
Counting Flimsy Numbers via
Formal Language Theory

by

Trevor William Alexander Clokie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Trevor William Alexander Clokie 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Let s2(n) be the sum of the digits of n when expressed in base 2. For integers n and k,
Stolarsky defined n to be k-flimsy if s2(kn) < s2(n).

In this paper, we generalize the definition of k-flimsy numbers to all bases b, and provide
a method to construct a pushdown automaton recognizing the k-flimsy base-b numbers.
Using the tools of context-free languages and analytic combinatorics, we use this automaton
to determine precise asymptotics for the number of k-flimsy N -digit numbers in base b.
Lastly, using the results we obtained, we discuss the natural densities of k-flimsy numbers
in base b for all values k and b.

Our main results can be found in Theorems 2, 3, 8, and 9.

iii

Acknowledgements

I would like to thank my supervisor Jeffrey Shallit for his guidance, mentorship, and
patience. I would also like to thank Leon Witzman who helped me formulate the first
working 3-flimsy binary PDA. I would also like to thank Rafael Oliveira and Eric Schost
for reading this thesis and providing valuable feedback. Lastly, I would like to thank my
family and friends for their endless support.

iv

Table of Contents

List of Figures viii

1 Introduction 1

1.1 The k-flimsy numbers . 1

1.1.1 Some trivial results . 2

1.1.2 Prior work . 2

1.2 Generating series and Context-free languages 3

1.2.1 Defining context-free languages . 3

1.2.2 Defining automata . 4

1.2.3 Unambiguous context-free languages 5

1.2.4 Generating series . 6

1.2.5 The Chomsky-Schützenberger Theorem 6

1.2.6 Gröbner bases and Buchberger’s algorithm 7

1.2.7 Analytic combinatorics . 7

2 The Method 8

2.1 Outline of the method . 8

2.2 An example: binary palindromes . 9

2.2.1 An unambiguous PDA MP . 9

2.2.2 Converting MP to an unambiguous CFG GP 9

2.2.3 Tidying up the CFG G . 11

2.2.4 Converting G to a system of equations 11

2.2.5 Solving the system . 12

2.3 Another example: the Dyck language . 13

v

3 Solving for k-Flimsy Binary Numbers 14

3.1 Overview . 14

3.2 Building the PDA for (Fk,2)
R
2 . 15

3.3 Converting the PDA to an equivalent CFG 17

3.3.1 Simplifying the CFG . 18

3.4 Converting the CFG to a system of equations 18

3.5 Solving the system . 19

3.6 Asymptotics . 19

4 Generalizations 20

4.1 Results for other values of k in binary . 20

4.1.1 Results for k = 5 . 20

4.1.2 Results for k = 7 . 22

4.2 The k-equal numbers . 24

4.3 The k-flimsy numbers in base b . 26

4.3.1 Some results . 27

4.3.2 Our conjectures . 29

4.3.3 A heuristic argument regarding density 29

5 Next Steps 31

5.1 Open problems . 31

5.1.1 Efficient solutions . 31

5.1.2 Alternative CFG constructions . 31

5.2 CFLpy software . 32

References 33

APPENDICES 34

A Flimsy Grammars 35

A.1 Base 2 . 35

A.1.1 7-flimsy base-2 grammar . 35

vi

B Maple code 37

B.1 Base 2 . 37

B.1.1 3-flimsy base-2 . 37

B.1.2 5-flimsy base-2 . 38

B.1.3 7-flimsy base-2 . 39

B.2 Base 3 . 41

B.2.1 2-flimsy base-2 . 41

B.2.2 4-flimsy base-2 . 41

B.3 Base 4 . 43

B.3.1 2-flimsy base-4 . 43

B.3.2 3-flimsy base-4 . 44

B.4 Base 5 . 45

B.4.1 2-flimsy base-5 . 45

vii

List of Figures

1.1 The Unambiguous PDA M recognizes the language {ambncm : m,n ≥ 0} . 5

2.1 The Unambiguous PDA MP recognizes the language of binary palindromes 10

2.2 Unambiguous CFG GP producing the binary palindrome language LP , pro-
duced by triple construction, unsimplified 10

2.3 Unambiguous CFG for LP with no useless variables 11

2.4 Significantly simplified unambiguous CFG G′P for LP 11

2.5 System of equations of generating series derived from G′P , simplified 11

3.1 The PDA M3 recognizes the language (F3,2)
R
2 unambiguously. 17

4.1 The PDA M5 recognizes the language (F5,2)
R
2 unambiguously. 20

4.2 The PDA M7 recognizes the language (F7,2)
R
2 unambiguously. 23

4.3 This PDA recognizes the language (E3,2)
R
2 unambiguously. 25

4.4 This PDA recognizes the language (E5,2)
R
2 unambiguously. 25

4.5 Transitions in 4-flimsy base-10 PDA, on reading a 9 with a carry of 0. . . . 26

4.6 This PDA recognizes the language (F2,3)
R
3 unambiguously. 27

4.7 This PDA recognizes the language (F2,4)
R
4 unambiguously. 28

viii

Chapter 1

Introduction

The focus of this thesis is to study the k-flimsy numbers, which were first studied (inde-
pendently) by Kátai in 1977 [15] and Stolarsky in 1980 [23] using techniques of number
theory. In this thesis, we study these same numbers, but using the tools of formal language
theory instead. In particular, we show that results about context-free languages provide a
profound amount of insight into the flimsy numbers.

This difference in approach allows us to compute far more detailed approximations of
the number of N -digit flimsy numbers than has been previously done. It also allows us
to easily study the k-flimsy numbers in an arbitrary base b for any integers k and b ≥ 2.
We will, however, also discuss the limitations of this method, as while it works easily in
theory, in practice the method seems too computationally demanding to obtain results for
most values of k and b within a reasonable amount of time and computer memory.

In this thesis we will also explore modifying our technique to tackle related problems,
such as the k-equal numbers, defined and described in Section 4.2. In general, our method
provides insight into any set of natural numbers whose base-b representations form an
unambiguous context-free language.

Our main results are Theorems 2, 3, 8, and 9, along with their accompanying Remarks 4
and 10. Theorems 2, 3 and 8 appeared in [10].

1.1 The k-flimsy numbers

We start by defining the function sb(n) to be the sum of the digits of an integer n, when
represented in base b. For instance s10(16) = 7 and s2(16) = 1.

The representation of a number n in base b, as a string of symbols, is denoted by (n)b.
We extend this notation to include sets, so for a set S of numbers we define (S)b = {(n)b :
n ∈ S}.

1

In a 1980 paper, Stolarsky[23] called an integer n sturdy if s2(n) ≤ s2(kn) for all positive
integers k. Conversely, if there exists k such that s2(n) > s2(kn), then n is k-flimsy . If n
is k-flimsy for some k then n is called flimsy .

In this thesis, we extend the definition of k-flimsy numbers to base b. For example, 7
is 3-flimsy in base-10, since s10(7) = 7, which is greater than s10(21) = 3. However, 7 is
not 3-flimsy in base-2, since s2(7) = 3 and s2(21) = 3.

With this expanded definition of flimsy numbers, we define the set of k-flimsy numbers
in base-b to be

Fk,b = {n ∈ Z≥0 | sb(n) > sb(kn)}.
We are interested in computing the density of this set.

1.1.1 Some trivial results

When k is an even number, we write k = 2`. We observe that, for a number n, we have
(kn)2 = (`n)2 ·0 where · is the string concatenation operator. Therefore s2(kn) = s2(`n)+0,
so n is k-flimsy if and only if n is `-flimsy. Thus it suffices to limit our search to odd k.

In general base b, we note that sb((bk)n) = sb(kn), so it is unnecessary to consider
values of k where k is a multiple of b.

When k is a power of b (that is, k = bm where m is a non-negative integer) then we
have sb(kn) = sb(n), so no numbers are bm-flimsy in base b.

Additionally, if k is negative, then sb(kn) = sb(−kn).

Finally, if k = 0 then sb(kn) = 0 ≤ sb(n) for all n, so all non-zero numbers are 0-flimsy
in any base b.

1.1.2 Prior work

The analysis of the sums of binary digits of multiples was first studied in 1977 by Kátai [15]
who studied the 3-flimsy binary numbers and found that as N → ∞, the distribution of
s2(3n)− s2(n) over 0 ≤ n < 2N approaches a normal distribution with a mean of 0 and a
variance of

√
N/3. That is, for a ∈ Z, we have

2−N
∣∣{n ∈ Z : 0 ≤ n < 2N , s2(3n)− s2(n) = a}

∣∣→ √
3√

2πN
e−3a

2/2N

as N →∞.

Following that, Stolarsky published a paper in 1980 [23] in which the terms sturdy
number and flimsy number are coined. In this paper, Stolarsky proved that the number of
(N+1)-bit binary numbers n for which s2(3n)−s2(n) = a is asymptotic to 2N

√
3√

2πN
e−3a

2/2N ,
which can be shown to be equivalent to Kátai’s result.

2

In a 1983 paper, Schmidt [21] examined Stolarsky’s result that the number of k-flimsy
integers in the interval [2N , 2N+1) is 2N

(
1
2

+ o(1)
)
) where k = 3. Schmidt, using Markov

chains, extended this result to all odd k ≥ 3. In a paper published the following year,
Schmid [20] improved on the error term found by Schmidt, using linear algebra and spectral
analysis.

A 2017 paper by Bašic [6] provides a proof that for all integers b ≥ 2 and k 6= bm, there
exists a k-flimsy number n in base b. This paper also provides an algorithm to construct
such a number, although the complexity of this algorithm is nontrivial to analyze.

A 2014 survey paper by Chen, Hwang, and Zacharovas [8] discusses the various ap-
proaches and results in the number theory literature regarding functions that sum the
digits of numbers, like sb. The survey includes the results listed above, except for the
paper by Bašic which was not yet published. Most of these results are not highly relevant
to the work presented in this thesis, but the survey is an excellent source of further reading
for readers interested in related problems.

1.2 Generating series and Context-free languages

In this work, we use tools of context-free languages to obtain estimates for the size of
Fk,b ∩

[
bN−1, bN

)
. That is, we determine how many k-flimsy numbers can be written in

precisely N digits in base b with no leading zeros.

1.2.1 Defining context-free languages

In formal language theory, a word (also called a string) is a finite ordered sequence of
symbols selected from a finite set of symbols Σ, which we call an alphabet . A language is
a set of words over a given alphabet. The length of a word w is the number of symbols in
w, and is written as |w|. The word of length 0, often called the empty word , is denoted ε.

A word w raised to an integer power n denotes the word w repeated n times; for
instance (mur)2 = murmur. Note that w0 = ε for all words w. For a word w, we define
w∗ = {wn : n ≥ 0} = {ε, w, w2, w3, . . .}. Similarly, for an alphabet Σ we define Σ∗ to be
the set of all words over Σ, so Σ∗ = {a1a2 · · · an : ai ∈ Σ, 1 ≤ i ≤ n, n ≥ 0} [14, § 1.1].

A context-free grammar (or CFG) is a set of variables V and a set of production rules to
generate words over an alphabet Σ. A production rule is of the form A→ α1α2 · · ·αk, for
some k, where α1, α2, . . . , αk ∈ V ∪Σ are either variables or symbols. One variable S ∈ V
is designated to be the starting variable. One begins with a sequence S, and iteratively
replaces variables A in the sequence with the right-hand side of a production rule until
no variables remain. The sequence of symbols that results is a word generated by the
CFG [14, § 4.2]. A derivation of a word w generated by a CFG is a series of production

3

steps, beginning with S, and ending with w. The set of words generated by a CFG G is
called a context-free language (or CFL), which is denoted L(G).

For example, the CFG consisting of variables V = {S, T}, the alphabet Σ = {a, b, c},
and production rules S → T , S → aSc, T → bT , and T → ε generates the lan-
guage {ambncm : m,n ≥ 0}. To generate the word aabcc, one follows the derivation
S =⇒ aSc =⇒ aaScc =⇒ aaTcc =⇒ aabTcc =⇒ aabcc.

