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Abstract

Efficient coordination of several robot arms in order to carry out some given indepen-
dent/cooperative tasks in a common workspace, avoiding collisions, is an appealing research
problem that has been studied in different robotic fields, with industrial and service appli-
cations. Coordination of several robot arms in a shared environment is challenging because
complexity of collision free path planning increases with the number of robots sharing the
same workspace. Although, research in different aspects of this problem such as task plan-
ning, motion planning and robot control has made great progress, the integration of these
components is not well studied in the literature.

This thesis focuses on integrating task and motion planning multi-robot-arm systems
by introducing a practical and optimal interface layer for such systems. For a given set
of specifications and a sequence of tasks for a multi-arm system, the studied system de-
sign aims to automatically construct the necessary waypoints, the sequence of arms to
be operated, and the algorithms required for the robots to reliably execute manipulation
tasks.

The contributions of the thesis are three-fold. First, an algorithm is introduced to
integrate task and motion planning layers in order to achieve optimal and collision free task
execution. Representation via shared space graph (SSG) is introduced to check whether
two arms share certain parts of the workspace and to quantify cooperation of such arm
pairs, which is essential in selection of arm sequence and scheduling of each arm in the
sequence to perform a task or a sub-task. The introduced algorithm allows robots to
autonomously reason about a structured environment, performs the sequence planning of
robots to operate, and provides robots and objects path for each task to succeed a set of
goals.

Secondly, an integrated motion and task planning methodology is introduced for sys-
tems of multiple mobile and fixed base robot arms performing different tasks simultaneously
in a shared workspace. We introduce concept of dynamic shared space graph (D-SSG) to
continuously check whether two arms sharing certain parts of the workspace at different
time steps and quantify cooperation of such arm pairs, which is essential to the selection of
arm sequences and scheduling of each arm in the sequence to perform a task or a sub-task.
The introduced algorithm allows robots to autonomously reason about complex human
involving environments to plan the high level decisions (sequence planning) of robots to
operate, and calculates robots and objects path for each task to succeed a set of goals.

The third contribution is design of an integration algorithm between low-level motion
planning and high-level symbolic task planning layers to produce alternate plans in case
of kinematic and geometric changes in the environment to prevent failure in the high-level
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task plan.

In order to verify the methodological contributions of the thesis with a solid imple-
mentation basis, some implementations and tests are presented in the open-source robotics
planning environments ROS, Moveit and Gazebo. Detailed analysis of these implementa-
tions and test results are provided as well.
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Chapter 1

Introduction

Today many robotic applications involve multi-arm manipulator (MaM) platforms [1–6]
(Fig. 1.1). Most MaM platforms share a common workspace to increase efficiency in
manipulation relative to single-arm counterparts. They can easily work in environments
too harsh for humans, such as in hospitals, where they can obtain virology samples from
highly contagious patients, or in steel production and smelting plants, where they can
operate high temperature, iron melting furnaces. Importantly, these robots can work
either independently or collaboratively, alongside other robots or human partners, in known
or unstructured environments. For instance, cooperative manipulators already perform
cooperative tasks in construction and assembly lines, often helping to handle heavy objects
or to transfer individual objects to desirable locations. However, simultaneous movement of
MaMs alongside their human and robotic counterparts in shared workspaces is challenging;
special planning is needed to avoid collisions with humans, objects, or the arms themselves,
and to ultimately ensure workplace safety. For many of these tasks, a key requirement is
the ability to plan arm motions that relocate an object from one location to another,
within the workspace defined by the N-arm robotic system (N ≥ 2, see Figure 1.2). When
multiple objects must move concurrently, a task scheduling challenge also arises [7–9].
In industrial applications, efficient collaboration between multiple arms can dramatically
increase productivity and overall cost-effectiveness. For instance, MaMs can share common
tools, lift heavier objects together, and combine multiple tasks (e.g., one arm picks up
assembly parts from remote workspace locations and passes them to another for assembly).
The planning problem for MaM platforms is challenging for several reasons. First, it
requires careful and precise decision making to coordinate which arm manipulates a given
object and in which order. In the simplest scenario, a single arm may be able to relocate
the object. In other scenarios, all N arms (N ≥ 2) may potentially be involved in relocating
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Figure 1.1: Examples of MaM setups.

an object from one end of the workspace to the other. In more complex cases, the same
arm may have to re-grasp the object several times with the help of another arm in order
to manipulate the object in a way that allows its placement at a target location, in the
desired orientation. Second, the planning problem also involves computing valid locations
for each of the handoffs between two consecutive arms. Figuring out these locations is
non-trivial because the environment can be cluttered and the object itself can be large.
Finally, the planner must also consider all possible grasping motions and plan each grasp
in a way that allows for a successful sequence of handoffs, where the object is passed from
one arm to another. Handoff planning is complex because the arms must orient and grasp
objects that may be in arbitrary and unstable poses.

Despite growing use of robots in the manufacturing and service sectors, robotic plat-
forms have seem limited deployment in the food and health service industries. Robotic
systems are becoming very attractive to the restaurant sector, where they can help combat
labour shortages and high labour turnover. There is also potential for dual-arm humanoid
manipulators to support cooking and serving related tasks as they can be relatively eas-
ily be implemented in facilities designed for human workers and chefs who use similar
bi-manual skills [10–15].

However, to maintain high-level tasks like cooking or serving, as well as human assistive
robotics, robot manipulator require efficient high-level symbolic task planning with low-
level motion planning. In this integration, task planning algorithms decide the procedures
or operations that each robot must execute at each step, while motion planning algorithm
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Figure 1.2: An example with n = 4 arms, where each arm has a fixed base. In this setup, no
arm is able to bring the object from its initial location to the target region.

coordinates the required motions. Integrating these planning algorithms is challenging since
task planning specifications usually ignore the solid geometric constraints on the robotic
motion planning problems. For instance, before deciding to pick up a cup, one should
determine if it is geometrically feasible to move the robot base to a suitable location. In
conventional approaches, such issues have been considered from the top down, isolating
high-level task planning (e.g., sequencing pick-and-place actions) from lower-level motion
planning (e.g., finding feasible paths for the arm). Task planning is then performed by
ignoring low-level details, yet the subsequent plans may be ineffective or even infeasible
because of missed lower level collaborations and conflicts.

In a typical task and motion planning scenario, the task planning layer calculates a
high-level plan and the motion planning layer finds a corresponding path for each action in
the high-level task plan. However, applying task and motion planning sequentially is very
complicated in real scenarios since the task planner does not consider geometric locations
of the robots, objects or grippers, and geometric preconditions and effects around them.
Therefore, there is a need to integrate these two layers, rather than applying one after
another, primarily for semi-structured or uncertain environments. As seen in Figure 1.3
(readers can refer to Chapter 2 for further details), some approaches exist to deal with these
issues and integrate those layers. For instance, the study [16] tries to estimate what can go
wrong in a pick and place task in advance and try to define a complete task definition in
the higher-level task planning layer. However, it is hard to estimate what can go wrong in
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real scenarios in advance and update the task planning layer accordingly. Also, when there
exist multiple tasks, there will be many geometrical facts around them to be re-arranged.

Figure 1.3: A general layout for task-motion and integrated task-motion planning problems in
the literature

Another approach is Task and Motion planning (TAMP), which searches for a discrete
sequence of symbolic actions around a motion plan for each of them [17]. However, the
discrete form of manipulation tasks, such as pick and place, is over defined in the symbolic
domain, decreasing the complexity of the problem but increasing the computation time.
The main disadvantage of TAMP is to avoid calling motion planner for unfeasible actions,
especially for constraint manipulation planning problems. Since there is not enough lit-
erature on the integrated task and motion planning and available ones cannot provide a
solution for robot manipulation problems for semi-structure or unstructured environments
regarding generality, completeness, and performance, this thesis will focus on solving this
problem.

Recent research has produced critical advances in the state-of-the-art of mobile ma-
nipulation, with new platforms such as Kinova-Movo, PR2, Intel HERB Personal Robot,
ICub, the TUM Rosie robot, the HRP2, ARMAR, and Justin all demonstrating improved
capability for combined manipulation tasks. More up-to-date platforms (e.g., the PR2)
have coordinated 3D sensors to achieve consistent representation of their evolving sur-
roundings. Meanwhile, 2D visual data has been used for object recognition and tracking,
and as feedback for visual servoing controllers.

Manipulation planning focuses on automatic production of robot motion sequences for
manipulation of movable objects among obstacles to accomplish a desired goal. Manipu-
lation planning problems for MaM platforms involve objects which can only move when
picked up by robots. In these cases, the order of pick-and-place actions is critically im-
portant to finding a feasible kinematic solution for object manipulation [18]. Therefore,
geometric reasoning and motion planning alone are not sufficient to obtain a solution; and

4



planning of operations, for example the pick-and-place actions, should be integrated with
the motion planning problem.

1.1 Scopes and Objectives

The scope of this research addresses challenges at the intersection of two fields. On
one hand, motion planning methods focus on the problem of trajectory planning with nu-
merous kinematic and dynamic constraints [15], [19]. [17]. Currently, these techniques
can manage numerous constraints for a single task yet normally do not rapidly factor into
comprehensive sub-tasks. On the other hand, the symbolic task planning research com-
munity has long realized that reasoning about robotic actions must consider geometric
constraints at the planning level, which spurred development of the task and motion plan-
ning field [16], [8,20], [1]. While these methodologies have generated noteworthy showcases,
and have demonstrated some capability to understand complex, puzzle-like situations, they
are still significantly short of implementation for dynamic, real-world use cases. Since typ-
ical task planning approach for robotics applications aims to perform both symbolic- and
geometric-level planning simultaneously, firmly relying upon an exact and reliable domain
representation, these frameworks are vulnerable to small variations and uncertainties in
parameterization.

Furthermore, interrelations between different sub-tasks should be displayed unequivo-
cally in the symbolic domain or numerous potential sub-solutions will risk being dismissed
later. In the latter case, the underlying backtracking-based search becomes ineffective and
it is hard to exploit the local structure of a particular task. In this thesis, rather than
tackling with such non-exclusive task problems, we focus on the common sub-problem of
finding feasible sequences of trajectories given that the high-level action sequence is already
known in advance. The assumed action sequence can be compared to the plan skeletons
characterized in [1]. While the study in [1] presents strategies to change action sequences
into discrete-space constraint satisfaction problems, this thesis utilize conventional motion
planning algorithms to provide solutions in continuous space if the multi-layer planner fails.

This thesis addresses the robotics object manipulation problem in a multi-robot envi-
ronment, focusing on the following three key objectives:

1. To effectively formulate the cooperative multi-robot manipulation problem. While
formulation of motion and manipulation planning for individual robot is not challeng-
ing in general, the overall manipulation planning problem for MaM systems includes
many difficulties as presented in the previous section.
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2. To develop manipulation planning approaches for MaM systems. Manipulation plan-
ning for MaM is challenging since it requires the search and planning of the sequence
of tasks to be performed by MaM systems with planning of the motions needed to
succeed for a set of goals. Indeed, even in the most basic pick and place tasks,
each sub-task can be accomplished in many possible ways, each having an impact on
follow-on tasks.

3. To adapt the developed manipulation planning approaches to a variety of MaM sys-
tem settings, involving robots with mobile bases as well as stationary ones, and
uncertainties and variations in the environment. To be relevant in a wide variety of
industrial scenarios, several types of robots must be considered.

1.2 Contributions

Modern robotics planning must consider dynamic and uncertain domains, in which the
results of actions can give a reasonable chance of failure or non-deterministic effects. The
need for integration of task and motion planning to accomplish complex manipulation tasks
and to navigate in unpredictable environments (e.g., crowded spaces) is well understood
in the robotics research community. While there exists a vast literature and a plethora
of recent technological advances in both areas (individually), integrated motion and task
planning studies are only just emerging, particularly for multi-robot manipulation. Indeed,
multi-robot manipulation has been thoroughly studied for structured environments and
repetitive tasks, but slight changes in the environment or task cause both task and motion
planning layers to fail.

In most cases in the literature, failure action due to the geometrical change in the
environment is taken care of in the high-level task planning layer by manually editing task
definitions or constraints. One of the main focus of this thesis is to solve the failure of
subtask/action in an integration layer automatically, instead of editing the higher-level
task planning layer.

To deal with the complexities of uncertain environments, this thesis proposes a new
approach; one that adds an interface layer between the task and motion planning layers,
enabling nimble responses to changes through generation of alternate plans, while ensuring
the higher-level goal is achieved. The interface layer includes a shared-space graph, in which
each node stores some information regarding the robot base location, and states of the
object(s) to be manipulated and the obstacles to be avoided in the environment. Note that
uncertainty in this thesis means that the robots’ base location and/or objects/obstacles
location are subject to change in time, and/or a new object may appear in the environment.
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It is always worth mentioning that we are not focusing on Navigation Among Movable
Obstacles (NAMO) or grasping from cluttered environments.

This thesis focuses on an integrated motion and task planning approach for MaM
system applications, including those for kitchen robotics and grocery setup environments.
In addition to fundamental advances to robotics planning, the thesis results are applied
in an innovative robot cooking system design involving multiple robotic arms, capable of
implementing cooking recipes via picking and placing ingredients collaboratively and/or
independently in an environment with intermittent variations.

The main contribution of this thesis is development of a general integrated motion
and task planning algorithm for MaM systems with arbitrary number of robot-arms. The
proposed interface layer permits robust and adaptive planning as well as re-planning when
facing unexpected changes. Relevant geometric information about the environment is
transferred to the task planner as logical predicates. The task planning layer then analyses
if the preconditions necessary to execute the actions are satisfied, and extracts a plan,
while the motion planning layer executes the plan. The contributions of this thesis are
classified into three-fold:

1. A high level task planning layer is designed to identify the sequence of arms that
would optimally transfer an object from its initial location to a specified goal location
(each path for each arm in the arm sequence optimal-sub-task optimality). In the pro-
posed task planning layer design, each primitive task is divided into subtasks before it is
introduced as an input to the motion planning layer. The main novelty of this contribution
is the introduction of a shared space graph (SSG) based representation, where vertices of
the SSG represents the workspaces of the robot arms and the edges indicate workspaces
shared between two arms, allowing the planner to check whether two arms share a part
of the workspace. The SSG representation is further extended to apply for the cases in-
volving, introducing a dynamic (time-varying) version, dynamic-SSG (D-SSG) in order to
accommodate changes to base locations of robots in a sequence and the paths for each
robot in the sequence. The SSG and D-SSG representations are helpful in effective handoff
scheduling between robot arms and determining where to place or transfer the object.

2. A low-level motion planning layer is designed to calculate a collision-free robot-
endpoint trajectory for each step of the sequence. This would include, for example, each
handoff in a sequence of handoffs to move an object to its goal position. Heuristic, e.g.
the A∗ algorithm, are utilized to find the optimal path (probabilistic optimality) for each
robot arm in the task sequence, allowing that robot arm to avoid obstacles and reach its
goal location.

3. The proposed task and motion planning layers designed for MaM systems are in-
tegrated and adapted for applications with uncertain environments, which is presented in

7



Chapter 5. This contribution enables complex industrial and human assistive applications,
as explained through a case study, in Chapter 6.

1.3 Outline of the Thesis

In this thesis, we address an integrated motion and task planning algorithm for multi-
arm robot systems in a shared workspace, a roadmap of the overall thesis can be seen
in Figure 1.2. In Chapter 2, we provide formal statements of the problems studied in the
thesis and review of the relevant literature, including state-of-the-art motion and task plan-
ning methods for robotic manipulators in general. Chapter 3 introduces the proposed SSG
representation and the base integrated task and motion planning based on this representa-
tion for MaM system manipulation problems in well defined and structured environments.
Chapter 4 presents the modified notion of D-SSG application of this representation to ma-
nipulation (integrated task and motion) planning for cases involving some robot arms with
mobile bases in a uncertain, semi-structured, environment. Chapter 5 provides an inte-
grated high-level symbolic task planning and motion planning approach using the proposed
D-SSG based algorithm as an interface in the case of failure in the high-level symbolic plan-
ner. Chapter 6 provides an application case study involving an automated MaM system
in a partially uncertain kitchen environment. Chapter 7 provides conclusion and some
potential future search direction.

