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Abstract 

Crop simulation models (CSM) have been a method for decision makers to study the effects 

of crop management activities for predicting, planning, and improving crop growth for the past 

several decades. While the applicability and robustness of CSMs had been rapidly evolving, 

the methods of gathering input and validation data for CSMs has remained predominantly the 

same. However, the application of remote sensing technologies including remotely piloted 

aircraft systems (RPAS) and satellites for agricultural purposes has demonstrated the potential 

for automated rapid and high detail CSM validation data. This study evaluated the accuracy of 

validation data acquired using RPAS and satellite technologies when compared to CSM 

outputs and observed crop measurements. Imagery of an agricultural field was acquired 

throughout a growing season with the use of a multi-sensor RPAS and existing satellite 

missions. Field work was performed alongside the RPAS imagery acquisitions to collect input 

data for crop modelling and accuracy assessments. Using the acquired imagery, the crop height 

and leaf area index (LAI) values of crops in the field were estimated for multiple dates. The 

LAI was estimated using 1) a regression-based method and 2) a function of the fractional 

vegetation cover and the leaf angle distribution method. A CSM was run alongside the remote 

sensing to simulate crop height and LAI values. When the estimated values were compared to 

observed measurements, showing the RPAS-derived crop height values were significantly 

more accurate (RMSE=193.6 cm, RMSE=161.3 cm) than the satellite-derived crop heights 

values (RMSE=223.4 m, RMSE=117.1 m respectively) yet less accurate than the CSM crop 

heights values. The RPAS-derived LAI value accuracies (RMSE=0.42, RMSE=0.66) and 

satellite-derived LAI value accuracies (RMSE=0.56, RMSE=0.56) were similar but the RPAS 

was found to, on average, estimate LAI more accurately than the CSM. Overall, the RPAS 

methods showed moderate accuracy across both crop height and LAI estimations and was 

found to perform better than the CSM in some situations. Future work may include additional 

imagery acquisitions throughout a growing season to further test the accuracies of RPAS-

derived estimates as well as integrating estimates directly into CSMs for validation purposes. 
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1.0: Evaluating remotely piloted aircraft for estimates of crop height and 

LAI against satellite and crop model outputs 

1.1  Introduction  

Crop simulation models (CSMs) formalize our understanding of how cultivated plants grow in 

computer code and they are often used to estimate crop growth and yield under different 

climate and land management activities (e.g., Jones et al., 2003; Stöckle et al., 2003). By 

estimating and quantifying crop growth and yield, CSMs can increase agricultural decision 

making capacity (e.g. Dury et al., 2012), provide a medium for knowledge transfer (e.g. Jones 

et al., 2003) identify new crops or management activities (e.g. Jones et al., 2003; Xiong et al., 

2016), and establish critical production variables requiring attention (e.g. Bucksch et al., 2017; 

Gago et al., 2015). Furthermore, CSMs can provide a more cost-efficient approach to quantify 

the impacts of agricultural management decisions than field experiments (Nagamani & Nethaji 

Mariappan, 2017).   

Process-based models of crop growth are particularly strong at representing how 

photosynthesis, competition for resources, biogeochemical cycling, and other ecophysiological 

processes respond to human and natural changes to site conditions, such as fertilization (e.g. 

Liu et al., 2011) and inundation (e.g. Pasley et al., 2020). Due to their generalized 

representation of the processes of plant growth, process-based models can be parameterized 

and calibrated for individual study areas. However, CSMs are often applied at large spatial 

extents using coarse resolution data (e.g. Dong et al., 2016; Moulin et al., 1998), which 
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produces results that are frequently inaccurate at the scale of individual farm decision makers 

(Dong et al., 2016).  

While regional crop estimates or predictions can aid economic decision making related 

to food production forecasting and guide national agricultural development (e.g., H. Li et al., 

2017), accurate results at the scale of the decision maker are important because it is the 

cumulative impacts of their individual behaviour that affect water quality (e.g., Kisekka et al., 

2017) and quantity (e.g., Fortes et al., 2005; Kisekka et al., 2017; Mondal et al., 2011) and food 

prices (e.g., Salo et al., 2016) among other socio-environmental variables. Despite increasing 

global food demand (e.g., Oteng-Darko et al., 2013) and insecurity (e.g., Liu et al., 2008), 

increasing climate variability (e.g., Tubiello et al., 2007), and reduced sales margins (e.g., 

Baležentis et al., 2019), there is a need to determine the limiting variables in a crop’s growth 

cycle across landscapes comprising heterogeneous soil, topography, and microclimate 

conditions. Correspondingly, there is a need to develop planning methods to mitigate the 

effects of those variables on crop growth and yield (Pastor-Guzman et al., 2015; Xiong et al., 

2016).  

Crop simulation models offer an experimental laboratory to investigate how to 

maximize yield and minimize environmental impact (e.g., Bendig et al., 2014; Jame & 

Cutforth, 1996) when they are appropriately parameterized, calibrated, and validated (Bendig 

et al., 2014). Data collection approaches for calibration and validation comprise destructive 

sampling (e.g., Jégo et al., 2011), in-field measurements (e.g., Li et al., 2015), and remote-

sensing (e.g., Fan et al., 2009). While the first two approaches have traditionally provided the 

most accurate representation of site and situation conditions, they are limited in their spatial 
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coverage due to the cost and time requirements associated with manual measurement. In 

contrast, remote sensing data can map and quantify multiple crop and site characteristics across 

large spatial extents. When relationships between field measurements and remote sensing data 

are established, remote sensing data are frequently used to estimate crop health (e.g., NDVI, 

Franke & Menz, 2007; Gago et al., 2015), net primary productivity (e.g., Matsushita & 

Tamura, 2002; Zhao et al., 2016) and crop yield (e.g., Moulin et al., 1998). However, remote 

sensing data are less frequently used to calibrate and validate CSMs.   

When remote sensing data have been used for CSM calibration and validation, the 

focus has been on quantifying crop height, leaf area index (LAI) and biomass at recurring 

intervals through a plant’s life cycle (e.g., Dong et al., 2016; Jones et al., 2004). In rare cases, 

these data have been captured at sub-field resolutions (e.g., Haboudane et al., 2002), but more 

typically at larger regional extents (e.g., Mann & Warner, 2017). These advancements have 

enabled the application of crop modelling at large spatial extents (Dong et al., 2016; Moulin et 

al., 1998). However, novel remotely piloted aircraft systems (RPAS) operate at a scale between 

field-plot measurements and satellite-based imagery that: 1) align with the scale of individual 

decision makers; 2) has yet to be used in the calibration and validation of CSMs; and 3) must 

be compared to satellite derived variables to quantify the benefit of RPAS versus satellite data 

collection for CSM.  

Despite the utility of satellite derived data for use with CSMs, the low frequency of 

imagery acquisition can prevent consistent topographic trend analysis (e.g., Menzies Pluer et 

al., 2020; Swain et al., 2007), result in cloud coverage and therefore missed data (e.g., 

Eberhardt et al., 2016), and the coarse spatial resolution of satellite imagery can overly 
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homogenize study areas (e.g., Blaschke et al., 2014). While satellites are ideal for mapping 

large spatial extents, more frequent or event driven collection of cloud-free, very-high 

resolution, imagery from RPAS can capture the spatial heterogeneity in farm fields. For 

example, RPAS data have been used to quantify within-field erosion (Meinen & Robinson, 

2020); leaf area index (LAI; Mathews & Jensen, 2013), capture data about plant structure, 

including leaves, pods, and stems (Gago et al., 2015), and crop height and biomass (Bendig et 

al., 2015; Zheng et al., 2018). RPAS data often provide a stronger correspondence to field 

measurements than satellite acquired data and the cost of RPAS data acquisition is 

comparatively low (Hämmerle et al., 2016).  

Efforts to quantify the quality of RPAS collected data relative to industry standards 

(e.g., 3D surface reconstruction, Meinen & Robinson, 2020; and improvements to vegetation 

indicies, Bendig et al., 2015) contribute to methodological advancements, and justify the use 

of RPAS data for scientific research. However, there remains a gap associated with the use of 

these data to calibrate and validate natural systems models at very high spatial resolutions, 

which coincide with the scale at which human decisions are made. The integration of RPAS 

technologies with CSMs could enhance the accuracy and performance of CSM outputs and 

subsequently increase farmer decision making capacity, crop yield, and overall health of the 

farmland.   

To move beyond typical approaches used in crop monitoring (e.g., vegetation 

indicies) requires linking RPAS data collection efforts with CSMs to evaluate the degree to 

which CSMs can be calibrated and validated at the agricultural field-scale using very high 

resolution RPAS data. Then CSMs may be used to scale-out agricultural production and 
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management activities across larger spatial extents while maintaining a resolution and context 

relevant to the agricultural decision maker (i.e., farmers). As a step toward making the 

connection between RPAS data and CSMs, this thesis seeks to answer the following questions: 

1) what crop simulation modelling variables can be derived from RPAS acquired data and what 

is their level of accuracy relative to field-based measurements; and 2)  how do RPAS derived 

variables and CSM outputs differ in accuracy and spatial variability relative to the same 

variables derived through satellite imagery?   

1.2  Materials and Methods  

1.2.1 Study Area  

The presented research is situated in Western Ontario, Canada (Figure 1), where approximately 

46 percent (approximately 3,793,584 ha) of the land is been used as farmland (Ontario Ministry 

of Agriculture Food and Rural Affairs, 2017). The amount of farmland in Western Ontario also 

accounts for approximately 31%of farmland in the province of Ontario and 5.9% in Canada 

(Statistics Canada, 2017). Crops with the highest occupying area in Ontario were, from most 

area to least, soybean, grain corn (maize) and hay (Ontario Ministry of Agriculture Food and 

Rural Affairs, 2017). 
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Figure 1: Study area located in the town of Wellesley in Western Ontario, Canada.   

A study field was established on a farm located near Wellesley, Ontario, Canada 

(Figure 1). The farm field was located adjacent to the Nith River, which feeds directly into the 

Grand River, the largest river in southern Ontario. The farm field had an area of approximately 

15.6 hectares (38.5 acres). The field consists of loam soil with approximately 50% of the loam 

being classified as Perth loam and approximately 50% being classified as Bennington loam 

(Ontario Ministry of Agriculture, Food and Rural Affairs, 2018). During the year prior to the 

presented study, tile drainage was installed during the winter to reduce excess water in the 

field. The field was tilled on May 12, 2018 and maize was planted on May 13, 2018. Fertilizers 

were applied three times during the growing season (May 12 N,K,P, and (NH4)2S2O3; May 13 
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N,K,P; and June 16 (NH4)2SO4). Weather during the growing season had a mean temperature 

of 16.6 °C with the coldest temperature being -4.0 °C and warmest temperature being 32.5 °C. 