1.2.2 Defining automata

An automaton is a tool for describing a language. An automaton processes an input word
one symbol at a time, from left to right, and either accepts or rejects it upon reading every
symbol in the word. If an automaton M accepts a word w, then w is in the language
recognized by M , which we denote w ∈ L(M).

Informally, an automaton is a finite set of states and a set of transitions from one state
to another under various conditions, such as reading an input symbol. Each state is either
accepting or rejecting, and not all transitions are deterministic; in the case where multiple
transitions can be taken at a given time, so long as any series of choices could lead to the
automaton accepting the input word, we say that the automaton accepts the word and
that the automaton is non-deterministic.

A pushdown automaton (or PDA) is an automaton with an unbounded stack onto which
it can push symbols. Transitions of a PDA may depend on what is on top of the stack, as
well as the symbol being read (or no symbol being read, which we denote by reading the
empty word ε; we call these ε-transitions). Traditionally, the stack starts with one symbol
on it, and the PDA accepts if the stack is empty; although a PDA may have accepting
states as well. Note: when the stack is expressed horizontally, the top of the stack is
traditionally denoted as the left end.

Formally, a PDAM is the 7-tuple (Q,Σ,Γ, δ, q0, Z, F), with each term defined as follows.
We define Q to be the set of states, which must be finite, and F ⊆ Q is the set of accepting
states (also known as final states), however for the purposes of this thesis we will always
use F = ∅ and accept via empty stack. We define Σ as the alphabet of valid input symbols
(and hence L(M) ⊆ Σ∗), and Γ as the alphabet of valid symbols that may be pushed onto
the stack. We define δ to be the (finite) set of transitions, which is a multi-function from
Q × (Σ ∪ {ε}) × Γ → Q × Γ∗ [14, § 5.2]. We define q0 ∈ Q to be the start state; which
is the state M is in before performing any transitions. Lastly, we define Z ∈ Γ to be the
start symbol, which is the only symbol on the stack before any transitions are performed.

A PDA M = (Q,Σ,Γ, δ, q0, Z0, F) that recognizes the language {ambncm : m,n ≥ 0}
can be constructed as follows: Q = {q0, q1, q2}, Σ = {a, b, c}, Γ = {Z, a}, F = ∅, and δ

4

Figure 1.1: The Unambiguous PDA M recognizes the language {ambncm : m,n ≥ 0}

consists of the following transitions:

δ(q0, a, Z) = {(q0, aZ)} δ(q1, b, Z) = {(q1, Z)}
δ(q0, b, Z) = {(q1, Z)} δ(q1, b, a) = {(q1, a)}
δ(q0, a, a) = {(q0, aa)} δ(q1, c, a) = {(q2, ε)}
δ(q0, b, a) = {(q1, a)} δ(q1, ε, Z) = {(q1, ε)}
δ(q0, ε, Z) = {(q0, ε)} δ(q2, c, a) = {(q2, ε)}
δ(q0, c, a) = {(q2, ε)} δ(q2, ε, Z) = {(q2, ε)}

This, of course, is not easy for people to interpret, so to make automata more human-
readable, we use transition diagrams , which are directed graphs displaying the states as
nodes and the transitions as edges. The transition diagram for the automaton above is
shown in Figure 1.1.

Lastly, a deterministic pushdown automaton (or DPDA) is a pushdown automaton in
which there is at most one possible transition to be performed at a given step. Formally, a
PDA (Q,Σ,Γ, δ, q0, Z, F) is a DPDA when for all q ∈ Q, z ∈ Γ, we have no more than one
transition from (q, a, z) for all a ∈ Σ ∪ ε, and if there exists a transition from (q, ε, z) then
there must exist no transitions from (q, a, z) for all a ∈ Σ [14, pp. 112-113]. A language
recognized by a DPDA is a deterministic context-free language (or DCFL).

1.2.3 Unambiguous context-free languages

A context-free grammar G is said to be unambiguous [13, p. 27] if every word in L(G) has
no more than one leftmost derivation in G, and a context-free language L is said to be
unambiguous if L = L(G) for an unambiguous context-free grammar G.

Similarly, we can define a PDA M to be unambiguous [13, p. 142] if for every word
w ∈ L(M), there is exactly one sequence of transitions by which M accepts w, stack
pushes, and stack pops that leads to acceptance, either by reaching an accepting state or
by emptying the stack. It is important to note that if M is an unambiguous PDA, then
there exists an unambiguous CFG G for which L(M) = L(G).

5

The unambiguous PDA is an important tool, as deterministic PDAs (which are a strict
subclass of unambiguous PDAs) cannot recognize certain context-free languages that un-
ambiguous PDAs can. For example, the language of palindromes over {a, b} requires
non-determinism to determine the midpoint of a given palindrome, so it cannot be recog-
nized with a DPDA; but an unambiguous PDA can still recognize the language since only
guessing the correct midpoint can lead to acceptance, and every palindrome has exactly
one midpoint.

However, not all CFLs are unambiguous. For instance, the context-free language
{ambmcndn | m,n ≥ 1} ∪ {ambncndn | m,n ≥ 1} cannot be generated by an unambiguous
CFG [14, Thm 4.7, pp. 100–103]. Therefore, it cannot be recognized by an unambiguous
PDA.

1.2.4 Generating series

Pushdown automata and context-free grammars have been used for a wide variety of combi-
natorial enumerations; see, for example, [4, 5, 2, 3]. This is typically done using generating
series.

For a set S and a “weight” function w : S → Z≥0, where Z≥0 is the set of non-negative
integers, we define the generating series of S to be the power series

ΦS(x) =
∑
s∈S

xw(s).

For example, if S = Z and w(n) = n2 for all n ∈ Z, then ΦZ(x) = 1+2x+2x4+2x9+· · · .
We define the coefficient extraction operation [xn]ΦS(x) to be coefficient corresponding

to xn in the power series ΦS(x). For example [x2](x3 − 5x2 + 4x− 3) = −5.

If, for all n ≥ 0, there exist finitely many s ∈ S such that w(s) = n, then it follows that

ΦS(x) =
∞∑
n=0

|{s ∈ S | w(s) = n}|xn.

In this case [xn]ΦS(x) is the number of elements in S with weight n. For this reason,
analyzing a generating function ΦS can reveal combinatorial properties of our set S.

For a language L, it is common practice to define the weight of a word to be its length.
That is w(s) = |s| for all s ∈ S. For the rest of this thesis, we will follow this convention,
and we will not mention weight functions again.

1.2.5 The Chomsky-Schützenberger Theorem

A power series Φ(x) is called algebraic over a field F if there exists a finite set of polynomials
p0(x), p1(x), . . . , pn(x) ∈ F [x] such that pn(x)Φn(x) + · · ·+ p1(x)Φ(x) + p0(x) = 0.

6

There is a theorem of Chomsky and Schützenberger [9], proven in [16, 18], that states
the following:

Theorem 1. If L is an unambiguous context-free language, then the generating series ΦL

is algebraic over Q.

In particular, given an unambiguous context-free grammar G, we can easily find a
system of equations that describes the generating series ΦL(G). The details of this process
are described in Section 2.1.

1.2.6 Gröbner bases and Buchberger’s algorithm

Given a system of n linearly independent polynomial equations over n generating series
Φ1,Φ2, . . . ,Φn, one can solve for each of the series Φm (where 1 ≤ m ≤ n) in terms of
polynomial equations over Φ1 to Φm. Such a solution is called a Gröbner basis [7]. In
particular, we can designate any of the n generating series to be Φ1, and thereby solve for
any of the generating series without reference to any of the other n− 1 series.

Buchberger’s algorithm [7] is an algorithm to compute the Gröbner basis for a such
a system. In this thesis, we will be using an implementation of Buchberger’s algorithm
included in the Maple programming language [17].

1.2.7 Analytic combinatorics

Analytic combinatorics is the field formed by combining the fields of complex analysis and
combinatorial enumeration. It provides very useful methods for determining the asymptotic
nature of combinatorial processes. In particular, singularity analysis provides methods for
taking a formal power series that is algebraic over Q and determining the asymptotic
behaviour of its coefficients [11, § VII. 7.1].

An implementation of this method in the Maple programming language is provided
in a library called algolib [19] by former University of Waterloo professor Bruno Salvy.
Specifically, the algolib library contains a package called gdev which uses the saddle-point
method [11, Thm. VIII. 3] to approximate the coefficients.

7

Chapter 2

The Method

2.1 Outline of the method

In this section, we describe a method for determining the number of words of length N in
an unambiguous CFL L. To do this, we follow the algorithm:

1. We construct an unambiguous PDA M for which L(M) = L.

2. We can then convert M into an equivalent CFG G, where G is unambiguous and
L(G) = L. (Note that we can skip step 1 if we can construct G directly.) We do
this using a standard technique called the “triple construction.” [14, pp. 115–119] We
note that performing the triple construction on an unambiguous PDA M gives us an
unambiguous grammar G [13, Thm. 5.4.3, p. 151].

3. We simplify G by removing useless variables. That is, variables that do not produce
any all-terminal strings, or variables that are not reachable by the start state). The
algorithm to do this is provided in [14, pp. 88–90]. Additionally, we propose three
rules to further simplify our grammar:

(a) If non-starting variable A has exactly one production rule A → α, then since
α does not contain A (since if it did, it would have been removed as a useless
variable) we can replace all instances of A with α and remove A from our set of
variables.

(b) If the start variable S has exactly one production rule S → A for some variable
A, then we can replace all instances of A with S.

(c) We simplify any production rule A→ αεβ to A→ αβ. That is, in a production
where an ε is specified alongside a variable or terminal, we do not need to specify
the ε, so we can remove it from our representation of the production.

8

4. We convert our simplified grammar G to a system of equations. To accomplish this,
we replace each variable A with the generating series A(x) for which the N th coef-
ficient [xN]A(x) is the number of terminal strings of length N produced by variable
A. To make this work, we replace every | with +, every empty string ε with 1, every
terminal 0 or 1 with x, string concatenation with multiplication, and→ with =. This
technique was introduced in [9] and proven to be correct in [16, 18].

5. We solve our system of equations using Buchberger’s algorithm [7] to obtain an
equation for S(x) in terms of x, where S corresponds to the start variable of G. We
note that S(x) is the generating series for L.

6. We use methods of analytic combinatorics [11, 19] to obtain estimates for the N th

coefficient in the generating series of L. This is, therefore, the number of words in L
of length N .

2.2 An example: binary palindromes

Consider the binary palindrome language LP = {w ∈ {0, 1}∗ | w = wR}. Note that
L = {ε, 0, 1, 00, 11, 000, 010, 101, 111, . . .}. We know that this is an unambiguous CFL, as
it is produced by the grammar S → ε | 0 | 1 | 0S0 | 1S1 which is unambiguous, even
though it cannot be recognized by a DPDA. We also know that L contains exactly 2dN/2e

words of length N .

2.2.1 An unambiguous PDA MP

We construct the PDA MP (see Figure 2.1) to recognize LP . It works by pushing input onto
the stack, non-deterministically guessing where the middle of the word is, then confirming
by comparing each new symbol read to the top of the stack, then popping. We note
that MP is unambiguous since each palindrome has exactly one midpoint, and if it is not
correctly guessed, then MP will not accept the word (if it guesses too early, then MP will
stop reading the input before it finishes reading the word, so it cannot accept it; if it guesses
too late, then it will not be able to empty the stack). Since the only non-deterministic
step is how to guess the midpoint, there is exactly one accepting sequence of transitions
through MP for each palindrome p ∈ LP .

2.2.2 Converting MP to an unambiguous CFG GP

Using the triple construction, we obtain the CFG GP , seen in Figure 2.2.

