 1.54E+4 5.53E+3 1.49E+4 7.08E+3 6.56E+3 1.09E+4 6.58E+3

6.17E+350% data: 7.03E+3 1.43E+4 1.04E+4 5.02E+3 9.69E+3 7.38E+3 6.76E+3 6.10E+3 7.19E+3

70% data: 6.76E+3 1.05E+4 7.66E+3 5.03E+3 7.52E+3 6.30E+3 6.26E+3 6.32E+3 6.03E+3

MLP

20% data: 1.11E+4 5.37E+4 1.84E+4 7.11E+3 1.73E+4 1.66E+4 7.46E+3 4.70E+4 2.31E+4

5.72E+350% data: 6.19E+3 1.45E+4 8.80E+3 4.75E+3 8.26E+3 5.67E+3 6.02E+3 5.62E+3 6.64E+3

70% data: 6.19E+3 1.15E+4 7.18E+3 5.14E+3 6.81E+3 5.55E+3 5.95E+3 5.86E+3 6.00E+3

reported in Table 6.7, I perform better than SOS, SE, ENN, and DROP3 in terms of time
in many cases. Also, in many cases, I hold the best or the second best positions in accuracy.
In some cases, the proposed methods even outperform NR. Not surprisingly, FDA performs
very well combined with the LDA classifier. In some cases, SVD provides very good results
which makes sense since it minimizes the reconstruction error. Also, the orthogonal bases
of QR-decomposition seem to lead to good performance.

Regression Cases: The results of regression are reported in Table 6.8. Linear Regres-
sion (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP) are the used methods
for regression. The number of trees and maximum depth in RF were both 100. In MLP,
the ReLu activation function, ADAM optimizer, and two hidden layers with 100 and 50
neurons were used. Regarding existing methods for numerosity reduction, SOS and SE
are not proposed for regression but I compare them here. However, ENN and DROP3 are
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Table 6.9: Experiments for IRMD: Comparison of instance selection methods in clustering.
Rates are adjusted rand index (best is 1) and times are in seconds.

Isolet dataset

SVD NMF PLU QR DL SOS SE SDM NR

Time: 5.30E−1 × 3.14E−1 3.25E−1 3.62E+3 1.32E+0 3.39E−1 2.10E−1 ×

K-means

20% data: 3.32E−1 × 3.24E−1 5.31E−1 3.67E−1 4.80E−1 3.02E−1 2.11E−1

4.86E−150% data: 4.40E−1 × 3.95E−1 4.95E−1 4.19E−1 4.95E−1 4.15E−1 4.22E−1

70% data: 4.53E−1 × 4.57E−1 4.82E−1 4.66E−1 4.88E−1 4.51E−1 4.67E−1

Birch

20% data: 3.77E−1 × 3.23E−1 5.04E−1 3.74E−1 4.70E−1 3.09E−1 2.29E−1

5.13E−150% data: 4.58E−1 × 4.38E−1 5.20E−1 4.12E−1 4.89E−1 4.48E−1 3.92E−1

70% data: 4.76E−1 × 4.84E−1 5.00E−1 4.77E−1 4.82E−1 4.57E−1 4.79E−1

Iris Dataset

SVD NMF PLU QR DL SOS SE SDM NR

Time: 1.60E−3 2.62E−1 1.32E−3 1.60E−3 9.23E−2 3.70E−3 3.00E−1 1.90E−3 ×

K-means

20% data: 6.84E−1 2.41E−1 1.36E−1 1.32E−1 6.68E−2 6.92E−1 5.02E−1 4.89E−1

7.03E−150% data: 7.80E−1 4.95E−1 6.21E−1 5.93E−1 7.05E−1 7.38E−1 4.85E−1 5.77E−1

70% data: 7.17E−1 7.18E−1 6.95E−1 6.53E−1 7.32E−1 7.35E−1 6.27E−1 7.12E−1

Birch

20% data: 6.89E−1 3.77E−1 1.72E−1 1.07E−1 1.80E−1 6.41E−1 5.10E−1 2.90E−1

5.93E−150% data: 7.04E−1 5.03E−1 6.15E−1 6.35E−1 6.05E−1 5.34E−1 5.11E−1 5.92E−1

70% data: 6.85E−1 6.16E−1 6.77E−1 6.61E−1 5.76E−1 5.79E−1 6.23E−1 6.04E−1

only applicable to classification. The proposed methods always outperform SOS and SE in
terms of both time and accuracy. QR-decomposition takes the best place probably because
of orthogonality. SPCA is also performing well because it captures dependencies of labels
and instances using HSIC. SVD has acceptable result because of both orthogonality and
minimum reconstruction error. In all cases, the proposed methods even outperform NR,
interestingly.

Clustering Cases: Table 6.9 summarizes the results for clustering. Two clustering
methods, i.e., K-means and Birch are used for experiments. I apply SOS and SE beyond
their proposed use of classification. Again, the proposed methods always outperform SOS
and SE in ranking time and in most cases, my methods also have the best performance in
comparisons. QR-decomposition is performing well in Isolet dataset. SVD shows promising
results in both Isolet and Iris datasets. The possible reasons of good performances of SVD
and QR were already explained. DL performs well enough in Iris dataset because it benefits
from sparsity.

6.2.2 Experiments for Algorithm Based on Geometry

In this section, I report the experiments for the proposed algorithms in the geometry-based
numerosity reduction including CAD, iCAD, K-CAD, and K-iCAD.
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6.2.2.1 Experiments for Anomaly Detection by CAD

Synthetic Datasets: I examined CAD and iCAD on three two-dimensional synthetic
datasets, i.e., two moons and two homogeneous and heterogeneous clusters. Figure 6.28
shows the results for CAD and K-CAD with RBF and polynomial (degree three) kernels.
As expected, the abnormal and core points are correctly detected as anomalous and normal
points, respectively. The boundary points are detected as anomaly in CAD while they are
correctly recognized as normal points in K-CAD. In heterogeneous clusters data, the larger
cluster is correctly detected as normal in CAD but not in K-CAD; however, if the threshold
is manually changed (rather than by K-means) in K-CAD, the larger cluster will also be
correctly recognized. As seen in this figure, the scores are reverse in RBF and polynomial
kernels which is consistent to my explanation in Section 4.2.2.