Figure 1.4: A roadmap of the thesis.
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Chapter 2

Background, Problem Definition and
Literature Review

This chapter presents a literature review on integrated task and motion planning for
multi-robot manipulators. Although initial studies in this area began to appear in the late
1980s, many open problems remain [20–25]. Moreover, as computers are getting faster and
are increasingly ubiquitous, the possibility of implementing a multi-robot planner is more
feasible than ever before, for a wider range of industries. The objectives of this chapter
are: 1) to provide an overall picture of this research field, 2) to present the current state of
the art in research and technologies development, and 3) to provide a problem definition
for integrating task and motion planning for multi-robot manipulators.

In this chapter, we provide a problem definition, notation and definition in Section
2.1. A general background on the motion and task planning of robot manipulators are
presented in Section 2.2 and Section 2.3, respectively. Finally, in Section 2.4, manipulation
planning techniques are introduced in detail.

2.1 Problem Definition, Notation, and Foundation

It is difficult to find solutions for mobile manipulation problems involving many robots,
working with many target objects, due to the high dimensionality and multi-modality of
their hybrid configuration spaces. Planners, from a purely geometric search perspective,
are extremely slow at finding solutions for these problems because they are not capable of
factoring the configuration space. While symbolic task planners can effectively obtain plans
involving many variables, they cannot incorporate the geometric and kinematic constraints
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required for manipulation. Our goal is address this shortcoming, and ultimately present
an algorithm for solving task and motion planning problems.

Before presenting detailed problem statements, it will be useful to introduce some
notations and definitions.

Definition 2.1 (Motion planning). Given a robot, a set of static obstacles, and an ini-
tial and a goal configuration of the robot, motion planning is the task of finding a collision-
free path for the robot from the initial to the goal configuration.

The Configuration Space representation introduced by [26] was the first major contri-
bution to solving the motion planning problem. Denoted CS, it is the Cartesian product
of the interval of the definition of each joint parameter. For a robot with n degrees of
freedom (DOF), CS is an n-dimensional manifold containing all the robot configurations.
It describes the pose of each body of the robot as a single point such that the robot’s
trajectory is a continuous path in CS. Therefore, the problem is transformed into finding
a trajectory for a point in CS instead of a trajectory of several bodies in the Euclidean
space.

The motion planning problem in general can be presented as finding a continuous
path, p(t), from a start configuration, p(0) = qinit, to a goal configuration, p(1) = qgoal,
such that ∀t[0, 1], p(t)CSfree, where CSfree is the subset of collision-free configurations, i.e.
CSfree = CS/CSobs.

Next, definitions of key terms transit-path, transfer-path and manipulation-path will be
introduced to ensure consistency with the relevant literature [7, 27–29].

Transit-path is a path that describes the motion of an empty end-effector (i.e. one that
is not grasping an object). This term is used to represent the path of an arm which avoids
collision with other arms or which is moving toward an object in order to grasp it.

Transfer-path is a path that describes the motion of an arm which is grasping an object
within its gripper. This term is used to represent the path of an arm that manipulates an
object.

Manipulation-path is a set of alternating transmit and transfer paths. This term is
used to represent the sequence of motions of a set of arms that are moving an object from
an initial position to goal position. In Figure 2.1, blue and red paths represent transfer
and transit paths respectively. The manipulation path is the combinations of blue and red
paths.

Definition 2.2 (State) A state S is a finite set of logical atoms.

Definition 2.3 (STRIPS actions) A STRIPS action, o, is a triple, such thato =
(pre(o), add(o), del(o)), where pre(o) are the preconditions of o, add(o) is the add list of
o and del(o) is the delete list of the action, each being a set of atoms. For an atom
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Figure 2.1: Transfer, transit and manipulation path representations

f ∈ add(o), we say that o achieves f . The result of applying a single STRIPS action to a
state is defined as follows:

Result(S, 〈o〉) =

{
(S ∪ add(o)) del(o), ifpre(o) ∈ S
undefined, otherwise

In the first situation, where pre(o) ∈ S, the action is supposed to be applicable in S.
The outcome of implementing a sequence of more than one action to a state is recursively
described as

Result(S, 〈o1, ..., on〉) = Result(Result(S, 〈o1, ..., on1〉), 〈on〉)

From a set of actions, the goal is to find a sequence of actions that modify, by their
addition and deletion lists, an initial set of atoms in a final set of atoms. A precise definition
is reviewed below.

Definition 2.4 (Planning Task). A planning task P = (O, I,G) is a triple where O is
the set of actions, and I (the initial state) and G (the goals) are sets of atoms.

Definition 2.5 (Plan). Given a planning task P = (O, I,G), a plan is a sequence of
actions in O such as P = 〈o1, ..., on〉 that solves the task, i.e., for which G ⊆ Result(I, P )
holds.

The task planning problem is to obtain a sequence of elementary operations that achieve
a given task. Even though task planning is not the primary focus of this research, these
definitions will be helpful later. One can refer [30] for more details.

Definition 2.6 (Manipulation planning problem). Given a set of robots, objects, static
obstacles, an initial configuration I for all robots and objects and a set of goal configurations
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G, obtain a path, for all robots and all objects, from I to a final configuration in G. The
path must be collision-free and must satisfy the manipulation rules.

We define three main MaM manipulation problems to be solved in Chapters 3, 4, and
5 respectively.

Problem 1:

Consider a workspace containing a network S = {s1, s2, . . . , si, . . . , sN} of N robot
arms with fixed base locations {x1, x2, . . . , xi, . . . , xN}, each of which are geometrically
modeled as a monolithic rigid-body, and a set, O = o1, o2, . . . , om, of monolithic objects to
be manipulated with -3D position and orientation- configuration space Cok ⊂ SE(3). Each
robot arm si has its own configuration space Csi , a fixed base and a workspace W which
represents the space of the arm gripper positions and orientations. The initial configuration
of the robot arm network S, the initial and final positions of the objects, oi,inits and, oi,goals
are known. Also, the geometry, type and position of the obstacles, Eo, are available in
advance. Also, note that O ( Eo. The exact configuration of tasks and their trajectories
are not known in advance. The geometric configuration space of the whole problem is
indicated as follows:

C = CS × CEo ,

where CS =
∏N

i=1Csi is the configuration space of all of the arms and CEo =
∏n

i=1CEoi
is

the configuration space of all the objects. Next, define a sequence of tasks Ta1, ..., TaL with
start times t10 < ... < tL0 and start and goal locations p10, ..., p

L
0 and p1t , ..., p

L
t respectively.

Each task Tai is defined in terms of pick and place action for a certain object ok ∈ O, and
an initially unknown sequence of subtasks T i1, ..., T

i
mi

, with durations ∆i
j for j = 1, . . . ,mi

and interim way-point waiting/process times δi1, ..., δ
i
mi−1. The overall duration of task Tai

is

τi =

mi∑
j=1

∆i
j +

mi−1∑
j=1

δij (2.1.1)

The values of δij’s are fixed and pre-defined, but ∆i
j are not and can be optimized via optimal

selection of the manipulator(s) to perform T ij . The objective is to develop an algorithm
that allows robots to autonomously perform sequence planning (i.e., what robots should
do to complete the goal) as well as path planning for each task to succeed a set of goals.

Problem 2:

Consider Problem 1, with the exception of some si in S having mobile bases. Let xi(k)
denote the base location of Robot si at discrete time step k. Also, we know the geometry
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and type of obstacles, Eo, but not their positions.

Our ultimate goal in solving Problem 2 is to develop an algorithm that allows robots
to autonomously reason about a complex time-varying environment (a semi-structured en-
vironment) to perform high-level decision-making (sequence planning), and path planning
for each robot, in order for each task to succeed a set of goals.

Traditional robotic motion planning approaches are followed to solve Problems 1 and 2.
However, challenges arise in the translation of some kinematic and geometrical changes in
the environment to a symbolic task planning layer (resources, availability, and time man-
agement concept-independent of manipulation in general) when arm(s) and/or object(s)
locations change or a new object appears in the environment. This causes failures in the
motion planning layer of a specific action and higher-level task planning, which can ulti-
mately lead to failure in achieving the overarching goal (such as baking a turkey). Thus,
all changes in the environment needs be translated into the task planning layer, and a third
problem must be defined.

Problem 3:

Consider Problem 2. However, we perform the planning first through a high-level
symbolic task planner deciding on action specifications (AS) as a general purpose planning
representation that supports arbitrary predicates as conditions in the form of PDDL (Plain
Domain Definition Language). The objective is to design an algorithm that integrates mo-
tion planning and symbolic task planning (resources, availability, and time management
concept) layers such that one can switch to alternate plans in case of kinematic and ge-
ometric changes in the environment and prevent failure in the high-level symbolic task
plan.

In Problem 3, for instance, high level specifications like pick capture the logical pre-
conditions of the physical actions. A more complete representation of the pick action can
be written with predicates, such as IsGP , IsMP and Obstructs that capture geometric
conditions:

IsGP (p, o) holds if p is a pose at which o can be grasped; IsMP (traj, p1, p2) holds if
traj is a motion plan from p1 to p2 ; Obstructs(obj, traj, obj) holds if obj is one of the
objects obstructing a pickup of obj along traj. The argument obj need not be an argument
in Obstructs; we include it for clarity.

However, in the case where arm or object locations change, some of the arms in S
may not have access for the corresponding objects in O because they are located out of
the corresponding robot’s reachability space. This causes not only failure in the motion
planning layer of a specific action, but also the higher level task plan Tai or T imi

.
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In solution of all the three problems defined above, the following key questions need to
be answered:

1 What is the minimal/path optimal robot arm sequence to complete a given manip-
ulation planning problem in the case of failure, such as a failed pick action from the
task planning layer, due to an unstructured environment?

2 What are the optimal positions along the manipulation path to perform transfers
and/or cooperation?

3 What is the collision-free optimal trajectory of each arm throughout the sequence in
Question 1?

4 What is minimal time required to complete each task defined above? (Do a time-
indexed manipulator assignment for each task Ti among the available manipulators
as of time ti0 in order to minimize a cost function J = J1+...+JN , and guarantee that
manipulators do not collide each other other than the contacts during hand-overs.)
In this thesis, we will focus on first three questions.

2.2 Motion Planning

Motion planning aims to obtain a collision-free path from an initial configuration to a
desired goal, and is considered a continuous geometrical problem. The earliest formulations
such as pianos mover’s problem [31] consider situations where the robot is a single unartic-
ulated body, and have been seen in industrial applications for disassembly problems [32].
However, motion planning for articulated robots is more complicated.

The literature contains three classes of techniques that address motion planning prob-
lem: deterministic approaches, randomized approaches, and optimization-based approaches.
For a broad overview of current techniques, the reader can refer to [33], [34], and [35].
Sampling-based techniques are the most effective of the modern motion planning ap-
proaches, and are classified into deterministic and probabilistic depending on the way
the samples are generated.

Typical examples of the deterministic approaches are visibility graph, retraction algo-
rithms [27], the A* algorithm [36], the Dijkstra algorithm [37], and potential fields [38].
Among the most relevant probabilistic approaches are the Rapidly-exploring Random Trees
planners (RRT) [35] and Probabilistic Road Map planners (PRM) [39]. However, the ef-
ficiency of these conventional probabilistic approaches drops dramatically in spaces with
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narrow passages. Several variations have been developed to overcome this challenge, such
as the multi-resolution PRM planner [40], dynamics domain RRTs [35], retraction base
RRTs [41], and adaptive workspace biasing [42]. In order to speed up query path planning,
some variants of PRM planners build a roadmap without checking for collisions. Then,
once a potential solution path is found the existence of collisions is verified and if they
occur the corresponding nodes and edges are removed from the roadmap and a new search
is started; the process is repeated until a collision- free path is found (e.g. the Lazy PRM
planner [5]). Some extensions of PRMs include the use of object symmetries in order to
improve the performance of the planner [27], and consider scenarios where there are ob-
stacles with known collision free paths around them which have to be connected to the
general roadmap, to yield a solution path that skirts the obstacles [27]. The paths obtained
with these planners can be optimized using post processing methods, which search for an
optimal subset of samples in the configuration space that replace some samples from the
initial path [27].

Finding a least-cost trajectory in a graph is a problem of many robotics related fields.
Heuristic searches such as A* search [36] have often been used to find such trajectories
because they offer the strong theoretical guarantees such as completeness and optimality
or bounds on suboptimality. Also, the generality of heuristic searches allows researchers
to incorporate complex cost functions and complex constraints and to easily represent
arbitrarily shaped obstacles with grid-like data structures [27]. Finally, heuristic searches
provide good cost minimization and consistency in the solutions.

2.2.1 Deterministic methods

Deterministic techniques form and search for a systematically generated graph. Meth-
ods such as cellular decomposition, Voronoi diagrams, visibility graphs and the Cannys
algorithm depend on the formation of a precise and accurate representation of CSobs to
construct a graph, or roadmap, that describes the connectivity of CSfree [43], [44], [45].
Other methods approach CS by discretizing it. Motion planning is then diminished to a
search in a graph. Even though completeness and sub-optimality guarantee graph consis-
tency, high dimensionality slows down the search for the problem. Potential field based
algorithms are recognized as adequate to high-dimensional configuration space [38]; how-
ever, they are, in general, not complete because the planner can be stuck in local minima.
Harmonic functions can formulate a potential with only one local minimum, which is the
global minimum. However, such functions are represented only through a differential equa-
tion, and the straightforward solution is not known in the general case.
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2.2.2 Sampling-based methods

Sampling-based approaches randomly sample CS and construct a graph of configura-
tions connected by collision-free paths. This graph is commonly declared as a roadmap and
proximate the connectivity of CSfree. Sampling-based algorithms are usually categorized
into two groups: single query and multiple query algorithms.

Multiple query algorithms involve two steps: First, a roadmap representing all possible
connectivity of CSfree is created. Second, motion planning queries are resolved by con-
necting the initial and final configurations to the roadmap. If the connectivity of CSfree
is well-formed in the first step, the queries in the second step run fast. The best known
multiple query algorithms are Probabilistic Road Maps (PRM) [9] and Visibility PRM
(V-PRM) [46]. By contrast with PRM, V-PRM seeks to recognize configurations that add
connectivity data to the roadmap. The last roadmap is smaller, which solves proximity
queries quicker.

Single query algorithms do not seek to represent the connectivity of CSfree completely.
Instead, the algorithms represent a piece of CSfree throughout the initial and goal configu-
ration(s). A tree of configurations is built by iteratively extending the closest neighbour of
a randomly sampled configuration in the direction of this random configuration. Although
it is challenging to represent a short outline of the recent algorithms, the most popular is
the variations of the Rapidly Exploring Random Tree (RRT) [35].

Randomized algorithms are highly effective in solving high-dimensional problems.

Nevertheless, there are a couple of disadvantages.

• These algorithms will only present probabilistic completeness. This implies that, if a
solution exists, the probability of obtaining a solution converges to 1 as the amount of
iterations increases. However, if no solution exists, they will work infinitely without
identifying it. They depend on heavy randomization.

• There exists no explicit cost minimization. However, methods like PRM* and RRT*
[21], provide an optimal guarantee in the limits of samples. These methods include an
action to recompute the shortest path between sets of configurations in the roadmap.
This rewiring action is of fixed time but time-consuming.

In [47], [48], and [9], the authors proposed the basis for probabilistic roadmap methods
(PRM). PRM-techniques have two phases: a learning phase, and a query phase. First, the
configuration space is sampled for collision-free configurations. Second, a graph known as
a roadmap is created using these configurations as nodes. A basic local planner is applied
to search for connections between nodes. If a connection is encountered, an edge is added
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to the graph connecting the corresponding nodes. Eventually the roadmap will find an
efficient representation of CS − free.

2.2.3 Optimization-based methods

Optimization-based approaches express motion planning as a trajectory optimization
problem. Provided a naive initial trajectory, the approaches iteratively extract the trajec-
tory from collision while optimizing a cost. The optimization handles both a pre-defined
cost - path length, energy- and collision detection parts. Collision avoidance is represented
as a constraint of the expressed distance function. This function is described as; a posi-
tive distance that resembles the shortest distance between non-colliding objects, while a
negative one represents the penetration between colliding objects.