9

Figure 2.1: The Unambiguous PDA MP recognizes the language of binary palindromes

S → (q, Z, q) | (q, Z, p)
(q, 0, q)→ ε(p, 0, q) | 0(q, 0, q)(q, 0, q) | 0(q, 0, p)(p, 0, q) | 0(p, 0, q) | 1(q, 1, q)(q, 0, q) | 1(q, 1, p)(p, 0, q) | 1(p, 0, q)
(q, 0, p)→ ε(p, 0, p) | 0(q, 0, q)(q, 0, p) | 0(q, 0, p)(p, 0, p) | 0(p, 0, p) | 1(q, 1, q)(q, 0, p) | 1(q, 1, p)(p, 0, p) | 1(p, 0, p)
(q, 1, q)→ ε(p, 1, q) | 0(q, 0, q)(q, 1, q) | 0(q, 0, p)(p, 1, q) | 0(p, 1, q) | 1(q, 1, q)(q, 1, q) | 1(q, 1, p)(p, 1, q) | 1(p, 1, q)
(q, 1, p)→ ε(p, 1, p) | 0(q, 0, q)(q, 1, p) | 0(q, 0, p)(p, 1, p) | 0(p, 1, p) | 1(q, 1, q)(q, 1, p) | 1(q, 1, p)(p, 1, p) | 1(p, 1, p)
(q, Z, q)→ ε(p, Z, q) | 0(q, 0, q)(q, Z, q) | 0(q, 0, p)(p, Z, q) | 0(p, Z, q) | 1(q, 1, q)(q, Z, q) | 1(q, 1, p)(p, Z, q) | 1(p, Z, q)
(q, Z, p)→ ε(p, Z, p) | 0(q, 0, q)(q, Z, p) | 0(q, 0, p)(p, Z, p) | 0(p, Z, p) | 1(q, 1, q)(q, Z, p) | 1(q, 1, p)(p, Z, p) | 1(p, Z, p)
(p, 0, q)

(p, 0, p)→ 0

(p, 1, q)

(p, 1, p)→ 1

(p, Z, q)

(p, Z, p)→ ε

Figure 2.2: Unambiguous CFG GP producing the binary palindrome language LP , pro-
duced by triple construction, unsimplified

10

S → (q, Z, p)

(q, 0, p)→ ε(p, 0, p) | 0(q, 0, p)(p, 0, p) | 0(p, 0, p) | 1(q, 1, p)(p, 0, p) | 1(p, 0, p)

(q, 1, p)→ ε(p, 1, p) | 0(q, 0, p)(p, 1, p) | 0(p, 1, p) | 1(q, 1, p)(p, 1, p) | 1(p, 1, p)

(q, Z, p)→ ε(p, Z, p) | 0(q, 0, p)(p, Z, p) | 0(p, Z, p) | 1(q, 1, p)(p, Z, p) | 1(p, Z, p)

(p, 0, p)→ 0

(p, 1, p)→ 1

(p, Z, p)→ ε

Figure 2.3: Unambiguous CFG for LP with no useless variables

S → ε | 0 | 1 | 0A | 1B
A→ 0 | 00 | 10 | 0A0 | 1B0

B → 1 | 01 | 11 | 0A1 | 1B1

Figure 2.4: Significantly simplified unambiguous CFG G′P for LP

2.2.3 Tidying up the CFG G

Using the instructions described in step 3, we can identify useless variables (q, 0, q), (q, 1, q),
(q, Z, q), (p, 0, q), (p, 1, q), and (p, Z, q) to obtain Figure 2.3.

Then, we can further simplify using our additional simplification rules (3a, 3b, and 3c),
and rename variables (q, 0, p) and (q, 1, p) to A and B respectively, to obtain Figure 2.4.

2.2.4 Converting G to a system of equations

Following our steps, we replace each variable A with the generating series A(x) for which
the N th coefficient [xN]A(x) is the number of terminal strings of length N produced by
variable A. From this procedure we obtain the system shown in Figure 2.5.

S = 1 + 2x+ xA+ xB

A = x+ 2x2 + x2A+ x2B

B = x+ 2x2 + x2A+ x2B

Figure 2.5: System of equations of generating series derived from G′P , simplified

11

Note that S(x), where S is our start variable, corresponds to the generating series of
our language L. Since G was unambiguous, this system is accurate and algebraic over
Q [9, 18, 12].

2.2.5 Solving the system

Since the system is algebraic over Q, we can find the Gröbner basis and solve for S(x)
using Buchberger’s algorithm [7]. We do this using the Maple code below.

eqs := [-S + 1 + 2*x + x*A + x*B,

-A + x + 2*x^2 + x^2*A + x^2*B,

-B + x + 2*x^2 + x^2*A + x^2*B]:

algeq := Groebner[Basis](eqs, lexdeg([A, B], [S]))[1]:

assume(x, positive):

assume(N, integer):

f := solve(algeq, S);

This gives us the analytic solution S(x) = (1 + 2x)/(1− 2x2).

To derive the asymptotic behaviour of the coefficients of the power series associated
with S(x), we use the methods of singularity analysis [11, § VII. 7.1]. Bruno Salvy’s gdev
package [19] does this for us. To use it, we append the following Maple code to the code
above and run it in a folder containing the algolib files.

libname := ".",libname:

combine(equivalent(f, x, N, 8));

When we run this, we obtain the following asymptotic results for the number of words
of length N .

2N/2 · 1

2

(
1 +
√

2 + (−1)N(1−
√

2)
)

+O
(
2N/2N−12

)
For now we ignore the error term O

(
2N/2N−12

)
. For odd N this expression sim-

plifies to 2N/2 · 1
2

(
1 +
√

2− 1 +
√

2)
)

= 2(N+1)/2, and for even N it simplifies to 2N/2 ·
1
2

(
1 +
√

2 + 1−
√

2)
)

= 2N/2. In both cases, we observe that this is equal to 2dN/2e, which
is the correct answer, so the asymptotic is correct and the error term is zero for all positive
integers N .

12

2.3 Another example: the Dyck language

The language of Dyck words [1, p. 333] is the language of balanced parentheses. (Note that
all Dyck words have even length.) It is recognized by the unambiguous CFG S → ε | (S)S.
From this we follow the same steps as above (without the PDA part) compute the system
of one equation: S = 1 + x2S2.

eqs := [-S + 1 + x^2 * S^2]:

algeq := Groebner[Basis](eqs, lexdeg([S]))[1]:

assume(x, positive):

assume(N, integer):

additionally(N, even):

f := solve(algeq, S)[2]:

libname := ".",libname:

simplify(combine(equivalent(f, x, N, 1)));

This code outputs 2N+3/2N−3/2π−1/2 + O
(
2NN−5/2

)
. Now, it is known that the number

of length-N Dyck words, where N is even, is CN/2 where Cn is the nth Catalan number[1,
pp. 333–338]. The Catalan numbers are exactly given by the expression Cn = 1

n+1

(
2n
n

)
. It is

a well-known result by Stirling that the Catalan numbers are asymptotic to Cn ∼ 4n

n3/2
√
π

[11,

p. 38] so CN/2 ∼ 2N ·23/2
N3/2

√
π

which is exactly what we find in our Maple output (when we drop

the error term).

13

Chapter 3

Solving for k-Flimsy Binary Numbers

Note: much of this chapter is taken verbatim from [10].

3.1 Overview

We can study k-flimsy binary numbers using the method described in Chapter 2. In this
section, we will walk through the analysis of k-flimsy numbers in base 2. In particular, we
obtain our main results:

Theorem 2. The number of 3-flimsy numbers in base 2 in the interval [2N−1, 2N) is

2N
(

1

4
− cN−1/2 +O

(
N−3/2

))
, (3.1)

where c = 7
√
6

24
√
π

.
= 0.4030765.

and

Theorem 3. The number of 5-flimsy numbers in base 2 in the interval [2N−1, 2N) is

2N
(

1

4
− cN−1/2 +O

(
N−3/2

))
, (3.2)

where c = 3
√
5

8
√
π

.
= 0.4730874.

We note that the integers in the interval [2N−1, 2N) are the integers that require exactly
N bits to write in binary (with no leading zeros), so Theorem 2 serves as a proof of of
Stolarsky’s result [23] that |F3,2 ∩ [2N−1, 2N)| ∼ 1

4
2N as N →∞.

14

Remark 4. What makes our result stronger is that we are able to provide more accurate
estimates because, with our technique, we can compute more terms in the asymptotic
expansion. In particular, we find that the number of 3-flimsy binary numbers in the
interval [2N−1, 2N) is

2N

(
1

4
+

√
6√
π

(
− 7

24
N−1/2 +

13

72
N−3/2 − 17

64
N−5/2 +

3365

13824
N−7/2 + · · ·

))

and the number of 5-flimsy binary numbers in the interval [2N−1, 2N) is

2N

(
1

4
+

√
5√
π

(
−3

8
N−1/2 +

799

1920
N−3/2 − 16623

20480
N−5/2 +

7343297

4915200
N−7/2 + · · ·

))
.

3.2 Building the PDA for (Fk,2)
R
2

The general idea is as follows: we create a PDA accepting the base-2 representation of
k-flimsy numbers n, read from least-to-most significant bit. We use the stack of the PDA
to record the absolute value of s2(n) − s2(kn), and we use the state to record both the
carry needed when multiplying input by k, and the sign of s2(n)− s2(kn) (since the stack
cannot have negatively many counters). We accept the input if the carry is 0, the sign of
s2(n)− s2(kn) is positive, and the stack has at least one counter.

Our PDA is designed to begin its computation with a special start symbol, Z, on top
of the stack, and if the input is accepted, to end its computation when the stack becomes
empty. The symbol Z exists solely as an indicator that the stack is otherwise empty, and
is popped if and only if the input is accepted.

The sketch above is not quite sufficient because of two technical issues. First, (a) in
some cases this approach requires reading extra leading zeroes since kn has more bits than
n (which, because we are representing numbers starting with the least significant digit first,
would be at the end of the input) and (b) we must have that the leading bit of the input is
1, to avoid incorrectly counting smaller numbers as having n bits (for example, the input
11010 should be ignored since it is equal to the input 1101 and we do not want to count
it as both a 4-bit and 5-bit number).

To handle both these issues, we slightly modify the construction in several ways. First,
if the state has a negative sign, then the stack holds |y|1 − |x|1 counters (for which we
use the stack symbol X), where x is the input seen so far and y is the |x| least significant
bits of k(x)R2 . On the other hand, if the state has a positive sign, then the stack holds
|x|1 − |y|1 − 1 counters. By reducing the stack height of the positive states, we get that
the PDA will always be in the the negative state when |x|1 = |y|1.

15

Second, to simulate the needed leading zeroes required to handle the carry, without
actually reading them, we use a special series of log2 k states to pop counters from the
stack; thus guaranteeing that the stack has a sufficient number of counters.

Finally, we have a special state called END used to empty the stack when acceptance
is detected. We need this, as opposed to a final state, because applying the “triple-
construction” to a PDA M creates a CFG G for which L(M) = L(G), where all words in
L(M) are accepted by M via empty stack, not via final states. The total number of states
is therefore 2k + blog2 kc.

To be specific, we define the PDA Mk = (Q,Σ,Γ, δ, q0, Z, F) such that Mk recognizes
the language (Fk,2)

R
2 unambiguously. The states Q contain 2k states of the form (sign,

carry) where sign ∈ {+,−} and carry ∈ {0, 1, . . . , k − 1}, as well as the END state and
log2(k)− 1 intermediate states to pop counters off the stack between a (sign, carry) state
and END. The input alphabet Σ = {0, 1}, and the stack alphabet Γ = {X, Z}. The start
state q0 = (−, 0), the initial stack symbol Z = Z, and the set of final states F = ∅ because
this PDA accepts when the stack is empty so that we can use the “triple-construction.”

The transition function δ is described as follows: for (sign, carry) state (s, c), upon
reading input symbol a, we simulate the changes in the values of n and kn as follows.
To update n, we concatenate a as the new most significant digit; and to update kn, we
simulate concatenating ka + c. Since ka + c may not fit in a single digit, we compute the
new carry c′ = bka+c

2
c, and the stack height must change by ∆h = a − (ka + c mod 2).

Depending on ∆h and c we have the following transitions between (sign,carry) states:

• If ∆h = 0 then the top of the stack must not change, and we have new transitions
((s, c′), γ) ∈ δ((s, c), a, γ) for all γ ∈ Γ.