Real Datasets: I did experiments on several real datasets of anomaly detection. The
datasets, which are taken from [108], are speech, opt. digits, arrhythmia, wine, and musk
with 1.65%, 3%, 15%, 7.7%, and 3.2% portions of anomalies, respectively. The sample size
of these datasets are 3686, 5216, 452, 129, and 3062 and their dimensionality are 400, 64,
274, 13, and 166, respectively. I compared CAD and K-CAD with RBF and polynomial
(degree 3) kernels to Isolation forest, LOF, one-class SVM (RBF kernel), and EE. I used
k = 10 in LOF, CAD, and K-CAD. The average area under the ROC curve (AUC) and
the average time for both training and test phases over 10-fold Cross Validation (CV) are
reported in Table 6.10. For wine data, because of small sample size, I used 2-fold CV.
The system running the methods was Intel Core i7, 3.60 GHz, with 32 GB RAM. In most
cases, K-CAD has better performance than CAD; although CAD is useful and effective
especially for anomaly path (see Section 5.2.3). For speech and optdigits datasets, RBF
kernel has better performance than polynomial and for other datasets, polynomial kernel
is better. Mostly, K-CAD is faster in both training and test phases because K-CAD uses
kernel matrix and normalizing the matrix rather than element-wise cosines in CAD. In
speech and optdigits datasets, the proposed method outperforms all the baseline methods
in both training and test AUC rates. In arrhythmia data, K-CAD with polynomial kernel
has beter results than isolation forest. For wine dataset, K-CAD with polynomial kernel
is better than isolation forest, SVM, and EE. In musk data, K-CAD with both RBF and
polynomial kernels is better than isolation forest and SVM.

6.2.2.2 Experiments for Prototype Selection by iCAD

I performed experiments on several real datasets, i.e., pima, image segment, Facebook
metrics, and iris datasets, from the UCI machine learning repository [20]. The first two
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Figure 6.28: Anomaly detection, anomaly scores, anomaly landscape, and anomaly paths
for synthetic datasets. In the gray and white plots, the gray and white colors show the
regions determined as normal and anomaly, respectively. The gray-scale plots are the
anomaly scores.

datasets were used for classification, the third for regression, and the last one for clustering.
The sample size of datasets are 768, 2310, 500, and 150, and their dimensionality are 8, 19,
19, and 4, respectively. The number of classes/clusters in pima, image segment, and iris
are 2, 7, and 3, respectively. I used 1-Nearest Neighbor (1-NN), Linear Discriminant Anal-
ysis (LDA), SVM, Linear Regression (LR), Random Forest (RF), Multi-Layer Perceptron
(MLP) with two hidden layers, K-means and Birch clustering methods in experiments. Ta-
ble 6.11 reports the average accuracy and time over 10-fold CV and comparison to IRMD
(with QR decomposition), PSA, SOS, SDM, ENN, DROP3, and NR.

The iCAD and K-iCAD are reported in both rank-based and retaining-based versions
of prototype selection. For pima and image segment datasets, iCAD and K-iCAD are
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Table 6.10: Experiments for CAD: Comparison of anomaly detection methods. Rates are
AUC percentage and times are in seconds.

CAD K-CAD (rbf) K-CAD (poly) Iso Forest LOF SVM EE

Speech

Train:
Time: 14.84 ± 0.21 13.54 ± 0.21 13.87 ± 0.33 2.82 ± 0.06 6.53 ± 0.02 6.12 ± 0.02 23.35 ± 0.25

AUC: 34.78 ± 0.15 76.15 ± 2.08 63.69 ± 1.48 48.37 ± 1.38 53.99 ± 1.75 46.63 ± 1.59 49.16 ± 1.84

Test:
Time: 7.16 ± 0.03 1.38 ± 0.03 1.42 ± 0.03 0.06 ± 00.01 7.31 ± 0.10 0.24 ± 0.01 0.01 ± 0.00

AUC: 42.07 ± 10.48 71.23 ± 13.18 56.15 ± 10.48 45.23 ± 12.17 53.53 ± 12.29 44.55 ± 12.09 47.25 ± 12.54

Opt digits

Train:
Time: 13.27 ± 0.11 26.96 ± 0.31 25.86 ± 0.48 0.81 ± 0.01 1.84 ± 0.02 3.10 ± 0.01 0.96 ± 0.04

AUC: 32.67 ± 1.53 87.52 ± 1.76 77.79 ± 1.45 68.38 ± 4.64 60.84 ± 1.67 50.52 ± 3.81 39.04 ± 2.44

Test:
Time: 11.24 ± 0.12 2.67 ± 0.01 2.59 ± 0.03 0.03 ± 0.01 2.13 ± 0.08 0.15 ± 00.00 00.01 ± 00.00

AUC: 26.28 ± 7.10 88.22 ± 5.62 79.72 ± 4.81 68.36 ± 8.11 61.12 ± 11.65 37.49 ± 7.41 38.84 ± 4.29

Arrhythmia

Train:
Time: 4.76 ± 0.02 2.75 ± 0.06 2.53 ± 0.03 0.20 ± 0.01 0.07 ± 00.00 0.13 ± 00.00 0.85 ± 0.02

AUC: 52.89 ± 0.96 48.87 ± 0.51 73.92 ± 1.12 62.43 ± 2.05 91.04 ± 0.66 88.56 ± 00.87 80.59 ± 0.65

Test:
Time: 1.59 ± 0.01 0.30 ± 0.01 0.28 ± 00.00 0.02 ± 0.01 0.08 ± 0.00 0.01 ± 00.00 00.01 ± 00.00

AUC: 48.02 ± 9.06 48.56 ± 5.38 71.88 ± 9.23 63.07 ± 11.55 90.57 ± 5.47 90.03 ± 5.63 80.32 ± 4.73

Wine

Train:
Time: 0.28 ± 0.00 0.03 ± 0.03 0.03 ± 0.01 0.09 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.02

AUC: 25.59 ± 4.28 27.04 ± 10.66 92.11 ± 7.06 79.56 ± 10.59 98.70 ± 1.29 68.59 ± 4.25 59.56 ± 37.15

Test:
Time: 0.18 ± 00.00 0.02 ± 00.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

AUC: 23.65 ± 14.45 40.17 ± 13.12 86.97 ± 2.96 76.09 ± 10.11 92.58 ± 5.69 91.13 ± 3.83 57.70 ± 38.84

Musk

Train:
Time: 11.15 ± 0.20 9.67 ± 0.47 9.42 ± 0.03 0.98 ± 0.01 1.16 ± 0.03 3.16 ± 0.00 10.16 ± 0.32

AUC: 40.69 ± 2.97 69.68 ± 2.97 93.45 ± 1.46 99.91 ± 00.00 41.93 ± 3.34 57.99 ± 7.34 99.99 ± 00.00

Test:
Time: 4.89 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.03 ± 0.00 1.24 ± 0.01 0.17 ± 0.00 0.01 ± 0.00

AUC: 30.30 ± 10.37 50.00 ± 0.00 93.80 ± 3.77 99.95 ± 0.00 39.00 ± 10.55 5.71 ± 3.63 100 ± 0.00

both performing equally well but in other datasets, K-iCAD is mostly better. In terms of
time, the proposed methods outperform PSA and DROP3. In pima, the proposed methods
outperform all other baselines. In image segment, the proposed methods are better than
IRMD, SE, and SDM. In facebook data, the proposed methods are mostly better than
SOS, SE, and SDM, and in some cases better than PSA. In iris data, the proposed methods
outperform all the baselines. In some cases, the proposed methods even outperform using
the entire data. In retaining-based iCAD and K-iCAD, mostly, K-iCAD with RBF kernel
retains the least, then K-iCAD with polynomial kernel, and then CAD.