There was a total of 485.2mm of rain throughout the growing season. The maize was harvested 

at full maturity on November 11, 2018 after a 182-day growing season.   

1.2.2 Field Measurements  

Four types of in-field measurements were acquired as part of our study: soil conditions, crop 

height, LAI, and crop yield. Soil sampling was conducted to quantify site soil conditions, 

which are required to parameterize CSM site conditions. Sample locations were determined 

using a stratified random sampling method, whereby the study area was segmented into five 

slope classes with five random samples taken from each class. Slope classes were determined 

through several iterations of unsupervised ISO cluster classification on a slope raster of the 

study area generated from the Southwestern Ontario Orthoimagery Project 2015 digital surface 

model (DSM) (Ontario Ministry of Natural Resources and Forestry, 2015). At each sample 

location, a soil core was extracted using a manual 2 cm inner diameter tubular soil sampler and 

the top 15 cm of the extracted core was taken for analysis. The five samples taken from the 

same slope class were aggregated to create a single representative sample of the soil 

characteristics throughout the class and were placed in a cooler immediately. The five 

aggregated soil samples were sent to the University of Guelph’s Agriculture & Food 

Laboratory for soil analysis (Appendix A: Soil Analyses Performed ). In addition to the laboratory 

analysis, soil moisture was measured in the field using a Delta-T WET-2 soil moisture sensor 

10 times at every slope class to be compared to the soil moisture measurements performed in 

the lab.  
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While soil samples provided parametrization of site conditions in the CSM, field 

measurements of crop height and LAI over the growing season were taken and used as 

validation data against RPAS and satellite imagery-generated crop height and LAI values. Crop 

height measurements were collected manually using a measuring tape. Plants were measured 

within a 5 m radius of ground control points (GCPs), which were measured and observed for 

locating and orthorectifying RPAS imagery on June 14, 2018 (see 1.2.3). At each GCP 

location, five of the nearest surrounding plants were measured from the ground to the highest 

drooped leaf to ensure that the height point would be visible in imagery captured at a nadir 

orientation. If the area around the GCP was unvegetated then no measurements were made in 

proximity to that GCP.   

Leaf area index (LAI) measurements were collected using a LI-COR LAI-2200C 

Plant Canopy Analyzer (LI-COR Biosciences). LAI measurements were performed in two five 

metre transects near each GCP. Each transect started with one above-canopy light 

measurement followed by five below-canopy light measurements to ensure an accurate 

calibration. Following calibration of the Plant Canopy Analyzer, five measurements were taken 

at two metre intervals (for each transect) to ensure independence from previous measurements. 

The LAI measurements were performed during blue sky conditions between the hours of 12PM 

and 2PM to minimize the variation in incident solar radiation. To mitigate the effect of the 

individual recording the measurement on the amount of light reaching the sensor, a 270 degree 

cap was placed on the instrument’s sensor to block out the user’s body from the readings (LI-

COR Inc., 2015). A total of 153 LAI measurements were recorded, but 15 were removed from 
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further analyses due to incorrect measurements of LAI caused by either GPS error or cloud 

presence. Recorded LAI values ranged from 0.29 to 4.24 with a median of 2.49.  

In addition to soil, crop height, and LAI data, crop yield data were collected by a John 

Deere 9770 STS combine that was RTK-GPS enabled and collected point located yield values 

at 1.5 m intervals. Yield values were recorded in bushels per acre and stored as a Shapefile 

dataset comprising 65,864 points within the study field. The total wet and dry yield mass was 

also measured post-harvest using an industrial-sized scale to ensure the values recorded by the 

combine were accurate. The measured values were 208.01 metric tonnes of wet yield with a 

moisture percentage of 21.1% and 190.31 metric tonnes of dry yield with a moisture percentage 

of 15.5%.   

1.2.3 RPAS Data Acquisition and Measurements  

RPAS imagery was acquired through five field campaigns over the 2018 growing season (May 

30; June 8, 15; July 14; and September 19). Imagery were collected using a Da-Jiang 

Innovations (DJI) Inspire 1 multi-rotor quadcopter () carrying two digital camera payloads. 

The first payload (DJI Zenmuse X3) was fully integrated in the RPAS and captured visible 

spectrum imagery with a 12.4 megapixel camera. A second camera, the multi-sensor Parrot 

Sequoia (Parrot SA), was mounted to the Inspire 1 using a 3D printed custom mount that held 

the camera and an incident solar radiation sensor. The Parrot Sequoia includes five sensors, a 

16-megapixel RGB camera and four 1.2 megapixel single-band cameras (Red (640-680 nm), 

Green (530-570 nm), Red-Edge (730-740 nm), and Near-Infrared (770-810 nm)). To maximize 

the visibility of maize leaves in the imagery, nadir camera orientations were used. The DJI 

Zenmuse X3 camera operates on a gimbal that was set to and maintained a nadir orientation. 
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However, the Parrot Sequoia was mounted in a fixed position to approximate nadir image 

acquisition, which resulted in an average image angle of 8º with a standard deviation of 4.82º.  

  

Figure 2: DJI Inspire 1 multi-rotor quadcopter with the DJI Inspire controller and batteries.   

Parallel axis flight plans were flown using the Pix4Dcapture software (Pix4D Inc.) 

and operated on the DJI Inspire 1 Remote Controller along with a Nvidia Shield Tablet K1. 

Flight plans were generated to ensure comprehensive coverage of the study area; multiple 

overlapping imagery, which differed for each payload due to differences in field of view; and 

limit the number of turns performed by the RPAS to maximize flight time. Flight altitude was 

initialized to 90 metres above ground level at the take-off and landing site, which provided an 
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average ground sampling distance of three centimetres for the RGB imagery and 10 

centimetres for the multispectral imagery. The RPAS was also set to fly at a medium speed 

setting of 6.9 m/s (25 km/hr) to ensure that the sensors have appropriate time to capture images 

while maintaining consistent and stable flight.  

Table 1: Camera field of view and imagery overlap percentages. 

Camera  Field of View 

(degrees)  

Imagery Frontal 

Overlap (%)  

Imagery Side 

Overlap (%)  

DJI Zenmuse X3  94  85  76.5  

Parrot Sequoia 

Multispectral  

73.7  80  67.5  

Parrot Sequoia RGB  73.5  79.8  67.3  

  

Prior to each flight, 23 GCPs were placed throughout the study field to facilitate 

accurate georeferencing of RPAS imagery. A structure-from-motion multi-view stereo (SfM-

MVS) image-processing workflow was conducted in Pix4D to derive orthomosaics of the 

study field. The GCPs were made from wood and were painted with a fluorescent orange paint 

to increase their visibility in acquired imagery (Appendix B). GCPs were distributed throughout 

the field with similar spacing between each, as well as being placed in locations that were 

easily identifiable in the acquired imagery. The location of each GCP was measured using an 

SmartNet RTK-enabled Leica Global Navigation Satellite System, which ensured an average 

accuracy of one centimetre for recorded position measurements and an average accuracy of 

two centimetres for elevation measurements. The use of 21 GCPs in a similar distribution 

throughout the field was found to result in a vertical accuracy of about 2.8 cm and horizontal 
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accuracy of about 1.9 cm when using the SmartNet RTK-enabled Leica Global Navigation 

Satellite System (Meinen & Robinson, 2020).   

Imagery acquired by the RPAS was captured continuously at set distance intervals 

during each flight. The distance intervals varied slightly throughout the flights due to small 

refinements in the acquisition methodology and varying sensor GPS signal strengths. Distance 

intervals were every 16 m on May 30 and June 8, 25 m on June 15, 23 m on July 14, and 26 m 

on September 26. Before the imagery was processed, the image collection was filtered to 

remove those acquired at incorrect viewing angles, received overexposure, or were acquired 

during take-off or landing (approximately 250 images per field visit).   

Images were processed using the Pix4D photogrammetry software on a workstation 

comprising an Intel Xeon CPU E5-1620 Quad-Core CPU, 64GB of DDR3 RAM, and a Nvidia 

Quadro K4200 GPU. Before each process was executed, images were georeferenced using 

manually recorded GCP locations in Pix4D to minimize distortion in the resulting datasets. 

RGB and multispectral imagery were then used with Pix4d to generate a densified point-cloud 

and orthomosaic for each acquisition. Point cloud densification process was run at a half image 

scale with a point density of 5.36 points/m3. An orthomosaic was generated for both the RGB 

imagery (pixel resolution of 3.87 cm) and multispectral imagery (pixel resolution of 9.54 cm) 

and consisted of the same number of imagery bands as the input datasets. A multispectral 

orthomosaic was not generated for the May 30th acquisition due to the multispectral sensor not 

being mounted to the RPAS at that time. The four multispectral bands were combined into a 

multi-band raster and clipped to the study area for simplicity in further processing. The multi-

band rasters were then used to generate several commonly used vegetation indicies, which 
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included: the Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), and 

Normalized Difference Vegetation Index (NDVI). These vegetation indices were generated 

using the Raster Calculator tool in QGIS (Table 2). For the SAVI calculation, the L parameter 

represented a soil brightness correction factor to adjust the final value to the amount of 

vegetation cover in the field. The L parameter ranges from 0 to 1, with 0 indicating full 

vegetation cover and 1 indicating no vegetation cover. An L value of 0.5 was assigned to match 

similar studies using RPAS (Candiago et al., 2015) and satellite (Galletti & Myint, 2014) 

platforms. The final number of products generated from the RPAS imagery were five GeoTIFF 

rasters per acquisition date, excluding May 30th, totalling 21 GeoTIFF rasters.  

The calculation of crop heights from RPAS data acquisition involved the generation 

of 3D point clouds and subsequent digital terrain and surface models using SfM-MVS and 

Pix4D. Using the May 30th RPAS imagery, acquired prior to the presence of vegetation, a 

digital terrain model was generated. Then digital surface models were created using imagery 

acquired at each subsequent flight campaign over the growing season to capture crop height 

and non-vegetated surfaces (e.g., roads, buildings). Non-vegetated surfaces were used to co-

register all 3D models (Digital Terrain Model (DTM) and DSMs) in CloudCompare and 

converted to GeoTiff rasters with a 4 cm resolution. Then simple change detection methods 

were used to quantify crop height by subtracting the DTM from the DSMs. Crop heights with 

a 5 m radius of each GCP were averaged for comparison with field measurements.  

