
Scalability aspects of data cleaning

by

Hemant Saxena

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science- Internship

Waterloo, Ontario, Canada, 2021

c© Hemant Saxena 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Leonidas Galanis
Director of Engineering, Snowflake

Supervisor(s): Ihab F. Ilyas
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: M. Tamer Özsu
Professor, Cheriton School of Computer Science,
University of Waterloo
Grant Weddell
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Lukasz Golab
Associate professor, Department of Management Sciences,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis consists of material all of which I authored or co-authored. Chapter 2 is based
on a joint work with Lukasz Golab and Ihab F. Ilyas [85, 84]. Chapter 3 is based on the
joint work with Shrinu Kushagra , Ihab F. Ilyas, and Shai Ben-David [59]. Chapter 4 is a
joint work with Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas [83].

iv

Abstract

Data cleaning has become one of the important pre-processing steps for many data science,
data analytics, and machine learning applications. According to a survey by Gartner, more
than 25% of the critical data in the world’s top companies is flawed, which can result in
economic losses amounting to trillions of dollars a year. Over the past few decades, several
algorithms and tools have been developed to clean data. However, many of these solutions
find it difficult to scale, as the amount of data has increased over time. For example, these
solutions often involve a quadratic amount of tuple-pair comparisons or generation of all
possible column combinations. Both these tasks can take days to finish if the dataset has
millions of tuples or a few hundreds of columns, which is usually the case for real-world
applications.

The data cleaning tasks often have a trade-off between the scalability and the quality
of the solution. One can achieve scalability by performing fewer computations, but at the
cost of a lower quality solution. Therefore, existing approaches exploit this trade-off when
they need to scale to larger datasets, settling for a lower quality solution. Some approaches
have considered re-thinking solutions from scratch to achieve scalability and high quality.
However, re-designing these solutions from scratch is a daunting task as it would involve
systematically analyzing the space of possible optimizations and then tuning the physical
implementations for a specific computing framework, data size, and resources.

Another component in these solutions that becomes critical with the increasing data
size is how this data is stored and fetched. As for smaller datasets, most of it can fit in-
memory, so accessing it from a data store is not a bottleneck. However, for large datasets,
these solutions need to constantly fetch and write the data to a data store. As observed
in this dissertation, data cleaning tasks have a lifecycle-driven data access pattern, which
are not suitable for traditional data stores, making these data stores a bottleneck when
cleaning large datasets.

In this dissertation, we consider scalability as a first-class citizen for data cleaning tasks
and propose that the scalable and high-quality solutions can be achieved by adopting the
following three principles: 1) by having a new primitive-base re-writing of the existing
algorithms that allows for efficient implementations for multiple computing frameworks,
2) by efficiently involving domain expert’s knowledge to reduce computation and improve
quality, and 3) by using an adaptive data store that can transform the data layout based
on the access pattern. We make contributions towards each of these principles. First, we
present a set of primitive operations for discovering constraints from the data. These prim-
itives facilitate re-writing efficient distributed implementations of the existing discovery

v

algorithms. Next, we present a framework involving domain experts, for faster clustering
selection for data de-duplication. This framework asks a bounded number of queries to a
domain-expert and uses their response to select the best clustering with a high accuracy.
Finally, we present an adaptive data store that can change the layout of the data based on
the workload’s access pattern, hence speeding-up the data cleaning tasks.

vi

Acknowledgements

I would like to take this opportunity to express my sincere thanks to my advisor Prof. Ihab
F. Ilyas. He has been a great support over the past five years, giving me the freedom and
time to pursue projects across different domains such as distributed systems, theoretical
machine learning, and building database systems, which eventually culminated into this
dissertation. Without his broad experience and knowledge, I wouldn’t have been able to
pull-off these diverse projects. His advising style is unique, where he is not just an academic
advisor but also a personal mentor. Our technical discussions were often accompanied by
pep-talks which were not just motivating but also taught me valuable lessons such as
abstracting out the ideas from the details, multi-tasking, and always pushing hard to
deliver beyond what is expected. As I embark on a new journey from this point onwards,
I will treasure and remember all that I have learnt from him.

Next, I would like to thank my committee members, starting with Prof. Lukasz Golab.
He was like a co-supervisor to me, always available for brainstorming ideas which helped
me make progress when I was stuck, and taught me how to get better at technical writing.
Next, I would like to thank Prof. Grant Weddell and Prof. Tamer Özsu for serving as my
internal committee members, and spending time reading and providing valuable comments
on my dissertation. Finally, I would like to thank my external committee member Dr.
Leonidas Galanis, for his valuable industrial experience, which helped me address the
practical aspects of my work.