6.2.3 Experiments for Algorithm Based on Isolation

In this section, I report the experiments for the proposed algorithm in the isolation-based
numerosity reduction which is iMondrian.

6.2.3.1 Experiments for iMondrian – Synthetic Data

I created four two-dimensional synthetic datasets (a)-(d) as can be seen in Fig. 6.29. The
datasets include a variety of distributions of random anomalous points. Dataset (a) has
255 and the rest of datasets have 100 inliers while the number of outliers are 45.
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Table 6.11: Experiments for iCAD: Comparison of instance selection methods in classifi-
cation. Classification, regression, and clustering rates are accuracy, mean absolute error,
and adjusted rand index (best is 1), respectively, and times are in seconds. The left and
right columns are for rank-based and retaining-based methods. Numbers in parentheses
show the percentage of retained data.

Pima Dataset

iCAD K-iCAD (rbf) K-iCAD (poly) IRMD PSA SOS SE SDM iCAD K-iCAD (rbf) K-iCAD (poly) ENN DROP3 NR

Time: 1.98E+0 4.41E−1 4.14E−1 9.52E−3 5.87E+0 2.13E−2 1.59E−2 4.51E−3 2.09E+0 4.73E−1 4.73E−1 1.87E−2 5.00E+0 ×

1NN

20% data: 70.69% 67.70% 61.97% 67.28% 66.53% 67.06% 44.40% 62.87% (40.79%) (4.35%) (12.76%) (69.40%) (13.44%)

68.48%50% data: 70.83% 66.01% 64.96% 66.64% 64.44% 67.04% 50.64% 66.39% 65.23% 66.93% 65.88% 71.74% 64.06%

70% data: 69.26% 67.56% 65.74% 67.95% 65.75% 66.91% 65.62% 67.81%

LDA

20% data: 75.64% 67.82% 72.25% 70.81% 76.17% 73.56% 54.55% 65.09%

77.73%50% data: 76.42% 76.03% 76.43% 73.81% 76.81% 76.43% 71.35% 73.68% 65.62% 71.74% 66.14% 77.07% 75.12%

70% data: 76.94% 76.82% 76.81% 75.38% 76.82% 76.56% 76.55% 74.98%

SVM

20% data: 63.28% 57.65% 62.50% 59.62% 57.68% 63.52% 42.04% 63.78%

64.57%50% data: 65.22% 62.25% 57.94% 61.57% 61.57% 62.25% 48.15% 60.01% 64.84% 63.92% 63.93% 67.18% 53.12%

70% data: 62.76% 61.28% 56.40% 55.97% 60.42% 62.63% 55.23% 64.98%

Image Segment dataset

iCAD K-iCAD (rbf) K-iCAD (poly) IRMD PSA SOS SE SDM iCAD K-iCAD (rbf) K-iCAD (poly) ENN DROP3 NR

Time: 6.25E+0 1.20E+0 1.04E+0 3.64E−2 3.28E+2 5.86E−2 4.85E−2 1.38E−2 6.13E+0 1.58E+0 1.44E+0 1.30E−1 3.13E+2 ×

1NN

20% data: 90.34% 81.42% 83.72% 78.00% 90.25% 89.26% 83.41% 80.99% (9.54%) (3.97%) (3.14%) (95.25%) (6.78%)

96.45%50% data: 93.41% 89.43% 92.85% 86.83% 94.76% 94.19% 84.71% 87.05% 47.22% 49.13% 49.43% 94.45% 60.34%

70% data: 94.84% 92.20% 95.75% 91.03% 96.06% 95.41% 90.69% 90.00%

LDA

20% data: 89.26% 85.97% 90.86% 82.90% 90.47% 90.51% 85.23% 86.36%

91.55%50% data: 90.64% 90.04% 91.94% 86.32% 91.08% 91.16% 86.27% 87.83% 60.60% 58.70% 59.91% 67.57% 79.35%

70% data: 90.90% 90.99% 91.64% 88.26% 91.42% 91.34% 90.30% 89.48%

SVM

20% data: 73.41% 77.74% 76.40% 71.42% 78.44% 78.35% 71.73% 71.86%

85.23%50% data: 80.90% 81.08% 80.30% 80.60% 77.18% 82.85% 70.60% 81.34% 39.43% 40.38% 38.70% 78.52% 55.10%

70% data: 84.71% 84.71% 83.67% 78.87% 82.20% 85.67% 86.79% 84.32%

Facebook Dataset

iCAD K-iCAD (rbf) K-iCAD (poly) IRMD PSA SOS SE SDM iCAD K-iCAD (rbf) K-iCAD (poly) ENN DROP3 NR

Time: 1.30E+0 6.33E−1 1.01E+0 7.01E−3 1.08E+0 1.40E−2 8.40E−3 4.81E−3 1.26E+0 3.18E−1 3.18E−1 × × ×

LR

20% data: 7.57E+3 6.00E+3 7.45E+3 5.28E+3 9.98E+3 6.07E+3 1.89E+4 7.50E+3 (49.96%) (6.95%) (34.81%)

5.81E+350% data: 6.11E+3 5.51E+3 5.86E+3 4.85E+3 6.30E+3 6.25E+3 6.59E+3 5.69E+3 6.10E+3 1.56E+4 6.41E+3 × ×
70% data: 5.70E+3 6.00E+3 5.72E+3 4.95E+3 5.55E+3 5.90E+3 5.83E+3 5.30E+3

RF

20% data: 8.54E+3 7.87E+3 6.85E+3 5.53E+3 7.12E+3 6.56E+3 1.09E+4 6.58E+3

6.17E+350% data: 6.41E+3 7.08E+3 6.28E+3 5.02E+3 6.20E+3 6.76E+3 6.10E+3 7.19E+3 6.36E+3 9.82E+3 6.46E+3 × ×
70% data: 5.92E+3 6.95E+3 6.19E+3 5.03E+3 5.86E+3 6.26E+3 6.32E+3 6.03E+3

MLP

20% data: 1.348E+4 1.61E+4 1.02E+4 7.11E+3 2.12E+4 7.46E+3 4.70E+4 2.31E+4

5.72E+350% data: 6.10E+3 5.44E+3 5.57E+3 4.75E+3 6.93E+3 6.02E+3 5.62E+3 6.64E+3 6.11E+3 5.06E+4 8.31E+3 × ×
70% data: 6.31E+3 6.06E+3 5.66E+3 5.14E+3 5.75E+3 5.95E+3 5.86E+3 6.00E+3

Iris Dataset

iCAD K-iCAD (rbf) K-iCAD (poly) IRMD PSA SOS SE SDM iCAD K-iCAD (rbf) K-iCAD (poly) ENN DROP3 NR