The two main optimization-based approaches in the literature are Covariant Hamilto-
nian Optimization for Motion Planning (CHOMP) [49] and Stochastic Trajectory Opti-
mization for Motion Planning (STOMP) [50]. CHOMP decreases the overall cost based on
covariant gradient data. STOMP produces noisy trajectories to search the space through-
out the current trajectory. They are then merged to build an updated trajectory of lower
cost. However, STOMP cannot be expected to solve typical motion planning problems like
the alpha puzzle in a reasonable amount of time [50].

2.2.4 Constrained motion planning

The feasible configuration space of closed-loop systems, such as humanoid robots and
underactuated robots, is of the scheme q ∈ CS | f(q) = 0, where f expresses the constraints
like a loop closure constraint, an equilibrium constraint, etc. The possible configurations
are described only inherently, and it has stress zero in CS when f is non-trivial.

The motion planning problem is represented as obtaining a continuous path p such that
∀t ∈ [0, 1], p(t) ∈ CSfree and f(p(t)) = 0 for a constraint f from CS to Rn such that a
configuration q is feasible if and only if f(q) = 0. Most methodologies obtained in the
literature only try to solve a complex rendition of this issue. The studies [51], [52] have
presented constrained versions of randomized planners yet their algorithms do not ensure
continuity of the solution path.

Until now, we have presented motion planning approaches for a single arm. However,
motion planning approaches for MaM in a shared environment creates highly complicated
problems in high dimensional spaces since scaling up the number of DOF quickly compli-
cates the search process. For example, a CS with 6 manipulators, each having 6 DOF,
requires a motion plan for 36 DOF. We have examined the most common motion planners,
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including RRT [35,53], PRM [2,53], and their more recent variants, and found them to be
too computationally expensive to solve (exponential in time) for MaMs. The study [27]
demonstrates that the motion planning problem for single and multiple robots is basically
identical. Thus, theoretically they both have the same sampling based or combinatorial
search algorithms. So, we can categorize the approaches for MaM’s problems into two main
groups: 1) centralized and 2) decoupled planning

Centralized Motion Planning: Centralized Motion Planning approaches take the
total DOF into account when searching for a solution. In this approach, the paths for
all robots are planned simultaneously by searching the C-space of multi-arm robots. For
example, with 6 robots (each with 6 DOF), the C-space will have 36 DOF. Advantages
come with completeness, which means, if the underlying planner is complete, a solution is
guaranteed to be found (if one exists). However, it is potentially expensive, and typically
requires searching high-dimensional spaces and knowledge of goals and states of all robots.

Figure 2.2: Multi Robot Planning Approaches: An initial and a goal configuration are given as
input for each robot.

Decoupled Motion Planning: The second approach, Decoupled Motion Planning,
is more relevant in terms of time consumption but lacks the computational efficiency and
optimality traits. As listed in [1, 4] decoupled planning is categorized into 3 main methods:

• Prioritized Planning (PrP): In this approach, we sort all the robots by priority and
plan an individual path for each of them. Each path is calculated based on the
hierarchy obtained by the sorting procedure such that the path of the higher ranked
robot is being calculated first. The collision-free element is acquired by treating the
higher-ranking robots as a moving obstacle.
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• Fixed Path Coordination (FPC): This method is divided into 2 parts.

– First Phase - a collision-free path ti is generated for each robot considering only
obstacles (ignoring other robots) in its space

– Second Phase (Velocity Tuning) coordination of the robots’ velocities along
their pre-generated paths to prevent collisions between robots. The two coordi-
nation methods are

∗ Pairwise Coordination

∗ Global Coordination

– Each robot is restricted to motion in its pre-generated path although it may
stop, retreat or change velocity to allow coordination with other robots.

• Fixed Roadmap Coordination (FRC): This strategy extends the FPC by assuming
that each robot is guided by a roadmap. This yields a wider set of routes to achieve a
single robot goal (instead of one in the FPC). Thus timing of the overall coordination
may be more accessible.

Studies validate the assumptions that loss of completeness with decoupled planning can be
ignored in practice. SBL helps to make the usage of centralized planning for multi-robot
systems practical. But centralized planning still requires knowledge of all robot states,
which may be impossible in some settings. On the other hand, decoupled planning can be
quite unreliable particularly in tight robot coordination. Centralized planning appears to
have better reliability compared to the decouple approaches.

Although heuristic searches are widely popular, they have not been applied for motion
planning of high- DOF robotic manipulators due to the high-dimensionality of the planning
problem. In this research, we present a heuristic search-based planner for manipulation by
reducing this high dimensionality problem.

In our research, we apply the same principles of decoupled planning approaches with
the essence of the prioritized method. By resolving each primitive task, we obtain that it is
associated with only a single arm (e.g transfer arm). This is the key feature that guides our
search. Only a single arm gets the highest priority while all the others are non-prioritized.

2.3 Task planning

We must note that task planning or merely planning is not essentially related to
robotics. Alternatively, this technique should be considered solely from an algorithmic
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perspective, and one can prefer resolving problems without communicating with the real
world. Planning, as noted by researchers of AI, is an alternative approach to solving some
discrete problems without incurring ad-hoc algorithmic solutions. It can also be seen as
the problem itself, and consequently, its computational complexity can also be analyzed.
The solution is not unique because it depends on the considered paradigm, the permitted
features and the assumptions created over the domain. A planning system generally uses
the following input: a domain, i.e. the description of the problem and the possible actions,
and a problem instance, i.e. the initial state and the desired (goal) state. Its output is a
sequence of actions that can drive to the goal if applied from the initial state. Alternatively,
it should tell if such a sequence does not exist.

The task planning problem is to obtain a sequence of elementary operations that achieve
a given task. Even though task planning is not the primary focus of this research, these
definitions will be helpful later. One can refer [30, 54] and definitions (Definition 2.2-2.5)
presented earlier in the chapter for more details.

We can examine the case of The Towers of Hanoi. A potential ad-hoc solution for
the variant of the problem in which the items are initially placed in the first branch,
the classic recursive algorithm. Alternatively, a Breadth-First Search algorithm within
adjacent configurations can also be used to solve the case of the problem initially from any
arbitrary configuration. A planner is a multipurpose application that takes the description
of the problem, in this example, the rules of The Towers of Hanoi, the initial configuration
and the end configuration, and uses a general algorithm to solve the problem defined by
these three elements.The price to pay is, generally, efficiency.

The study in [54] presented the Fast Forward (FF) heuristic. It applies the simple
problem to guide their search algorithm named enforced hill-climbing. It is a forward search
engine, which indicates it never does backtracking, instead, attempts to append actions to
the recent task plan. Selections are never re-considered. The only way to continue after
deciding an faulty action is to exchange the effects of this action. Hence, although it has
been considered successful in various schemes, the output can include an arbitrarily large
number of actions and their reversed actions, which makes task planning problem quite
suboptimal. The method is complete if the input problem includes no reachable dead-end
states [54]. A state is a dead-end if and only if no sequence of actions achieves the goal
from it. Some practical measures, like invertible planning task [54], [55], can make some
problems dead-end free.
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2.3.1 The Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) [15] is a planning language first
developed by Drew McDermott in 1998, as an attempt to standardise previous existing
Artificial Intelligence planning languages. All those planning languages are used to model
a given planning problem with certain conditions, and then automatically generate a chain
of actions that lead to a desired goal which can be expressed as a set of conditions. The
described actions will also depend on conditions, which need to fulfilled in order to be
executed, and will produce effects in the environment once executed.

In the Planning Domain Definition Language the planning task that we want to solve
is expressed as a triple 〈O, s0, g〉, where O is the set of parametrised propositional actions
defined by preconditions and effects, s0 is the initial state, and g is the goal. Each state s
including the initial state and the goal are expressed as a set of logical atoms or conditions.
At the same time the actions are defined as a triple o = hpre(o), add(o), del(o)i; where
pre(o) represent the preconditions necessary to apply the action, add(o) is the list of added
effects once the action is executed, and del(o) is the list of deleted effects. We say that a
single condition or atom f is achieved by the action if f ∈add(o).

Then we say that an action is applicable if our current state s fulfils s ⊆ pre(o). The
result of applying action oi in state si generates a new state si+1.

Limitations Task planning is of somewhat limited use in robotics if we consider it as a
purely symbolic problem. Actions are considered to be always feasible, while the underlying
geometrical problem may be conditionally feasible or even infeasible. Admittedly, an action
such as ”pick object” on the desk is feasible only if the object is at a reachable location
on the desk. For instance, in continuous grasps or placements examples, it is symbolically
impossible to describe each grasp and each placement separately, so the case is even more
challenging. To solve these kinds of problems, task planning must be combined with a
geometrical motion planner, as described in the next section.

2.4 Manipulation planning

Most recent approaches, however, consider manipulation planning as a combination of
task and motion planning. As a computational geometry problem, it has raised a lot of
interest for the past forty years. Pioneering works by author of [56] and [57] first considered
low dimensional problems where robots and objects move in translation. [58] and [57] are
the first works that apply random motion planning methods developed a few years earlier [9]
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to the manipulation planning problem. Recently, the domain has regained interest with
various variants where papers propose approaches that tackle the inherent complexity of
manipulation planning. The domain is traditionally divided into several categories.

Rearrangement planning consists of automatically finding a sequence of manipulation
paths that move several objects from initial configurations to specified goal configurations
[7], [59]. Multi-arm motion planning has also given rise to a lot of papers [17], [28], [7].
From a geometric point of view, manipulation planning is a hybrid problem where discrete
states (gripper A holds object B) are defined by continuous constraints on the positions of
objects and robots. States are connected by manipulation trajectories that give rise to the
underlying structure of a graph whose nodes are the discrete states [60]. This structure,
although not expressed as such, is present in various papers [52], [61], [55,62]. The partially
discrete nature of the problem has also given rise to integration of task and motion planning
techniques [63], [64], [17], [16], [65].

Given a set of robots and objects, the problem is to obtain both a sequence of elementary
actions and robots and objects paths for each action to fulfill a set of goals. Compared
to task planning, this aims to solve the limitations introduced above, i.e. the output
is guaranteed feasible. The added complexity remains in the fact that solving motion
planning problems are time- consuming and most algorithms are just probabilistically
complete. They cannot state a problem infeasibility, and it is challenging, if feasible at all,
to estimate search progress in the general case.

The following sections introduce a manipulation planner classification in two sections:
multi-layer planners and single layer planners. The latter use a unique data structure to
organize the data gathered during the search, while the former use a hierarchy of data
structure to represent them.

2.4.1 Multi-layer manipulation planners

These planners try to solve the problem with two or three planning layers. A high-level
symbolic planner creates task plans. A low-level geometric planner produces paths for
elementary actions. Unluckily, symbolic (discrete) and geometric (continuous) planners do
not use the same language. For example, a symbolic action, such as ”pick object” on the
desk or ”place object” on the desk, does not define how the object must be grasped or
where it must be released. However, the geometric planner requires to know it. Decreasing
these possibilities to one is not adequate because the selection is case-dependent. Hence,
the problematic concern is the communication between the two layers.

In [16], the authors introduce an intermediate layer that defines task plans to the
motion planning layer. For each action of the task planning layer, the intermediate layer
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calls the motion planner for each possible value of the effects of the action until it has found
one which accomplishes. The algorithm backtracks to the previous action when motion
planning fails. If the result fails, a partial plan is obtained, and the algorithm seeks a
possible reason, and then updates the task planner before re-starting. For example, the
action ”place object” on the desk generates a subset of object poses on the table and plan
only consider this subset. If the issue cannot be handled, then a new subset of object poses
is produced.

In [63], the authors present a multi-layer method considering similar perspective as
single layer planning. The study applies the reduction property, reviewed below, which
offers a suitable approach for continuous grasps and placements. [66] focuses on Navigation
Among Movable Obstacles (NAMO), which consists of planning a path for a robot that
needs to move obstacles in order to reach the goal configuration [66], [52]. The robot
re-configures the environment by removing obstacles and clearing free space for a path.
A heuristic obtains a path without counting collisions with movable obstacles. This path
is used to decide what objects should be transferred. Objects are transferred when they
allow two distinct, but connected components of the CS to merge. However, this approach
will not move obstacles that do not block the robot, even if they prevent other movable
objects from being transferred. An important problem of multi-layered approaches is
that the motion planning algorithm cannot prove infeasibility. Most consider a problem
infeasible when some threshold is reached in terms of the number of iterations or elapsed
time. Although this is satisfactory for many problems, it is a very ineffective approach in
general, and it needs parameter tuning.

Another problem comes from the task planning techniques most methods use: the FF
heuristic or one modification of it. As asserted above, the task plan returned by FF can
include an arbitrarily large number of actions and its inverse. In a pick and place scenario,
it suggests the robot can pick up and put down the object several times in an inconvenient
way. From a theoretical perspective, this aspect is not significant. However, in practice,
this produces inconvenient and useless motions.

2.4.2 Single layer planners

Unlike multi-layer planners, single-layer planners consider the problem using the Carte-
sian product of the configuration space of robots and objects. As this is the structure
that will be used later, we recall necessary notions in [46]. The reduction property: We
have a problem with a robot and an object. The configuration space of the system is
CS = CSrobot×CSobject . The domain in CS corresponding to the object’s proper place-
ments, i.e. stable placements where the object can hold when delivered by the robot, is
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expressed by CP . The domain in CS corresponding to proper grasps of the object by the
robot, is expressed by CG. Both CG and CP are sub-manifolds of CS.

A solution to a manipulation planning problem corresponds to a constrained path in
CSfree. Such a solution path is an alternate sequence of two types of sub-paths verify-
ing the specific constraints of the manipulation problem and separated by grasp/ungrasp
operations.

• Transit paths where the robot moves alone while the object stays stationary in proper
placement. They rest in CP . Nevertheless, a path in CP is not usually a transit path
since such path has to belong to the sub-manifold corresponding to a fixed placement
of the object. They induce a foliation of CP .

• Transfer paths where the robot moves while holding the object with the same grasp.
The position of the object concerning the robot’s end-effector is fixed. They rest in
CG and cause a foliation of CG.

For completeness, we recall the notion of foliation [67].

Definition 2.3.4(Foliation). Foliation of a n-dimensional manifold M is an indexed
family L of arc-wise connected m-dimensional sub-manifolds m < n, called leaves of M ,
such that:

• Lα ∪ Lα = ∅ifα 6= α
′

• αLα = M

• every point inM has a local coordinate system such that nm coordinates are constant.

An instance of a discrete manipulation problem is navigation inside a building that
includes floors and staircases. To go from one floor to another, one must use a staircase.
To go from one staircase to another, one must navigate on the floor.

Permitted motions induce a foliation of the set of floors, in which each floor is a leaf,
and a foliation of the set of staircases. Navigating in this space needs to find an alternative
sequence of floors and staircases. Two foliation structures are described in CG∩CP , which
indicates the following property, demonstrated in [68].

Theorem 1.1 (Reduction property). Any path lying in CG ∩ CP where the robot is
not in collision with static obstacles can be transformed into a finite sequence of transit
and transfer paths.

24



This feature decreases the manipulation problem to discover several components of
CG ∩ CP using transit and transfer paths. They give two multiple-query algorithms
depending on PRM. This is the main theoretical result in manipulation planning.

Another successful algorithm is FFrob, introduced by authors of [17]. It is an expansion
of the Fast Forward heuristic that considers geometrical data. A set of beneficial object
poses and robot configurations are sampled offline and stored in a conditional reachability
graph. When the planner fails to solve the problem, new object poses and robot configura-
tions are sampled, and the graph is updated. Thanks to these offline computations, FFrob
can find a solution for challenging problems in a fair amount of time. Nevertheless, multi-
ple parameters are to be tuned. Most of them are very case-specific such as the number of
sampled object poses, the number of grasp configurations, the number of iterations of the
RRT to solve a motion planning problem.