This journey wouldn’t have been possible without the support and camaraderie of
my amazing friends at Waterloo. Special shout-out to Anirudh, Sharat, Jimit, Shrinu,
Abhinav, and Dhinakaran, who started their PhD journeys at around the same time as me,
for many fun hangout sessions, for being my squash/bouldering buddies, and supporting
each other through the ups and downs of a PhD life. Amongst my friends, Priya, also to-be
life partner, has a special place for always being there as an emotional support and making
me feel at home while being far away from home. Her cheerfulness, encouragement, and
patience definitely made this journey a bit more fun and a bit less tiring.

Finally, without the love and support of my parents, I wouldn’t have even dreamt of
accomplishing everything that I have done today. Their tireless efforts, the importance
they gave to a good education, and their patience and trust in me helped me each step of
the way in pursuing my dreams.

vii

Dedication

To my parents and my brother Divyansh.

viii

Table of Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Scalability of data cleaning workflows . 2

1.1.1 Trade-off between scalability and quality 3

1.1.2 Importance of a Data Store . 4

1.1.3 Dissertation’s hypothesis . 4

1.2 Contributions and outline . 5

2 Distributed Dependency Discovery 8

2.1 Prior Work . 10

2.2 Preliminaries . 11

2.2.1 Dependencies . 11

2.2.2 Data structures . 12

2.3 Algorithms . 14

2.4 Primitives . 16

2.5 Case study 1: TANE . 18

2.5.1 LDP 1: Original TANE . 20

2.5.2 LDP2: Modified TANE . 22

ix

2.6 Case study 2: FastFDs . 23

2.6.1 LDP1: Original FastFDs . 25

2.6.2 LDP2: Modified FastFDs . 26

2.7 Case study 3: HyFD . 27

2.7.1 LDP1: Original HyFD . 28

2.7.2 LDP2: Modified HyFD . 30

2.8 Experiments . 32

2.8.1 Experimental Setup . 32

2.8.2 Comparison of LPD1s and LPD2s 33

2.8.3 Comparison of smPDPs . 34

2.8.4 Scalability . 36

2.8.5 Experiments with different cluster settings 39

2.8.6 Distributed vs. Single-Node Runtimes 40

2.8.7 Experiments on Different Datasets 41

3 Clustering selection for de-duplication 43

3.1 Preliminaries . 45

3.2 Restricted Correlation Clustering (RCC) 47

3.2.1 Relation to practical applications 48

3.2.2 Solution strategy . 49

3.3 Sampling for Restricted Correlation Clustering 49

3.3.1 Sampling positive pairs . 50

3.4 Evaluation . 53

3.4.1 Evaluation setup . 54

3.4.2 Clustering selection . 57

3.4.3 Effect of oracle mistakes . 57

3.4.4 Impact of sample size . 58

3.5 Related Work . 58

x

4 LSM-Tree storage engine for data cleaning 60

4.1 Lifecycle-aware access pattern in data cleaning 62

4.2 Overview of LSM-Trees . 65

4.2.1 Design . 65

4.2.2 Cost Analysis . 68

4.3 Real-Time LSM-Tree Design . 69

4.3.1 Definitions . 69

4.3.2 Design Overview . 70

4.4 LASER Storage Engine . 72

4.4.1 Column Group Representation . 72

4.4.2 Write Operations . 72

4.4.3 Read Operations . 73

4.4.4 Real-Time LSM-Tree Compaction 74

4.5 Cost Analysis of LASER . 76

4.6 Design Selection . 79

4.6.1 Input . 80

4.6.2 Optimization Problem . 81

4.6.3 Solution . 81

4.7 Evaluation of LASER . 83

4.7.1 Workloads . 84

4.7.2 Validation of Cost Model . 85

4.7.3 Performance of LASER . 87

4.7.4 Speedups for data cleaning workloads 93

4.8 Other envisioned usage of LASER . 94

4.9 Related Work . 94

5 Conclusion and Future Work 97

5.1 Conclusion . 97

5.2 Future work . 98

xi

References 100

xii

List of Tables

2.1 Tax data records . 11

2.2 Summary of symbols . 13

2.3 Summary of primitives and their usage across algorithms 16

2.4 Comparison of logical and physical plans 33

2.5 Runtimes of smPDPs compared to lmPDPs (for LDP2) 36

2.6 Runtimes under different cluster settings 39

2.7 Runtimes (in seconds) of single-node and distributed implementations . . . 41

2.8 Runtimes on different datasets . 42

3.1 True loss and the loss estimated by our framework. 54

3.2 Simulated dataset: Impact of number of samples on the loss of the clustering 54

3.3 Publications dataset: Impact of number of samples on the loss of the clustering 55

4.1 Data access pattern of the data cleaning tasks 64

4.2 Summary of terms used in this chapter . 68

4.3 Summary of operations and their costs. 79

4.4 Summary of the HTAP workload HW . 91

xiii

List of Figures

1.1 Data cleaning workflow for analytics applications. 2

2.1 Precision of naive solution for distributed FD discovery and performance of
three FastFDs implementations . 10

2.2 Example relation instance and attribute lattice 15

2.3 TANE algorithm . 19

2.4 FastFDs algorithm . 24

2.5 HyFD algorithm . 28

2.6 Comparison of communication and computation cost of LDP1 and LDP2 of