• If s = + and ∆h = 1 then we must push a counter onto the stack, so we have the
new transitions ((+, c′), Xγ) ∈ δ((+, c), a, γ) for all γ ∈ Γ.

• If s = − and ∆h = −1 then we must push a counter onto the stack, so we have the
new transitions ((−, c′), Xγ) ∈ δ((−, c), a, γ) for all γ ∈ Γ.

• If s = + and ∆h = −1 then we must pop a counter off the stack if possible, or else
switch the sign of the carry, so we have the new transitions ((+, c′), ε) ∈ δ((+, c), a, X)
and ((−, c′), Z) ∈ δ((+, c), a, Z).

• If s = − and ∆h = 1 then we must pop a counter off the stack if possible, or else
switch the sign of the carry, so we have the new transitions ((−, c′), ε) ∈ δ((−, c), a, X)
and ((−, c′), Z) ∈ δ((−, c), a, Z).

Now we must account for transitions to the END state. First, since we wish to accept upon
arrival at the END state, and we accept via the empty stack, we want to pop all stack
symbols off the empty stack, so we have transitions δ(END, ε, γ) = (END, ε) for all γ ∈ Γ.

16

Second, we must determine the transitions from the (sign, carry) states to END. Since
we do not wish to accept any values with a leading 0, and we read the most significant bit
last, we add a non-deterministic transition upon reading a 1 from any (sign, carry) state
for which reading a 1 results in the positive sign (so s2(y) > s2(x)) and the stack is high
enough that reading the remaining digits of the carry would not flip that sign; put another
way, we add a transition if after reading 1 · 0log2 k the PDA would arrive in the state (+,0).
This non-deterministic transition must arrive in the END state after popping s2(k + c)− 1
counters off the stack. Since the model of PDA with which we’re working does not allow
a transition to pop multiple symbols off the stack, we must add log2(k) − 1 intermediate
states that ε-transition to END while popping counters off the stack. Now we are done.

For example, the PDA M3 is depicted in Figure 3.1.

Figure 3.1: The PDA M3 recognizes the language (F3,2)
R
2 unambiguously.

One crucially important property of our construction is that our PDA Mk is unambigu-
ous . We know this because of the following:

1. All transitions between (sign, carry) states are deterministic and read input.

2. For Mk to accept a word, it must arrive at the END state, in order to pop the Z off
the stack.

3. The only non-deterministic transitions are not followed by any transitions that read
any more symbols, so in essence it is using non-determinism to decide when to stop
reading the input. For each word in the language, this can only happen in one place.

Thus for each word in (Fk,2)
R
2 , there is exactly one accepting path through Mk, so Mk is

unambiguous.

3.3 Converting the PDA to an equivalent CFG

We can convert Mk to an equivalent context-free grammar Gk using the triple construction.
This gives us a grammar Gk with O(k2) variables and O(k3) productions.

17

Since Mk is an unambiguous PDA, we know that Gk must be an unambiguous CFG [13,
Thm. 5.4.3, p. 151].

3.3.1 Simplifying the CFG

The resulting CFG Gk is likely to contain useless variables and productions, so we simplify
the grammar using the steps outlined in Step 3 of Section 2.1. Because these changes do
not affect any useful productions, the simplified grammar is also unambiguous. When we
cleaning G3 using this procedure, we obtain the following grammar G′3:

S → 1F | 0S A→ 1E | 0A
B → 1G | 0B C → 1H | 1 | 0C
D → 1I | 0D E → 1 | 0AJ
F → 1N | 0AK G→ 1LB | 0
H → 1M | 1LC | 1 I → 1M | 1LD | 1 | 0S
J → 1J | 0E K → 1K | 0F
L→ 1L | 0G M → 1M | 1 | 0H
N → 1N | 0I

3.4 Converting the CFG to a system of equations

This transformation was discussed in [9] and proven in [16, 18]. It suffices to replace, in
each set of productions A → α1 | α2 | . . . | αi of a grammar G, each terminal symbol by
the indeterminate x, each | symbol by a plus sign, and the → with an equals sign.

Performing this transformation on G′3 gives us the following system of equations:

S = xF + xS A = xE + xA

B = xG+ xB C = xH + x+ xC

D = xI + xD E = x+ xAJ

F = xN + xAK G = xLB + x

H = xM + xLC + x I = xM + xLD + x+ xS

J = xJ + xE K = xK + xF

L = xL+ xG M = xM + x+ xH

N = xN + xI

18

3.5 Solving the system

We can now solve the resulting system of equations for S, obtaining an algebraic equation
for which S is the root. The main tool is Gröbner bases, for which a helpful package
already exists in Maple.

Using the code given in Appendix B.1.1, we find the following quadratic equation for
S in the case k = 3.

x(2x−1)2(x+1)(2x2−x+1)S(x)2+(2x−1)(x−1)2(x+1)(2x2−x+1)S(x)+x4(x2−x+1) = 0.

Solving this quadratic for S gives

S(x) =
−(x− 1)2(x+ 1)(2x2 − x+ 1) +

√
−(x− 1)(2x− 1)(2x2 − x+ 1)(x3 + x2 − x+ 1)2

2x(2x− 1)(x+ 1)(2x2 − x+ 1)
.

Since the grammarG′3 is unambiguous, the formal power series S(x) is the census generating
function for the set (F3,2)

R
2 . In particular, this means that [xN]S(x) = |F3,2∩ [2N−1, 2N)|, or

in other words, the coefficient of xN in S(x) is the number k-flimsy numbers in [2N−1, 2N).

3.6 Asymptotics

Finally, we use Bruno Salvy’s gdev package [19] to perform Flajolet-Sedgewick-style asymp-
totic analysis [11, § VII. 7.1] to determine an asymptotic formula for the N th coefficient of
the power series expansion for S(x). When we run this on our formula for S(x), using the
code found in Appendix B.1.1, we get our desired result.

This completes our discussion of the proof of Theorem 2.

Corollary 5. The number of 3-flimsy numbers < 2N is 2N−1 −O(2NN−1/2).

Proof. For any real number a > 0 we have

2NN−a ≤
∑

1≤n≤N

2nn−a ≤
∑

1≤n≤N/2

2nn−a +
∑

N/2<n≤N

2nn−a

≤
∑

1≤n≤N/2

2n + (N/2)−a
∑

N/2<n≤N

2n

≤ 2N/2+1 + (N/2)−a2N+1.

Summing (3.1) and applying the inequalities above gives the desired result.

19

Chapter 4

Generalizations

4.1 Results for other values of k in binary

4.1.1 Results for k = 5

Using the same construction as before, we can build the unambiguous PDA M5 for 5-flimsy
binary numbers, which is shown in Figure 4.1.

Figure 4.1: The PDA M5 recognizes the language (F5,2)
R
2 unambiguously.

Converting M5 into the unambiguous CFG G5 and simplifying it produces the grammar

20

G′5 as follows:

S → 1V1 | 0S V1 → 1V29 | 0V27
V2 → 1V36 | 1 | 0V2 V3 → 1V3 | 0V12
V4 → 1V4 | 1 | 0V36 V5 → 1V10V37 | 1V20V2 | 1V24 | 1V4 | 1
V6 → 1V28 | 0V6 V7 → 1V10V21 | 1V20V11 | 0
V8 → 1V7V8 | 1V22V25 V9 → 1V7V9 | 1V22V19 | 1V5 | 0S
V10 → 1V10 | 0V23 V11 → 1V23 | 0V11
V12 → 1V14 | 0V9 V13 → 1V13 | 0V39
V14 → 1V10V9 | 1V20V19 | 1V4 | 1 | 0V27 V15 → 1V7V15 | 1V22V26 | 0
V16 → 1V10V8 | 1V20V25 V17 → 0V6V33 | 0V18V34
V18 → 1V39 | 0V18 V19 → 1V12 | 0V19
V20 → 1V20 | 0V31 V21 → 1V7V21 | 1V22V11
V22 → 1V10V15 | 1V20V26 V23 → 1V7 | 0V21
V24 → 1V24 | 0V35 V25 → 1V35 | 0V25
V26 → 1V31 | 0V26 V27 → 1V14 | 0V6V30 | 0V18V29
V28 → 1V34 | 0V17 V29 → 1V3 | 0V17V30 | 0V32V29
V30 → 1V30 | 0V1 V31 → 1V22 | 0V15
V32 → 1 | 0V6V13 | 0V18V38 V33 → 1V33 | 0V28
V34 → 1 | 0V17V33 | 0V32V34 V35 → 1V16 | 1 | 0V8
V36 → 1V5 | 0V37 V37 → 1V7V37 | 1V22V2 | 1V16 | 1V5 | 1
V38 → 0V17V13 | 0V32V38 V39 → 1V38 | 0V32

21

This yields the following system of equations:

S = xV1 + xS V1 = xV29 + xV27

V2 = xV36 + x+ xV2 V3 = xV3 + xV12

V4 = xV4 + x+ xV36 V5 = xV10V37 + xV20V2 + xV24 + xV4 + x

V6 = xV28 + xV6 V7 = xV10V21 + xV20V11 + x

V8 = xV7V8 + xV22V25 V9 = xV7V9 + xV22V19 + xV5 + xS

V10 = xV10 + xV23 V11 = xV23 + xV11

V12 = xV14 + xV9 V13 = xV13 + xV39

V14 = xV10V9 + xV20V19 + xV4 + x+ xV27 V15 = xV7V15 + xV22V26 + x

V16 = xV10V8 + xV20V25 V17 = xV6V33 + xV18V34

V18 = xV39 + xV18 V19 = xV12 + xV19

V20 = xV20 + xV31 V21 = xV7V21 + xV22V11

V22 = xV10V15 + xV20V26 V23 = xV7 + xV21

V24 = xV24 + xV35 V25 = xV35 + xV25

V26 = xV31 + xV26 V27 = xV14 + xV6V30 + xV18V29

V28 = xV34 + xV17 V29 = xV3 + xV17V30 + xV32V29

V30 = xV30 + xV1 V31 = xV22 + xV15

V32 = x+ xV6V13 + xV18V38 V33 = xV33 + xV28

V34 = x+ xV17V33 + xV32V34 V35 = xV16 + x+ xV8

V36 = xV5 + xV37 V37 = xV7V37 + xV22V2 + xV16 + xV5 + x

V38 = xV17V13 + xV32V38 V39 = xV38 + xV32

Solving this system using our method in Maple takes 20.60 seconds and uses 179.8 MB
of RAM on a server with an Intel Xeon E5-2697 2.60GHz v3 CPU. The solution gives us
an algebraic equation of S(x) and x that is sextic in terms of S with coefficients that are
polynomials on x of degree up to 26. It can be seen in Appendix B.1.2.

Finally, we obtain our desired asymptotic result: the number of 5-flimsy binary numbers
in the interval [2N−1, 2N) is

2N

(
1

4
+

√
5√
π

(
−3

8
N−1/2 +

799

1920
N−3/2 − 16623

20480
N−5/2 +

7343297

4915200
N−7/2 + · · ·

))
(as stated previously in Remark 4) thus proving Theorem 3.

4.1.2 Results for k = 7

Once again, we compute the unambiguous PDA M7 that recognizes (F7,2)
R
2 , shown in

Figure 4.2.

22

Figure 4.2: The PDA M7 recognizes the language (F7,2)
R
2 unambiguously.

23

The resulting CFG simplifies to 70 variables, listed in Appendix A.1.1. We attempted
to solve the system of 70 equations on 70 variables in Maple on the same Intel Xeon E5-
2697 2.60GHz v3 CPU server we used for k = 5 using the code found in Appendix B.1.3.
Maple took 12 days (1, 058, 356 seconds) and required over 31 GB of RAM. This algebraic
solution is a polynomial in S (where S is the generating series of (F7,2)

R
2) of order 20, with

coefficients of polynomials x of order up to 186, themselves with integer coefficients as large
as 31 decimal digits. However, after three weeks of computing and nearly 400 GB of RAM
usage, the server could not give Maple any more memory and stopped the program before
it could find any asymptotics of the coefficients of S(x). So we could not determine the
asymptotic behaviour of F7,2 using this method.