The Diverse Action RRT (DA-RRT) algorithm, introduced by [64], considers the Di-
verse Action Manipulation problem. The inputs to the problem are a mobile robot, a set of
movable objects, and a set of diverse, possibly non-prehensile manipulation actions. This
algorithm obtains a high-level sequence by planning a path just for objects in the domain.
It next tries to complete each transfer manipulation separately. A similar approach is the
Sampling-based Motion and Symbolic Action Planner, introduced in [64]. The authors
generate a tree of configurations by sequentially utilizing actions. The action is picked
using a measure of the efficiency of actions.

Combining motion and task assignment (hybrid planning) is an open problem in robotics
[55,69]. In the literature there are several relevant algorithms that deal with hybrid plan-
ning. One of these works employs a high-level planner that acts as a constraint and provides
a heuristic cost function in the search algorithm in order to speed up the motion planner
[10]. Furthermore, a grid-based discrete representation can also be used to combine the
information from the task planner and the information from the motion planner in order
to obtain a continuous free-collision trajectory for the robot [11]. Another way to com-
bine the task and motion planners is formulated as a representational abstraction between
them, where, each action in the task planner can have multiple instantiations in the motion
planner. This increases the possibility of finding a feasible trajectory for the robot [12].

The study [8] introduces the problem of combining motion and task assignment for a
dual-arm robotic system. Each arm of the system performs independent tasks in a cluttered
environment. Robot acts are considered to eliminate possible obstacles and obtain collision-
free paths to grasp the target objects. In the proposed scenario, the motion planner
provides data to create a graph structure to represent the obstacles to be removed. The
graph is applied to decide which is the next motion path to be computed, and to assign
the tasks to each arm of the robotic system.
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In [70], authors introduce an approach for online integration of 3D perception and
manipulation for personal robotics applications. They propose a modular and distributed
architecture, which integrates the creation of 3D maps for collision detection and semantic
annotations, with a real-time motion re-planning framework.

The studies [29, 71] introduce that an object is moved by multi-robotic arms from an
initial to goal configuration by avoiding obstacles in the environment. They suggest a
solution based on the generated path for the object while simultaneously checking whether
it can be grasped, if it reaches a position where the grasp is not valid any more, it searches
for how to grasp the object with another arm. This way ensures that the object continues
the motion through a calculated path while being grasped.

In general, cooperating robots correspond to overactuated systems or redundant sys-
tems, where the effective degrees of freedom are higher than those strictly required to
perform a given task. This capacity increases the dexterity of the mechanism, and can be
used to avoid joint limits, singularities and workspace obstacles, as well as to minimize the
energy consumption and joint torques or to optimize a performance index [72].

The study [73] proposed a pick-and-place planner suitable for use in animation of au-
tonomous agents. The emphasis was put on natural-looking motions and near real-time
behaviour. In one of the demonstration applications, a virtual chess player planned and
executed commanded moves in near real-time. The decomposition of the task is the same
as that in [93], but here all motions are planned using Rapidly exploring Random Trees
(RRTs) [78, 72], leading to a more robust and less heuristic planner (no restrictions on the
last three joints, no discretezation of the configuration space).

The study [74] introduces a sampling-based mobile manipulator planner based on the
base pose uncertainty and the impacts of this uncertainty on manipulator motions. The
planner uses the Hierarchical and Adaptive Mobile Manipulator Planner (HAMP) plans for
both the base and the arm reasonably. In addition, it utilizes localization-aware sampling
and connection strategies to consider only those nodes and edges which contribute toward
better localization. Moreover, it fuses base pose uncertainty near the edges (where arm
stays static) and impacts this uncertainty on arm motion.

The study [39] extended the Probabilistic Roadmap (PRM) framework to handle ma-
nipulation planning. Their approach uses the manipulation graph, whose edges can be
transfer paths, or transit paths. A transfer path corresponds to a movement where the
task object is grasped and moves along with the robot. Accordingly, a transit path is
a path where the object is left in a stable position and only the robot is moving. The
generality of the approach makes it possible to solve tasks that require several re-grasping
motions. However, the planner has to be initialized with a user-defined set of grasps and
stable object placements. Whereas the approach in [39] used a discrete set of grasps and
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object placements, the approach in [46] could handle continuous sets. A continuous set
of grasps assumes that the set can be parametrized by some coordinates. This is easy in
cases that involve, e.g., a parallel-jaw gripper and a bar with rectangular cross section.
The example in [46] showed that the planner is capable of finding solutions to problems
that require long sequences of re-grasping motions.

Many robotic applications include multiple arms in the same workspace, which are
centrally coordinated to transfer individual objects to desirable locations and orientations
using grasping. The focus is to codify the topology of multi-arm manipulation problems
[12,75] in a way that allows for efficient integrated task and motion planning [76–78].

Existing efforts generally do not explicitly construct the topology for multi-arm manipu-
lation. Early work performed an implicit transfer-transit path search given simplifications,
such as not allowing regrasps at stable poses [29].

Alternatives build a large sampling-based roadmap by composing graphs for each arm
[11], [12]. A recent effort employs heuristic search to first plan an unconstrained object
path, which informs the search for the arm paths [79], but this is limited to light objects
transferable by a single arm, and does not allow regrasps at stable poses. It can however
be used as a heuristic in the proposed framework. Another approach deals with the multi-
modal nature of manipulation, but focuses on complex plans for a single arm [64]. Also,
the study in [80] is the first used sampling based planners to solve manipulation planning
problem for redundant robots.

Although the topology of dual-arm manipulation is explicitly defined in [28], the topol-
ogy of multi-arm case was recently defined in [7], topologies for mobile multi-arm ma-
nipulation have yet to be studied. Our research in this report extends the field to the
multi-arm case and to codifying the topology of mobile multi-arm manipulation. It fills
gaps in recent efforts, such as in [1], which is restricted by the number of arms needed to
transfer an object and the feasible handoffs given the spatial arrangement of the arms in
the workspace. The authors also assumed key variables are already known, such as which
robot will grasp or transfer the object, and, while static obstacles in the shared workspace
were considered, the possibility of collision between arms was not.

In our research, described in Chapters 3 through 5, we apply a hierarchical approach to
decide which robot will do the task and in which order. Our proposed graph representation
is based on the shared workspace between arms for transferring an object as represented
in Fig 3.1. In this case, each robot must work in their transit area if there is no transfer
between arms.
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Chapter 3

Shared Space Graph Based
Manipulation Planning

3.1 Introduction

In this chapter, we introduce an integrated motion and task planning methodology
for multiple robot arm systems with high DOF applications performing different tasks
simultaneously in a shared workspace as defined in Problem 1 in Section 2.1. In the
proposed methodology, we introduce a high-level task planning layer and a low level motion
planning layer. We develop an algorithm to integrate these two layers in order to achieve
reliable and collision free task execution. At the low level motion planning layer, we extend
heuristics based path planning algorithms for systems of multiple high DOF robotic arms.
We introduce concept of shared space graph (SSG) to check whether two arms share certain
parts of the workspace and quantify cooperation of such arm pairs, which is essential to
the selection of arm sequences and scheduling of each arm in the sequence to perform a
task or a sub-task.

In this chapter, we will focus on first three questions introduced in Section 2.1. To
answer these first three questions, our approach first determines pairs of arms (Ai, Aj) in
set S with intersecting workspaces, i.e. WS(i) ∩ WS(j) 6= ∅, to provide the topology of
mobile multi-arm manipulation graph for any transfer that could appear. This topology
can be represented by a graph G=(V,E), where each node i ∈ V stores the base location
of a particular arm Ai and the number of collision objects in the Ai robot’s workspace
and each edge (i, j) ∈ E represents a non-empty common workspace shared by the arms
Ai and Aj. In this work, this graph is called shared space graph (SSG). Hence the SSG
of a system of N arms has N nodes. The edges are found by checking the workspaces of
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Figure 3.1: Transfer, transit and manipulation path representations

individual robot arms and their intersections as illustrated in Figure 3.2. The proposed
SSG representation can be applied online as well as offline since the proposed idea does
not require extensive sensory data rather than a vision system, except the base locations
of the robots and objects, especially if the robots have mobile bases. Based on the notion
of SSG, we propose the following 3-Step solution to the problem defined above:

Step 1: Generate the SSG with vision guide, corresponding to the shared workspace of
the arms (Algorithm 1, line 1),

Step 2: Find the optimal arm sequence performing optimization based on the SSG as
well as the individual robot arm workspaces (Algorithm 1- lines 2, 3, 4),

Step 3: Plan a collision-free manipulation path for each required task (Algorithm 1-
lines 5,6)

Step 4: Integrate Step 1,2 and 3 with task planning layer to cope with failure in
manipulation planning due to unstructured environment (Step 4 will be handled in Chapter
4 and Chapter 5).

3.2 Algorithm Development

Based on the problems described earlier, we consider both selection and motion plan-
ning attributes. For each attribute, a formal approach is followed. Our planning approach
is guided by the principle of integrating path set M and arm sequence S and their in-
terpretation for primitive tasks. Hence, the algorithm is structured into two stages where
Stage 1 maps elements of M and elements of S, not necessarily one-to-one, and Stage 2
generates each corresponding task, and plan the arms’ motions.

• Stage 1 = Step 1 +Step 2: Obtain a set of arms which can transfer an object from
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Figure 3.2: A summary of proposed integrated task and motion planning

initial to goal positions. The main purpose of this stage is to obtain a series of arms
where the object is transferred from one arm in the series to the next such that the
last arm will place the object at its goal location (Fig. A.13).

• Stage 2 = Step 3: Calculate a collision free trajectory for each step of the arm series
found in Stage 1. This stage is a more kinematic stage since the joint/work spaces
of all of the arms are considered when a trajectory is calculated.

Our first objective is to combine the two stages by searching for applicable set in terms of
kinematic feasibility. Since having a feasible set helps to grasp an object at each step by
a different arm, this can be interpreted as a state, where a configuration of a single arm
is a set. Our second objective is to calculate a transition function between those states.
Here, a transition function is considered as a motion plan as detailed in the Stage 2. In
the following subsections, details of the two algorithms stages are provided.

3.2.1 Stage 1: Multi Arm Sequence Planning

As mentioned above, a manipulation-path is defined by some primitive tasks, which
come from task planning layer, such as pick and place operations. However, in this work,

30



we divide each primitive task to further subtasks before it is introduced to the motion
planning layer. Therefore, the term primitive task is used to denote the k’th procedure in
M, for convenience. To perform each primitive task separately, we simplify the problem
to a single robotic arm pick and place problem. Still, there is no guarantee of completion
of the whole task unless a binding condition is made between consequent primitive tasks.
Such a criterion is described by the proposed meet point definition.

Let T be a task, which involves K arms to bring o from oinit to ogoal.

T =
K⋃
j=1

Tj,

where each primitive task Tj represents movement of the object o along a portion of path,
M by a different arm. The goal position of a task, Tj(goal) is the initial position of next
task, Tj+1(init) i.e., Tj(goal) = Tj+1(init). We define a meet point (MP) as a position
where any Tj starts or ends. Any MP is located where an object is being picked or placed
by a transferring arm. Any set S that involves K arms has to pass through oinit , (K − 1)
number of MPs, and ogoal, respectively, as illustrated in Figure 5, Scheme 1. MP is found
by considering circle-circle and/or sphere-sphere intersection geometry by selecting the
centre of the shared workspace (Figure 4.3) .

By the fact that each of oinit and ogoal is in the workspace of one of the arms, we can
reason about the starting and final nodes in the SSG. At this point, any graph search
would give a solution in the form of a set of indices of arms S = {s1, ..., sk, ..., sK} connected
by their shared workspaces such that:

oinit ∈ WS(1) (3.2.1)

ogoal ∈ WS(K) (3.2.2)

WS(k) ∩WS(k+1) 6= ∅ (3.2.3)

To complete the algorithm’s first stage we still have to determine the positions of the meet
point series. As shown in Figure 4.3, we can detect that any meet point is located in the
shared work space of any two successive arms in M.

Algorithm 2 shows the main procedure for generating a solution. Here, lines 1-4 rep-
resent the first stage of the algorithm for calculating the transfer arms and meet points
and lines 5-6 represents the motion planning and assignment of the tasks to each robot
respectively. The lines 1-3 are explained in detail above. Line 4 is finding optimal arm
sequence by considering initial and goal workspace of the robots, as calculated in lines 2-3,
and SSG graph based on Dijkstra ’s algorithm, as explained in [81]. The cost here is the
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number of interactions between arms. We feed our motion planning (A∗, RRT ∗) with MP ,
S data to calculate transfer path for each robot individually (Line 5). Lastly, we map each
S to each of T by considering all M in Line 6 (Figure 4.3).

Algorithm 1 Multi Arm Sequence Planning

Require: oinit, ogoal,A
Ensure: M
1: SSG← Generate SharedSpaceGraph (A)
2: S(1)← obtain(S(1) such that oinit ∈ WS(1))
3: S(K)← obtain(S(K) such that ogoal ∈ WS(K))
4: S ← Dijkstra(ssg, S(1), S(K)) // generate ws sequence
5: M ← Calc TransferPath using MP (S, oinit, ogoal)
6: T ← GeneratePrimitiveTasksSequence(M,S, MP)

3.2.2 Stage 2: Multi Arm Motion Planning

This section explains our proposed solution to calculate a collision-free manipulation-
path for each of the arms. Still, a single arm motion planner is not applicable in a multi-
arm scenario and a multi-arm motion planner solving for a large number of arms is highly
complex.

In our problem, the overall goal is to obtain a multi-arm trajectory for each of the
primitive tasks extracted by the proposed algorithm. Note that initial configuration of
the each arm in S and the transferring arm index are known. For simplicity, we assume
that there are two types of obstacles: the arms themselves and the objects. The proposed
planning scheme targets the following requirements: i) changing priority when needed, ii)
plan a path for moving arms only.

Our planning scheme is built by the same principles of decoupled planning approaches
with emphasis on the prioritization based on [27]. By resolving each primitive task, we
obtain that it is associated with only a single arm (e.g. transfer arm). This is the key
feature that guides our search. Only a single arm gets the highest priority while all the
others are non-prioritized. Still, changing the priority of the obstructed arm means nothing
without having a feasible target. Hence, in order to depict the procedure of changing
priority it has to come with adding a target.
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3.3 Simulation Results and Testing

The designed planning algorithms that implement Stages 1 and 2 of the previous sec-
tion are tested via simulation to analyse their capabilities of displacing one or multiple
objects using multiple arms. The simulations are being performed under Matlab and ROS
Rviz/Gazebo environments, which can also be used as a real experimental environment to
test scenarios multiple robot arms sharing the same workspace. In this section, we consider
2 different setups: (i) single link, planar- 3, 4 and 6 robots cases, (ii) a dual arm robot
(Kinova-Movo), whose specifications can be found in [82]. Figures 3.5 and 3.4 are repre-
senting the setup (i), where the link length is 0.3 m and the joint angle range is [−π, π] for
each robot. Note that arms, tables and the object are the only possible collision objects.
For setup (ii), we used following design parameters:

oinit = [0.9 0.5 0.75],

ogoal = [0.4 − 0.5 0.85],

movohomed = [−1.5,−0.2,−0.15,−2.0, 2.0,−1.24,−1.1,

1.5, 0.2, 0.15, 2.0, -2.0, 1.24, 1.1, 0.35, 0, 0],

table1 = [0 − 0.8 84],

table2 = [1.1 0 0.74],

In this scenario, Kinova-Movo, 2 tables and a cylindrical object are the only collision
sources.

In Figure 3.4 (a), there exist 6 single link robots with SSG representation and initial
and goal location location of an object. Figure 3.4 (b) illustrates the optimal number
of the robot and their identity based on SSG, oinit and ogoal and Dijkstra’s algorithm.
In this scene, robots 1, 6 and 5 number robots are responsible to bring the object from
oinit to ogoal. Scheme 1 in Figure 3.5 indicates that any set S that includes K arms
has to move through oinit, K − 1 MPs, and ogoal and K arm’s shared and independent
working regions, respectively. In Figure 3.5 Scheme 2, we see that two tasks, carrying
the objects, o1init = [−0.2 0.8] and o2init = [−0.2 − 0.15] to o1goal = [0.6 0.8] and
o2goal = [0.6 − 0.15], can be handled by robots R1, R2 and R3 and R4 in parallel,
respectively. Here, when we calculate the path for the first object, robots R3 and R4 are
ignored. Similarly, when we calculate a path for second object from oinit to ogoal, robots R3

and R4 are ignored. Similarly, in Scheme 1, workable regions for each robot is represented
as follows:

a = R1R2R3, b = R1R2R3, c = R2R1R3,

d = R1R2R3, e = R1R2R3.
(3.3.4)
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Figure 3.3: The object and right gripper’s trajectory while object is moved from MP to ogoal
where gazebo/link states/pose[24], gazebo/link states/pose[28] and joint states/position[12] are
movo::right gripper finger1’s pose, pringles small::link’s pose, and right gripper finger1 joint’s

pose respectively.