Time: 4.96E−1 5.30E−2 4.46E−2 1.60E−3 2.83E−1 3.70E−3 3.00E−1 1.90E−3 4.68E−1 6.07E−2 5.95E−2 × × ×

K-means

20% data: 6.87E−1 1.56E−1 2.34E−1 1.32E−1 6.18E−1 6.92E−1 5.02E−1 4.89E−1 (60.59%) (84.07%) (84.07%)

7.03E−150% data: 6.98E−1 7.13E−1 8.33E−1 5.93E−1 7.01E−1 7.38E−1 4.85E−1 5.77E−1 7.34E−1 8.06E−1 8.20E−1 × ×
70% data: 7.18E−1 7.83E−1 8.20E−1 6.53E−1 7.18E−1 7.35E−1 6.27E−1 7.12E−1

Birch

20% data: 6.09E−1 0.00E+0 1.26E−1 1.07E−1 6.97E−1 6.41E−1 5.10E−1 2.90E−1

5.93E−150% data: 6.48E−1 6.58E−1 7.15E−1 6.35E−1 6.11E−1 5.34E−1 5.11E−1 5.92E−1 7.71E−1 6.60E−1 6.85E−1 × ×
70% data: 6.67E−1 7.17E−1 7.37E−1 6.61E−1 6.48E−1 5.79E−1 6.23E−1 6.04E−1

Batch Experiments: The results of batch processing in iMondrian forest on the
synthetic datasets are illustrated in Fig. 6.29. The anomaly scores are shown for the
input space of data. As expected, the scores are higher for anomalous points of space,
which are far away from the core of distribution. Fig. 6.29 shows the results of both K-
means clustering and thresholding (with threshold s = 0.5) which perform almost equally
well. I also show the result of iForest (with threshold s = 0.5) for the sake of comparison.
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Figure 6.29: Experiments for iMondrian: Comparison of batch anomaly detection in iMon-
drian and iForests for the synthetic datasets (a)-(d). The orange circles and green triangles
correspond to the detected normal and anomalous points, respectively, while shaded gray
regions show the partition of space detected as normal.

iMondrian forest clearly performed much better than iForest due to having much fewer false
negatives. It is because iMondrian trees take into account the smallest blocks containing
the points within a node while iForest considers the whole block.

Online Experiments: I divided every dataset, using stratified sampling, into five
subsets with equal amounts of outliers. I used these subsets to simulate streaming data by
adding each subset to the existing data in a succession of five steps. Figure 6.30 shows the
results of online processing using iMondrian forests on the synthetic datasets. K-means
clustering was used in all of these experiments. In set (a), we see that in the second step,
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Figure 6.30: Experiments for iMondrian: Online anomaly detection in iMondrian forest
for the synthetic datasets (a)-(d). The orange circles and green triangles correspond to the
detected normal and anomalous points, respectively, while shaded gray regions show the
partition of space detected as normal. Time steps are denoted by t in this figure.

some inliers are falsely recognized as anomalous; however, by receiving more data in the
next steps, the structures of iMondrian trees have been modified correctly and those points
are recognized correctly as inliers. For set (c), merely some core points of the larger blob are
detected as normal. This is because in the initial steps, there happen to be far fewer points
from the smaller blob so the algorithm has found that region to be anomalous; however, if
that blob had become much denser in the further steps, they would be detected as normal.
Overall, for different datasets, the performance of online iMondrian is acceptable.
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Table 6.12: Experiments for iMondrian: Comparison of batch anomaly detection methods.
Rates are AUC percentage and times are in seconds averaged over the folds. The upward
arrows in AUC rates mean iMForest outperforms the other methods.

WBC Pima Thyroid Satellite Optdigits Ionosphere Wine SMTP

iMForest

Train:
Time: 2.40 ± 0.01 2.54 ± 0.04 4.96 ± 0.15 16.33 ± 0.18 5.28 ± 0.03 2.27 ± 0.02 0.48 ± 0.00 68.64 ± 1.11

AUC: 86.35 ± 1.31 63.63 ± 1.02 95.36 ± 0.41 73.93 ± 1.19 72.90 ± 3.49 86.07 ± 0.95 99.01 ± 0.16 86.76 ± 1.47

Test:
Time: 0.04 ± 0.00 0.07 ± 0.01 0.33 ± 0.02 1.58 ± 0.02 0.35 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 7.42 ± 0.11

AUC: 86.25 ± 5.02 63.74 ± 9.39 95.37 ± 1.62 73.67 ± 2.33 73.00 ± 7.64 83.99 ± 6.32 99.71 ± 0.28 85.12 ± 14.25

iForest

Train:
Time: 0.14 ± 0.00 0.14 ± 0.00 0.25 ± 0.01 0.46 ± 0.01 0.81 ± 0.01 0.12 ± 0.00 0.08 ± 0.00 4.41 ± 0.05

AUC: 78.75 ± 1.62 ↑ 67.49 ± 1.36 97.89 ± 0.22 70.13 ± 2.13 ↑ 68.38 ± 4.64 ↑ 84.74 ± 0.94 ↑ 79.56 ± 10.59 ↑ 90.74 ± 1.37

Test:
Time: 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.19 ± 0.00

AUC: 78.81 ± 6.20 ↑ 68.00 ± 5.14 97.87 ± 0.84 70.13 ± 3.46 ↑ 68.36 ± 8.11 ↑ 84.32 ± 6.19 76.09 ± 10.11 ↑ 89.44 ± 10.02

LOF

Train:
Time: 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.65 ± 0.00 1.84 ± 0.05 0.01 ± 0.00 0.01 ± 0.00 1.05 ± 0.06

AUC: 61.12 ± 1.56 ↑ 49.91 ± 1.41 ↑ 70.26 ± 2.10 ↑ 52.65 ± 0.33 ↑ 60.84 ± 1.67 ↑ 89.59 ± 0.81 98.70 ± 1.29 ↑ 53.51 ± 7.25 ↑

Test:
Time: 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.77 ± 0.01 2.13 ± 0.08 0.01 ± 0.00 0.01 ± 0.00 1.14 ± 0.04

AUC: 61.94 ± 7.56 ↑ 51.36 ± 7.50 ↑ 66.17 ± 13.06 ↑ 53.26 ± 2.32 ↑ 61.12 ± 11.65 ↑ 89.87 ± 7.23 92.58 ± 5.69 ↑ 56.23 ± 25.90 ↑

SVM

Train:
Time: 0.03 ± 0.00 0.04 ± 0.00 0.27 ± 0.00 3.78 ± 0.00 3.10 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 240.93 ± 3.81

AUC: 49.40 ± 3.16 ↑ 51.93 ± 0.02 ↑ 84.36 ± 0.53 ↑ 48.54 ± 0.57 ↑ 50.52 ± 3.81 ↑ 76.23 ± 0.86 ↑ 68.59 ± 4.25 ↑ 84.14 ± 1.75 ↑

Test:
Time: 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.18 ± 0.00 0.15 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 4.89 ± 0.09

AUC: 94.21 ± 1.35 60.01 ± 8.37 ↑ 84.49 ± 4.12 ↑ 64.04 ± 1.65 ↑ 37.49 ± 7.41 ↑ 76.61 ± 7.90 ↑ 91.13 ± 3.83 ↑ 83.06 ± 17.75 ↑

Table 6.13: Experiments for iMondrian: Comparison of online anomaly detection meth-
ods. Rates are AUC percentage and times are in seconds. Upward arrows mean better
performance of iMForest.