LAI values of maize plants were calculated using two approaches. The first approach 

involved regressing in-field LAI measurements against 13 inputs derived from RPAS acquired 

imagery (Table 2). The Exploratory Regression tool in ArcGIS (Environmental Systems 
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Research Institute) was used to evaluate all possible combinations of independent variables. 

While the tool conducts a number of assessments of regression performance, it evaluates the 

performance of each regression model based on R2 and number of explanatory variables. From 

among the top ten models identified by ArGIS, a single model was selected based on a 

combination of having a high R2 value, low variance inflation factor (VIF), and more 

statistically significant coefficients (p<0.01). This model was then applied across the study 

field to derive LAI values using the Raster Calculator from QGIS (Quantum GIS).  

The second approach calculated LAI as a function of the fractional vegetation cover 

and the leaf angle distribution (Choudhury et al. 1994). Fractional vegetation cover was 

calculated as follows:  

 

𝑓 = 1 −
𝑁𝐷𝑉𝐼𝑛𝑎𝑥 − 𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

1/𝜁

 

 

where ζ represents the canopy leaf angle distribution value, which is used to define the 

orientation of the leaves on a crop and f represents the fractional vegetation cover value (Thorp 

et al., 2012; Unigarro M. et al., 2017).   

Having obtained f, LAI at each location was calculated using the following equation:  

𝐿𝐴𝐼 =  
ln(1 − 𝑓)

−𝛽
 

  

where β is the second function of leaf angle distribution with a range of 0.42 to 0.91 (Thorp et 

al., 2012). The value of β (0.68) was obtained through a calibration procedure that adjusted ζ 
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to minimize the error between field measurements and calculated (Choudhury et al., 1994) LAI 

values. The resulting ζ value was 0.76. Similar to crop height measurements, LAI calculations 

were averaged within a 5 m radius of each GCP for comparison with field measurements.  

Table 2: Input metrics for creating LAI regressions equation using RPAS imagery. 

Regression Input  Metric Calculation  

Difference Vegetation Index 

(DVI)  

𝑁𝐼𝑅 − 𝑅𝐸𝐷 

 

Soil Adjusted Vegetation 

Index (SAVI)  

𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)(1 + 𝐿)
 

Normalized Difference 

Vegetation Index (NDVI)  

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Aspect  Derived from slope data  

Height  Derived through stereoscopic photogrammetry  

DJI Imagery Band Rasters 

(Red band, Green band, Blue 

Band)  

-  

Parrot Sequoia Imagery Band 

Rasters (Red band, Green 

band, Blue band, NIR band, 

Red-Edge Band)  

-  

  

1.2.4 Satellite Data Acquisition and Measurements  

To assess the usability of RPAS data for calibrating and validating crop growth models and 

the performance of those models relative to satellite-acquired remote sensing data, we acquired 

Sentinel-2A, Sentinel-2B, and Sentinel-1 satellite data from the European Space Agency’s 

Copernicus Open Access Hub (Tzouvaras et al., 2020). The Sentinel-2 satellites are equipped 
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with multi-spectral sensors that capture visible, near infrared and short-wave infrared 

wavelengths at pixel resolutions from 10 m to 60 m (Drusch et al., 2012). The Sentinel 

platforms provide the finest spatial resolution imagery that are freely available and capture 

similar spectral wavelengths to those used by the RPAS in this study. Furthermore, the 

temporal resolution of the Sentinel-2 platforms of five days facilitates matching acquisition 

dates between Satellite and RPAS flights within a margin of three days. In total, 10 Sentinel-2 

images matched our field campaign dates; however, two images contained cloud cover and 

were excluded. The Sentinel-2 imagery was used to calculate LAI and vegetation indicies. The 

retrieved data archives were extracted as 14 JPEG2000 Sentinel-2 bands per dataset. Of the 14 

bands, the following four were used: blue (490 nm), green (560 nm), red (665 nm), and near-

infrared (842 nm). These bands were combined into the same vegetation indices derived by 

RPAS collected imagery (DVI, SAVI, and NDVI). For the calculation of SAVI values, the 

same L values were used as the RPAS SAVI calculations. These four products (i.e., LAI, DVI, 

SAVI, and NDVI) were generated for each Sentinel-2 image, excluding May 30th, totalling 16 

images.  

While the Sentinel-2 imagery was appropriate for deriving CSM parameters from 

optical imagery (e.g., LAI), the spatial resolution and percent-of-image overlap was not 

suitable for deriving measurements of crop height using SfM-MVS. To calculate crop heights, 

radar data were acquired through the European Space Agency’s Sentinel-1 mission. The 

Sentinel-1 mission covered the extent of our study area, had a similar temporal resolution to 

other datasets used, higher pixel resolution relative to other available sensor platforms and had 

dates of data acquisition available that aligned with RPAS data acquisition dates. The Sentinel-
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1 also had a revisit time (12 days) and spatial resolution (approximately 13m) that were similar 

to the Sentinel-2 data.   

The Sentinel-1 imagery were used to derive estimates of crop height using 

interferometric methods. Differences in waves or phases between image pairs can be measured 

to create a product called an interferogram. Interferograms map these differences for discrete 

locations, which can be used to generate DTM and DSMs of an area (Yu et al., 2010). 

Differences in the Sentinel-1 phase data, represented in generated interferograms, represent the 

relative difference in topography and subsequently crop heights at later collection dates. 

Sentinel-1 data, the Interferometric Wide Swath Single Look Complex (IW SLC), are collected 

using synthetic aperture radar at 250 km wide swaths through a series of c-band microwave 

bursts. A requirement of interferometry is that pairs of images are collected that cover the same 

sensing areas within a similar time period and have a low baseline value between each other. 

The baseline value is an indication of the alignment of the image pair, which is a critical factor 

affecting the interferograms accuracy. It is recommended that Sentinel-1 paired imagery obtain 

a baseline value under five km, also known as the critical baseline (Chen et al., 2020), since 

higher values reduce the coherence among image pairs in the interferometric process. Ten IW 

SLC products were collected for the crop height calculations with acquisitions on April 28 and 

May 10, 2018 paired to generate a bare ground DTM and the following acquisitions paired to 

coincide with RPAS data acquisition dates: May 22 and June 3, RPAS May 30; June 15 and 

27, RPAS June 8; July 9 and 21, RPAS July 14; and September 7 and 19, 2018, with RPAS 

September 19.  
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Deriving crop heights from the remotely sensed Sentinel-1 data was done by creating 

DSMs using an interferometric approach with the ESA’s Sentinel Application Platform 

(SNAP) program (Tzouvaras et al., 2020). The SNAP process involved three steps: 

interferogram formation, interferogram filtering, and interferogram to DSM conversion. The 

interferogram formation and interferogram filtering steps were automated using SNAP’s 

Graph Builder, which allows the user to create an automated workflow by combining multiple 

tools and outputs. Interferograms were formed for each IW SLC image pair, using a custom 

SNAP graph, by first extracting data covering the study site. Then, the extracted data were co-

registered by updating orbit data and backgeocoding to ensure accurate alignment (Lazecký et 

al., 2018). Lastly, the interferogram tool was used to generate interferogram and coherence 

rasters. The coherence raster quantifies the correlation between the paired images and provides 

a measure of accuracy for corresponding pixels in the interferogram (Yu et al., 2010). The 

interferogram formation process was run for each IW SLC pair resulting in six interferograms.  

The second step in the SNAP process involved filtering each interferogram to remove 

seamlines and reduce noise that was incorrectly picked up as phase data. Seamlines are errors 

that generate data gaps when IW SLC images are stitched together. Seamline errors were 

corrected by using overlapping burst data between the stitched images to fill the gaps, 

producing a continuous product (S-1 TOPS Deburst SNAP tool; Tzouvaras et al., 2020). 

Following the seamline correction, noise caused by thermal interference as well as temporal 

changes in topography between image acquisitions were filtered out (Goldstein Phase Filtering 

tool; Goldstein & Werner, 1998).   
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The third and final step in the SNAP process involves converting the interferogram to 

a DSM using a process known as phase unwrapping (Chen & Zebker, 2002). Phase unwrapping 

converts the phase values in an interferogram to relative difference values by comparing a 

target cell with neighbouring pixels in the interferogram raster (Chen & Zebker, 2002). This 

comparison allows for differences to be calculated between the phase values, which can be 

used to generate metrics such as elevation values due to the phase values having coordinate 

information tied to them. Phase unwrapping was performed using the Statistical-Cost, 

Network-Flow Algorithm for Phase Unwrapping (SNAPHU; Appendix D: SNAPHU 

Methodology), which is compatible with several SNAP tools and yields a higher accuracy 

compared to alternative methods (Chen & Zebker, 2002). The unwrapped interferograms were 

then imported into SNAP and converted to elevation rasters using the Phase to Elevation tool 

(S1TBX - ESA Sentinel-1 Toolbox v8.0.0) and geocoded for UTM Zone 17 using the Terrain 

Correction tool (S1TBX - ESA Sentinel-1 Toolbox v8.0.0) to ensure spatial and height-unit 

(metres) consistency with the other spatial datasets. The outcome of the SNAP process 

included six DSM rasters with respective coherence bands at a 13 m spatial resolution. All 

output rasters were coregistered and crop height data were derived by subtracting the May 1st 

radar-generated DTM from each of the five interferometry-generated DSMs using the QGIS 

Raster Calculator.   

LAI was calculated using Sentinel-2 imagery using the same regression approach as 

was conducted with the RPAS data. However, in this case the following variables were used: 

crop height, aspect of the crops, and NDVI. Similarly, the second approach to calculating LAI, 
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as a function of the fractional vegetation cover and leaf angle distribution (Choudhury et al. 

1994), was also applied in the same manner as conducted for RPAS data.  

1.2.5 Leaf Area Index Accuracy Assessment  

LAI in-situ measurements from September 19, 2018 were used as validation measurements for 

an accuracy assessment of the generated LAI values using the regression-based approach and 

Choudhury et al. (1994) approach for both RPAS and Satellite data. Correspondence between 

RPAS and Satellite platforms was determined by computing the differences between the 

observed and estimated LAI values. In total, 138 LAI measurements were available for the 

comparison but were differentially aggregated to accommodate the different spatial resolutions 

of the RPAS and Satellite data. All 138 points were used in comparison with RPAS estimates. 

However, to coincide with the 10 m resolution of the Sentinel data, the 138 points were 

aggregated up to 22 measurements of average LAI (Figure 3).  
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Figure 3: (Left) Map of observed LAI points used in RPAS-derived LAI accuracy assessment, and 

(Right) Map of aggregated observed LAI points used in Sentinel-derived LAI accuracy assessment.  