Figure 3.4: a) SSG representation based on shared workspace. b) The shortest path is found
using Dijkstra.
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Figure 3.5: Scheme 1: a) An example of MP representation for three robots, where R1, R2
and R3 indicate workspace of the each robot. b) The shared and individual working regions.

Scheme 2: Parallel working principle based on shared and independent working areas

Figure 3.6: a)A 3-DOF single arm in 2D. Path planning time is around 70.19 seconds via A∗

b) 2 arms, 3-DOF each, case. Planning time is more than 30 minutes

35



Figure 3.7: A setup consist of two arms with 3 DoF each. The first robot brings the o from its
initial to a MP , and the second robot takes the o to ogoal

where Ri means the specific robots cannot work in the indicated region. Note that oinit =
[−0.4− 0.185] and ogoal = [1.40.15].

When we consider there is not any research in the literature on the topology of mobile
multi-robotic arms and manipulation graph representation based on shared workspace
between arms to have an insight when some of the robots’ shared space changed, the
proposed representation is quite useful to extend the efforts on the topology of the mobile
multi-arm systems. We define the robot parameters in Figure 5 (a) as follow;

links length =
[
0.3 0.3 0.15

]
,

joints lim =
[
−π π

]
,

arm1 base pose =
[
0.1 −0.1 −0.5

]
,

desired pose =
[
0.3 0.3 pi

]
,

proximity = 0.05,

angle res = 0.05.

Similarly, robots’ parameters for Figure 5 (b) are;

arm1 base pose =
[
0.68 −0.65 π/2

]
,

arm2 base pose =
[
0.78 0.65 −π/2

]
.

Also, the proximity, resolution values, and initial and goal positions of the robots, for the
A∗ algorithm are 0.1, 0.1, oinit = [0.85, 0, 0], ogoal = [0.55, 0, 0], respectively.

In Figure 6 (a), a single 3-DOF robotic arm with its initial and goal position is shown.
We create a path using A∗ and proposed SSG representation for the each arm and bring the
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Figure 3.8: Proposed scenario implementation using the Kinova Movo: The first Jaco arm
brings the o from its initial to a meet point MP . Left side of the each figure are representing the

Gazebo model and right side are showing RViz model created by mapping from gazebo model.
Note that initial and goal location of the object detected by a kinect sensor on the movo’s head.

arms to their destination both in cartesian and joint space. The average planning time is 1
minutes 20 seconds in the one arm case. However, the planning time for two arms’ case is
more than 30 minutes as seen in the Figure 3.7. By applying our proposed algorithm with
A∗ for two arm case, the total planning time is around 3 minutes 10 seconds. In Figures
3.3, 3.8 and Figure 3.9, proposed scenario implementation using the Kinova Movo with
a pair of 7-DOF 2-Jaco arms have been used to move an object from an initial location
on the first table to another location on the second table. The first Jaco arm brings the
o from its initial to a meet point MP , and ii) the second Jaco arm takes the o to ogoal
by applying RRT based path planning algorithm in Gazebo/ROS environment. Note that
the initial pose of the object is found by a kinect sensor’s data, and the goal pose are
given to the planner. The planner returns a sequence of trajectories, labeled with which
arms they are for. Note that the initial state of all of the arms is for them to be in their
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safe configurations. The whole planning is taken a maximum of 2 minutes to compute a
solution. It is because we plan each arm path individually (6 DOF) rather than planning
a path with two arm (6x6 DOF).

As it is illustrated in the Fig. 3.8, the dark blue path is the left Jaco arm’s gripper’s
trajectory while the arm is bringing the object from its initial location to its meet point.
Also, the light blue path in the Figure 3.9 is representing the right Jaco arm’s gripper’s
trajectory while the right arm taking the object from its MP to final location. In the
Figure 3.9, on the Rviz model which is placed on the right hand side of the figure, left
top corner is demonstrating the kinect-camera’s view from the head of the Kinova-Movo.
We get the initial location data of the object from the camera. Since the object’s initial
location is inside the left arm’s workspace, left arm is responsible to take the object to
the meet point and similarly, a given final location of the object is inside the right arm’s
workspace, so second arm is responsible for carrying the object its final location. In this
scenario, both arm is taking the role of placing the object from its initial to goal. Since
the planning process for the each arm is calculated once at a time, the planning time is
more efficient than planning the paths for the both arm at the same time. Also, simulation
results indicate that third dimension and increased DOF is more complex to solve and
increase the computation time for the planning process as seen in Fig. 3.8, and 3.9. This
scenario can be easily extended more than two arms’ cases. As previously discussed, any
primitive task is obligated to a single arm pick and place operation no matter the number
of arms in the set. An interesting case emerges when only a few arms obstruct the path
of the transfer arm. This notion simplifies the solution by planning with less DoF which
drastically reduces computation time.

All experiments were performed on a computer with an Intel i7 CPU (2.8Ghz), 16GB
of RAM, running Ubuntu 14.04. Note that we assumed all robots in the environments have
fixed-bases. In this simulation, we use RRTStar to plan all of the required paths. RRTStar
is one of the most common and fastest sampling based methods used today. We use the
highly optimized implementation found in the OMPL [83]. Given that this method is not
limited to two arms but, we are only able to run it on the tabletop scene with two arms’
case in this paper.
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Figure 3.9: Proposed scenario implementation using the Kinova Movo: The second Jaco arm
brings the o from its meet point MP to goal. Left side of the each figure are representing the
Gazebo model and right side are showing RViz model created by mapping from gazebo model.

Note that initial location of the object detected by a kinect sensor on the movo’s head.
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3.4 Summary

In this paper, we have developed an integrated motion and task planning algorithm for
multi-arm robot systems in a shared workspace. We have utilized SSG idea not only to
decide, among a certain number of robots within a cooperative multi-arm robotic system,
which ones are the best fit for a given task, but also to distinguish the regions based on
independent working areas and cooperation areas. Simulation results verify that SSG-MP
based sequence and motion planning not only helps to find optimal arm sequences for a
given task, and generate the corresponding optimal trajectories, but also decreases the
planning time dramatically for search based planning algorithms.

However, some limitations exist in the techniques. First, in the case of a non-empty
meet point, the algorithm should find an alternative. This problem is considered as future
work.

Also, we consider that pre-defined grasps are available for every defined task. However,
if there exists a failure from the task planning layer regarding grasping, our algorithm
cannot generate an alternative grasping.

In the next chapter, the proposed technique will be extended for cases involving more
than two robot arms with mobile and fix bases. Moreover, we will consider the problem
of cluttered environment. The proposed SSG representation reduces the dimensionality of
the problem in defining the tasks and motion paths for each robot in the workspace.
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Chapter 4

Vision-guided Dynamic-Shared Space
Graph Based Manipulation Planning

4.1 Introduction

Multi-robot manipulation tasks can be highly challenging to plan and execute correctly,
especially in the presence of a mobile manipulator in the environment. In other words, the
main challenge in this is to find a feasible plan to solve a given task under uncertainties,
e.g., the exact location of the object to be manipulated may not be accurately known or
some object properties such as geometry may not be known by the robots at the start
of the task. To deal with uncertainties while planning robot(s) motion in the literature,
generally robots planning algorithms search a sequence of actions and apply a replanning
process in the case of failure or uncertain situations. This process of motion replanning
can be computationally expensive and may not satisfy real time operation requirements.
In the previous chapter, which is based on our work in [18], we proposed a shared space
graph based integration algorithm for multi-robot manipulation problem. However, that
approach assumes no change in the base locations of the robot arms or change in the
environment (structured) during task(s) execution. The main objective of the task and
motion planning algorithm proposed in [84] and their extensions in this chapter is to solve
the problem of picking and placing one or more objects using a system of multiple robotic
arms, including mobile and fixed based robots, aided by visual sensing. The proposed
planning approach in this chapter is able to create alternative solutions which can effectively
perform motion and task planning when robots base locations change throughout the task
or uncertainties associated with location of obstacles in the workplace exist at the onset
task execution.
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Figure 4.1: An example with n = 4 arms, where each arm has a fixed base. In this setup, no
single arm is able to bring the object from its initial location to the target region

Significant progress has been made in recent years in advancing the state of the art
in mobile manipulation, with versatile manipulation platforms which can work collabo-
ratively in human-centric environments such as such as the Kinova-Movo (see Fig. 1),
PR2, Intel HERB Personal Robot, ICub, the TUM Rosie robot, the HRP2, ARMAR, and
Justin. Newer systems such as the Kinova-Movo have integrated 3D sensors to enable
identification of changes in the location of objects of interest within the robots work envi-
ronment. However, cooperation between mobile and fixed based robots in hybrid scenarios
similar to the one depicted in Figure 4.2 have not been studied much in the literature.
In Figure 4.3, we introduce the framework of the proposed integration algorithm for task
and motion planning when multi-robots similar to the ones in Fig. 4.2 share the same
manipulation workspace. We present higher level task planning layer in PDDL format.
Reasoning about the world- robots, objects and obstacles situations in the world- situa-
tion is provided to task, motion and our integration algorithm as an input. In the case of
failure of a specific primitive task, such task is introduced as an input to our integration
algorithm. The integration algorithm provides robot-arm sequence and waypoints (meet
points) for that specific task. These waypoints are then given to the motion planning layer
which in response generates new motion plans utilizing this information. If the new plan
can be successfully executed, it is translated to the task planning layer before moving on
the next scheduled task. For the collison avoidance part of motion planning module, we
use open source collision avoidance libraries. Details on the design of each block of the
proposed framework in Figure 4.3 are provided in the following sections.
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Figure 4.2: An example of mobile and fixed base robots in a shared environment. In this setup,
we have a kinova-movo, mobile based robots, and two Fanuc LRMate 200ic, fixed-base arms.

4.2 Algorithm Development

Problem 2, described in Chapter 2, includes both sequence planning and motion plan-
ning steps. Hence, we introduce a two layer solution; 1) An integration layer following
high level task planning layer which aims to find a series of arms, where the object can
be passed from one arm to the next such that the last arm is able to place the object at
it’s target location (in case of failure of a primitive task). Here, a dynamic shared space
graph, D-SSG, representation is introduced to provide the topology of interaction of fixed
or mobile-based multi-arm systems. The D-SSG determines a pair of arms within the
workspace where handover of the object being manipulated can take place from one to the
other. The D-SSG with the proposed meet point, MP, representation, which is located in
the shared workspace of any two adjacent arms, is used to find a sequence of arms, as well
as the initial and final location of each path for each arm involved in the execution of this
given task. 2) A low level motion planning layer, D-SSG and MP attributes is used to
calculate a collision free trajectory for each step of the sequence.

Based on Problem 2 described earlier, we consider both selection (lines 1-4 of Algorithm
2 - page 54) and motion planning attributes Algorithm 2(lines 5-6). For each attribute, a
formal approach is followed. Our planning approach is guided by the principle of integrating
path setM(k) and arm sequence S(k) and their interpretation for primitive tasks. Hence,
the algorithm is broken down two stages where Stage 1 maps elements ofM and elements
of S, and Stage 2 generates each corresponding task, as well as plans the arms’ motions.

• Stage 1 = Step 1 (Finding arm sequence) +Step 2 (Finding meet points (MPs)) :
Obtain a set of arms which can transfer an object from initial to goal positions. The
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Figure 4.3: The implementation process of the algorithm

main purpose of this stage is to obtain a series of arms where the object is transferred
from one arm in the series to the next such that the last arm is able to place the
object at its goal location.

• Stage 2 = Step 3: Calculate a collision free trajectory for each pair of arms at each
step in the series identified in Stage 1.

In the following subsections, details of the two algorithms stages are provided.

4.2.1 Stage 1: Multi Arm Sequence Planning

A manipulation-path is defined by some primitive tasks, which are transferred from
task planning layer, such as pick and place operations. In our integration algorithm, we
divide each failed primitive task to further subtasks before it is introduced to the motion
planning layer. Therefore, the term primitive task is used to denote the i’th procedure
in M. To perform each primitive task individually, the problem is simplified to a single
robotic arm pick and place operation. Still, there is no guarantee of completion of the
whole task unless a binding condition is defined which links the sequential primitive tasks.
Such a criterion is described by the proposed meet point definition. Therefore, we define
the positions of the meet point series. Any meet point is located in the shared work space
of any two successive arms in S [18].
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Figure 4.4: Flow diagram of overall process.

Arm Selection Based on Graph Search

LetD−SSG = (V,E) be a connected, undirected, simple graph. Here, V = {v1, v2, ..., vn}
the graph’s vertex set, and each edge in E has form of (vi, vj), where i, j = 1, 2, ..., n. Let
S = {s1, s2, . . . , sk, . . . , sn} be a set of robots with base position xi, and sum of the links
length li for each si, and initial location oinit and goal location ogoal on SSG given by the
injective maps oinit, ogoal : SV , respectively. Each node vi ∈ V represents the workspace of
a particular arm si and each edge (vi, vj) ∈ E represents a non-empty common workspace
shared by arms si and sj. The domains of the base position xi are changing in discrete time
step k. Therefore, SSG become a dynamic graph SSG(k), where edges might appeared or
disappear between any two nodes based on the state of xi(k).

Definition 4.2.1 (Node construction). Shared workspace between each robot in S makes
vertices connected (E = (vi, vj))

eij(k) =

{
(vi, vj), if dij(k) < li + lj

undefined, otherwise
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where dij(k) = ‖xi(k)− xj(k)‖, i, j = 1, 2, ..., n and i 6= j.

Definition 4.2.2 (Initial arm set discovery). Let oinit and ogoal be initial and goal locations
of the object, which needs to be transport by two or more si, respectively.

ArmSetinit =

{
vi, if ‖xi − oinit‖ < li

undefined, otherwise

Definition 4.2.3 (Goal arm set discovery). Let oinit and ogoal be initial and goal locations
of the object, which needs to be transport by two or more si, respectively.

ArmSetgoal =

{
vj, if ‖xj − ogoal‖ < lj

undefined, otherwise

Definition 4.2.4 (Shortest path). A shortest path in an unweighted graph is the path with
least number of edges (Breadth First Search). For each edge (vi, vj) ∈ E, if vj is unvisited;

distshortest(vj) = distshortest(vi) + 1 (4.2.1)

Arm Selection with Environmental Obstacles

Consider the same environment given previous subsection above with some environmen-
tal obstacles Eo = {Eo1, Eo2, ..., Eol} with their locations ep = {xp, yp, zp}, where p = 1, ..., l
and obstacles might appeared or disappeared under any arm Si workspace.

Definition 4.2.5 (Cost construction). Obstacles under robot Si makes vertices connected
(E = (vi, vj))

cij(k) =

{
cij(k) + 1, if dip(k) < li

undefined, otherwise

where dip(k) = ‖xi(k)− ep(k)‖, i = 1, 2, ..., n and i 6= p.
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Definition 4.2.6 (Initial arm set discovery). Let oinit and ogoal be initial and goal locations
of the object, which needs to be transport by two or more si, respectively.