4.2 The k-equal numbers

Our method so far has been used to compute s2(n) − s2(kn) > 0. However, it can easily
be modified to compute other conditions, such as s2(n)− s2(kn) < a or s2(n)− s2(kn) = a
for a ∈ Z. We will now examine s2(n)− s2(kn) = 0.

Stolarsky showed that the number of integers n ∈ [2N , 2N+1) with s2(3n) − s2(n) = a

is asymptotic to
√

3
2πN

2Ne−3a
2/2N for |a| ≤ (N − 1)2/3−ε where ε > 0, [23].

Naturally a = 0 satisfies the criterion on a, so it follows that the number of solutions

to s2(3n) = s2(n) for n ∈ [2N−1, 2N) is asymptotic to 2N−1
√

3
2πN

. We confirm this result

using our method, and expand it to k = 5 as well.

We define an integer n to be k-equal in base b if sb(n) = sb(kn). We denote the set of
such numbers as Ek,b = {n : sb(n) = sb(kn)}.

To modify our construction of Mk to recognize the language of k-equal binary numbers
instead of the k-flimsy numbers, we want the automaton to keep track of s2(kn) − s2(n)
as before, but now we want the automaton to accept when s2(kn) − s2(n) = 0 instead of
when s2(kn) − s2(n) < 0. To do this we modify the acceptance condition (that is, the
transitions to END); but do not modify the (sign, carry) states, nor the transitions between
them.

We want to find all the states from which reading 1 · 0blog2(k)c results in being in state
(−, 0) with an empty stack, and keep track of the necessary height of the stack to reach
that goal. To do this, we perform a search, starting with the final state (and empty stack),
and reading the input 1 ·0blog2(k)c in reverse order (following transitions from destination to
origin). Then, for each state q and stack height h that can lead to this goal, we add a chain
of h+1 transitions from q to END upon reading a 1 that pop exactly h counters off the stack.
(Note that END cannot pop counters off the stack in this case, so δ(END, ε, X) = ∅.) The
resulting PDA is unambiguous for the same reasons that the k-flimsy PDA is. Figures 4.3
and 4.4 show the k-equal PDAs for k = 3 and 5, respectively. As with the 7-flimsy numbers,
the computation for the 7-equal numbers required too many resources.

24

Figure 4.3: This PDA recognizes the language (E3,2)
R
2 unambiguously.

Figure 4.4: This PDA recognizes the language (E5,2)
R
2 unambiguously.

Once the unambiguous PDAs are constructed, we can use our method to compute the
number of length-N k-equal binary numbers, as before. The grammars and Maple code
can be viewed in Appendices A and B respectively.

Theorem 6. The number of 3-equal numbers in base 2 in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O

(
N−3/2

))
, (4.1)

where c =
√
3

2
√
2π

.
= 0.3454941.

More specifically, we compute the number of N -bit 3-equal binary numbers to be

2N
√

6√
π

(
1

4
N−1/2 − 1

6
N−3/2 +

29

96
N−5/2 − 515

2304
N−7/2 + · · ·

)
.

25

This aligns exactly with Stolarsky’s result, [23] but provides more accurate approximations.

Theorem 7. The number of 5-equal numbers in base 2 in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O

(
N−3/2

))
, (4.2)

where c =
√
5

4
√
π

.
= 0.3153916.

More specifically, we compute the number of N -bit 5-equal binary numbers to be

2N
√

5√
π

(
1

4
N−1/2 − 361

960
N−3/2 +

46993

51200
N−5/2 − 2995327

2457600
N−7/2 + · · ·

)
.

4.3 The k-flimsy numbers in base b

Now, our approach works in all bases b ≥ 2. However, to construct our PDA we must
modify the algorithm in Section 3.2 to accommodate this, because the stack may need to
account for more than one push/pop at a time. (Note: this depends on the implementation
of the model PDA; however, the Hopcroft-Ullman triple construction assumes that PDA
transitions do not pop more than one element from the stack at a time, so we must do this
in order to follow the same method when converting our PDA into a CFG.)

For our PDA Mk,b, we must have three kinds of states. We must have the same kinds of
states as before; plus another set of intermediate states for multiple pushes or pops between
two (sign, carry) states. These states are simple: they each have one epsilon transition
that pushes one item onto the stack, or pops one item off the stack, forming a chain of
ε-transitions linking two (sign, carry) states in order to accomplish multiple pushes/pops.
This is necessary because the standard formulation of a PDA cannot pop more than one
item off the stack in a single transition (we chose to perform multiple pops in the same
way for simplicity). Multi-pop transitions must also connect to their equivalent multi-push
transitions if there are no more counters to pop; for an example of this behaviour, see
Figure 4.5.

Figure 4.5: Transitions in 4-flimsy base-10 PDA, on reading a 9 with a carry of 0.

Additionally, when constructing these PDAs in higher bases, we must consider transi-
tions from (−, carry) states to END, because it is possible for the PDA to transition from

26

a state (−, c1) to a (+, c2) state with multiple pops and pushes, and end with multiple
counters on the stack. In the case that such a transition results in more at least sb(c2)
counters on the stack, and the symbol read is not a 0, there should also be a transition (or
chain of transitions) from (−, c1) to the END upon reading this symbol. This is opposed to
what happens in base 2, where all transitions to END must start from a (+, c) state. Note
that because transitions from a (−, c) state to END require popping all the counters off the
stack and then some, here we must pop at most a maximum number of counters off the
stack, instead of popping at least a minimum number of counters. To do this, one can
either use a separate END state, or reuse the same END state but via a path that requires
emptying the stack completely first (that is, popping off the base symbol Z). For the sake
of simplicity, we use the latter in this thesis.

4.3.1 Some results

Using this method, we are able to build PDAs that recognizes the languages (F2,3)
R
3 and

(F2,4)
R
4 . That is, the 2-flimsy numbers in base 3 and base 4. These PDAs can be seen in

figures 4.6 and 4.7 respectively.

Figure 4.6: This PDA recognizes the language (F2,3)
R
3 unambiguously.

27

Figure 4.7: This PDA recognizes the language (F2,4)
R
4 unambiguously.

By applying our method, we obtain the following results.

Theorem 8. The number of 2-flimsy numbers in base 3 in the interval [3N−1, 3N) is

3N
(

1

3
− cN−1/2 +O

(
N−3/2

))
, (4.3)

where c = 1√
3π

.
= 0.32573501.

Theorem 9. The number of 2-flimsy numbers in base 4 in the interval [4N−1, 4N) is

4N
(

3

8
− cN−1/2 +O

(
N−3/2

))
, (4.4)

where c = 3
8
√
π

.
= 0.211571094.

Remark 10. More specifically, we compute that the number of 2-flimsy numbers in base 3
in the interval [3N−1, 3N) is

3N

(
1

3
+

√
3√
π

(
−1

3
N−1/2 +

1

48
N−3/2 − 13

1536
N−5/2 +

65

24576
N−7/2 + · · ·

))

Similarly we compute that the number of 2-flimsy numbers in base 4 in the interval
[4N−1, 4N) is

4N
(

3

8
+

1√
π

(
−3

8
N−1/2 +

7

64
N−3/2 +

21

1024
N−5/2 +

85

8192
N−7/2 + · · ·

))

28

Unfortunately, as with the 7-flimsy binary numbers (see subsection 4.1.2), we were
unable to apply this method to obtain results for the 4-flimsy ternary numbers, the 3-
flimsy base-4 numbers, or the 2-flimsy base-5 numbers due to the amount of time and
memory required to compute these results via this method.

4.3.2 Our conjectures

We have shown that the proportions of N -digit numbers in bases 3 and 4 that are 2-flimsy
approaches 1

2
as N → ∞. This is interesting, because it shows that not only binary

numbers are k-flimsy with density 1
2
. It also shows that, for k 6= bm for all integers m ≥ 0,

it is not required that gcd(b, k) = 1 for this pattern to be observed. Indeed, Bašic proved
in [6] that k 6= bm implies that a k-flimsy number in base b exists. From these results, we
make the following conjecture.

Conjecture 11.

lim
N→∞

∣∣Fb,k ∩ [bN−1, bN)
∣∣

bN − bN−1
=

{
0, k = bm,m ∈ Z;
1
2
, otherwise.

We note that this conjecture was proven for b = 2 in [21], but remains to be proven
for values of b ≥ 3. Moreover, it is likely that the natural density of Fb,k is 1

2
for k 6= bm;

which we formally state as follows.

Conjecture 12.

lim
n→∞

|Fb,k ∩ {1, 2, . . . , n}|
n

=

{
0, k = bm,m ∈ Z;
1
2

otherwise.

We note that Conjecture 12 is strictly stronger than Conjecture 11. That is, the
proposition that half of the N -digit numbers are k-flimsy does not directly imply that
the density converges. If, say, all the integers in the interval [bN−1, 1

2
bN−1(b+ 1)) were not

k-flimsy, while all the integers in the interval [1
2
bN−1(b + 1), bN) were k-flimsy, then the

natural density of Fk,b would oscillate between 1
4

and 1
2

and never converge. We present
heuristic arguments (not a rigorous proof) for these conjectures in the following section.

4.3.3 A heuristic argument regarding density

Fix b ≥ 2 and k 6= bm for all m. Using our procedure, build the automaton Mk,b that
recognizes the language (Fk,b)

R
b . Recall that the stack height must change by ∆h, where

29

∆h = a − (ka + c mod b) upon reading symbol a from a carry c. Since 0 ≤ a ≤ b − 1 we
observe that 1− b ≤ ∆h ≤ b− 1.

At a given point in reading the input, the carry can be any value 0 ≤ c ≤ k− 1, which
combined with the modulo operator in the definition of ∆h provides a leveling effect; so
∆h should be positive or negative with roughly equal probability. It follows that Mk,b

contains as many transitions from (−, carry) states to (+, carry) states as transitions from
(+, carry) states to (−, carry) states. That is, the value of sb(n) − sb(kn) increases and
decreases with equal probability as digits of n are read.

Because of this, reading an arbitrary N -digit number is akin to a random walk through
Mk,b, and the odds of that walk ending in a (+, carry) state approaches 1

2
.

Now, Mk,b does not simply simply accept when reading the last symbol transitions to
a (+, carry) state, but rather, when reading the last symbol followed by (logb(k) + 1) 0’s
would end in the state (+, 0); that is the simulation that Mk,b performs when determining
the transitions to the END state. Recall that this is for the purpose of simulating reading
the |(kn)b|− |(n)b| most significant digits of kn. In simple terms, we must simulate reading
the leftover carry after reading the last symbol.

However, reading the leftover carry c would only affect the stack by sb(c) ≤ (b−1)logb(k),
which is a constant. So for sufficiently large values of N , where the variance of the stack
height after reading N digits is considerably greater than (b− 1)logb(k), reading the leftover
carry should not alter whether or not most N -digit numbers are accepted by Mk,b, so
ending in a (+, carry) state following an N -step random walk through Mk,b is a good
approximation of whether or not the walk corresponds to an N -digit k-flimsy number in
base b. Thus we conclude that approximately half of all N -digit base-b numbers should be
k-flimsy, as required for Conjecture 11.

Now, since the most significant digits affect the height stack no more than any other
digits of the input, we expect to see k-flimsy numbers distributed nearly uniformly among
the integers of [bN−1, bN) as N → ∞. Thus, we expect that the natural density should
converge to 1

2
, as required for Conjecture 12.

30

Chapter 5

Next Steps

5.1 Open problems

5.1.1 Efficient solutions

Due to the computational demands of solving Gröbner bases and computing the asymptotic
behaviour of their solutions, we were unable to compute any nontrivial results except for
the asymptotics of F3,2, F5,2, F2,3, and F2,4. Should more efficient methods be found, or
less general solutions that apply to these cases, we may be able to compute more values in
the future. However, such a task is well beyond the scope of this thesis.

5.1.2 Alternative CFG constructions

Perhaps an alternative method of creating a CFG that generates (Fb,k)
R
b would be helpful

in solving the solution more quickly. Notably, Sipser [22] provides an alternative method
to convert a PDA to a CFG. However, since the CFGs we obtained were simplified dra-
matically as described in step 3 outlined in Section 2.1, it is not clear if using an alternate
construction that creates fewer variables or productions would actually result in a CFG
with fewer variables/productions when simplified.