Stages Pima Thyroid Satellite Optdigits Ionosphere Wine SMTP CICIDS Stages Pima Thyroid Satellite Optdigits Ionosphere Wine SMTP

iM
F
o
re

st

Time: 1.25 6.59 13.24 9.85 0.56 0.21 185.33 2.6E3

o
sP

C
A

1

Time: 1.50 9.02 17.72 15.67 0.95 0.25 252.87

AUC: 70.19 95.41 71.94 67.50 86.62 95.65 95.48 71.02 AUC: 80.37 40.42 ↑ 26.48 ↑ 54.66 ↑ 69.95 ↑ 86.95 ↑ 10.52 ↑
Time: 1.48 8.40 15.26 11.88 0.65 0.22 364.03 1.0E4 Time: 1.58 9.24 16.17 16.49 1.20 0.24 252.88

AUC: 68.07 94.27 73.73 68.00 85.07 98.91 95.01 70.95 AUC: 75.10 45.96 ↑ 42.43 ↑ 57.19 ↑ 61.24 ↑ 60.86 ↑ 17.25 ↑
Time: 1.59 9.20 16.65 12.93 0.69 0.23 319.45 5.9E3 Time: 1.85 9.62 17.01 18.57 0.90 0.24 282.63

AUC: 65.45 94.65 74.15 66.70 84.27 98.79 96.58 70.76 AUC: 73.26 53.49 ↑ 45.65 ↑ 54.24 ↑ 53.67 ↑ 62.31 ↑ 11.41 ↑
Time: 1.72 10.32 18.87 14.45 0.73 0.24 349.33 7.3E3 Time: 1.85 9.33 18.49 19.32 0.87 0.25 302.31

AUC: 64.51 94.58 74.00 66.40 83.10 98.64 93.84 70.80 AUC: 72.00 52.91 ↑ 47.32 ↑ 51.65 ↑ 50.92 ↑ 67.11 ↑ 18.37 ↑
Time: 1.88 11.29 20.67 15.29 0.79 0.29 393.93 8.6E3 Time: 1.95 9.54 19.59 20.16 0.89 0.28 321.40

AUC: 65.50 94.64 73.40 67.10 82.80 97.60 92.87 70.83 AUC: 71.34 55.80 ↑ 48.08 ↑ 51.09 ↑ 49.74 ↑ 72.35 ↑ 24.72 ↑

In
cr

e
m

e
n
ta

l
L

O
F

Time: 0.001 0.006 0.04 0.06 0.001 0.0009 0.71 4.1E2

o
sP

C
A

2

Time: 0.15 3.51 14.58 11.32 0.12 0.01 2101.3

AUC: 58.81 ↑ 85.61 ↑ 54.23 ↑ 56.87 ↑ 93.06 95.65 94.90 ↑ 46.58 ↑ AUC: 50.94 ↑ 49.93 ↑ 49.94 ↑ 49.95 ↑ 48.88 ↑ 47.82 ↑ 49.99 ↑
Time: 0.001 0.02 0.14 0.26 0.001 ≈ 0 1.87 1.5E3 Time: 2.04 17.35 42.41 33.80 0.95 0.25 5346.3

AUC: 55.13 ↑ 70.62 ↑ 53.76 ↑ 60.78 ↑ 89.57 98.91 95.44 46.06 ↑ AUC: 56.10 ↑ 57.00 ↑ 54.03 ↑ 46.14 ↑ 57.02 ↑ 58.69 ↑ 58.03 ↑
Time: 0.001 0.04 0.29 0.58 0.003 ≈ 0 3.93 3.3E3 Time: 2.32 25.88 68.78 54.53 1.06 0.26 9979

AUC: 53.31 ↑ 72.34 ↑ 52.33 ↑ 62.98 ↑ 88.81 91.06 ↑ 58.59 ↑ 45.99 ↑ AUC: 59.42 ↑ 64.59 ↑ 56.33 ↑ 40.87 ↑ 61.58 ↑ 67.63 ↑ 68.00 ↑
Time: 0.003 0.07 0.52 1.06 0.003 ≈ 0 5.39 4.3E3 Time: 2.81 33.53 69.17 73.20 1.07 0.34 14416

AUC: 49.10 ↑ 69.61 ↑ 51.64 ↑ 64.22 ↑ 88.93 81.92 ↑ 52.79 ↑ 46.00 ↑ AUC: 60.02 ↑ 64.78 ↑ 57.23 ↑ 38.97 ↑ 62.84 ↑ 72.14 ↑ 69.13 ↑
Time: 0.005 0.11 0.79 1.68 0.004 ≈ 0 8.02 7.9E3 Time: 3.21 42.30 122.71 93.13 1.18 0.40 18678

AUC: 48.40 ↑ 68.10 ↑ 51.69 ↑ 62.75 ↑ 90.13 91.51 ↑ 49.60 ↑ 45.93 ↑ AUC: 61.05 ↑ 67.19 ↑ 57.36 ↑ 36.60 ↑ 64.51 ↑ 75.04 ↑ 68.82 ↑

6.2.3.2 Experiments for iMondrian – Real Data

I selected eight various datasets with different characteristics from the outlier detection
datasets [108] and one very large dataset, CICIDS 2017 [13]. In CICIDS data, I only used
the data of Wednesday and excluded its one categorical feature. The datasets have different
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sample size, dimensionality, and percentage of outliers. The names of these datasets are
listed in Tables 6.12 and 6.13.

Batch Experiments: I compared iMondrian forest with iForest, LOF (with k = 10),
and one-class SVM (with RBF kernel). The experiments were performed with 10-fold cross
validation except for the wine dataset where I used two folds due to small sample size. The
average Area Under ROC Curve (AUC) and time of algorithms over the ten folds are
reported in Table 6.12. The results are reported for both training and test subsets of data.
In most datasets, iMondrian outperforms iForest, LOF, and SVM. In the three datasets
Pima, thyroid, and SMTP, the method iForest is slightly better; although, the difference is
not significant. In time, iForest is mostly better than iMondrian but its accuracy is often
less.