TANE, FastFDs, and HyFD. We only consider lmPDPs here. 35

2.7 Scalability with the number of workers of LDP2 plans 36

2.8 Scalability (of lmPDP of LDP2) with the number of rows (in thousands) for
lineitem . 37

2.9 Scalability (of lmPDP of LDP2) with the number of columns for ncvoter . 37

2.10 Single-node vs distributed performance . 40

3.1 Simulated dataset: Loss reported for every iteration of hierarchical clustering 55

3.2 Publications dataset: Loss reported for every iteration of hierarchical clus-
tering . 56

3.3 Impact of oracle mistakes . 56

4.1 Data access pattern of cleaning workflows. 61

4.2 LSM-Tree with leveling merge strategy . 65

xiv

4.3 Distribution of keys across levels based on time 67

4.4 Design space of Real-Time LSM-Trees, with example column group (CG)
configurations. 71

4.5 Simulated column-group representation . 73

4.6 ColumnMergingIterators and LevelMergingIterators 74

4.7 Sorted runs of a Real-Time LSM-Tree with two highlighted compaction jobs. 75

4.8 Read operation: average latency w.r.t. projection size for different CG sizes 87

4.9 Read operation: average latency w.r.t. #CGs for different projection sizes 88

4.10 Scan operation: average latency w.r.t. projection size for different CG sizes 88

4.11 Scan operation: average latency w.r.t. CG sizes for different projection sizes 89

4.12 Write amplification: compaction time w.r.t. # CGs 89

4.13 LASER performs the best on the HTAP workload (HW). 90

4.14 Read operation patterns and optimal design used in Section 4.7.3 91

4.15 LASER performs better than row-store DBMS and column-store DBMS for
data cleaning workloads . 93

xv

Chapter 1

Introduction

As the amount of data generated and consumed by modern businesses increases, enforcing
and maintaining the quality of the data becomes a critical task [55]. In these businesses,
as the data from multiple sources accumulates in a database over time, many errors can
creep into the data. For example, many records in the data end up having missing values,
typos, mixed formats, duplicate entries, and violations of business and data integrity rules.
Gartner predicted [89] that more than 25% of the critical data in the world’s top companies
is flawed. According to a survey, referenced in [56] about the state of data science and
machine learning (ML), dirty data is the most common issue faced by users dealing with
data. Therefore, data cleaning has become one of the most important pre-processing steps
for many data science, data analytics, and ML workflows.

Figure 1.1 shows a typical data cleaning workflow for modern business applications.
The cleaning workflow consists of three main steps: discovery, error detection, and error
repair [56]. The discovery step is responsible for extracting rules or constraints which
are used for detecting errors. For example, an implicit data quality rule of an employee
instance is the following: “two persons with the same zip code live in the same state”,
or zip → state in short. If in an employee instance, we identify two employees with the
same zip code but different state, we are certain that at least one of the data values of
zip code and state for the two employees is erroneous. Since designing data quality rules
by consulting with domain experts is an expensive and time-consuming process, they are
mostly mined automatically from the data.

The error detection step consists of detecting qualitative errors, quantitative errors and
duplicate entries from the data [55]. Qualitative errors are the values that violate business
rules or constraints, which are discovered in the discovery step and sometimes available

1

Figure 1.1: Data cleaning workflow for analytics applications.

from domain experts. For example, any violation to the constraint zip → state from the
previous example would be considered a qualitative error. Quantitative errors are the
values that are statistical outliers when compared to the rest of the data. For example, if
in an employee table salaries are expected to be around $100,000, then an employee with
salary of $10,000 would be considered an outlier. Lastly, duplicate entries are one of the
pervasive errors in business applications and are often introduced while integrating data
from different sources. Duplicate detection involves detecting entries which belong to the
same real-world entity. For example, two employee entries with same name and phone
number, but different addresses could point to the same physical employee. Detecting
duplicate entries is also known as record linkage, record matching, or entity resolution,
and has been extensively studied over the past few decades [45, 73, 49].