  

To retrieve calculated LAI values from the generated rasters, the Point Sampling Tool 

Plugin in QGIS was used. For each raster, the relevant observed measurement feature class 

was used as an input for where to extract the values and a comparison table was generated. The 

tables contained a column of feature IDs, observed LAI measurements, and calculated LAI 

values for each measured location. Accuracy was determined by calculating the absolute 

difference between observed and calculated LAI values for each location.  
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To test the effect of the aggregation of field measurements for validating Sentinel 

estimates, a similar process was done with a 10 m radius averaging of the RPAS LAI values. 

Averages were calculated by buffering the centroids of Sentinel raster pixels and using Zonal 

Statistics to calculate mean LAI values from the RPAS LAI rasters. These mean LAI values 

were then compared to the same aggregated measurement points as done for the Sentinel 

accuracy assessment.  

1.2.6 Meteorological Data  

Meteorologic data were acquired from Environment and Climate Change Canada 

(Environment and Climate Change Canada, 2018) for 2018 as CSM input. Data were recorded 

approximately 30 km from the field site at Roseville, Ontario and comprised daily high and 

low temperature values, total precipitation, and dew point temperature. In addition to these 

data, daily solar radiation data were acquired from NASA (Sparks, 2018).  

1.2.7 Crop Simulation Modelling  

Crop simulations were conducted using the DSSAT-CERES-Maize simulation model (Liu et 

al., 2011) that consisted of the CERES-Maize model incorporated into the Decision Support 

for Agrotechnology Transfer (DSSAT) modelling software suite (Jones et al., 2003). DSSAT-

CERES-Maize is a process-oriented model that combines climate, soil characteristics, nutrient 

and water availability, and root development with agricultural land management activities such 

as fertilizer and irrigation applications, planting, and harvesting to simulate the growth of 

maize crops (Jones et al., 2003). The model has limited input requirements, which has made 

the model very accessible for agricultural scientists and facilitated its application to over 29 
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different crop types around the world, including maize growth studies in Southern Ontario 

(Dong et al., 2016; Liu et al., 2011).  

Parametrization of the model was done using a crop management data generation tool 

(Xbuild) that is a part of the DSSAT suite. Xbuild consists of configuration windows that 

accept input data for a number of crop management factors including soil analysis, initial field 

conditions, cultivars used, planting/harvesting methods and dates, fertilizer applications, and 

chemical applications. Initialization of site conditions in DSSAT utilized results from field 

measurements (e.g., plant density) and soil analysis. Weather conditions were input using daily 

weather data for Roseville, Ontario acquired from Environment Canada, converted to a format 

compatible with DSSAT using the Weatherman tool (Pickering et al., 1994). Weatherman is a 

part of the DSSAT suite and is used for structuring weather data into a standard format for 

DSSAT simulations as well as checking for data errors that would normally cause issues in the 

simulation (Nyang’Au et al., 2014; Pickering et al., 1994). Converted weather data contained 

values for minimum and maximum daily temperature, precipitation, solar radiation, and dew 

point.  

Land management was initialized by first specifying the cultivar of maize 

(P9621AMXT, Pioneer 9621) planted in the study field. In absence of this cultivar being 

available in DSSAT, PIO 3790 (Pioneer 3790) was used as it was developed by the same 

company and used in previous maize modelling in Ontario with DSSAT-CERES-Maize (Liu 

et al., 2011). Planting date (May 13, 2018), planting method, planting distribution metrics, and 

harvest date (November 11, 2018) were parameterized with values obtained directly from the 

farmer and in-field measurements. One chemical and five fertilizer applications were 



 

 24 

conducted throughout the growing season, which included herbicide, ammonium fertilizer, and 

potash as reported by the farmer.   

The model was configured to simulate crop growth using a daily timestep over the 

growing season (May 13th to November 11th, 2018). Five simulations were conducted to test 

the effects of different soil conditions (e.g., texture and nutrients) by parameterizing the soil 

conditions with results from each of the five soil sample analysis data. All other parameters 

were constant across all five simulations. Simulation outputs were reported in their smallest 

units for comparison, which for all available phenology metrics including canopy height and 

LAI were at a field-scale while crop yield was reported per-hectare.  

1.2.8 Statistical Tests  

Statistical tests were performed on comparisons of crop height and LAI values from the RPAS 

and satellite acquisitions to determine if statistically significant differences existed. The 

Shapiro-Wilk test for normality (Shapiro & Wilk, 1965) determined that crop height and LAI 

values followed a normal, parametric distribution. A Brown-Forsythe test (Brown & Forsythe, 

1974) was then used to assess variance among compared distributions, which found equal 

variance for one of the comparisons and unequal variance for the remaining comparisons. To 

determine if there was significant difference for the comparisons, a Two-Sample Independent 

t-test was performed on the one comparison with equal variances and the Welch’s t-test 

(Welch, 1947) was performed on the remaining comparisons with unequal variances.  
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1.3  Results  

1.3.1 Crop Height   

Evaluation of RPAS crop height estimates to field observations comprised 18 comparisons 

using data collected on June 15th and 11 comparisons using data collected on September 19, 

2018 (Section 1.2.3). Our June 15th field-based measurements had an average crop height of 

43.3 cm across all 18 measured locations, with a standard deviation of 11.8 cm, and minimum 

and maximum values of 12.0 cm and 69.0 cm, respectively. The RPAS data-derived crop 

height values were greater than the observed height values with an average height of 168.1 cm 

across the 11 sample locations. The standard deviation, minimum, and maximum RPAS data-

derived crop height values were 155.6, -86.3, and 418.5 cm, respectively. The minimum value 

of –86.3 cm indicated that there was an error in the SfM-MVS calculation in that location. The 

June 15th RPAS-derived DSM minus the May DTM (Figure 4), produced an average crop 

height of 209 cm across the entire study area. When the measured points were compared to the 

RPAS data-derived values, a mean residual of 155.6 cm, minimum residual of 0.44 cm, 

maximum residual of 360.3 cm, and standard deviation of 120.3 cm was calculated for June. 

RMSE of the RPAS data-derived values was 193.6 cm. The largest residual value (360.3 cm) 

was located in the southwestern section of the study area while the smallest (0.44 cm) was 

found in the eastern section.  
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Figure 4: Map of crop heights derived from the June 15th RPAS imagery. 

September 19th field observations produced an average crop height of 197.3 cm among 

the 11 measured locations with a standard deviation of 26.6 cm, and minimum and maximum 

crop heights of 134.6 cm and 246.38 cm, respectively. Again, RPAS data-derived crop height 

values were substantially greater than observed height values, whereby the average across the 

11 sample locations was 303.7 cm. The standard deviation, minimum, and maximum RPAS 

data-derived crop heights were 132.8 cm, 82.0 cm, and 581.1 cm, respectively. September 19th 

RPAS derived DSM minus our May DTM (Figure 5), produced an average crop height value 

across the entire study area of 367 cm. When the observed measurement points were compared 

to the RPAS data-derived values (Figure 6), a mean residual of 129.0 cm, minimum residual 
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of 6.4 cm, maximum residual of 344.3 cm, and standard deviation of 101.8 cm was calculated 

for September. RMSE of the RPAS data-derived values was 161.3 cm. The largest residual 

value (344.3 cm) was located in the western section of the study area while the smallest (6.4 

cm) was found in the southeastern section. When the residual errors of the June 15th and 

September 19th RPAS crop height values were compared (Figure 7), it was found that the 

difference between them was statistically significant (p=0.025). 

  

  

Figure 5: Map of crop heights derived from the September 19th RPAS imagery. 
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Figure 6: (Left) Distribution of crop height values between the observed data and RPAS-derived data 

for the June 15, 2018 data collection (Right) Distribution of crop height values between the observed 

data and RPAS-derived data for the September 19, 2018 data collection.   

  

 

 

 

 

 

 

 

 

 

 

Figure 7: Distribution of crop height residual errors from the accuracy assessments performed on the 

RPAS-derived crop height values for June 15, 2018 and September 19, 2018.   
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While crop height values acquired from RPAS were less accurate than expected, crop 

height values calculated using the Sentinel imagery incurred much larger error and varied 

greatly throughout the study area. Crop height values were heavily skewed to the left, which 

consisted of a high frequency of negative values that greatly affected mean crop height 

calculations. Crop heights derived from the June 15th Sentinel DSM minus the May DTM 

(Figure 8), yielded a mean value of –133.5 m (Figure 9). When Sentinel-derived crop height 

values were compared to the 11 measured locations (Figure 10), the mean residual was 185.4 

m with a minimum residual of 16.8 m, maximum residual of 522.1 m, and standard deviation 

of 128.8 m. The RMSE of Sentinel data-derived values was 223.4 m. The location of the 

smallest residual (16.8 m) was on the eastern side of the study area, and the location with the 

largest residual (52.2. m) was in the northeast corner.   
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Figure 8: Map of crop heights derived from the June 15th Sentinel-1 imagery. 

 

September 19th Sentinel-derived crop heights experienced a similar skewed distribution 

of values to that of June 15th crop heights with the majority of values being negative. Mean 

crop height value from the September 19th DSM minus the May 30th DTM (Figure 11) was –

43.449.4 m (Figure 9). When Sentinel-derived crop heights were compared to the 11 measured 

crop heights (Figure 10), the calculated mean residual was 99.9 m, minimum residual was 31.0 

m, maximum residual was 200.4 m, and standard deviation was 64.1 m. RMSE of the Sentinel 

data-derived values was 117.1 m. The location of the smallest residual value (31.0 m) was 

located in the southeastern section of the study area and the largest residual value (200.4 m) 
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was located in the northeast corner. When residual errors of the June 15th and September 19th  

Sentinel crop height values were compared, it was found that the difference between them was 

statistically significant (p=0.036).   

 

Figure 9: (Left) Distribution of crop height values between the observed data and Sentinel-derived 

data for the June 15, 2018 data collection (Right) Distribution of crop height values between the 

observed data and Sentinel-derived data for the September 19, 2018 data collection.   

 

  

Figure 10: Distribution of crop height residual errors from the accuracy assessments performed on 

the Sentinel-derived crop height values for June 15, 2018 and September 19, 2018.  
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Figure 11: Map of crop heights derived from the September 19th Sentinel-1 imagery. 