Additionally, the number of variables does not correlate directly to the complexity of the
system. For instance, solving the Gröbner basis for F5,2 involved a system of 40 equations
(which can be seen in Appendix B.1.2) corresponding to a CFG with 40 variables and was
solved in under 30 seconds using less than 200 MB of memory, while the Gröbner basis for
F2,5 involved a system of just 21 equations (which can be seen in Appendix B.4.1), but did
not finish in 21 days of computation with 59 GB of memory. Since the underlying language
being represented (namely (Fk,b)

R
b) is the same, I believe that finding an alternative CFG

construction is an unlikely means of improving our results.

31

5.2 CFLpy software

The software used for this thesis is provided in the public repository of Python code:

https://git.uwaterloo.ca/Flimsy/CFLpy

The software repository provides the following functionality:

1. Create a PDA (that accepts by empty stack)

2. Test whether or not a PDA accepts a given word

3. Create a transition diagram for a PDA as a GraphViz file

4. Create a CFG

5. Simplify the CFG using the the procedure described in step 3 of Section 2.1

6. Convert a PDA to a CFG using the Hopcroft-Ullman triple construction

7. Generate the first n words for a given integer n, from shortest to longest, generated
by a CFG

8. Print the CFG in a readable fashion

9. Print the Maple code for determining the asymptotic behaviour of the generating
series of the language L(G) for a CFG G

Additionally, the repository includes a factory for creating PDAs, with various sample
PDAs described in this thesis (for example, {ambncm : m,n ≥ 0}, the Dyck language, and
the palindrome language) as well as functions for generating k-flimsy PDAs in any base b,
and k-equal binary PDAs. For more details on how to use the software, see the README file
included in the repository.

32

https://git.uwaterloo.ca/Flimsy/CFLpy

References

[1] J. Arndt. Matters Computational. Springer-Verlag, 2011.

[2] A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics
of lattice paths with forbidden patterns: enumerative aspects. In S. T. Klein et al.,
editors, LATA 2018, volume 10792 of Lecture Notes in Computer Science, pages 195–
206. Springer-Verlag, 2018.

[3] A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics
of lattice paths with forbidden patterns, the vectorial kernel method, and generating
functions for pushdown automata. Algorithmica, 82:386–428, 2020.

[4] C. Banderier and M. Drmota. Coefficients of algebraic functions: formulae and asymp-
totics. In FPSAC 2013, volume AS of DMTCS Proc., pages 1065–1076. 2013.

[5] C. Banderier and M. Drmota. Formulae and asymptotics for coefficients of algebraic
functions. Combin. Prob. Comput., 24:1–53, 2015.

[6] B. Bašić. The existence of n-flimsy numbers in a given base. Ramanujan J., 43:359–
369, 2017.

[7] B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a
Zero-Dimensional Polynomial Ideal. PhD thesis, University of Innsbruck, Institute
for Mathematics, 1965.

[8] L. H. Y. Chen, H.-K. Hwang, and V. Zacharovas. Distribution of the sum-of-digits
function of random integers: a survey. Prob. Surveys, 11:177–236, 2014.

[9] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages.
In P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Sys-
tems, pages 118–161. North Holland, Amsterdam, 1963.

[10] Trevor Clokie, Thomas F. Lidbetter, Antonio J. Molina Lovett, Jeffrey Shallit, and
Leon Witzman. Computational Fun with Sturdy and Flimsy Numbers. In 10th In-
ternational Conference on Fun with Algorithms (FUN 2021), volume 157 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 10:1–10:21, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

33

[11] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

[12] H. Gruber, J. Lee, and J. Shallit. Handbook of automata vol. 1.

[13] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[15] I. Kátai. Change of the sum of digits by multiplication. Acta Sci. Math. (Szeged),
39:319–328, 1977.

[16] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, 1986.

[17] Maplesoft. Algorithms used by groebner[basis]. https://www.maplesoft.com/

support/help/Maple/view.aspx?path=Groebner/Basis_algorithms. Accessed:
2020-02-23.

[18] A. Panholzer. Gröbner bases and the defining polynomial of a context-free grammar
generating function. J. Automata, Languages, and Combinatorics, 10:79–97, 2005.

[19] B. Salvy. gdev package of algolib version 17.0. Available at http://algo.inria.fr/
libraries/, 2013.

[20] J. Schmid. The joint distribution of the binary digits of integer multiples. Acta Arith.,
43:391–415, 1984.

[21] W. M. Schmidt. The joint distributions of the digits of certain integer s-tuples. In
P. Erdős, editor, Studies in Pure Mathematics to the Memory of Paul Turán, pages
605–622. Birkhäuser, 1983.

[22] M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.

[23] K. B. Stolarsky. Integers whose multiples have anomalous digital frequencies. Acta
Arith., 38:117–128, 1980/81.

34

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis_algorithms
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis_algorithms
http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/

Appendix A

Flimsy Grammars

A.1 Base 2

A.1.1 7-flimsy base-2 grammar

S → 0S | 1V63 V1 → 1V60 | 1V18 | 1V36V50 | 1V22V64 | 1V5V17 | 1
V2 → 1V57V20 | 1V32V21 | 1V28V49 V3 → 0V30V12 | 0V40V69 | 0V44V3 | 1
V4 → 0V49 | 1V28 V5 → 0V2 | 1V5
V6 → 0V6 | 1V61 V7 → 0V7 | 1V58 | 1
V8 → 0V8 | 1V16 V9 → 0V8V10 | 0V6V65 | 0V11V48 | 1V37
V10 → 0V54 | 1V48 V11 → 0V11 | 1V25
V12 → 0V40 | 1V3 V13 → 0V47 | 1V57
V14 → 1V1 | 1V41 | 1V57V50 | 1V32V64 | 1V28V17 | 1 V15 → 0V19 | 1V35
V16 → 0V67V23 | 0V42V56 | 0V59V27 V17 → 0V50 | 1V45 | 1
V18 → 0V58 | 1V18 | 1 V19 → 0 | 1V13V19 | 1V35V55 | 1V4V15
V20 → 1V13V20 | 1V35V21 | 1V4V49 V21 → 0V21 | 1V2
V22 → 0V51 | 1V22 V23 → 0V30 | 1V27
V24 → 0V30V46 | 0V40V33 | 0V44V24 V25 → 0V67V46 | 0V42V33 | 0V59V24 | 1
V26 → 1V13V26 | 1V35V7 | 1V4V62 V27 → 0V30V23 | 0V40V56 | 0V44V27
V28 → 0 | 1V36V20 | 1V22V21 | 1V5V49 V29 → 0V29 | 1V34
V30 → 0V67 | 1V23 V31 → 0V54 | 1V60 | 1V36V38 | 1V22V52 | 1V5V43
V32 → 1V36V19 | 1V22V55 | 1V5V15 V33 → 0V25 | 1V33
V34 → 0 | 1V57V39 | 1V32V29 | 1V28V47 V35 → 0V15 | 1V32
V36 → 0V34 | 1V36 V37 → 0V43 | 1V31
V38 → 0S | 1V45 | 1V13V38 | 1V35V52 | 1V4V43 | 1 V39 → 1V13V39 | 1V35V29 | 1V4V47

35

V40 → 0V42 | 1V12 V41 → 1V36V26 | 1V22V7 | 1V5V62
V42 → 0V8V12 | 0V6V69 | 0V11V3 V43 → 0V38 | 1V37
V44 → 0V59 | 1V46 V45 → 0V17 | 1V1
V46 → 0V44 | 1V24 V47 → 0V39 | 1V13
V48 → 0V30V10 | 0V40V65 | 0V44V48 | 1V53 V49 → 0V20 | 1V4
V50 → 1V45 | 1V66 | 1V13V50 | 1V35V64 | 1V4V17 | 1 V51 → 1V57V19 | 1V32V55 | 1V28V15
V52 → 0V52 | 1V68 V53 → 0V68 | 1V53
V54 → 0V9 | 1V10 V55 → 0V55 | 1V51
V56 → 0V16 | 1V56 V57 → 1V36V39 | 1V22V29 | 1V5V47
V58 → 1V57V26 | 1V32V7 | 1V28V62 V59 → 0V8V46 | 0V6V33 | 0V11V24
V60 → 0V14 | 1V60 V61 → 0V67V12 | 0V42V69 | 0V59V3
V62 → 0V26 | 1V66 V63 → 0V67V10 | 0V42V65 | 0V59V48 | 1V31
V64 → 0V64 | 1V14 V65 → 0V63 | 1V65
V66 → 0V62 | 1V41 | 1 V67 → 0V8V23 | 0V6V56 | 0V11V27 | 1
V68 → 0V9 | 1V1 | 1V57V38 | 1V32V52 | 1V28V43 V69 → 0V61 | 1V69

36

Appendix B

Maple code

B.1 Base 2

B.1.1 3-flimsy base-2

eqs := [-S + x*F + x*S ,

-A + x*E + x*A,

-B + x*G + x*B,

-C + x*H + x + x*C,

-D + x*_I + x*D,

-E + x + x*A*J,

-F + x*N + x*A*K,

-G + x*L*B + x,

-H + x*M + x*L*C + x,

-_I + x*M + x*L*D + x + x*S,

-J + x*J + x*E,

-K + x*K + x*F,

-L + x*L + x*G,

-M + x*M + x + x*H,

-N + x*N + x*_I]:

Groebner[Basis](eqs, lexdeg([A,B,C,D,E,F,G,H,_I,J,K,L,M,N], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[1]:

libname := ".",libname:

combine(equivalent(ps, x, n, 5));

37

B.1.2 5-flimsy base-2

eqs := [-S + x*V_1 + x*S,

-V_1 + x*V_29 + x*V_27,

-V_2 + x*V_36 + x + x*V_2,

-V_3 + x*V_3 + x*V_12,

-V_4 + x*V_4 + x + x*V_36,

-V_5 + x*V_10*V_37 + x*V_20*V_2 + x*V_24 + x*V_4 + x,

-V_6 + x*V_28 + x*V_6,

-V_7 + x*V_10*V_21 + x*V_20*V_11 + x,

-V_8 + x*V_7*V_8 + x*V_22*V_25,

-V_9 + x*V_7*V_9 + x*V_22*V_19 + x*V_5 + x*S,

-V_10 + x*V_10 + x*V_23,

-V_11 + x*V_23 + x*V_11,

-V_12 + x*V_14 + x*V_9,

-V_13 + x*V_13 + x*V_39,

-V_14 + x*V_10*V_9 + x*V_20*V_19 + x*V_4 + x + x*V_27,

-V_15 + x*V_7*V_15 + x*V_22*V_26 + x,

-V_16 + x*V_10*V_8 + x*V_20*V_25,

-V_17 + x*V_6*V_33 + x*V_18*V_34,

-V_18 + x*V_39 + x*V_18,

-V_19 + x*V_12 + x*V_19,

-V_20 + x*V_20 + x*V_31,

-V_21 + x*V_7*V_21 + x*V_22*V_11,

-V_22 + x*V_10*V_15 + x*V_20*V_26,

-V_23 + x*V_7 + x*V_21,

-V_24 + x*V_24 + x*V_35,

-V_25 + x*V_35 + x*V_25,

-V_26 + x*V_31 + x*V_26,

-V_27 + x*V_14 + x*V_6*V_30 + x*V_18*V_29,

-V_28 + x*V_34 + x*V_17,

-V_29 + x*V_3 + x*V_17*V_30 + x*V_32*V_29,

-V_30 + x*V_30 + x*V_1,

-V_31 + x*V_22 + x*V_15,

-V_32 + x + x*V_6*V_13 + x*V_18*V_38,

-V_33 + x*V_33 + x*V_28,

-V_34 + x + x*V_17*V_33 + x*V_32*V_34,

-V_35 + x*V_16 + x + x*V_8,

-V_36 + x*V_5 + x*V_37,

-V_37 + x*V_7*V_37 + x*V_22*V_2 + x*V_16 + x*V_5 + x,

-V_38 + x*V_17*V_13 + x*V_32*V_38,

-V_39 + x*V_38 + x*V_32]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

38

V_11, V_12, V_13, V_14, V_15, V_16, V_17, V_18, V_19, V_20, V_21, V_22, V_23,

V_24, V_25, V_26, V_27, V_28, V_29, V_30, V_31, V_32, V_33, V_34, V_35, V_36,

V_37, V_38, V_39], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[3]:

libname := ".",libname:

combine(equivalent(ps, x, n, 5));