Definition 4.2.7 (Shortest path).) A shortest path in a weighted graph is found by Dijk-
stra. For each edge (vi, vj) ∈ E, if vj is unvisited;

distshortest(vj) = distshortest(vi) + cij (4.2.2)

4.2.2 Stage 2: Multi Arm Motion Planning

In this section, we introduce our proposed solution to calculate a collision-free manipulation-
path for each arm. Still, a single arm motion planner is not applicable in a multi-arm
scenario and a multi-arm motion planner solving for a large number of arms is highly
complex. In our problem, the overall goal is to obtain a multi-arm trajectory for each of
the primitive tasks extracted by the proposed algorithm (Algorithm 2). Note that initial
configuration of the each arm in S and the transferring arm index are known. A RRTstar
based path planning algorithm is applied to the MaM environment, which includes a dual
arm robot as specified in the following section. In the following algorithm, as one can see,
RRT searches for a path from the initial configuration to the goal configuration by expand
a search tree (details of RRTstar can be found in the Appendix A). For each step, the
algorithm determines a target configuration and expands the tree towards it. The target
can either be a random configuration or the goal configuration itself, depending on the
probability value defined by the user. During the search tree evolution,, the algorithm
only needs to determine if each step is collision free but does not need to plan for avoiding
obstacles [36, 85].

Algorithm 2 shows the main procedure to generate a solution. Here, lines 1-4 represent
the first stage of the algorithm which calculates the transfer arms and meet points and lines
5-6 represents the motion planning and assignment of the tasks to each robot respectively.
Line 4 is finding optimal arm sequence by considering initial and goal workspace of the
robots, as calculated in lines 2-3, and using SSG graph based on Dijkstra ’s algorithm
explained in [81].

Minimization problem for finding MP poses for passing an object from one arm
to another

A common task that requires manipulation by two or more robots from Si is to move
an item from one arm to the next in minimal time for any initial poses of each end-effector.
To solve this complex task, it broken down into three steps:
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Figure 4.5: Roadmap of the motion planning layer.

• Minimization problem for finding MP poses for each gripper, which has to be at a
specific distance and rotation from another gripper

• Using robot path planning tools to generate collision-free paths for both arms from
initial to MP pose.

• Performing the first and second steps above repeatedly to find the path that requires
minimum time to execute.

As mentioned above, the first step in solving a minimization problem for finding an
MP pose for each gripper. The scipy.optimize.minimize() function is used to solve this
problem, using Sequential Least-Squares Programming, SLSQP method, ( further details
can be found at [86]).

Instead optimizing only gripper pose, the minimization problem is solved in the domain
of joint angles (q). The pose used is a vector of six components, position in the x, y, z
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Algorithm 2 Multi Arm Planning Integration

Require: oinit, ogoal,A
Ensure: M
1: for k ← 1 to N do
2: D − SSG(k)← D − SSG (S)
3: s(1)← obtain(s(1) such that oinit ∈ W∫(1))
4: s(K)← obtain(s(K) such that ogoal ∈ W∫(K))
5: S(k)← Dijkstra(SSG(k), s(1), s(K))
6: M(k)← RRTstar

(
S, oinit, ogoal,MP (k)

)
7: T (k) ← PrimitiveTasksSequence(M(k),S(k), MP(k))
8: end for
9: return T (k)

directions, and XYZ Euler angles, more commonly called the roll, pitch, yaw. We use the
norm between the current end-effector pose and the corresponding end-effector pose as
an ojective function for the set of q’s obtained by the minimization for each gripper. We
use two functions in the objective function, respectively, (1) calculate the norm and (2)
return the end-effector’s pose with the current set of q’s. Inside the norm function, another
function, JStoP (q,′limb′) is called. This uses KDLKinematics from pykdlutils to solve forward
kinematics for the set of joint angles, returning the rotation and translation components
that describe the end pose [87].

Also, rotational limits for each joint, can be obtained in the Unified Robotics Descrip-
tion Format (URDF) file, and constraints to satisfy both grippers to stay at a specific
distance from each other are give to the minimization function.

4.3 Simulation Results and Testing

In this section, we evaluate the proposed planning algorithm that applies Stages 1 and
2 of described in section 4.2 via simulation. The simulations are being performed under
ROS Rviz/Gazebo environments. Here, we consider 2 different setups: (i) a dual arm robot
(Kinova-Movo) and ii) four arm robots environment, includes 2 fixed (Lrmate 200ic, Fanuc)
and 2 mobile arms arm (Kinova-Movo)- robots specifications can be found in Appendix
A. In the first scenario, Kinova-Movo, 3 tables and cylindrical and rectangle objects on
the tables are described as part of the workspace as shown in Figure 4.6. In the second
scenarios, 2 fanuc arms, Kinova, Movo, a table and cylindrical and rectangle objects on
the tables are the collision sources as seen in Figure 5.11 and Figure 5.14 respectively.
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Figure 4.6: Proposed scenario implementation using the Kinova Movo: The second Jaco arm
brings the o from its initial to goal position under clustered environment.
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The simulation scenarios are implemented using the Kinova Movo with a pair of 7-DOF
2-Jaco arms (Fig. 5.11) and 6 -DOF 2-Fanuc arms and a mobile based Kinova-Movo robot
in Fig. 5.14 to move an object from an initial location to a goal location. In each of
those scenarios, the task cannot be accomplished only one arm. In the both cases, the first
Jaco arm brings the o from its initial to a meet point MP , and ii) the second Jaco arm
takes the o to ogoal by applying RRTstar based path planning algorithm in Gazebo/ROS
environment, after a systematically created SSG search and deciding Si for particularly
given task. As seen Fig. 5.14, when the base location of the arm changes, the SSG graph
is changing simultaneously as well. In the Fig 4.6, sub-figures a) with c) and a) with d) are
associated. Note that the initial pose of the object is found by a kinect sensor’s data, and
the goal pose are given to the planner . The planner returns a sequence of trajectories,
labeled with which arms they are for. Note that the initial state of all of the arms is for
them to be in their safe configurations. The whole planning is taken a maximum of 2
minutes to compute a solution.

Our ROS-perception methodology begins by building a predictable model of the en-
vironment using input from kinect sensor as seen in Figure 5.6. The environment is rep-
resented using a mix of pre-created mesh models for known objects and a voxel-based
representation for the other parts of the environment. The environment representation
serves as input to motion planners that generate collision-free, smooth motions for the
robot. Fast, real-time trajectory controllers are used to perform the planned trajectories
on the robot. Grasp action of objects consists of selecting an appropriate grasp from a set
of possible grasps actions computed a priori.
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Figure 4.7: Color and shape features from the objects that were sitting on the table are
extracted using object segmentation on 3D point cloud data from gazebo world.

Figure 4.8: Proposed scenario implementation using the 2 Fanuc arms and a Kinova Movo
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All simulations were performed on a computer with an Intel i7 CPU (2.8Ghz), 16GB
of RAM, running Ubuntu 14.04. Note that we assumed all robots in the environments
have the fixed-bases. In this simulation, we use RRTStar to plan all of the required paths.
RRTStar is one of the most common and fastest sampling based methods used today. We
use the highly optimized implementation found in the OMPL reference to paper [83] which
describes the RRTstar algorithm.

4.4 Summary

In this chapter, an integrated motion and task planning algorithm for multi-arm robot
systems in a shared workspace under heavy obstacles is introduced. D-SSG idea have been
applied not only to determine, among a certain number of robots within a cooperative
multi-arm robotic system, which ones are the best fit for a given task, but also to distinguish
the regions based on independent working areas and cooperation areas. Simulation results
verify that D-SSG-MP based sequence and motion planning not only helps to find optimal
arm sequences for a given task, and generate the corresponding optimal trajectories, but
also eliminate the failure of the given task in the case of robot base location change or
environmental obstacles change. In the case of environmental changes, the algorithm is
able to find alternate plans, which is helpful to the task planning layer in long term task
success.

However, our algorithm is vulnerable in very cluttered environments. Our algorithm
may not find an arm sequence and a proper meet point due to obstacles in these cases, such
as the amazon grasping challenge. Also, SSG based planning cannot solve some problems
if the robot cannot find the manipulation object, such as if the object in a drawer. One
can combine our method with one of the available literature solutions for solving such a
problem in those scenarios.

Another limitation is that the weights on the SSG are calculated based on the number
of objects under each arm’s workspace. However, considering the volumes of the objects
can give a better path regarding a collision-free trajectory. This problem will be handled
as future work.
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Chapter 5

Integrated Task and Motion planning
with Dynamic Shared Space Graph

5.1 Introduction

Solving robotic manipulation problems such as preparing a pasta dish or setting the
table with a different type of item must have a planning system that can find a sequence
of actions around a feasible path. However, these kinds of problems are more challenging
in uncertain environments, especially in the MaM’s environment, such as each robot’s
reachability changes in time.

Several versions of PRM have been proposed, such as manupulation graph by the
authors of [46], or multimodal planning techniques [55,62] to solve the manipulation plan-
ning problems. However, those approaches cannot deal well with the dimensionality to
manipulation problems with many objects. Another possible approach is Task and Motion
planning (TAMP), that searches for a discrete sequence of symbolic actions around a mo-
tion plan for each of them. However, the discrete formation of manipulation tasks, such
as pick and place, is over defined in the symbolic domain, that decrease the complexity
of the problem. The main disadvantage of TAMP is to avoid calling motion planner for
unfeasible actions, especially for constraint manipulation planning problems.

There exist two primary approaches in the literature to solve integrating high level
symbolic task planning and low-level motion planning problems; simultaneously [17, 63],
interleaved [16,88]. Simultaneous approaches consider geometric data by calling a motion
planner while task planning is running. However, the interleaved methods decouple motion
planning from the task planner. First, task planning is pursued, then a motion planning
layer is called to evaluate the feasibility of the plan. If the plan fails, geometric constraints
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are fed into the task planner, and the same steps are followed until a feasible plan is found.
The integration of task and motion planning layers is complicated when the MaMs is in
uncertain environments, and robot’s and objects’ locations are subject to change in time.
These challenges are the subject of the present chapter.

In the previous two chapters (Chapter 3, 4), we have considered the manipulation
planning problem as a single layer manipulation planning problem. In contrast, each
robot’s path planning was considered individually for a specific task based on SSG search
for MaM in both structured and semi-structured environments. This chapter combines
the aforementioned single layer planner through an SSG search with a high-level symbolic
task planner. In other words, we combine the mentioned single layer planning approach
with the multi-layer manipulation planner approach. This approach is helpful since it
creates alternate plans in case a task or subtask fails due to some geometrical change in
the environment.

Based on the Problem 3 defined in Chapter 2, first, we have created a ”library” of basic
motions for the robots. To integrate task planning and motion planning, the geometric
information needs to be translated into the task planner that checks the motions’ feasibility
and creates a plan. This step is done by the PDDL that models the motions as geometric
prerequisites and effects in order that the task planner checks the feasibility. It is necessary
to model the actions according to the problem we are going to solve. As our purpose is
to create an algorithm capable of solving the maximum variety of planning problems, we
have to model it, including all the possible conditions. Although we include all possible
conditions into the task planning problem, if a minor change happened in the environment,
such as a change in the robot’s or the object’s base location or an appearance of a new
obstacle in the environment, both task and motion plans fail. In this case, the specific
task or subtask is translated into our dynamic SSG-MP based interface layer. This section
explains in detail how the actions have been modelled in PDDL and how the failure is
handled in semi-structured environments.

First, we start describing the predicates and the type of objects, which define the
problems we are going to solve. Since we have computed the actions such as move base,
move the arm, pick and place, we can solve planning problems that consider moving objects
from a place to another. Solving other kinds of problems like cooking pasta, doing the
dishes, etc. requires extra actions as press the accelerator and/or requires unique modelling
as, for example, isdirt? dishes. Our problems have to be as real and general as possible, so
we have to include blocking situations. If we want to solve problems in which objects are
hidden within a drawer, we must create the motion open/close a drawer and model it on
PDDL.
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5.2 Combining Task and Motion Planning Through

Our Interface Layer

The relationship between the high-level PDDL actions and low-level control has been
established through our translation layer, which is instantiated as separate node. The
Planning System will dispatch PDDL actions using a message type defined by ROSPLAN
to the intermediate layer, where the translation can be carried out. Furthermore, ROS-
PLAN includes several modules, similar to those provided by the Knowledge Base, that
correspond to common actions found in robotics domains. In this chapter, we combine our
integration algorithm presented in the previous chapters (Chapter 3, and 4) with a PDDL
based task planner. To take advantage of pre-existing work on the integrated motion and
task planning and make the communication easier between different layers and nodes, we
integrated Algorithm 2 with the algorithm used in [89] as follows: The Planning System

Algorithm 3 Integrated SSG-ROSPlan

procedure procedure PLAN DISPATCH(Domain D,Task T)
while T contains goals do do

3: I:=generateProblem(D,T);
P:=plan(D,I);
F:=constructFilter(D,I,P);

6: while execute do do
subtask:=pop(P);
dispatch(subtask);

9: while actionExecuting do do
if filterViolated then then

execute :=⊥;
12: call := (MultiArmPlanningIntegration);

end if
end while

15: execute := execute
actionSuccess(subtask);

end while
18: end while

end procedure

constructs a PDDL problem instance, sends this to an external PDDL planner, extracts
a filter from the plan, dispatches the actions, and handles re-planning. To generate the
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PDDL problem (line3 of Algorithm 3), the Planning System parses the supplied domain
file, then queries the Knowledge Base for the object instances, facts, and fluents that com-
prise the initial state also the current goals. This problem file is then handed to a PDDL
planner (line4), which produces a plan. ROSPLAN can be used with any planner, as long
as it can handle the domain’s syntactic requirements. In our case study, we use an any-
time version of POPF, a temporal and numeric planner. The amount of time allowed for
planning is provided as a parameter to the node. Once the plan has been found, it can be
validated using the Plan Validation Tool (VAL), which is included in ROSPLAN. The filter
is constructed (line5) by taking the intersection of static facts in the problem instance with
the union of all preconditions of actions in the plan. The action is dispatched by linking
the PDDL action to a ROS action message (lines7-8). In ROSPLAN, re-planning depends
on the reformulation of the problem. There are three reasons that the system may require
a re-plan:

1. the current action fails;

2 the Knowledge Base notifies the planner of a change that cancels the plan or of new
data critical to the goal;

3. the current action, or plan, has gone significantly over or under budget (such as time
or energy).

In the case of (1), the dispatch loop is broken (line 15), the problem instance is re-generated
based on the current model of the environment, and a new plan is produced. In the case
of (2) or (3), the current action may still be executing. In these situations, the initial plan
is re-validated, and then, if obtained to be not valid, the current action is cancelled, and
the dispatch loop is broken as before (lines10-13)

5.3 Implementation Framework

The proposed approach for task and motion planning, shown in Fig. 4.3 consists of
our interface layer, a task planning module and a motion planning module. Since differ-
ent programming languages and libraries are associated with planners and modules, one
challenging issue is ensure task planning, integration, and motion planning layers commu-
nicate with each other. This can be establish through Robotic Operation System (ROS)
communication layer. We define the task planning layer as client node and call services
for different geometric reasoning process. When task and motion planning is successfully
terminated, the complete manipulation plan is stored in the task planning layer, needs
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Figure 5.1: Flow diagram of overall process.

to be executed in the real world or in the simulation. The task executive layer is used
to deal with executing the plan by a robot–moreover, the sensing information required
to monitor the result of the sensing actions in case of uncertainty. Regarding perception,
Kinect camera is employed using ROS driver (http://wiki.ros.org/kinect). For performing
a different type of low-level geometric reasoning and motion planning, open-source robotics
libraries such as OMPL, Moveit etc. are used. Motion planning problems are described
using XML, such as robots, obstacles, controls and planners. The main parameters are
given by a description file, which includes limits of the motion if the robot has a mobile
base, home position wrt world reference frame. A robot is defined as a kinematic tree
with an optional mobile base. The kinematic structure of the robot is defined using the
URDF (http://wiki.ros.org/urdf). It includes the visual robot model, the collision model,
the transformation between links, joints and dynamic parameters such as damping and
masses. The visualization model is defined with triangular meshes that can be represented
in .wrl, .stl, .dae formats. The collision model can be represented either as a triangular
mesh or by primitive shapes such as box, cylinder or sphere. At the beginning the PDDL
contains the objects of the environment, the position of the objects, the arm of the robots,
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and the initial position for the base and the arms. As initial conditions, we consider where
the objects and the robots are located, and also that the grippers.

This section presents some details on the implementation of the proposed framework to
solve the integrated motion and task planning problem. Also, it explains how the interface
layer updates the geometric information when the motion planning layer cannot execute
the action, or the task planner cannot obtain a solution, as seen in Fig. 5.1. If the solver
cannot obtain a solution, it is because the problem is unsolvable or because position data
around robots or objects are missing or wrong due to uncertain environment.