1.3.2 Leaf Area Index   

Two methods were used to estimate LAI: regression, and an approach based on the fractional 

vegetation cover (Choudhury et al., 1994). Using Exploratory Regression in ArcGIS to identify 

the top ten ordinary least squares regression models and then sub-selecting the one with the 

combined lowest variance inflation factor and statistically significant coefficients.. Using the 

UAV based data resulted in the following equation:  
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𝐿𝐴𝐼𝑅𝑃𝐴𝑆 = 1.507549 −  0.014304𝐷𝑗𝑖𝐺𝑟𝑒𝑒𝑛 ∗ +0.012894𝐷𝑗𝑖𝐵𝑙𝑢𝑒

∗ +0.000051𝑃𝑎𝑟𝑟𝐺𝑟𝑒𝑒𝑛 ∗ −0.000022𝑃𝑎𝑟𝑟𝑅𝑒𝑑𝐸𝑑𝑔𝑒 + 1.640283𝑁𝐷𝑉𝐼

∗ +0.001021𝐴𝑠𝑝𝑒𝑐𝑡 + 0.185593𝐻𝑒𝑖𝑔ℎ𝑡 ∗ 

 

where DjiGreen and DjiBlue were pixel values from the green and blue bands respectively 

collected by the Zenmuse X3 sensor, ParrGreen and ParrRedEdge were pixel values from the 

green and red edge bands respectively collected by the Parrot Sequoia sensor, and NDVI, 

Aspect and Height were the calculated metrics defined in (Table 2). An asterisk beside a 

variable indicates statistical significance (p<0.01).   

The R2 value for the LAIRPAS equation was 0.194 with an adjusted R2 of 0.155. 

Variables with the highest VIF value in the equation were DjiGreen and DjiBlue with values 

of 13.230 and 13.898 respectively, which were most likely caused by spatial similarity in the 

data. The remaining variables all had VIF values less than 7.5, which is the recommended VIF 

threshold of the Exploratory Regression tool. The regression equation was generated by the 

Exploratory Regression tool using all of the observed LAI measurements which had the 

potential to cause over-fitting or bias. To test if the regression equation was created through an 

unbiased process, a spatial k-fold cross-validation test was performed using the predictor 

variables from the chosen LAIRPAS equation and the observed LAI measurements. A spatial 

10-fold cross-validation was conducted that yielded an average adjusted R2 value of 0.156. 

Since the adjusted R2 value for the selected regression equation (0.155) was almost identical 

to the average adjusted R2 from the cross-validation, the Exploratory Regression tool did not 

overfit the regression equation to the observed data.  
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Performing the same process with data acquired by Sentinel yielded the following 

equation:  

 

𝐿𝐴𝐼𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 = 2.542458 − 0.001272𝐴𝑠𝑝𝑒𝑐𝑡 + 0.001834𝐻𝑒𝑖𝑔ℎ𝑡 ∗ +0.094537𝑁𝐷𝑉𝐼 

 

where NDVI, Aspect and Height were the calculated metrics defined in Table 2. The R2 value 

for the LAISentinel equation was 0.056 with an adjusted R2 value of 0.036. All three variables 

had a VIF underneath the recommended 7.5 threshold with the highest VIF value being 1.110. 

A spatial 10-fold cross-validation was performed on the selected Sentinel regression equation 

and yielded an average adjusted value of 0.074. 

Each regression was then applied on a cell-by-cell basis to both RPAS and Sentinel 

data to generate a continuous surface of RPAS (9 cm) estimated and Satellite (10 m) estimated 

LAI values, which could be compared against the 153 field observations and the field-mean 

LAI observation of 2.29. The LAI values generated from the RPAS data (Figure 12 and Figure 

13b) had a mean value of 2.28, minimum value of 1.36, maximum value of 3.43, and a standard 

deviation of 0.40. When compared against the mean LAI of 153 field-measured locations, a 

mean residual of 0.67, minimum residual of 0.01, maximum residual of 1.99, and a standard 

deviation of the residuals of 0.46 were obtained with the LAIRPAS yielding an RMSE of 0.81.   

The regression derived LAI values using Sentinel data were applied against the 22 

image pixels that corresponded to field-based LAI measurements. The LAISentinel (Figure 12 

and Figure 13d) derived a mean value of 2.27, minimum value of 1.72, maximum value of 

2.64, and a standard deviation of 0.25. When the regression data was compared against those 
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22 measurements, the mean residual was 0.45, minimum residual was 0.03, maximum residual 

was 1.25, and standard deviation of the residuals was 0.34. The raster had an RMSE of 0.56. 

While the three points that contained the highest residual values were all located in the north-

west of the study area, the residuals showed no spatial trend.   

When we assessed our second approach to estimate LAI based on Choudhury et al. 

(1994) (Figure 12 and Figure 13c), the RPAS estimated mean LAI across our measurement 

points was 2.43, minimum value of 1.65, maximum values of 3.72, and a standard deviation 

of 0.55. These values were both higher than the regression approach and farther from the 

observed values compared to the regression-based approach. The residuals had a mean of 0.74, 

a minimum of 0.01, a maximum of 2.55, and a standard deviation of 0.66. The RMSE of the 

Choudhury et al. (1994) approach was 0.99, which was almost twice that obtained by 

regression (0.56). When the means of the RPAS regression and Choudhury et al. (1994) LAI 

values were compared, it was found that there was a statistically significant difference between 

them (p<0.01).  

LAI estimated values using the Choudhury et al. (1994) equation and Sentinel 

imagery (Figure 12 and Figure 13d) derived the same mean LAI value of 2.43 when rounded 

to two decimal places. Again, the range of values were higher relative to the RPAS estimated 

values using the Choudhury et al. (1994) equation with a minimum value of 2.14, maximum 

value of 2.66, and standard deviation of 0.13. Residuals had a mean of 0.45, minimum of 0.01, 

maximum of 1.21, and standard deviation of 0.33. The RMSE of the Choudhury et al. (1994) 

approach compared to field observations was 0.56, which matched the RMSE obtained from 

the regression approach applied to the RPAS data. Similar to the RPAS LAI means, the mean 
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of the Sentinel regression and Choudhury et al. (1994) LAI values were found to be statistically 

different (p=0.013).  

 

Figure 12: Distribution of RPAS and Sentinel estimated LAI values obtained by field observation, 

regression, and fraction of vegetation cover (Choudhury et al. 1994) for September 19, 2018.  
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Figure 13: a) RGB imagery of the study area acquired by the RPAS on September 19, 2018, b) LAI 

values throughout the study area calculated from the RPAS regression equation, c) LAI values 

throughout the study area calculated from the RPAS Choudhury et al. (1994) equation, d) LAI values 

throughout the study area calculated from the Sentinel regression equation, e) LAI values throughout 

the study area calculated from the Sentinel Choudhury et al. (1994) equation. 
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Given the differences in the resolution of the RPAS (9 cm) and the Sentinel (10 m) 

data, a direct comparison with the field observations required aggregating the RPAS estimated 

LAI values to the same pixels used in the Sentinel derived LAI values. After the RPAS LAI 

values were aggregated, the difference between the regression and Choudhury et al. (1994) 

mean values remained statistically significant (p=0.017). The difference between the RPAS 

and Sentinel regression mean values and between the RPAS and Sentinel Choudhury et al. 

(1994) mean values were both not statistically significant with p-values of 0.71 and 0.11 

respectively. Aggregating the RPAS LAI estimates reduced the RMSE for both the regression 

and Choudhury et al. (1994) approaches. The regression RMSE decreased from 0.81 to 0.42 

and the Choudhury et al. (1994) RMSE decreased from 0.99 to 0.66. These aggregated RPAS 

derived LAI values yielded a lower level of error, relative to the field observations, compared 

to those obtained from the Sentinel data (Figure 14).   

 1.3.3 Crop Simulation Modelling 

The DSSAT-CERES-Maize model generated results for a number of crop phenology metrics 

from the five crop growth simulations. The generated phenology metrics that were of interest 

for this study were LAI, canopy height, and yield across the 182 simulated growing days. The 

model indicated that the simulated crops were ready for harvest on the 126th day (September 

16, 2018), which indicated that the phenology metrics for the remaining 56 days were static. 

While the five simulations all had slightly different soil layer properties in their configuration 

files, they all produced the same results for LAI, canopy height, and yield. Since there was no 

difference between the results, the results of only one simulations were used..  
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Figure 14: Comparison of residual errors from the RPAS-derived LAI value accuracy assessment to 

the residual errors from the Sentinel-derived LAI value accuracy assessment. Both accuracy 

assessments were performed with 22 aggregated observed LAI measurements. 

The model simulated the beginning of non-zero LAI to be on the 13th day of the 

growing season (May 26, 2018) with a value of 0.01 and maximum LAI on the 69th day (July 

21, 2018) with a value of 2.76. LAI then decreased daily until it reached a value of 1.12 on the 

121st day (September 11, 2018) where it did not change for the rest of the simulation. The first 

non-zero LAI day was two days after the simulated emergence day of maize plants and the 

final LAI value of the growing season was one day before the crops ended their simulated grain 

filling stage, and four days before they reached their simulated full maturity. Simulated canopy 

height was the metric selected to represent crop heights for the model and will be referred to 

as the "crop height". The first non-zero crop height was 0.01 metres on the 13th day of the 

growing season similarly to the first non-zero LAI day. The crop height values followed an 
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exponential trend until reaching the maximum value of 1.6 m on the 55th growing day (July 7, 

2018). Once the maximum crop height value was reached, the value stayed the same 

throughout the rest of the growing season.   

While crop height and LAI values had similar dates for their significant changes, 

simulated crop yield was quite different due to maize grain production occurring later in the 

maize growth cycle. The first simulated crop yield (287 kg/ha) occurred on the 84th day of the 

growing season (August 5, 2018), which was also the beginning of the simulation’s grain 

filling growth stage. The value increased rapidly in a linear trend between the 84th day and the 

121st day (September 11, 2018) where the simulation reached its maximum crop yield value of 

10183 kg/ha. Simulated crop yield continued to the maximum value of 10183 kg/ha until the 

end of the growing season. The maximum simulated crop yield value was 1952 kg/ha less than 

the measured crop yield of 12135 kg/ha that was reported by the farmer.  

1.3.4 Comparison of Observations to RPAS and Crop Simulation Model Outputs  

Results from the RPAS crop height and LAI calculations, as well from the CSM, were 

compared to further evaluate the utility of RPAS estimated crop characteristics. The relative 

accuracy of RPAS estimates was compared to a parameterized but uncalibrated crop model. 

RPAS-derived results used were from the June 15th, July 14th, and September 19th acquisitions 

for both LAI and crop height. The value representing each date for the metrics was calculated 

by averaging the value at each of the measured locations similarly to what was done in the 

earlier result sections (See sections 1.3.2 and 1.3.3). CSM results from the same dates were 

extracted to match the RPAS results. Finally, the observed measurements for both crop heights 
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and LAI were averaged on a field-scale so that two crop height measurements (June 15th and 

September 19th) and one LAI measurement (September 19th) were used in the comparison.  