B.1.3 7-flimsy base-2

eqs := [-S + x*S + x*V_63

-V_1 + x*V_60 + x*V_18 + x*V_36 V_50 + x*V_22 V_64 + x*V_5 V_17 + x

-V_2 + x*V_57 V_20 + x*V_32 V_21 + x*V_28 V_49

-V_3 + x*V_30 V_12 + x*V_40 V_69 + x*V_44 V_3 + x

-V_4 + x*V_49 + x*V_28

-V_5 + x*V_2 + x*V_5

-V_6 + x*V_6 + x*V_61

-V_7 + x*V_7 + x*V_58 + x

-V_8 + x*V_8 + x*V_16

-V_9 + x*V_8 V_10 + x*V_6 V_65 + x*V_11 V_48 + x*V_37

-V_10 + x*V_54 + x*V_48

-V_11 + x*V_11 + x*V_25

-V_12 + x*V_40 + x*V_3

-V_13 + x*V_47 + x*V_57

-V_14 + x*V_1 + x*V_41 + x*V_57 V_50 + x*V_32 V_64 + x*V_28 V_17 + x

-V_15 + x*V_19 + x*V_35

-V_16 + x*V_67 V_23 + x*V_42 V_56 + x*V_59 V_27

-V_17 + x*V_50 + x*V_45 + x

-V_18 + x*V_58 + x*V_18 + x

-V_19 + x + x*V_13 V_19 + x*V_35 V_55 + x*V_4 V_15

-V_20 + x*V_13 V_20 + x*V_35 V_21 + x*V_4 V_49

-V_21 + x*V_21 + x*V_2

-V_22 + x*V_51 + x*V_22

-V_23 + x*V_30 + x*V_27

-V_24 + x*V_30 V_46 + x*V_40 V_33 + x*V_44 V_24

-V_25 + x*V_67 V_46 + x*V_42 V_33 + x*V_59 V_24 + x

-V_26 + x*V_13 V_26 + x*V_35 V_7 + x*V_4 V_62

-V_27 + x*V_30 V_23 + x*V_40 V_56 + x*V_44 V_27

-V_28 + x + x*V_36 V_20 + x*V_22 V_21 + x*V_5 V_49

-V_29 + x*V_29 + x*V_34

39

-V_30 + x*V_67 + x*V_23

-V_31 + x*V_54 + x*V_60 + x*V_36 V_38 + x*V_22 V_52 + x*V_5 V_43

-V_32 + x*V_36 V_19 + x*V_22 V_55 + x*V_5 V_15

-V_33 + x*V_25 + x*V_33

-V_34 + x + x*V_57 V_39 + x*V_32 V_29 + x*V_28 V_47

-V_35 + x*V_15 + x*V_32

-V_36 + x*V_34 + x*V_36

-V_37 + x*V_43 + x*V_31

-V_38 + x*S + x*V_45 + x*V_13 V_38 + x*V_35 V_52 + x*V_4 V_43 + x

-V_39 + x*V_13 V_39 + x*V_35 V_29 + x*V_4 V_47

-V_40 + x*V_42 + x*V_12

-V_41 + x*V_36 V_26 + x*V_22 V_7 + x*V_5 V_62

-V_42 + x*V_8 V_12 + x*V_6 V_69 + x*V_11 V_3

-V_43 + x*V_38 + x*V_37

-V_44 + x*V_59 + x*V_46

-V_45 + x*V_17 + x*V_1

-V_46 + x*V_44 + x*V_24

-V_47 + x*V_39 + x*V_13

-V_48 + x*V_30 V_10 + x*V_40 V_65 + x*V_44 V_48 + x*V_53

-V_49 + x*V_20 + x*V_4

-V_50 + x*V_45 + x*V_66 + x*V_13 V_50 + x*V_35 V_64 + x*V_4 V_17 + x

-V_51 + x*V_57 V_19 + x*V_32 V_55 + x*V_28 V_15

-V_52 + x*V_52 + x*V_68

-V_53 + x*V_68 + x*V_53

-V_54 + x*V_9 + x*V_10

-V_55 + x*V_55 + x*V_51

-V_56 + x*V_16 + x*V_56

-V_57 + x*V_36 V_39 + x*V_22 V_29 + x*V_5 V_47

-V_58 + x*V_57 V_26 + x*V_32 V_7 + x*V_28 V_62

-V_59 + x*V_8 V_46 + x*V_6 V_33 + x*V_11 V_24

-V_60 + x*V_14 + x*V_60

-V_61 + x*V_67 V_12 + x*V_42 V_69 + x*V_59 V_3

-V_62 + x*V_26 + x*V_66

-V_63 + x*V_67 V_10 + x*V_42 V_65 + x*V_59 V_48 + x*V_31

-V_64 + x*V_64 + x*V_14

-V_65 + x*V_63 + x*V_65

-V_66 + x*V_62 + x*V_41 + x

-V_67 + x*V_8 V_23 + x*V_6 V_56 + x*V_11 V_27 + x

-V_68 + x*V_9 + x*V_1 + x*V_57 V_38 + x*V_32 V_52 + x*V_28 V_43

-V_69 + x*V_61 + x*V_69]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

V_11, V_12, V_13, V_14, V_15, V_16, V_17, V_18, V_19, V_20, V_21, V_22, V_23,

40

V_24, V_25, V_26, V_27, V_28, V_29, V_30, V_31, V_32, V_33, V_34, V_35, V_36,

V_37, V_38, V_39, V_40, V_41, V_42, V_43, V_44, V_45, V_46, V_47, V_48, V_49,

V_50, V_51, V_52, V_53, V_54, V_55, V_56, V_57, V_58, V_59, V_60, V_61, V_62,

V_63, V_64, V_65, V_66, V_67, V_68, V_69], [S])):

algeq := %[1]:

f := solve(algeq, S):

ps := f[2]:

libname := ".",libname:

combine(equivalent(ps,x,n,1));

combine(equivalent(ps,x,n,2));

combine(equivalent(ps,x,n,3));

B.2 Base 3

B.2.1 2-flimsy base-2

eqs := [-S + x*V_7*V_4 + x*S + x*V_1,

-V_1 + x*V_3*V_6 + x*V_9 + x + x*S + x*V_1,

-V_2 + x + x*V_2 + x*V_3*V_2 + x*V_9 + x,

-V_3 + x*V_3*V_8 + x + x*V_3,

-V_4 + x*V_1 + x*V_7*V_4 + x*V_4,

-V_5 + x + x*V_7*V_5 + x*V_5,

-V_6 + x*S + x*V_6 + x*V_3*V_6 + x*V_9 + x,

-V_7 + x*V_7*V_5 + x*V_7 + x,

-V_8 + x + x*V_8 + x*V_3*V_8,

-V_9 + x*V_3*V_2 + x*V_9 + x + x*V_9 + x]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[1]:

libname := ".",libname:

combine(equivalent(ps, x, n, 5));

B.2.2 4-flimsy base-2

eqs := [-S + x*V_34 + x*S + x*V_22,

-V_1 + x*V_1 + x*V_11 + x*V_23,

-V_2 + V_43*V_8 + V_6*V_19,

-V_3 + V_43*V_48 + V_6*V_29,

41

-V_4 + x*V_43*V_25 + x*V_36 + x*V_6*V_32 + x + x*V_13 + x*V_18*V_25

+ x*V_33 + x*V_26*V_32,

-V_5 + x*V_5 + x*V_38 + x*V_45 + x,

-V_6 + x*V_6 + x*V_19 + x*V_26,

-V_7 + x*V_17*V_15 + x*V_49 + x*V_10 + x*V_2*V_7 + x,

-V_8 + x*V_26 + x*V_8 + x*V_19,

-V_9 + V_46*V_37 + V_24*V_41,

-V_10 + V_43*V_15 + V_5 + V_36 + V_6*V_7,

-V_11 + x*V_46*V_23 + x*V_27 + x*V_24*V_1 + x*V_12*V_23 + x*V_30 + x*V_11*V_1,

-V_12 + x*V_46*V_37 + x*V_24*V_41 + x*V_12*V_37 + x*V_11*V_41,

-V_13 + V_46*V_34 + V_27*V_47 + V_24*V_44,

-V_14 + x*V_9*V_14 + x*V_35*V_16,

-V_15 + x*V_33 + x*V_15 + x*V_7 + x,

-V_16 + x*V_16 + x*V_30 + x*V_14,

-V_17 + V_43*V_40 + V_42 + V_6*V_28,

-V_18 + x*V_43*V_40 + x*V_42 + x*V_6*V_28 + x*V_18*V_40 + x*V_21 + x*V_26*V_28,

-V_19 + x*V_17*V_8 + x*V_2*V_19 + x,

-V_20 + V_43*V_25 + V_36 + V_42*S + V_6*V_32,

-V_21 + x*V_43*V_48 + x*V_6*V_29 + x + x*V_18*V_48 + x*V_26*V_29,

-V_22 + x*V_20 + x + x*V_46*V_34 + x*V_27*V_47 + x*V_24*V_44

+ x*V_12*V_34 + x*V_30*V_47 + x*V_11*V_44,

-V_23 + x + x*V_9*V_23 + x*V_39 + x*V_35*V_1,

-V_24 + x*V_23 + x*V_24 + x*V_11,

-V_25 + x*V_4 + x*V_25 + x*V_32,

-V_26 + x*V_43*V_8 + x*V_6*V_19 + x*V_18*V_8 + x*V_26*V_19,

-V_27 + x*V_14 + x*V_27 + x*V_30,

-V_28 + x*V_17*V_40 + x*V_3 + x*V_2*V_28 + x,

-V_29 + x*V_17*V_48 + x*V_2*V_29,

-V_30 + x + x*V_46*V_14 + x*V_24*V_16 + x*V_12*V_14 + x*V_11*V_16,

-V_31 + x*V_45 + x + x*V_31 + x*V_38,

-V_32 + x*V_17*V_25 + x*V_10 + x*V_3*S + x*V_2*V_32 + x + x*S + x*V_22,

-V_33 + x*V_43*V_15 + x*V_5 + x*V_36 + x*V_6*V_7 + x + x*V_18*V_15

+ x*V_45 + x*V_33 + x*V_26*V_7 + x,

-V_34 + x*V_47 + x*V_9*V_34 + x*V_39*V_47 + x*V_35*V_44 + x*V_4,

-V_35 + V_46*V_23 + V_27 + V_24*V_1,

-V_36 + x*V_36 + x + x*V_7 + x*V_33,

-V_37 + x*V_9*V_37 + x*V_35*V_41 + x,

-V_38 + x*V_17*V_31 + x*V_2*V_38 + x,

-V_39 + V_46*V_14 + V_24*V_16,

-V_40 + x*V_18 + x*V_40 + x*V_28,

-V_41 + x*V_41 + x*V_12 + x*V_37,

-V_42 + x*V_42 + x*V_29 + x*V_21,

42

-V_43 + x*V_43 + x*V_28 + x*V_18,

-V_44 + x*V_44 + x*V_22 + x*V_34,

-V_45 + x*V_43*V_31 + x*V_6*V_38 + x*V_18*V_31 + x*V_26*V_38,

-V_46 + x*V_37 + x*V_46 + x*V_12,

-V_47 + x*V_47 + x*V_32 + x*V_4,

-V_48 + x*V_21 + x*V_48 + x*V_29,

-V_49 + V_43*V_31 + V_6*V_38]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