Online Experiments: For the online experiments, I divided datasets into five stages
using stratified sampling and introduced the streaming data to the algorithms where each
new point was accumulated to previous data. The AUC of a stage is for scores up to
that stage. WBC was not used here because there was such a small relative portion of
outliers it made the stratified sampling not possible. I compared iMondrian forest with
incremental LOF (with k = 10) [11], osPCA1 [145], and osPCA2 [86], reported in Table
6.13. The results of CICIDS on osPCA methods are not reported as they did not perform in
a reasonable time on these datasets. The AUC of iMondrian forest reported for every stage
is the rate for recalculated scores of the available data. In the first stage of osPCA1 and
osPCA2, I used decremental PCA approach with oversampling [86]. In different datasets,
iMondrian forest has stable performance in different stages which shows its stability over
the streaming data. In most cases, iMondrian outperforms all the baseline methods. In
terms of time, iMondrian outperforms osPCA1 and osPCA2.

6.3 Summary of the Chapter

In this chapter, I reported the experimental results on the proposed algorithms in data
reduction. In dimensionality reduction, I reported the simulation results on WFDA, RDA,
SSIM kernel, ISCA, LLISE, QQE, backprojection, Fisher losses, and BUT/BUNCA. In
numerosity reduction, I reported the results on PSA, IRMD, CAD, and iMondrian. I
showed that the proposed methods are effective in performance, e.g., accuracy, recognition,
embedding, reduction, etc.
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Chapter 7

Conclusions and Future Directions

7.1 Summary of the Thesis

In this thesis, I proposed several algorithms for data reduction in machine learning and data
science. Data reduction can be divided into two main categories which are dimensionality
reduction and numerosity reduction. Dimensionality reduction can be categorized into
feature extraction and feature selection. Numerosity reduction is branched into prototype
selection and prototype generation. This thesis concentrated on feature extraction and
prototype selection for data reduction (see Fig. 1.1).

Dimensionality reduction methods can be divided into three categories, i.e., spectral,
probabilistic, and neural network-based methods (see Fig. 1.2). Spectral methods have a
geometrical point of view and are mostly reduced to the generalized eigenvalue problem.
In spectral methods, WFDA, RDA, and image quality aware embedding were proposed.
SSIM kernel, ISCA, and LLISE were proposed for image quality aware embedding. I also
proposed quantile-quantile embedding as a probabilistic method in which the user can
choose the distribution of embedding. Backprojection, Fisher losses, and dynamic triplet
sampling using Bayesian updating were other proposed methods in the neural network-
based methods. Backprojection is for training shallow networks with a projection-based
perspective in manifold learning. In that algorithm, the data are project to a layer and
the labels are backprojected (reconstructed) from the last layer to that layer and these two
are optimized to match. Two Fisher losses, i.e. FDT and FDC losses, were also proposed
for training Siamese triplet networks for increasing and decreasing the inter- and intra-
class variances, respectively. I proposed two triplet mining methods, BUT and BUNCA,
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which are based on Bayesian updating and draw triplet samples stochastically rather than
sampling from the existing data instances.

Numerosity reduction methods can be either based on variance, geometry, or ensem-
ble methods (see Fig. 1.2). I proposed PSA and IRMD as the variance-based methods
which rank the data points using inter-/intra-class variances and matrix factorization, re-
spectively. In the proposed CAD method, as a geometry-based method, the points are
assumed to be the vertices of polyhedron. I also proposed iMondrian forest as an ensemble
method. This method, which was not my main project and I collaborated in it, is a novel
hybrid of isolation and Mondrian forests.

I also proposed some applications for data reduction in medical image analysis, image
processing, and computer vision (see Fig. 1.2). For medical image analysis, I utilized
the FDT and FDC losses as well as the BUT and BUNCA triplet mining approaches
for embedding the histopathology image patches. I also proposed offline/online triplet
mining using extreme distances for histopathology embedding. For image processing and
computer vision applications, I proposed Roweisfaces and Roweisposes in the fields of face
recognition and 3D action recognition, respectively. These two methods used the proposed
RDA subspace learning method. I also proposed anomaly landscape and anomaly path
using the proposed CAD method and employed them for image denoising. I reported
extensive experiments, on different datasets, to show the effectiveness of the proposed
algorithms. I showed that the proposed dimensionality reduction methods can extract
informative features for better separation of classes or different patterns, e.g., separation of
tumorous and normal histopathology tissues for better cancer diagnosis. I also showed that
the proposed numerosity reduction methods can be very useful for ranking data instances
based on their importance. Hence, they can help reduce data volumes without a significant
drop in performance of machine learning and data science methods.

7.2 Conclusions and Discussions

In this thesis, I tackled different open problems in data reduction for machine learning, in
both dimensionality reduction and numerosity reduction.

The open problems in dimensionality reduction which were tackled in the thesis were
as follows:

1. Most of the manifold learning methods, such as PCA, LLE, and SNE, use MSE or
`2 norm in their formulation. However, in image fidelity assessment, it is shown that
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MSE is not promising enough [134]. SSIM [135, 133] is an effective method for image
quality assessment. I proposed SSIM kernel, ISCA, and LLISE for image quality
aware manifold embedding.

2. The dimensionality reduction methods either do not specify the distribution of the
embedded data points in the embedded space and merely focus on preserving the
local or global distances, such as Isomap [126], MVU [136], and Sammon mapping
[113], or they only restrict the distribution in the embedded space to be a specific
distribution, such as SNE [69] and t-SNE [94]. I proposed QQE to give a freedom to
the user for choosing the embedding distribution.

3. There exist several spectral dimensionality reduction methods which are based on the
generalized eigenvalue problem [42]. These methods belong to a general optimization
problem for eigenvalue decomposition. I proposed RDA as a generalized subspace
learning method.

4. The supervised subspace learning methods see the pairs of classes with the same eye;
although, the distances and confusion of classes are different from each other. Some
classes are closer to each other and harder to separate while some classes are apart. I
proposed WFDA to tackle this problem by weighting the distances of pairs of classes
where the more confused (closer) classes are assigned larger weights to be emphasized
for separation.

5. In terms of increasing amd decreasing the inter- and intra-class variances, respec-
tively, the triplet [118] and contrastive [65] losses have similarity with FDA. The pro-
posed Fisher losses, FDT and FDC losses, are fusions of FDA and triplet/contrastive
losses.

6. The sampling based triplet mining methods in the literature sample the triplets
from the existing embedded data instances [139] so it does not use the stochastic
information of the embedding space. I proposed BUT and BUNCA for dynamic
triplet sampling.

The open problems in numerosity reduction and anomaly detection which I tackled in
this proposal are as follows:

1. Most of the numerosity reduction methods are proposed merely for classification [28].
The proposed PSA, IRMD, and CAD are task agnostic usable for all classification,
regression, and clustering.
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2. Most of existing numerosity reduction methods do not rank the data and only retain
a subset of data by removing the rest of data. Ranking the instances can be useful
which are applicable in our proposed PSA, IRMD, and CAD.