RPAS-derived crop heights were found to all be higher than both the CSM and 

observed values throughout the growing season (Figure 15). The closest RPAS values to the 

CSM was found to be from the July 14th points where the RPAS had a value of 2.34 m and the 

CSM had a value of 1.60 m. When the RPAS and CSM values were compared to the observed 

crop height measurements, the CSM crop height for June 15th was almost identical to the 

observed measurement with a value of 0.32 m to 0.43 m, respectively, while RPAS estimated 

a height of 1.18 m. The other observations, collected on September 19th, did not have as close 

of a RPAS or CSM value as the June 15th measurement did and instead deviated from each 

source by approximately the same amount. CSM underestimated the crop height with a value 

of 1.60 m compared to the observed value of 1.97 m, while RPAS overestimated the crop 

height with a value of 2.41 m.  
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Figure 15: Comparison between crop height values derived from the RPAS (green) and CSM (blue) 

to the observed crop height measurements (red). 

Comparison between RPAS LAI results and observed LAI (Figure 16) showed that 

regression LAI values were higher than the CSM values across all three dates, with the smallest 

difference occurring on July 14th where the regression had a value of 3.06 and the CSM had a 

value of 2.52. Choudhury et al. (1994) values had a slightly different trend in which they were 

higher than CSM values for both the June 15th and September 19th, but lower on July 14th. The 

date with the smallest difference between the Choudhury et al. (1994) and CSM LAI was on 

June 15th where the values were 1.28 and 2.52, respectively. When calculated September 19th 

LAI values were compared to observed LAI , the regression yielded the least different in LAI 

with a value of 2.28 compared to the observed value of 2.29. Coincidentally, the Choudhury 
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et al. (1994) value was also close to the observed measurement with a value of 2.43. However, 

while RPAS-derived LAI values were close to observed LAI, CSM underestimated with an 

LAI value of 1.12, which was approximately 50% less than the observed.   

  

Figure 16: Comparison between LAI values derived from RPAS using the Choudhury et al. (1994) 

(orange), regression (green), LAI values derived from the CSM (blue), and the observed LAI 

measurements (red).  

 It is clear that CSM is capable of providing realistic crop height values during the 

beginning of the growing season but stagnates once it reaches a specific height. This stagnation 

may have been caused by either the cultivar configuration indicating a final crop height stage, 

or the model was unable to factor in the natural shrivelling of the plant, which would lead to a 

decreased crop height. Another potential cause may be the CSM having predetermined 

thresholds for growth metrics including crop heights to prevent unsustainable or unrealistic 
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growth rates regardless of input configurations. While LAI had a similar stagnated trend, it 

occurred much later in the season after a period of decreasing LAI but still under predicted 

LAI when compared to observed measurements. This suggests that simulated LAI values may 

have experienced a sudden decrease in LAI due to the cultivar configuration as well. Overall, 

both the simulated crop height and LAI values derived through the CSM moderately coincided 

with the RPAS-derived values and the observed measurements.  

1.4  Discussion  

1.4.1 Crop Height Comparisons 

It was expected that September 19th RPAS estimated crop height values would be significantly 

closer to observed measurements than the June 15th RPAS estimates, due to the crop canopy 

being larger and easier to detect. However, the residual error was similar for both dates. 

Similarly, while some issues in the June 15th RPAS crop height estimates were expected, due 

to smaller, more sparse crop canopies, the expectation was that crop heights would be 

underestimated and would be closer to bare earth values (Grenzdörffer, 2014). This was not 

found in the results indicating other sources of error were present.  

The likely cause of error in crop height results was an inaccurate DTM, which can 

cause significant inaccuracies in raster crop height calculations as well as other phenology 

metrics including biomass (Grenzdörffer, 2014; Wang et al. 2016). To determine if the DTM 

may have been the cause for inaccuracies in derived crop heights, the difference between the 

DSMs was calculated to show the change in crop height between the two dates. The mean 

difference between the two DSMs was 1.58 m, which when compared to the mean difference 

between the observed crop height measurements of 1.53 m suggests that the DSMs only 
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deviated from the observed measurements by 5 cm. While it is difficult to determine the 

accuracy of the DTM without observed elevation measurements, there is an obvious 

discrepancy between the accuracies of products that were generated using the DTM and those 

that were generated without it.  

Existing studies estimating maize crop heights using RPAS have often shown high 

accuracy results with SfM-MVS (e.g., Bendig et al., 2014; Li et al., 2016; Ziliani et al., 2018) 

as well as with LiDAR (e.g., Luo et al., 2016; Wang et al., 2016). The error in crop heights 

was often found to be less than 1 m for both RGB optical and LiDAR sensors when flown at 

both high and low altitudes (De Souza et al. 2017; Holman et al., 2015;  Ziliani et al., 2018), 

which was much more accurate than our results. A potential cause for the difference in 

accuracies may be the total area over which the studies were performed. Total area was often 

not reported in relevant studies and when it was reported, the area was often a small plot or 

section of a farm field (e.g., Gómez-Candón et al., 2014; Holman et al., 2016; Matthews and 

Jensen, 2013). While performing research at a plot scale is often more feasible for RPAS 

applications, it can artificially reduce the natural variation and potential error that would occur 

when observing an entire field.  

Crop height values derived from Sentinel-1 were considerably inaccurate when 

compared to both the observed and RPAS-derived crop heights. While it was expected that the 

Sentinel-1 crop heights would be less accurate than RPAS estimates, the results deviated from 

observed crop heights by up to several hundred metres while also consisting of negative-value 

crop heights. Previous work has warned of the limitations of using interferometry for plant 

growth monitoring due to decorrelation occurring between the pairs of data as plant structure 
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change (Ballester-Berman et al., 2005; Engdahl et al., 2001; Pichierri et al., 2018). However, 

work done by Gomez-Dans et al. (2005) produced moderately accurate results of wheat crop 

heights when testing with multiple incidence angles in an indoor setting. Canisius et al. (2018) 

found a strong relation between observed and estimated crop heights for canola (0.90) and 

wheat (0.91) by estimating crop heights with a regression equation generated from Radarsat-2 

imagery and observed measurements. While work done by Gomez-Dans et al. (2005) and 

Canisius et al. (2018) showed that deriving crop heights from interferometry was possible, both 

had access to multi-incidence angle data to determine a suitable incidence angle for their study, 

which was not available in our study.   

1.4.2 Leaf Area Index Comparisons  

The distribution of LAI data indicated that calculated LAI values from regression followed a 

stronger positive linear pattern than the Choudhury et al. (1994) approach. The lower RMSE 

for the regression relative to the Choudhury et al. (1994) approach for RPAS was expected 

since the raster was able to accommodate the influence of site-specific features at a higher 

resolution approach. However, it was unexpected that the regression and Choudhury et al. 

(1994) approaches would obtain the same RMSE for Sentinel data. A potential reason for the 

two Sentinel methods having almost identical RMSE values may have been due to the fact that 

both the regression and Choudhury et al. (1994) are heavily influenced by the same NDVI 

values. While the RPAS LAI regression values are influenced by NDVI and variables such as 

imagery band values that have the potential to cause increased variation, the Sentinel LAI 

regression values are only based on NDVI, aspect, and crop height. This similarity in input 

variables paired with a lower chance for variation caused by the coarse pixel resolution of 
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Sentinel imagery is the likely cause for similarity in RMSE values.  It was also expected that 

RPAS would perform better than Sentinel data, however, this varied by the LAI estimation 

method used. When a regression-based approach was used, the RPAS data, aggregated to the 

same 10 m resolution of Sentinel data, had a lower RMSE (RPAS = 0.42, Sentinel = 0.56). In 

contrast, when the Choudhury et al. (1994) approach was used, the Sentinel data derived a 

lower RMSE (0.56) compared to the aggregated RPAS data RMSE (0.66). While the 

aggregation of RPAS Choudhury et al. (1994) LAI values lowered the RMSE value of the 

method, the influence of outlier data may have still caused the aggregated values to have a 

higher error than expected. Similarly, aggregated RPAS data may have also experienced a 

higher error due to the inherent variability of the data in its non-aggregated form influencing 

the averaging. 

Use of RPAS for LAI calculations in Ontario was limited, possibly due to the novelty 

of the technology. However, several studies using satellite technologies have been performed. 

Corn LAI estimations were calculated using Landsat 5 and 7 multispectral satellite data by Liu 

et al. (2012). Estimates were calculated from regressions models that had similar inputs to the 

regressions performed in this study including NDVI and SAVI, as well as other vegetation 

indices. Averaged RMSE of the estimates generated by their regressions was found to be 0.65, 

which was higher than our regression RMSE values and close to the RMSE of the aggregated 

Choudhury et al. (1994) in our study (Liu et al., 2012). Shang et al. (2015) used imagery from 

the RapidEye (RapidEye AG) optical multispectral satellite to estimate LAI (referred to as 

plant area index) of spring wheat and canola. Regression equations were generated from 

vegetation indices similar to Liu et al. (2012). RMSE values for the selected best performing 
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equations were similar to the values in our study with an RMSE of 0.6-0.8 for spring wheat 

LAI and 0.4-0.6 for canola (Shang et al. 2015).   

Other studies performed in Ontario, as well as the rest of the world, showed better 

performing LAI estimations than ours when using airborne Light Detection and Ranging 

(LiDAR) for maize (RMSE = 0.28) (Li et al., 2015), RPAS optical data for vineyard canopies 

(RMSE = 0.24) (Matthews et al., 2013), and optical satellite for winter wheat (RMSE = 0.53) 

(Dong et al. 2016). However, other studies with similar techniques resulted in poorer results 

than ours including RPAS optical data for soybean (RMSE = 0.67) (Yang et al. 2017) and 

optical satellite for maize (RMSE = 0.65) (Liu et al. 2012). The variation in LAI estimation 

accuracies across the reviewed literature, as well as our study, indicates that regressions 

generated were influenced by factors such as data acquisition timelines, number of observed 

measurements, and study area size. These factors make effective accuracy comparisons 

between the LAI studies difficult.  

The literature for calculating LAI using remote sensing were predominantly based on 

regression analysis due to its accessibility for many users and applications. While regression 

analyses can show strong relations in data and create accurate estimations, their applicability 

outside of a specific study are often limited. Studies that used LAI models, including the SAIL 

and PROSAIL models, often required more specific inputs but were applicable for calculating 

LAI outside of the original study. Duan et al. (2014) showed the effectiveness of pairing 

hyperspectral data collected using an RPAS with the PROSAIL model to calculate the LAI of 

maize resulting in an RMSE of 0.66. Similarly, Haboudane et al. (2002) used hyperspectral 
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data for modelling leaf chlorophyll for corn plants which was proposed as an alternative to 

LAI estimations when corn plants are in their early growing stages.   