V_11, V_12, V_13, V_14, V_15, V_16, V_17, V_18, V_19, V_20, V_21, V_22, V_23,

V_24, V_25, V_26, V_27, V_28, V_29, V_30, V_31, V_32, V_33, V_34, V_35, V_36,

V_37, V_38, V_39, V_40, V_41, V_42, V_43, V_44, V_45, V_46, V_47, V_48, V_49],

[S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[1]:

libname := ".",libname:

combine(equivalent(ps, x, n, 1));

combine(equivalent(ps, x, n, 2));

combine(equivalent(ps, x, n, 3));

B.3 Base 4

B.3.1 2-flimsy base-4

eqs := [-S + x*S + x*V_3 + x + x*V_17*V_10 + x*V_11*V_4 + x*V_4,

-V_1 + V_17*V_10 + V_11*V_4,

-V_2 + x + x*V_2,

-V_3 + V_2*S + V_8*V_16 + V_7,

-V_4 + x*S + x*V_2*S + x*V_8*V_16 + x*V_7 + x + x*V_1 + x*V_4,

-V_5 + x*V_5 + x*V_12*V_5 + x + x*V_2 + x*V_8*V_5,

-V_6 + x*V_6 + x*V_12*V_6 + x*V_9 + x + x + x*V_8*V_6 + x*V_13 + x*V_7 + x,

-V_7 + x*V_8*V_6 + x*V_13 + x*V_7 + x + x*V_7 + x,

-V_8 + x + x*V_2 + x*V_8*V_5 + x*V_8,

-V_9 + V_8*V_6 + V_13 + V_7,

-V_10 + x*V_17*V_10 + x*V_11*V_4 + x*V_4 + x*V_14*V_10 + x*V_10,

-V_11 + x*V_11 + x,

-V_12 + V_2 + V_8*V_5,

-V_13 + x + x*V_13,

-V_14 + V_17*V_15 + V_11,

-V_15 + x*V_17*V_15 + x*V_11 + x + x*V_14*V_15 + x*V_15,

43

-V_16 + x*V_16 + x*V_12*V_16 + x*V_9 + x + x*S + x*V_2*S + x*V_8*V_16 + x*V_7 + x,

-V_17 + x*V_17 + x*V_17*V_15 + x*V_11 + x]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

V_11, V_12, V_13, V_14, V_15, V_16, V_17], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[2]:

libname := ".",libname:

combine(equivalent(ps, x, n, 5));

B.3.2 3-flimsy base-4

eqs := [-S + x*S + x*V_1 + x*V_32 + x*V_34*V_32 + x*V_29*V_36 + x*V_8*V_35,

-V_1 + V_13 + V_24*V_5 + V_19*V_15,

-V_2 + x*V_2 + x + x*V_12 + x*V_34*V_12 + x*V_8*V_23,

-V_3 + x*V_3 + x*V_14 + x*V_34*V_14 + x*V_29 + x*V_8*V_17,

-V_4 + V_24*V_30 + V_19*V_6,

-V_5 + x*V_5 + x*V_25 + x*V_10*V_5 + x*V_4*V_15 + x + x*V_15 + x*V_28,

-V_6 + x*V_24*V_30 + x*V_19*V_6 + x + x*V_16*V_30 + x*V_6*V_6,

-V_7 + x*V_7 + x*V_39 + x*V_25 + x*V_10*V_7 + x*V_4*V_20 + x + x*V_20 + x,

-V_8 + V_37*V_14 + V_2 + V_3*V_17,

-V_9 + x*V_9 + x*V_10*V_9 + x*V_4*V_27 + x*V_27 + x,

-V_10 + V_24*V_33 + V_19*V_16 + V_26,

-V_11 + V_24*V_21 + V_19*V_38,

-V_12 + x*V_37*V_12 + x*V_3*V_23 + x*V_22*V_12 + x*V_14*V_23,

-V_13 + x*V_13 + x*V_39 + x*V_25 + x*V_10*V_7 + x*V_4*V_20 + x + x*V_20 + x,

-V_14 + x*V_37*V_14 + x*V_2 + x*V_3*V_17 + x + x*V_22*V_14 + x*V_12 + x*V_14*V_17,

-V_15 + x*S + x*V_13 + x*V_24*V_5 + x*V_19*V_15 + x*V_32 + x*V_20 + x*V_16*V_5

+ x*V_6*V_15 + x,

-V_16 + x + x*V_24*V_33 + x*V_19*V_16 + x*V_26 + x*V_16*V_33 + x*V_6*V_16 + x*V_38,

-V_17 + x*V_34*V_14 + x*V_29 + x*V_8*V_17 + x*V_17 + x*V_14,

-V_18 + x*V_18 + x + x*V_10*V_9 + x*V_4*V_27 + x*V_27,

-V_19 + x*V_19 + x*V_10*V_30 + x*V_4*V_6 + x*V_6,

-V_20 + x*V_18 + x*V_13 + x*V_24*V_7 + x*V_19*V_20 + x + x*V_27 + x*V_20

+ x*V_16*V_7 + x*V_6*V_20 + x,

-V_21 + x*V_21 + x*V_10*V_21 + x*V_4*V_38 + x*V_38 + x,

-V_22 + x*V_37*V_22 + x*V_3*V_31 + x*V_22*V_22 + x*V_14*V_31 + x,

-V_23 + x*V_34*V_12 + x*V_8*V_23 + x*V_23 + x + x*V_12,

-V_24 + x*V_24 + x*V_10*V_33 + x*V_4*V_16 + x*V_11 + x*V_16,

-V_25 + V_18 + V_13 + V_24*V_7 + V_19*V_20,

-V_26 + x + x*V_26 + x*V_10*V_21 + x*V_4*V_38 + x*V_38,

44

-V_27 + x*V_24*V_9 + x*V_19*V_27 + x + x*V_16*V_9 + x*V_6*V_27,

-V_28 + V_37*V_32 + V_2*V_36 + V_3*V_35,

-V_29 + V_37*V_12 + V_3*V_23,

-V_30 + x*V_30 + x*V_10*V_30 + x*V_4*V_6 + x*V_6,

-V_31 + x*V_34*V_22 + x*V_8*V_31 + x*V_31 + x*V_22,

-V_32 + x*V_37*V_32 + x*V_2*V_36 + x*V_3*V_35 + x*V_36 + x*V_22*V_32 + x*V_12*V_36

+ x*V_14*V_35 + x*V_15,

-V_33 + x*V_33 + x*V_10*V_33 + x*V_4*V_16 + x*V_11 + x*V_16,

-V_34 + V_37*V_22 + V_3*V_31,

-V_35 + x*V_34*V_32 + x*V_29*V_36 + x*V_8*V_35 + x*V_35 + x*V_1 + x*V_32,

-V_36 + x*V_28 + x*V_36 + x*V_25 + x*V_10*V_5 + x*V_4*V_15 + x*V_11*S + x + x*V_15,

-V_37 + x*V_37 + x*V_22 + x*V_34*V_22 + x*V_8*V_31,

-V_38 + x*V_24*V_21 + x*V_19*V_38 + x*V_16*V_21 + x*V_6*V_38,

-V_39 + V_24*V_9 + V_19*V_27]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

V_11, V_12, V_13, V_14, V_15, V_16, V_17, V_18, V_19, V_20, V_21, V_22, V_23,

V_24, V_25, V_26, V_27, V_28, V_29, V_30, V_31, V_32, V_33, V_34, V_35, V_36,

V_37, V_38, V_39], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[1]:

libname := ".",libname:

combine(equivalent(ps, x, n, 1));

combine(equivalent(ps, x, n, 2));

combine(equivalent(ps, x, n, 3));

B.4 Base 5

B.4.1 2-flimsy base-5

eqs := [-S + x*V_11 + x*V_7*V_12 + x*V_16*V_11 + x*S + x*V_15 + x + x*V_8*V_12

+ x*V_7*V_1*V_11,

-V_1 + x*V_1 + x*V_8*V_1 + x*V_7*V_1 + x,

-V_2 + x*V_10 + x*V_5*V_2 + x*V_14 + x + x + x*V_2 + x*V_5*V_20 + x*V_18*V_2

+ x*V_6 + x,

-V_3 + V_7*V_12 + V_16*V_11,

-V_4 + x*V_5*V_4 + x*V_14 + x + x*S + x*V_4 + x*V_18*V_4 + x*V_6 + x + x*V_3,

-V_5 + x*V_5 + x + x*V_19 + x*V_5*V_17 + x*V_5*V_9 + x*V_18*V_17,

-V_6 + V_10 + V_5*V_2 + V_14,

-V_7 + x + x*V_7*V_13 + x*V_16 + x*V_7 + x*V_8*V_13 + x*V_7*V_1,

45

-V_8 + V_7*V_13 + V_16,

-V_9 + x*V_5*V_9 + x*V_9 + x*V_18*V_9 + x,

-V_10 + x*V_10 + x + x*V_5*V_20 + x*V_18*V_20,

-V_11 + x*V_11 + x*V_3 + x*S + x*V_19*S + x*V_5*V_4 + x*V_14 + x + x*V_5*V_9*S

+ x*V_18*V_4 + x*V_6 + x,

-V_12 + x*V_12 + x*V_8*V_12 + x*V_7*V_1*V_11 + x*V_7*V_12 + x*V_16*V_11 + x*V_11

+ x*V_15 + x,

-V_13 + x*V_13 + x*V_8*V_13 + x*V_7*V_1 + x*V_7*V_13 + x*V_16 + x,

-V_14 + x*V_14 + x + x*V_10 + x*V_5*V_2 + x*V_14 + x + x*V_5*V_20 + x*V_18*V_2

+ x*V_6 + x,

-V_15 + V_19*S + V_5*V_4 + V_14,

-V_16 + x*V_7*V_1 + x*V_16 + x + x*V_8*V_1,

-V_17 + x*V_19 + x*V_5*V_17 + x + x*V_17 + x*V_5*V_9 + x*V_18*V_17,

-V_18 + V_19 + V_5*V_17,

-V_19 + x*V_19 + x + x*V_5*V_9 + x*V_18*V_9,

-V_20 + x*V_5*V_20 + x*V_20 + x*V_18*V_20 + x]:

Groebner[Basis](eqs, lexdeg([V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_10,

V_11, V_12, V_13, V_14, V_15, V_16, V_17, V_18, V_19, V_20], [S])):

algeq := %[1]:

assume(x, positive):

f := solve(algeq, S):

ps := f[1]:

libname := ".",libname:

combine(equivalent(ps, x, n, 1));

combine(equivalent(ps, x, n, 2));

combine(equivalent(ps, x, n, 3));

46

	List of Figures
	Introduction
	The k-flimsy numbers
	Some trivial results
	Prior work

	Generating series and Context-free languages
	Defining context-free languages
	Defining automata
	Unambiguous context-free languages
	Generating series
	The Chomsky-Schützenberger Theorem
	Gröbner bases and Buchberger's algorithm
	Analytic combinatorics

	The Method
	Outline of the method
	An example: binary palindromes
	An unambiguous PDA MP
	Converting MP to an unambiguous CFG GP
	Tidying up the CFG G
	Converting G to a system of equations
	Solving the system

	Another example: the Dyck language

	Solving for k-Flimsy Binary Numbers
	Overview
	Building the PDA for (Fk,2)2R
	Converting the PDA to an equivalent CFG
	Simplifying the CFG

	Converting the CFG to a system of equations
	Solving the system
	Asymptotics

	Generalizations
	Results for other values of k in binary
	Results for k = 5
	Results for k = 7

	The k-equal numbers
	The k-flimsy numbers in base b
	Some results
	Our conjectures
	A heuristic argument regarding density

	Next Steps
	Open problems
	Efficient solutions
	Alternative CFG constructions

	CFLpy software

	References
	APPENDICES
	Flimsy Grammars
	Base 2
	7-flimsy base-2 grammar

	Maple code
	Base 2
	3-flimsy base-2
	5-flimsy base-2
	7-flimsy base-2

	Base 3
	2-flimsy base-2
	4-flimsy base-2

	Base 4
	2-flimsy base-4
	3-flimsy base-4

	Base 5
	2-flimsy base-5