5.4 Algorithm Analysis

In this section, we demonstrate the completeness properties of our algorithm.

Given:

• The task planner (FF-Solver) alone is complete [54].

• The RRTstar motion planner is probabilistically complete [21], so given sufficient
time, the probability of finding a plan, if one exists, approaches one.

• The Dijkstra algorithm is complete [90]

Definition 5.4: A set of actions is uniform regarding a goal in G and a set of predicates
R if for every r ∈ R,

Theorem 5.4: D-SSG based integrated task and motion planning is probabilistically
complete.

Let P = (O, I,G) be a planning problem where O is the set of actions, and I (the
initial state) and G (the goals) are sets of atoms such that there are no reachable dead-end
states w.r.t. G and O ’s descriptions are sound w.r.t. discrete effects and uniform w.r.t.
the G and the geometric predicates used in the domain. Assumption: P is terminated
or cannot be solved due to some change I or R.

Let p be the pose generator for the pose references used in I and G. If all the calls to
the motion planner terminate, and P fail, then Alg. 1 will find a sequence of arms and
corresponding motion plans for solving P if one exists using the SSG and graph search by
calling the Dijkstra algorithm. Since the combination of Dijkstra, I, G and the motion
planner (RRTstar) is probabilistically complete (given sufficient time, the probability of
finding a feasible pose instantiation when there exists one approaches one), then Alg. 1
and 2 will eventually terminate with a task and motion plan solving P if there exists one.
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Figure 5.2: Gazebo world of Uwaterloo Robohub is considered as grocery setup.

The result follows that a D-SSG update occurs at every time step under the premises,
and changed geometric facts are also updated accordingly in D-SSG in solving P . Our
empirical evaluation also demonstrates the algorithm achieving in several tasks that do
not satisfy the uniformity condition.

5.5 Simulation Results and Testing

In this section, we analyze the efficiency of the integration planning algorithm through
some simulation studies to evaluate its ability to displace one or multiple objects using
multiple arms in case of failure in the motion or task planning layer of a specific problem.
The simulations are being performed under ROS Rviz/Gazebo environments. Here, we
consider two different case studies: (i) a dual-arm robot (Kinova-Movo) grocery packing
setup and ii) a four-arm robot grocery packing setup that includes two fixed (Lrmate 200ic,
Fanuc) and two mobile arms arm (Kinova-Movo). In the first scenario, Kinova-Movo, three
tables and cylindrical and rectangle objects on the tables. In the second scenario, 2 Fanuc
arms, Kinova-Movo, a table and cylindrical and rectangle objects(Fig 5.3) on the tables
are the collision sources, as seen in Figure 5.11 and Figure 5.14 respectively.

Kinova-Movo [82] is a mobile robotic platform provided with two 7 DOF (degrees of
freedom) arms, a Kinect and a 2D planar laser sensor. The Kinect for Xbox One is a
time-of-flight sensor that gives both RGB images and distance measurements. Kinova-
Movo is also coming with two Intel NUC5I7RYH computers. It is ready to use with Robot
Operating System (ROS) and its motion planning framework MoveIt. All simulations
and testing are performed on a computer with an Intel i7 CPU (2.8Ghz), 16GB of RAM,
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Figure 5.3: Objects of the world for the grocery store example(ii).

running Ubuntu 14.04. In this simulation, we use RRTStar to plan all of the required
paths. RRTStar is one of the most common and fastest sampling based methods used
today. We use the highly optimized implementation found in the OMPL [83].

Figure 5.5: Proposed scenario implementation using the Kinova Movo and 2 Fanuc LRMate
200ic robot: The left Fanuc arm brings the object from its initial to goal position.
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Figure 5.6: Output of movo-lrmate grocery setup.

The proposed scenarios implemented using the Kinova-Movo with a pair of 7-DOF 2-
Jaco arms (Fig. 5.8) and 6-DOF 2-Fanuc arms and a mobile based Kinova-Movo robot (Fig.
5.4) to move an object from an initial location to a goal location. The proposed method
is evaluated based on some clutter environments where the robot needs to sort objects.
Fig 5.4, and 5.6 (namely case (i) and case (ii)) summarise the problems, initial states
and desired goals, the number of objects in the environment and each object reachability
situation by each arm, respectively. For the first case, the goal is to place the pringles
in pos-free2 location. As shown in Fig. 5.7, the task planner returns with a plan to be
executed. However, when the pringle’s initial location is changed to another location, as
seen in Fig 5.8, the planers fail to find a solution. In both scenarios, the task and motion
planning layers fail to find a solution since the object’s initial location (pringles) is changed
and not reachable by the corresponding arm anymore as seen in Fig 5.7. Hence the specific
problem is translated to our integration layer to solve it. Figure 5.9 depicts the successful
execution results after the failed action is translated to integration layer.

In the the first setup, first Jaco arm brings the o from its initial to a meet point MP , and
then the second Jaco arm takes the o to ogoal by applying RRTstar based path planning
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algorithm in Gazebo/ROS environment, after a systematically creating SSG search and
deciding the robot ID for particularly translated problem. As seen Fig. 5.14, when base
location of the arm is changed, the SSG graph is changed simultaneously as well. Note
that the initial pose of the object is found by a kinect sensor’s data, and the goal pose
are given to the planner. The planner returns a sequence of trajectories, labeled with
which arms they are for. Note that the initial state of all of the arms is to be in their safe
configurations.

Our ROS-perception methodology begins by building a predictable model of the envi-
ronment using input from kinect sensor as seen in Figure 5.6. To perform a scan for logos,
Movo pans the Kinect over the scene and passes the RGB frames to the object detection
CNN, which processes frames at a rate of 3 Hz. The environment is represented using a
mix of pre-created mesh models for known objects and a voxel-based representation for the
other parts of the environment. The environment representation serves as input to motion
planners that generate collision-free, smooth motions for the robot. Fast, real-time trajec-
tory controllers are used to perform the planned trajectories on the robot. Grasp selection
for objects consists of selection of an appropriate grasp from a set of grasps pre-computed
offline.

Figure 5.12: Proposed scenario experimentation using the Kinova Movo in Robohub
environment
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We demonstrate the summarized results for three different environmental changes, in-
cluding the instances object, robot and simultaneous object and robot location change
conditions for the different cluttered environment scenarios, in Fig. 5.14. For each case,
average planning and execution time are calculated based on ten randomly generated sim-
ulation problems. To the best of our knowledge, no other method has been demonstrated
performance at this level on randomly created constrained problems without utilizing spe-
cific geometric reasoning methods.

Figure 5.13: Planning and execution times for problems solved within different types of
environmental changes and different number of collision objects in the cluttered table domains.

For each case, 10 different pick and place simulation studies are generated.

In Fig. 5.15, the objective is to pick and place a target object from a cluttered table. In
the figure, only cases of some of the objects’ locations, or only robot base location or object
and robot base location simultaneously changes. However, those changes are not reflected
in the higher symbolic task planning layer. Instead, those handle on our integration layer.
We also tested the integration layer’s ability by increasing the number of objects up to 21
on three tables of fixed dimensions.
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Figure 5.14: Some of the pick-place tasks executed while solving an instance of the different
number of objects cluttered table with the environmental changes.
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Figure 5.4: Case study(ii): The setup of the proposed grocery store example with Kinova-Movo
and Fanuc-LRmate200ic arms.
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Figure 5.7: Problem and Domain generation for grocery store example(ii).
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Figure 5.8: Initial reachability graph for case study (i).

Figure 5.9: Output of case study(i) before environmental changes.
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Figure 5.10: Output of case study(i) without integration

Figure 5.11: Proposed scenario implementation using the Kinova Movo: The second Jaco arm
brings the o from its initial to goal position under clustered environment.
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5.6 Summary

This chapter introduces a framework that combines high-level symbolic task planning
and low-level motion planning, and is capable of solving non-trivial (either time consum-
ing or difficult to accomplish) planning problems by just giving some goals in uncertain
environments for MaMs. All the geometric information from the environment is modelled
in a PDDL initially. Creating a single PDDL and giving an uncertain environment, the
robot is capable of solving a variety of planning problems through our interface layer. The
main novelty of this chapter is to integrate motion and task planning layers through an
interface layer that is capable of handling these planning problems which includes robot(s)
and/or object(s) location uncertainty.

“Sequence of Pick and Place” task in general is a good scenario for validation of the
proposed algorithm. Because of that, these type of tasks was chosen since most of the
manipulation problems also involve many pick-place sub-tasks. For instance, two arms will
be involving in a collaborative mixing task in a pasta cooking scenario using our algorithm
as shown in Fig. 6.2. In this case, we will be still using our algorithm to decide which
arm will be responsible for a specific task and instead of performing sequence of pick-place
tasks, we are performing a cooperative task using both arms at the calculated meet point.

Also, we have not tested the cases that include more than two mobile-based arms in
the robot networks. One can further study those cases.
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Chapter 6

Proposed System Design for
Automated Kitchen Environment

In this chapter, we introduce a case study to implement the proposed contributions in
Chapters 3-5 to design of a cooperative automated restaurant cooking robot system as part
of an industrial collaborative research project. The main purpose of this research project is
to develop an industrial automated dual-arm kitchen cooking environment for an industry
partner. This project also enables us to introduce advanced MaM solutions to the food
industry.

As we presented in the previous chapters (through Chapter 3-5), we first introduce a
high-level symbolic task planner (Chapter 5) for various type of pasta dishes while the
incoming order from a user is fed into the planning system. Then we create a library
of basic motions for each actions defined in the task planning layer. However, only the
proposed SSG approach presented in Chapter 3 is applied to the automated kitchen MaM
system since the proposed kitchen environment is an overly structured environment and
each arm tasks are defined in advanced. Therefore, we assume that only base locations of
the robots changes and these inputs are provided to the algorithm by users in this case
study.

6.1 Background and Literature Review

The history of robots and other automation technologies in the food industry goes back
a few decades, mainly involved in palatalizing tasks; the so-called downstream applications.
But as food industry giants continue converging and demand continues unabated from
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large warehouse outlets, grocery chains and consumers for fresh products quickly, newly
emerging configurations in robots with related automation technologies, including vision
systems and processing software, are seeing robot applications move upstream for picking
and packing [91,92].

Food preparation using robotic machines has many challenges, such as accurate per-
ception of ingredients in cluttered environments, manipulating objects, and engaging in
complex activities such as mixing and chopping [10,13,93,94]. Cooking can be categorized
under three main tasks [95]

1. Perceive (vegetables, pans)

2. Decide (which recipe to use, what to do first)

3. Act (grab the apple, cut it)

Picking the right entry in a huge database, but perceiving and acting on ingredients is
highly challenging since all ingredients, such as vegetables and fruits, have some similar-
ities and differences regarding their shapes, colors and textures. While navigating in an
environment, a vision system can recognize where it is and what the main objects in the
scene are. Grasping a previously unknown object, whose 3D model is not available, is a
challenging problem. Having a high level of manipulation of objects that are not variable
at all is much easier. For instance, some industrial robots manipulate the objects with pre-
defined and fixed shapes [76,95,96]. In study [5], BakeBot uses the low-level manipulation
and perception system. The study [97] has demonstrated dispensing pancake batter from
a premixed container and flipping the pancakes on a skillet.

Robot applications in food service industry can be categorized under kitchen opera-
tion and front staff operation [15]. A Chinese restaurant, Two Panda Deli, in Pasadena,
California was one of the first to apply robotics for serving customers in 1983. They used
two robots, Tanbo R1 and Tanbo R2. The robots were 4.5 feet tall and 180 pounds and
would scoot around, bring trays of chow mein, spareribs and fortune cookies to customers
tables [18]. FuA Men Restaurant in Japan utilized automated robots for preparing dishes.
These robots use their manipulators to do tasks such as boiling water, pouring soup into
bowls and placing the toppings on the dish. The two mechanical robots are working co-
operatively to carry out the noodle preparation. Some benefit of using automated robotic
arms compared to human chefs are precise movements in adding toppings and ingredients,
consistency in taste and temperature, and accuracy of timing for food preparation. The
sophisticated operation of the robotic arms in FuA-Men restaurant delivers efficient op-
eration in the food preparation without intervention of a human chef. However there is
little intervention of manual chef such as taking the order and serving the costumers [15].
Founders of Moley Robotics say that when the commercial version launches in 2017 users
will be able to select one of 2,000 dishes from their phone and the robotic hands in the
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automated kitchen will make it. According to the company, the user can select a dish from
their phone, and the system will begin to prepare it. The robotic system does not use code
to determine its action. Instead, to have high food quality, they try to match the level
of skilled human chefs with the robotic system. This movement is achieved by using 3D
camera to record a real chef preparing food and then convert the motions into algorithms
to be recreated by the robot [10]. However, mentioned setup is not available today.

In the [98], the authors developed a mobile manipulator system which could pick an
instructed object up, convey, and hand it to a person. However, these results achieved
object manipulation in real environments, these technological elements are insufficient to
apply to cooking tasks. The reasons arise from assumptions that conventional object
manipulation by a robot has been assumed solid and distinguishable. However, foods such
as vegetables can have various shape and appearance, and tools such as knife and bowl will
not have rich texture. Moreover, the robot must recognize and manipulate several tools
and foods at the same time. These facts make it difficult to achieve cooking task by an
autonomous robot.

The Hierarchical Task Network (HTN) [10] describes the methods to achieve the high
level task. Infact, it describes in a hierarchical way, all the possible choices that has the
robot. The robot must use this data base to find a plan of primitive tasks representing the
high-level recipe tasks. For that it will use the task planner. The primitive tasks have both
a symbolic representation and a functional representation. The symbolic representation is
used by the task planner and the functional one by the supervisor. The functional part
of the primitive task is defined by a combination of modules of specific motion, motion
planner, position generator, sensor actions and user interface. The supervisor has two
fundamental roles. The first is to apply the action planned into the real world. The second
is to report the real world modification into the state of the planners and then close the
loop. For its first role, it is in charge of the execution of the primitive tasks by the use of
their functional parts. The second role is to estimate the state of the system. Because we
work in simulation it is not a difficult task, but in a real environment it is one of the most
challenging aspects of the robotic system. It is also to ask the task planner to find a new
plan in case of failure of the primitive task. It adds then a constraint to avoid the same
choice.

The study in [99] introduces a hybrid planning approach for humanoid robotic cooking
in a simulation environment. The authors implement a symbolic planner to plan sequences
of motion primitives to execute a baking instruction and a separate geometric planner
to execute the motion primitives. The hierarchical nature of the baking subtasks, each
accomplished by motion primitives described in terms of their preconditions and effects,
facilitates their future integration with hybrid symbolic and geometric planner.
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6.2 Automated MaM Kitchen Environment

The process of using the robotic kitchen platform as seen is initiated with a set of ingre-
dients, which are placed at certain locations within the workspace, and a set of instructions
describing how to use those materials to cook certain dishes such as pasta. In Figure 6.1,
the concept of the proposed robotic platform, i.e., robotic mini-kitchen for pasta cooking is
demonstrated. The robot is provided an action sequence in the external world correspond-
ing to the instructions. It then executes the action sequence on the robotic manipulation
platform, performing the motion and task planning necessary to follow the recipe to create
the appropriate dish.

Figure 6.1: Detailed concept of the robotic platform for restaurants.

6.3 Task and Motion Planning

The proposed robotic kitchen environment requires detail work on the control tech-
niques, motion planning, task planning, natural language processing, object recognition to
execute recipes, and creating an app. Many existing research has been proposed robotic sys-
tems for natural language instructions. Previous studies focused on understanding natural
language route directions [100–102] and mobile-manipulation commands [25]. However,

74



only motion planning and task planning layers, and integration between those layers of
automated kitchen robots project is the focus of this case study.

As seen in the previous chapters, Chapter 3,4 and 5, we combine task planning layer
with the motion planning layer which is able to run within the ROS environment for
updating system state, executing joint trajectories, inverse kinematic planning, object
perception and manipulation. The lowest level of software manages the sensor and actuator
streams. These ROS topics are connected to nodes that integrate robot state information
and control the manipulators.