3. There is a gap in the literature on numerosity reduction and anomaly detection for
methods based on geometry. The proposed CAD, iCAD, and their kernel variants fill
this gap by assuming every point to be a vertex of a polyhedron using its neighbors.
The more anomalous point has more polyhedron curvature.

4. Isolation forest is an existing method for batch anomaly detection and Mondrian
forest is an existing method for online random forest. Isolation forest is not capable
of handling streaming data. The proposed iMondrian forest is a fusion of these two
methods which can handle both offline and online (streaming) data.

An important conceptual contribution of this thesis was giving an organization and
taxonomy to data reduction, dimensionality reduction, and numerosity reduction. I found
the gaps in different parts of the proposed taxonomy and proposed novel algorithms to fill
those gaps and open problems this taxonomy led to. In terms of new proposed algorithms,
I would like to highlight the three most significant and novel approaches. The first is
proposing RDA which generalized subspace learning methods, such as PCA, FDA, and
SPCA, to be special cases of a general family of algorithms. The second is the idea of using
SSIM in manifold and subspace learning by introducing the concept of image structure
manifold. In other words, I combined the two worlds of image quality assessment and
machine learning which opened a new field of research. The third is the novel geometrical
perspective to anomaly detection and proposing the concept of anomaly paths which can
be also useful for image denoising. All of the proposed feature extraction methods can be
used to help improve the performance of classification, regression, or clustering. Moreover,
the proposed numerosity reduction methods help remove the redundant or misleading data
instances. Both proposed dimensionality and numerosity reduction find insights from data
by the classical or theoretical methods.

7.3 Advantages and Costs of the Proposed Methods

It is known in mathematics, so as in life, that gaining something results in loosing something
else. Therefore, all methods have some cost or drawback. In the following, I explain the
costs of the proposed methods in this thesis:
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• WFDA: The solution of FDA is a generalized eigenvalue problem [42]. WFDA, finds
the weights for better separation of confused classes. However, the cost of WFDA is
having iterative optimization which is slower than optimization of traditional FDA.

• RDA: The solution of RDA is a generalized eigenvalue problem [42]. It is a generalized
family of infinite number of subspace learning methods. However, because of the
limits of the generalized eigenvalue problem, it cannot handle very large volumes of
data.

• SSIM kernel: Many machine learning and manifold learning methods can use the
proposed SSIM kernel. As calculation of SSIM is patch-wise in images [135, 133],
calculation of the SSIM kernel is time consuming. This problem is not caused by my
method but it exists in all image filtering methods, including convolutional networks
[62]. In image filtering methods, such as calculation of the SSIM kernel, we need to
move pixel by pixel to calculate the desired measurement.

• ISCA: ISCA is the formulation of PCA but with SSIM distance rather than `2 norm.
The solution of PCA is an eigenvalue problem (see [35]) while the solution of ISCA
is found iteratively by ADMM. Therefore, ISCA makes PCA suitable for the hu-
man visual system and image structure subspace learning but at the cost of slower
optimization in finding the subspace.

• LLISE: LLISE is the formulation of LLE but with SSIM distance rather than `2
norm. The solution of LLE is an eigenvalue problem (see [37]) while the solution of
LLISE is found iteratively by ADMM. Therefore, LLISE makes LLE suitable for the
human visual system and image structure manifold learning but at the cost of slower
optimization in unfolding the manifold.

• QQE: The proposed QQE gives the choice of embedding distribution to users while
the existing manifold learning methods do not do that. The optimization of QQE
uses the diagonal quasi-Newton’s method, which is iterative, and takes some time to
converge because of this. Moreover, the time complexity of QQE is O(n3).

• Backprojection: The proposed backprojection is a novel training algorithm for neu-
ral networks. In one of his recent seminars, Geoffrey Hinton, one of the important
machine learning researchers, has mentioned that it is time to develop new training
algorithms for neural nets after the tremendous development of backpropagation.
Backprojection gives projection-based insight to networks. It is moderately faster
than backpropagation because it updates weights layer by layer and not weight by
weight as in backpropagation. However, backprojection could be more difficult to
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extend to convolutional networks. More investigation is needed to extend it to con-
volutional layers.

• Fisher losses: The proposed Fisher losses combine FDA from classic machine learning
and triplet loss in Siamese network from modern deep learning. It finds an embedding
space which increases and decreases the inter- and intra-class variances, respectively.
Compared to triplet and contrastive losses, the Fisher losses do not have any large
costs. The only difficulty being that dealing with the last linear layer makes it a little
more complicated than the triplet and contrastive losses.

• BUT and BUNCA: The triplets for training Siamese networks can be sampled in one
of these ways:

– Sampled randomly from classes

– Sampled by extreme distances of points

– Sampled by distribution but from existing points

– Sampled stochastically from distributions of classes

The first three methods of triplet sampling already exist in the literature but the
fourth one is novel and done by the proposed BUT and BUNCA which sample triplets
for training Siamese networks. The cost of the proposed dynamic triplet sampling
methods is the overhead of updating the distributions of classes in the embedding
space which makes neural network training a little slower.

• PSA: The proposed PSA algorithm considers different trade-offs for finding the most
informative data instances. The RANSAC iterations and calculation of scatters in
PSA take time because of the large number of iterations. PSA can be improved
further to be faster on large volumes of data.

• IRMD: The proposed IRMD finds the most informative instances based on similarity
of data points to the most informative directions of data. It cannot handle very large
volumes of data due to limitations of matrix factorization for decomposing large
matrices.

• CAD: The proposed CAD and iCAD are among the first numerosity reduction meth-
ods based on geometry and topology of data, to the best of my knowledge. Its cost
is calculation of cosine or kernels between the neighbors of every point.

151



• iMondrian: The proposed iMondrian combines the two existing forests, isolation for-
est and Mondrian forest, which were for batch anomaly detection and online classifi-
cation/regression, respectively. iMondrian extends isolation forest for online anomaly
detection using the Mondrian forest formulation. Its cost is a little more complicated
construction of trees in iMondrian compared to isolation forest.

Note that since the proposed tools are mostly used for data reduction as pre-processing
which comes before the classification, regression, or clustering tasks, they can be applied
off-line; hence, their computational complexity is not usually the deciding factor.

7.4 When to Use the Proposed Methods

In this section, I explain when the reader can use the proposed methods in this thesis and
when the proposed methods are not applicable.

7.4.1 When Do We Use the Proposed Methods?

This thesis concentrated on data reduction in machine learning and data science. It pro-
vides a taxonomy for data reduction and divides data reduction into dimensionality reduc-
tion and numerosity reduction (see Table 1.1 and Figs. 1.1 and 1.2). Consider the matrix of
data where the data instances can be staked row-wise or column-wise in this matrix. If the
data instances are row-wise in this matrix, the rows and columns correspond to instances
and features (dimensions), respectively. In terms of data reduction, one can reduce the
number of rows or columns in the data matrix. Hence, we can have numerosity reduction,
dimensionality reduction, or both. The concepts and methods introduced in this thesis can
be used for data reduction to make the data matrix smaller for better data representation,
class separations, storage efficiency, improving learning running time, etc. I concentrated
on feature extraction and prototype selection in this thesis (see Fig. 1.1).