1.4.3 Comparison among Observed, RPAS, and CSM 

One of the objectives of this research was to evaluate the influence of RPAS calibration on 

crop simulation model (CSM) performance. While some of the estimated crop height and LAI 

values deviated between RPAS and CSM, the trends were moderately consistent. For estimated 

LAI trends, the CSM, RPAS Choudhury et al. (1994), and RPAS regression values all 

increased between June 15th and July 14th, but only the CSM and RPAS regression followed a 

decreasing pattern between July 14th and September 19th while the RPAS Choudhury et al. 

(1994) values continued increasing. The different direction of the RPAS Choudhury et al. 

(1994) values may be due to the use of parameters calibrated from observed LAI measurements 

collected on September 19th. While the generated regression equation for the RPAS regression 

values was also based on observed September 19th LAI measurements, the regression also 

included factors such as crop height, which may have resulted in the trend of values differing 

from Choudhury et al. (1994) values. The influence of observed LAI measurement being used 

in both RPAS methods was clear when compared to the CSM LAI values around September 

19th. While final LAI values of both RPAS methods were close to observed LAI, the CSM’s 

were much lower. This may have been improved if the CSM utilized the RPAS-derived LAI 

values in its estimation. The use of LAI values as inputs for CSM has been studied and has 

shown to improve prediction accuracies when LAI values were accurately collected (Casa et 

al., 2012; Li et al., 2017; Tewes et al., 2020).   
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The comparison between the crop height methods indicated that the CSM performed 

better than the RPAS in the early-stage of crop growth. While it was expected that CSM would 

perform better at early-stage growth since smaller crops are harder to detect by remote sensing, 

the difference in crop height of 0.86 m was significant. Potential causes for the large 

overestimation of the RPAS crop heights may have been attributed to issues experienced with 

calculating RPAS crop heights (see section 1.4.4). While CSM crop height estimation for the 

early-stage June 15th was very accurate, the accuracy for the late-stage September 19th was 

less, and was similar to the accuracy of the RPAS on that date. The decreased accuracy and 

underestimation of the crop height from the CSM was potentially caused by the CSM reaching 

a maximum height of 1.6 m on July 7th and then remaining constant throughout the growing 

season. While this approach was most likely enforced by either the programming of the model 

or the cultivar used to match historical crop height measurements, it limited the ability for the 

CSM to estimate crop heights closer to the observed.  

CSM results from this study have shown that the DSSAT-CERES-Maize model 

tended to underestimate both LAI and crop height during the late-growth stages. Since both 

crop LAI (e.g., Curnel et al., 2011; Tewes et al., 2020; Xiao et al., 2011) and crop height (e.g., 

Bendig et al., 2014; Grenzdörffer 2014; Ziliani et al., 2018) are key parameters in crop growth 

and yield, underestimation of those key parameters can result in lower crop yield estimates as 

was seen in this study. Since underestimation in the CSM values may have been caused by 

thresholds set by the DSSAT developers, there is potential that other models suffer from similar 

limitations resulting in a loss of simulated growing days and total crop yield estimation. The 

LAI and crop height estimates derived from the RPAS imagery could be, in this case, used to 
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mitigate this issue by increasing the underestimated CSM values and result in a more accurate 

crop yield prediction. Potential future improvements could also be done through sampling the 

crop height and LAI measurements and acquiring RPAS imagery at a more frequent rate 

throughout the growing season. An increase in sampling could allow for a better comparison 

between the RPAS, CSM and observed values during key growth stages and may help 

determine which growth stages are accurately estimated by RPAS and CSM.  

1.4.4 Challenges with RPAS data collection  

One goal of combining field measurements and remote sensing is to scale-out from plots to 

fields and regions (e.g., Yang et al., 2017; Zhao et al., 2016; Ziliani et al., 2018). When we 

applied our regression and Choudhury et al. (1994) approaches, the latter approach represented 

greater heterogeneity in LAI values across the study area relative to the regression approach. 

A qualitative comparison based on field experience suggests that this heterogeneity is more 

reflective of what was observed in the field and aligns more closely with interpretation of the 

optical image of the study area. Furthermore, RPAS results across all metrics show an east-

west gradient due to error in crop height estimates that was not observed in the field and is 

likely inhibiting the performance of the RPAS results.   

Perhaps one of the biggest issues affecting RPAS data acquisition quality and 

subsequent analyses is the presence of doming (e.g., Eltner and Schneider, 2015; James and 

Robson, 2014). The use and stitching of hundreds to thousands of images can compound errors 

related to radial distortion, which is present to some degree in the in-expensive cameras used 

on RPAS (James and Robson, 2014), which leads (primarily) to vertical inaccuracies in the 

data (Girod and Filhol, 2020). The reduction of this doming can be achieved through accurate 
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real-time kinematic (Stott et al., 2020), post-processed kinematic (Zhang et al., 2019), or the 

inclusion of GCPs (Girod and Filhol, 2020; Meinen and Robinson 2020). While the study site 

has been used to evaluate the effects of increasing the number of GCPs on vertical and 

horizontal accuracy (Meinen and Robinson 2020), this work commenced before the data 

collection initiatives of Meinen and Robinson (2020). A gap in GCP placement on the initial 

data collection date (May 30, 2018), which was used to generate the DTM, may have inhibited 

the performance of the RPAS results. In addition, because the study area was an active 

agricultural field, the placement of GCPs varied for each RPAS data collection campaign, 

which could have altered the location of small doming errors that cumulatively impacted the 

results. While satellite-based remote sensing has a host of factors affecting error creation in 

image acquisition, doming error is not one of them.   

Another factor affecting RPAS data collection is associated with battery life and flight 

duration. The DJI Inspire 1 RPAS used in the study used a 4500 mAH battery that had a 

manufacturer estimate of approximately 18 minutes of flight time. Due to the size of the study 

area, high imagery overlap requirement, and wind interference, a full imagery acquisition of 

the study area required two to three full batteries to perform. The availability of battery power 

influenced the resolution of the imagery orthomosaics and DSMs due to the RPAS needing to 

be flown at a higher altitude to capture large enough areas to cover the full study area. While 

the resolutions of the imagery products at an altitude of 90m were sufficient for this study, 

image quality degrades at higher altitudes (Seifert et al., 2019).  

In addition to challenges associated with battery life, time-of-day of image acquisition 

had a substantial effect on image quality. The imaging sensor experienced over exposure when 
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imagery was acquired between the hours of 11am to 1pm due to the reflection of incident solar 

radiation from bare earth. When imagery was collected later in the day (3:20pm, Figure 17), 

over exposure did not occur, colours were more apparent and distinguishable, and imagery had 

a higher level of contrast. The increased reflectivity not only exaggerated pixel values, but it 

also reduced the ability of the SfM-MVS software to derive orthomosaic and DSM products 

(Ortega-Terol et al., 2017).  

  

  

Figure 17: (Left) Image acquired by the RPAS during high brightness conditions, (Right) Image 

acquired by the RPAS during normal brightness conditions 

  

A final issue, which may have affected the quality of RPAS data, involves the impact 

of a rolling shutter on image acquisition. The RGB sensor on the Parrot Sequoia camera uses 

a rolling shutter which causes geometrical distortions in acquired imagery (Figure 18) (Žížala 

et al., 2019). These geometrical distortions are caused by features in the field of view changing 
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location while the shutter literally rolls open and closed (Liang et al., 2008). The movement in 

the field of view may be caused by the features being sensed moving or by the sensor moving, 

as is the case when a rolling shutter is mounted on an RPAS (Figure 18). The issue can be 

amplified by vibrations caused by the RPAS, whereby it was attempted to mitigate this effect 

using rubber dampeners mounted between the Parrot Sequoia and RPAS. The rolling shutter 

was present only in imagery acquired by the Parrot Sequoia RGB sensor and not in the 

multispectral sensors or the RGB imagery acquired by DJI Zenmuse X3 sensor, which all use 

a global shutter and have short exposure lengths. While the Zenmuse X3 sensor was used for 

the presented research, the issue is acknowledged since the Parrot Sequoia RGB sensor had a 

higher resolution camera than the DJI Zenmuse X3 and the Sequoia RGB has been used in a 

number of studies (e.g., Ahmed et al., 2017; Khaliq et al., 2019; Žížala et al., 2019).  

  

Figure 18: (Left) Image acquired with the multispectral sensor on the Parrot Sequoia that did not 

experience the rolling shutter effect, (Right) Image acquired with the RGB sensor on the Parrot 

Sequoia that experienced the rolling shutter effect.  

1.4.5 Limitations of Sentinel  

While the availability and coverage of Sentinel imagery greatly enhances its usability for many 

applications in agriculture, there are several limitations to the imagery when used in small 
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spatial extent applications such as performing in-field crop monitoring. Perhaps the greatest 

limitation of using both the Sentinel-1 and Sentinel-2 imagery at this scale was the spatial 

resolution of imagery. The width of measured corn plants in the field ranged between 

approximately 0.5 to 1.0 m meaning each 10 m pixel of Sentinel imagery contained between 

100 to 200 corn plants (Figure 19). Generalization of the imagery reduces the effectiveness of 

creating physiological data of a crop such as the LAI and crop height values. The generalization 

across individual plants also prevents the analysis of outlier data in the form of either poor or 

healthy plants in the field, which removes the ability for an observer, or modeller, to determine 

what factors are influencing the growth of a crop in a very specific region. Since all products 

derived from the Sentinel imagery have a minimum resolution of 10 m, validating Sentinel 

data with in-field plot measurements is quite difficult since the extents of each pixel represents 

a large number of plants.   
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Figure 19: Example of the number of maize plants that are located in a single Sentinel-2 raster pixel 

(red box).  

  

Cloud cover impacted the availability of Sentinel-2 imagery for this study due to one 

of the required datasets (June 8, 2018) experiencing almost full cloud coverage as well as 

shadow coverage across the remaining ground imagery. This issue causes loss of data and 

reduces the usefulness of imagery due to opaque clouds blocking out the ability for an optical 
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remote sensor to acquire relevant imagery (Eberhardt et al., 2016). While cloud coverage was 

only present in a single image, partially due to the matching RPAS acquisition dates being 

performed on days with clear weather, the impact of cloud coverage is quite apparent. This 

loss of data prevented an imagery comparison from being done with the RPAS imagery for the 

June 8th acquisition date.    