Figure 6.2: An example of collaborative pasta mixing task.

6.3.1 Action Space for the Kitchen

A state-action space for the kitchen domain using primitive actions such as ”mix”,
”flip”, and ”pour” is defined in PDDL format in a similar manner introduced in Chapter
5, objects in the kitchen environments can be seen in Fig. 6.4. Within this action space,
many specific action trajectories are created, yielding a variety of different pasta types.
Also, we have a mechanism to create the reference map for the workplace around the
kitchen since location of containers, utensils, etc. and where to place them back after
using them are extremely important. In order to follow a specific recipe, we applied both
interval schedulling, partial-order planning (POPF-a forwards-chaining temporal planner)-
two examples of durative-action defined in PDDL can be found in Fig. 6.3- and PDDL
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via an online solver (http://solver.planning.domains/). The robot searches to find the
sequence of states and actions. Then, it executes those actions in the external world as
seen in Fig. 6.2. Also, we have built a vision system which can identify objects and their
locations within the workspace of the MaM.

Figure 6.3: Two examples of durative-action definition and their effect for automated MaM
kitchen environment

6.3.2 Assembly

The action sequence defined in Section 6.3.1 is interpreted into a robot action plan of
pasta making primitives. Each pasta making primitive corresponds to a single cooking ac-
tion and consists of a collection of motion primitives with preconditions and effects and a de-
scription of the goal (Figure 6.3)- (: goal(and(order1pasta1sauce1)(order2pasta3sauce2)))-
in this case study, we consider serving two orders of pasta simultaneously. The action plan
is represented as an action sequence of pasta making primitives. If no supported pasta
making primitive exists for an action in the action sequence a user interaction node is
created, enabling the system to follow recipes that might involve instructions for which
no pasta making primitives exist. For example, if the system encounters a primitive for
chopping walnuts, which it cannot execute itself, it asks its human partner for assistance
(via text output). The Figure 6.6 represents the high-level task planner output from the
POPF planner through ROSPlan as we described in the Chapter 5, Each block, and the
text next to it indicate an action happening within the system, and the resources used by
that action at the given time in the plan. In the figure, arm1 and arm2 represents Franka-
Emika arms (7-DOF each). The output of the task planning module then is communicated
to the motion planning layer through ROS-Moveit-Rviz to achieve and visualize the each
action in the task planning layer. When we change the arm1 base location, the task plan-
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ning layer return to failure since the reachability definition for each object in the task
planning layer is changed. Then instead of re-defining each object reachabilty information
in the task planning layer, we use communicate the integration layer approach (Ch3) to
succeed overall goals. The simulation result shows that each action failure is prevented via
proposed integration layer.

Figure 6.4: The objects of the proposed robotic kitchen environment

6.3.3 Plan Execution

Once a sequence of pasta making primitives has been inferred, the robot executes them
eventually. When executing a pasta making primitive, the system infers a set of planning
predicates that correspond to the world state, symbolically plans a sequence of motion
primitives to execute the pasta making primitive from the current state, parametrizes
the motion primitive sequence into an executable sequential state machine, executes the
state machine. If execution fails, the system estimates the current state and replaces a
new sequence of motion primitives to accomplish the pasta making primitive through our
interface layer. This enables the system to recover from many errors experienced during
recipe execution.
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Figure 6.5: Output of task planning layer for two pasta orders
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6.4 Summary

In this chapter, we present a case study which allows us to implement the contributions
we proposed in Chapters 3-5 in the design of task planner for a MaM system used in food
cooking applications. We have introduced a high-level task planning layer and a low-level
motion planning layer to perform each action defined in the task planning layer.
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Chapter 7

Conclusions and Future Work

In this thesis, we have proposed and studied new integrated motion and task planning
algorithm for multi-arm robot systems in a shared workspace. The contributions were based
on the SSG notion introduced in the thesis. This notion is helpful to describe and quantify
the interactions of the robots with the world, and to represent multi-robot-manipulator
system manipulation planning problems using this graph.

In Chapter 3, we have considered fixed based multi-arm manipulator systems operating
in a well defined, and structured environments. In this manner, SSG approach is helpful
from the following aspects: s; i) Given a certain number of robots within a cooperative
multi-arm robotic system, deciding which ones are the best fit for a given task, ii) dis-
tinguishing the regions based on independent working areas and cooperation areas, iii)
providing useful information for planning a manipulation path. We have represented the
task off-line in an abstract manner by the SSG-based approach.

In Chapter 4, we have extended the proposed SSG-based approach for cases involving
robot arms with mobile and fix bases in a uncertain, and time-varying environments. The
big advantage of this approach is that it is robust to changes in the conditions, like positions
of the objects or robots in the environment.

In Chapter 5, the overall approach to solve a multi-arm manipulation problem was
combined with a high-level symbolic planner. We first introduced the robots and their
surroundings. Then, we defined some elementary actions for each task. While some en-
vironmental (world) parameters (objects or robots locations) were varying, and some of
the pre-defined elementary action were failed, our SSG based approach was called. For all
steps, simulation results verified that SSG based sequence and motion planning not only
helped to find optimal arm sequences for a given task, generated the corresponding opti-
mal trajectories, and decreased the planning time dramatically for search based planning
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algorithms compared to single layer planning approaches, but also were able to create al-
ternate plans for the integration between higher level-task planning and lower-level motion
planning in case of failure due to uncertain environment.

As a potential future research direction, from a wider perspective, the proposed inte-
gration algorithm can be used to program robots for many industrial tasks. A graphical
user interface can be formed based on this approach with a few modifications, where the
users only need to enter the task, and the rest will be automated based on the SSG.

One of the limitations of this study is the assumption of a pre-defined grasping plan
being available for each action. However, in real world, tasks without such plans such as
pouring water, cutting some parsley or sweeping a surface have to be considered as well.

Another limitation is the problem of cluttered environment, limiting the arm motions
and MP positions. One potential solution is combining MP approach with Reuleaux based
approaches. Also, cluttered environment still makes the planning problem difficult due to
strong geometric constraints such as occlusions, lack of space in placing objects, objects
reachability, or kinematic constraints of the arms.

As another potential future work, SSG representation based on shared workspace be-
tween arms providing an insight when some of the robots’ shared space changed, can be
utilized in studying and selecting on the topology of the mobile multi-arm systems.

Collaborative multi-mobile or bi-manual robots manipulation problems are still chal-
lenging due to the coordination of sub-tasks and higher dimensionality. One can put further
effort to extend the work.
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Appendix A

A.1 Robot Specification Parameters

The following charts represents the classic DH-parameters of JACO2 Spherical 7−DOF
arm:

Figure A.1: DH-parameters and robot’s link-length values for JACO2 Spherical 7−DOF

Decoupled Planning

Decoupled approaches first design motions for the robots while ignoring robot- robot
interactions. Once these interactions are considered, the choices available to each robot
are already constrained by the designed motions. If a problem arises, these approaches
are typically unable to reverse their commitments. Therefore, completeness is lost. Never-
theless, decoupled approaches are quite practical, and in some cases completeness can be
recovered.

Prioritized planning

A straightforward approach to decoupled planning is to sort the robots by priority and
plan for higher priority robots first. Lower priority robots plan by viewing the higher
priority robots as moving obstacles.
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Figure A.2: MovoBeta specifications

”Completeness: given a description of the robot and the environment as semi-algebraic
sets, it is a collision-free path connecting the initial and goal configuration of the robot
when it exists, and reports failure when it does not [?].” Since completeness implies the
algorithm is inapplicable to any realistic robot system with many degrees of freedom, we
trade-of completeness for an algorithm that efficiently and reliably solves a majority of
realistic manipulation tasks involving multiple arms.

Complexity has a direct link to solutions computation time. In most cases this pa-
rameter estimates the maximal operation to do in order to obtain a solution (if any). In
practice complexity tend to over estimate the computation time of a solution which actually
much more faster.

Redundant manipulators have more degrees of freedom that those strictly necessary to
perform a given task. Redundancy is therefore a relative concept for a robot manipulator,
depending on the particular type of task to be executed. For example, six DOF are
necessary for positioning and orienting a robot end-effector, thus a 6-DOF manipulator is
considered non-redundant. However,if only the positioning task is of concern, the same
arm becomes redundant.The extra degrees of freedom provide more dexterity to the robot
structure, and it can be used to avoid kinematic singularities.
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Figure A.3: Movo specifications

The structure of a robot manipulator consists of a set of rigid bodies or links connected
by means of revolute or prismatic joints, integrating a kinematic chain. In general, one
end of the chain is fixed to a base, whereas an end-effector is connected to the other end.
From a topological point of view, a kinematic chain can be classified in (i) open or serial,
when there is only one sequence of links and joints connecting the two ends of the chain,
and

(ii) closed or parallel, when a sequence of links and joints are arranged such that at
least one loop exists.

The main disadvantages of using parallel robots are: workspace limitation, more com-
plex forward kinematics maps and more involved singularity analysis [68]. For instance,
in contrast to serial chain manipulators, the singularities in parallel mechanisms may have
different characteristics.

In this context, the singularities can be classified into three basic types:

(i) configuration space singularities: when the rank of the structure equations drops
and, thus, the endeffector loses the ability to move instantaneously in some directions;

(ii) end-effector singularities: when the end-effector loses degrees of freedom (DOF),
that is, the motion of the active joints can result in no motion of the end-effector;

(iii) actuator singularities: when the actuator of the manipulator or the active joints
cannot produce end-effector forces and torques in some directions.
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A.2 ROS

ROS is the acronym of Robot Operating System. This name, however, is misleading
since ROS is not an Operating System in the traditional sense of the concept. Instead, ROS
is an Open Source platform aimed at programming algorithms and drivers for application
in Robotics. The desired functionality is wrapped in what is called a ROS package and
then it can be shared with the community. The main objective of ROS is to facilitate
the exchange and utilization of state-of-the-art algorithms and tools. There exist a high
amount of useful packages being shipped for ROS. We will discuss some of these packages
later. Next, we discuss some of the features that make ROS a valuable resource in the field
of Robotics.

Execution model: In ROS, the minimum execution unit is the node. A node is a
concurrent/parallel application or utility that performs certain task or functionality. In
order to execute a node, there must be one ROS master running. A master handles several
nodes and dispatches messages (more about messages below) among them. The master
can be running on a remote machine. This execution model provides a natural mechanism
to separate the functionality of a complex application into several modules.

Topics: Nodes can communicate between them by means of messages. Messages can
be published by one or more nodes in what is called a topic. Other nodes may subscribe to
those topics and receive the messages being published. This allows great flexibility since
the subscribers do not have to worry about the implementation details of the publishers
as long as they follow the same messaging convention. Applications do not have to be a
monolythic pieces of code. Instead, this messaging mechanism allows nodes to be like small
functional blocks whose inputs and outputs can be plugged in to other blocks or operate
in isolation. Moreover, if the master is running in a remote machine, the messages are
sent through the network trasparently so the programmer does not have to worry about
sockets. One of the most typical uses of topics is to stream a continuous flow of data (e.g.
video from a camera or the joints state of a robot).

Services: Services have certain degree of similitude with regular functions in most
programming languages. Nodes can offer services that may be called by other nodes. The
specification of a service includes the input arguments and the output received by node
that has called the service. Calls to services are blocking, so these are typically used for
fast computations (e.g. an inverse kinematics query).

Actions: Actions resemble services in that they offer some kind of callable function-
ality for being used by other nodes. The difference is that actions are normally used to
implement non-blocking functions that may span during a long interval in time. The calling
node may preempt the action at any moment, and the node that offered the action can
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publish a periodic feedback telling the caller about the current state of the action. Because
of these characteristics one common use of actions is to implement robot movements.

Support for several programming languages: ROS provides support and an API for
several programming languages, including C++, Python, Lisp and Java for Android. Even
so, the documentation of ROS and most of its packages is focused mostly on the C++ API
and the Python API. The languages used in our project are C++ and Python.

Debugging and configuration tools: ROS comes or can be extended with several de-
bugging and configuration tools that may run from the command line or have graphical
interface. One of these tools is rqt-graph, a package with contains a Qt application for
visualizing the nodes, and publisher/subscriber relationship between them. We also have
rqt-reconfigure which allows us to dynamically change the parameters of nodes that are
already running. Next we present some example packages in order to give an idea of what
kind of func- tionality can be offered by a ROS package (this is not intended to be an
exhaustive list of all the packages we are going to use):

tf: tf takes care of publishing the transformations between different frames of refer-
ence (for example, between the joints of a robotic arm) at each instant of time. It can
also be useful for obtaining the coordinate transformation between two frames that are
connected indirectly, or for tracking the transformation between two frames in the past. In
addition, the API of tf comes with some additional utilities (e.g. performing conversions
between angles in RPY and quaternions).

Rviz: Rviz is a multipurpose visualization and interactuation tool. It allows us to view
the state of a robot, information from sensors that is published in a topic, etc. In this
sense it is a very powerful monitoring tool.

Moveit: powerful geometrical planning framework for robots. moveit uses OMPL (an-
other ROS package for path planning) for planning trajectories for robots. It also comes
with a rviz plugin for visualizing plans and calculating new ones. moveit works for sev-
eral robots. It takes an XML description of the robots joints and links and use them to
calculate a plan without self-collision nor collisions against world objects.

RRT* (optimal RRT) is an asymptotically-optimal incremental sampling-based motion
planning algorithm. RRT* algorithm is guaranteed to converge to an optimal solution,
while its running time is guaranteed to be a constant factor of the running time of the
RRT. The notion of optimality is with respect to a specified Optimization Objective (set
in the Problem Definition). If a solution path’s cost is within a user-specified cost-threshold,
the algorithm terminates before the elapsed time [83,181].
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Figure A.4: Multi Robot Planning Approaches: An initial and a goal configuration are given
as input for each robot.

A.2.1 Meet Points Calculation

Any MP is located where an object is being picked or placed by a transferring arm. Any
set S that involves K arms has to pass through oinit , (K − 1) number of MPs, and ogoal,
respectively, as illustrated in Figure 5, Scheme 1. MP is found by considering circle-circle
and/or sphere-sphere intersection geometry by selecting the centre of the shared workspace
(Figure 4.3) .

Note that based on Figure A.6,

x =
(r1

2 − r22 − d2)
2d

For instance, the analysis for 3-D case, sphere-sphere intersection for two arms as follow;

x2 + y2 + z2 = R2

(x− d)2 + y2 + z2 = r2

Solving for x = MP gives;

MP =
d2ij − r2i + r2i+1

2dij
(A.2.1)
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Figure A.5: Intersection of two robots’ workspace for 3D case

where d, r, R and MP are distance between 2-robots’ base location, the sum of the link
length of first robot, the sum of the link length of second robot and meet point respectively.
Also, i, j are specific robots’ IDs, and j = i+ 1.

Figure A.6: Meet point representation where, r1, and r2, x, d = d1 + d2, represent the first
and second robot’s workspaces, meet point, and distance between the two robots’ bases,

respectively. If d < r1 + r2, then there is a shared workspace between two robots.

Note that meet point is a point that two consecutive arms are able to reach. However,
in the case of calculated meet point is not empty or it is not possible to reach it by those
consecutive arms, then we should be able to find a alternative meet points or a better
candidate. Therefore, for future work, meet point will be calculated based on shared
workspace between arms and the reachability database to be able to choose best handoff
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location for a specific task. Figure A.7 shows collusion-free reachability database for a jaco
arm.

Figure A.7: Representation of down sampled version of our reachability database for Jaco
arm. (a) Reachable poses represented by colored arrows, the color encodes the manipulability of
the corresponding manipulator configuration. (b) The cross sectional view of the voxelized 3d
workspace of a jaco arm, the color indicates the number of grasping poses contained in the 3d

voxel.
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Figure A.8: A three structured of the dual-fanuc-lrmate200ic arms with gripper attached
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Figure A.9: Three fanuc arm environment

Figure A.10: Each action (primitive task) is introduced as a subtask to motion planning layer
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Figure A.11: Fanuc-LRMate200ic arm specifications
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Figure A.12: Panda arm specifications
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Figure A.13: Panda workspace views
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