This thesis is very useful especially when the data matrix is large and one wants to re-
duce data for better data representation, class separations, storage efficiency, and improving
running time of learning algorithms. The proposed methods can be used as pre-processing
for feature extraction or informative instance selection before classification, regression, or
clustering tasks.

The approach of dimensionality reduction methods depends on having or not having
labels. Most of the supervised manifold learning methods use the idea of FDA proposed by
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Ronald A. Fisher a century ago [25]. They all try to increase and decrease the inter-class
and intra-class variances, respectively. In this way, the classes become more separated while
they collapse to smaller data clouds in the embedding space. Most of the unsupervised
manifold learning methods have the idea of local fitting while thinking to global structure
of data which was proposed by Sam T. Roweis [110, 114] twenty years ago. They try
to preserve the locality of neighborhoods in the embedding space hoping that the global
structure of data is preserved when the manifold is unfolded. My proposed dimensionality
reduction methods in this thesis mostly have these approaches.

As explained before, dimensionality reduction methods can be categorized into spectral,
probabilistic, and neural network-based approaches. The numerosity reduction methods
can be divided into variance-based, geometry-based, and ensemble methods. In this thesis, I
found the gaps and open problems in each of these categories and proposed novel algorithms
to fill those gaps. Those gaps were mentioned in Section 7.2.

As a conclusion, this thesis is useful to reduce the data matrix in terms of either
numerosity or dimensionality for better data representation. An example of this usage
is gigapixel images, such as WSI of histopathology, which I have worked on in thesis as
well. The gigapixel images are very huge in terms of dimensionality, i.e., number of pixels.
One should divide a gigapixel image into many patches and work on the image patches
rather than the whole image for the computational reasons. This patching results in a huge
number of patches which require numerosity reduction. Moreover, working in pixel space
of image patches is not recommended because a small shift in image can ruin everything.
One should learn an embedding space for the image patches and work on patches in that
space. To summarize, before patching, dimensionality reduction is sensed to be required
because of huge number of pixels. After patching, numerosity reduction is required for
the large number of patches. Also, dimensionality reduction is needed to extract features
because working in pixel space is not recommended for the explained reason before.

7.4.2 When Are the Proposed Methods not Applicable?

As was explained in Section 7.3, the proposed methods have some shortcomings. Therefore,
there are some cases for which the proposed methods are not applicable. The spectral
dimensionality reduction methods, including the proposed WFDA, RDA, SSIM kernel,
ISCA, and LLISE, are not applicable for very large volume of data. The direct spectral
methods cannot handle huge dimensionality of data such as huge images with high number
of pixels. The dual spectral methods, however, cannot handle high number of instances.
If we have either huge dimensionality or numerosity, one can choose the direct or dual
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methods appropriately; however, if both numerosity and dimensionality of data are huge,
the spectral method are not applicable at all.

The time complexity of QQE is O(n3) and as such it cannot be used for very large
number of data instances. The current version of the proposed backprojection cannot
be used for convolutional networks. Moreover, its current version is applicable for only
shallow networks. The proposed methods for deep networks, including FDT, FDC, BUT,
and BUNCA, require enough number of data instances to be trained without overfitting
[34]. Deep networks, except some recent few-shot learning methods, require enough data
instances so this issue applies to all deep networks [62]. Hence, my proposed deep methods
are not well suited to the datasets containing only a small number of instances.

In PSA, the RANSAC iterations and the summations in scatter calculations cause the
bottlenecks for time complexity [30]. Although PSA can be slightly modified to improve its
complexity [30], its current version cannot handle huge number of data instances. IRMD
also has the same problem which is because of limitations of matrix factorization when
dealing with huge matrices. Note that using dual methods for some of the factorization-
based subspace learning methods, such as PCA and SPCA, can handle data matrices with
either small dimensionality or numerosity. However, if both dimensionality and numerosity
are huge, the proposed IRMD cannot be applied. The proposed CAD and iCAD work
properly on different data types but increasing the number of neighbors may increase the
run time. Having small sub-graphs of data rather than having a connected graph may
require a large number of neighbors. Hence, CAD and iCAD may not be applicable or
efficient for data with not connected sub-graphs. The proposed iMondrian is suitable for
different datasets but it may be very slow in constructing trees for very large number of
instances.

7.5 Other Open Problems and Future Directions

There exist some other open problems which I leave for possible future research. In the
following, I enumerate and explain some possible open problems:

• Open problems in the proposed methods for dimensionality reduction:

1. SSIM kernel, ISCA, and LLISE are some example methods for image quality
aware embedding. Other methods can be proposed, by replacing the `2 or
Frobenius norm with SSIM distance, for learning the image structure manifold.
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2. There exist several possible future directions for QQE. The first future direction
is to improve the time complexity of QQE which is O(n3 + ndk). Since the
complexity of QQE is O(n3), dealing with a large number of instances would
be a challenge for this initial version. Handling out-of-sample data is another
possible future direction for QQE. QQE uses the least squares problem which is
not very robust, so another possibility would be to investigate high breakdown
estimators for robust regression to make QQE more robust and faster.

3. Backprojection was proposed for training shallow feedforward neural networks.
One can investigate extending this method for convolutional networks as well
as deep networks.

4. Triplet sampling and mining can be further improved for better stochastic dy-
namic sampling. Our proposed BUT and BUNCA assume a Gaussian distribu-
tion for the embedding of every class. This is because the Gaussian distribution
is the most common distribution according to the central limit theorem. One
can consider multivariate Gaussian or mixture of other distribution [41] for em-
bedding of every class.

• Open problems in the proposed methods for numerosity reduction:

1. Because of the essence of matrix decomposition, it is not feasible for large volume
of data. One can extend the proposed IRMD algorithm for large volume of data.

2. The proposed CAD method using polyhedron curvature, as well as the proposed
anomaly path (see Eq. (5.6)), may be used to propose a curvature preserving
manifold embedding algorithm.

3. As a future direction for iMondrian forest, one can develop the idea of isolation-
based anomaly detection in other online tree structures such as binary space
partitioning forest [23] which is based on the binary partitioning process.

Moreover, note that the proposed data reduction tools are used as pre-processing
which mostly can be used before the classification, regression, and clustering tasks;
therefore, the computational complexity of the proposed methods is not a big issue
because they can be mostly done off-line. Although the computational complexity
of some methods have been evaluated (e.g., see [52] for QQE, [30] for PSA, and [93]
for iMondrian), we will analyze the improve the computation complexity of other
proposed methods in the future work.
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