1.4.6 Applications of Research  

The research performed in this study provide an example of the benefits and 

limitations of RPAS systems for agricultural applications. While existing methods of remote 

sensing for agricultural applications, such as using satellite data, provide accurate results for 

some crop metrics, the spatial and temporal resolution of satellite observations limit their 

applications for in-field analyses. While in-field measurements are not always required or 

feasible due to studies being performed on a regional or national level, they may be necessary 

for both decision makers and agencies that work with decision makers. In Ontario, agencies 

that work with agricultural decision makers including the Ontario Ministry of Agriculture, 

Food, and Rural Affairs, have been helping farmers integrate precision agriculture technologies 

into their farming methods through the use of GPS-RTK-enabled combines, mobile proximal 

soil sensors, and RPAS (Ontario Ministry of Agriculture Food and Rural Affairs, 2015: Ontario 

Ministry of Agriculture Food and Rural Affairs, 2020). In the past, farmers and other decision 

makers have used RPAS for performing qualitative observations by capturing images or 

generating vegetation indices of a field and analyzing visually (Candiago et al., 2015; Khaliq 

et al., 2019). While the combination of decision maker expertise along with qualitative 

observations can provide insight into crop health, interpretations are often based on opinions 
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and are susceptible to bias. The quantitative data that can be extracted using RPAS provides a 

decision maker the ability to combine their expertise along with crop data to input into 

processes such as CSMs or other software which can assist in reinforcing decision making 

(Jones et al., 2003).   

While research done in this study shows the potential for RPAS data to be used 

alongside CSMs, there is a need for further integration of RPAS into CSMs. The Simulateur 

mulTIdisciplinaire pour les Cultures Standard (STICS) (Brisson et al. 1998) CSM was 

developed to accept inputs of LAI values from external sources including remote sensing as 

validation for the simulated LAI values (Jégo et al., 2011). While this would have allowed for 

testing the RPAS data as a CSM input, STICS has become outdated which prevented it from 

being used in this study. A newer model, developed by the Climate Change, Agriculture, and 

Food Security Program, named the CCAFS Regional Agricultural Forecasting Toolbox 

(CRAFT) (Shelia et al., 2019), was designed to simulate crop growth and predict crop yield 

and uses gridded GIS data as inputs for parameters including weather, soil, and crop 

management (Shelia et al., 2019). The limitations of CRAFT are that it is a very new CSM that 

is still in its development stages as well as the scale at which the results are generated. Similar 

to other CSMs with GIS integration including GEPIC and AEGIS, the results are output at 

coarse resolutions with the highest resolution possible being 5 arc-minutes (6772 m). While a 

5 arc-minute resolution may be appropriate for regional or national applications, it is difficult 

to use it for decision making on a field level and does not utilize the benefits of high resolution 

RPAS imagery. It is clear that existing CSM technologies do have capabilities that could be 

used to integrate RPAS data, but the methods are either outdated or currently not mature 
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enough. Improvements in the form of integrating validation data at field-scale or finer could 

allow for more streamlined modelling process with RPAS data which could lead to a wider 

adoption by decision makers.  

  

1.5  Conclusion  

Comparison of RPAS and Sentinel estimates of crop heights and LAI values, showed that the 

two technologies had significant difference in accuracy between crop heights but similar 

accuracies for LAI. The RPAS-derived crop heights for imagery acquisitions performed on 

June 15th, 2018 and September 19th, 2018 had significantly lower RMSE values of 193.6 cm 

and 161.3 cm when compared to the Sentinel-derived crop height with RMSE values of 223.4 

m and 117.1 m. The derived LAI values were similar between the RPAS and Sentinel with 

RPAS RMSE values being 0.42 for the regression-based LAI and 0.66 for the Choudhury et 

al. (1994) method while the Sentinel RMSE values were 0.56 for both regression and 

Choudhury et al. (1994) methods.  

Results of the comparisons between the methods indicate that the RPAS was 

significantly more accurate for crop height calculations when compared to the Sentinel, but the 

difference in accuracies between the estimated LAI values from both systems was minimal. 

The dominant reason for the inaccuracies in the Sentinel crop heights was caused by limitations 

in the interferometric process, used for generating crop heights, being prone to lower quality 

results when used in areas with growing vegetation (Chen et al., 2020). Although the results 

generated using the Sentinel-1 imagery were poor for this study, there are possibilities that 

interferometry using other radar missions could yield more accurate results. Free and publicly 
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available radar data that is acquired at a frequency appropriate for monitoring crop growth 

through a season is limited, but the use of appropriate proprietary radar data may improve the 

effectiveness of comparing crop heights between RPAS and satellite remote sensing. 

Alternatively, comparisons between crop height accuracies derived through RPAS SfM-MVS 

and other RPAS-compatible sensors including LiDAR may be more beneficial for studying the 

effectiveness of RPAS technologies in agricultural applications. Comparisons between these 

different sensors could quantify the accuracies while also providing insight into the cost-

effectiveness of RPAS configurations, which could assist decision makers in determining the 

affordability and budget requirements of adopting RPAS technologies.  

The results of the CSM showed that the simulated crop height values were similar to 

the observed crop height measurements with a difference of 11 cm at the beginning of the 

growing season. However, this relationship became weaker over the rest of the growing season 

potentially due to thresholds or limitations of the crop model. The CSM LAI values compared 

to the observed LAI measurement was found to considerably underestimate LAI with a 

difference of 1.17. When the CSM values throughout the growing season were compared to 

the RPAS derived crop height and LAI values, it was clear that the trends were similar but the 

values were not equal. There is potential for RPAS derived metrics, such as crop height and 

LAI, to be used as validation data for improving the accuracy of CSM results. Future work 

may be improved by collecting more RPAS imagery and observed measurements throughout 

the growing season to determine at which growth stages RPAS is effective at providing 

accurate crop physiology results. 
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Appendix A: Soil Analyses Performed  

Table 3: Soil analysis performed on collected soil samples. 

Soil Test  Units  

Soil Moisture  %  

Ammonium N  mg/kg dry  

Nitrate N  mg/kg dry  

Total Carbon  % dry  

Inorganic Carbon  % dry  

Organic Carbon  % dry  

Organic Matter  % dry  

Particle Distribution  %  

Phosphorous (Extractable)  mg/L soil dry  

Magnesium (Extractable)  mg/L soil dry  

Potassium (Extractable)  mg/L soil dry  

Manganese (Extractable)  mg/L soil dry  

Zinc (Extractable)  mg/L soil dry  

pH  -  

Sulfur  % dry  
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Appendix B: Example of a GCP used during RPAS imagery acquisition 

 

 

 

 

 

 

 

 

 

 

Figure B: Example of GCP used during the RPAS imagery acquisition. 
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Appendix C: List of IW SLC Datasets Used for Interferometry  

Table C: Sentinel-1 datasets used for interferometry pairs. 

Target 

Interferogram 

Date  

IW SLC dataset pair used for 

interferogram formation  

Time period 

between dataset 

acquisitions (days)  

Baseline 

value 

(m)  

May 1, 2018   S1A_IW_SLC__1SDV_20180428T

231611_20180428T231638_021674

_025616_BAC7 (April 28, 2018)  

 S1A_IW_SLC__1SDV_20180510T

231612_20180510T231639_021849

_025BA5_7572 (May 10, 2018)  

12  130  

May 30, 2018   S1A_IW_SLC__1SDV_20180522T

231612_20180522T231639_022024

_026137_4936 (May 22, 2018)  

 S1A_IW_SLC__1SDV_20180603T

231613_20180603T231640_022199

_0266C0_81CF (June 3, 2018)  

  

12  33  

June 8, 2018   S1A_IW_SLC__1SDV_20180603T

231613_20180603T231640_022199

_0266C0_81CF (June 3, 2018)  

 S1A_IW_SLC__1SDV_20180615T

231614_20180615T231641_022374

_026C2C_0878 (June 15, 2018)  

12  47  
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Target 

Interferogram 

Date  

IW SLC dataset pair used for 

interferogram formation  

Time period 

between dataset 

acquisitions (days)  

Baseline 

value 

(m)  

June 15, 2018   S1A_IW_SLC__1SDV_20180615T

231614_20180615T231641_022374

_026C2C_0878 (June 15, 2018)  

 S1A_IW_SLC__1SDV_20180627T

231615_20180627T231642_022549

_027150_9A68 (June 27, 2018)  

12  21  

July 15, 2018   S1A_IW_SLC__1SDV_20180709T

231615_20180709T231642_022724

_02766D_74C4 (July 9, 2018)  

 S1A_IW_SLC__1SDV_20180721T

231616_20180721T231643_022899

_027BD7_C3B6 (July 21, 2018)  

12  81  

September 19, 

2018  

 S1A_IW_SLC__1SDV_20180907T

231619_20180907T231646_023599

_02922C_A653 (September 7, 

2018)  

 S1A_IW_SLC__1SDV_20180919T

231619_20180919T231646_023774

_0297CC_519B (September 19, 

2018)  

12  44  
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Appendix D: SNAPHU Methodology 

The SNAPHU tool was used to unwrap phase data and covert it to a format usable by the SNAP 

suite. While SNAPHU is compatible with SNAP, the tool itself was separate from the SNAP 

suite and required a Linux-based operating system to be run. The system that was used for 

performing the SNAPHU phase unwrapping contained an i7-6700k processor, 16GB DDR4 

RAM, Nvidia GTX 1080TI graphics card and was using the Kubuntu 20.04 64-bit operating 

system. SNAPHU configuration files were generated using the SNAP Snaphu Export tool 

which allowed the user to input parameters such as number of rows and columns for the tile of 

values being calculated, tile overlap and the statistical-cost mode method that SNAPHU will 

use for the calculations. A tile size of 10 by 10 was used as well as an overlap of 200 pixels 

which was the recommended default. The TOPO (topographic) statistical-cost mode was used 

since the data being unwrapped was topographic. Due to the data size of the interferograms, a 

subset of the data was taken to reduce the computation time as well as limit the system resource 

usage to prevent the processes from crashing. Once configuration files and subsets were 

created for every interferogram, a BASH script was run to execute the SNAPHU tool on each 

subset to create the six unwrapped interferogram rasters.  
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Appendix E: Comparison of Unadjusted RPAS and Sentinel LAI Residual 

Values 

 

Figure E: Comparison of unadjusted RPAS and Sentinel LAI residual values. 
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Appendix F: Graph of CSM Yield Values 

 

Figure F: Simulated crop yield values generated by DSSAT-CERES-Maize model.  
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