The error repair step is responsible for generating fixes for the erroneous values. Most
of the error repair techniques [55] use the existing data and optionally domain experts to
generate fixes, which are applied to the data. For example, to fix the error for zip→ state
we consult the data to find all tuples which are part of the error and use them to generate
candidate fixes, which are then presented to a domain expert who finally decides the right
fix. Fixing duplicate entries involves clustering entries which can represent the same real-
world entity, and then either automatically or using a domain expert, fuse these entries
into a single entry.

1.1 Scalability of data cleaning workflows

As the scale of data has increased manifold over time, it has become challenging to scale
data cleaning solutions [87] due to their computational complexity. For example, many of

2

the data cleaning algorithms have a quadratic complexity from comparing pairs of tuples,
as seen in data de-duplication [87]. This quadratic complexity becomes a bottleneck as it
can take days to enumerate pairs of tuples in a dataset with a few million tuples. Similarly,
tasks like constraint discovery become a bottleneck with an increasing number of columns,
since these tasks need to consider all possible column combinations.

1.1.1 Trade-off between scalability and quality

However, the data cleaning tasks have a trade-off between scalability and quality — they
can achieve scalability by having a lower quality solution, thereby creating a design space
that existing solutions have explored. For example, correlation clustering is a gold-standard
solution for data de-duplication [60]. Here, the goal is to find the clustering that correlates
‘as much as possible’ with the ‘true clustering’, where entries corresponding to the same
entity belong in the same cluster and different entries belong to different clusters. However,
correlation clustering is NP-Hard [60]. Therefore, practitioners often use an ensemble of
cheap clustering algorithms such as hierarchical clustering, with the hope of selecting the
best clustering from the group. Since many of these clustering algorithms have their own
hyper parameters, selecting the best clustering is a complex task and often results in a
poor quality clustering.

Similarly, discovering all constraints from the data has an exponential search space —
a constraint can be defined on any combination of columns. To overcome the exponential
search space, many discovery tasks often limit the search to constraints with fewer columns.
However, having an incomplete set of constraints can then result in un-detected errors.

Re-designing data cleaning solutions from scratch to achieve scalability and quality
is another alternative, but is often a complex task. Re-designing from scratch would
involve efforts towards (i) systematically analyzing the space of possible optimizations,
i.e., identifying the core data processing steps and optimizing them for scalability and
quality, and (ii) tuning the physical implementations of these steps for a specific computing
framework (e.g., centralized computing, distributed computing), data sizes, and resources
(e.g., optimizing for memory, optimizing for disk I/O). This could then result in over-
fitting the solution to a specific framework, making it inefficient or unusable for certain
other frameworks. For example, consider Spark [94] and MapReduce, two commonly used
distributed computing frameworks with different performance characteristics, especially in
the case of storing intermediate results (Data Frames [94] vs. storing to HDFS [86]). An
algorithm optimized for Spark might not perform well on MapReduce.

3

1.1.2 Importance of a Data Store

As shown in Figure 1.1, all the data cleaning tasks depend on an underlying data store
where entries are stored and fetched as needed. Using data cleaning solutions for large
datasets would require many entries to be fetched and written to the data store by each
of these tasks. Therefore, having a suitable data store can also significantly speed-up data
cleaning tasks, allowing it to scale to large datasets.

In this dissertation, we observe that many tasks such as detecting constraint violations,
outlier detection, and de-duplication, access data in both row-at-a-time and column-at-a-
time pattern. For example, in the case of outlier detection, we need to build histograms and
probability distribution functions (PDFs) on each column [14], this requires column-at-a-
time access over the data. Whereas when checking for outliers, data needs to be accessed
one row-at-a-time to check each entry’s column values against the histogram. Moreover,
as we discuss this data access pattern in detail in Chapter 4, we show that error detection
happens over newer data and statistical evidences such as histograms, and PDFs are built
over older data. Therefore, the data access pattern depends on the age of the data.

Existing solutions rely either on a pure row-store, or a pure column-store, and are
therefore unable to benefit from the other storage layout. Alternatively, they replicate the
data across the two storage types, adding complexity to data management. Therefore,
having an adaptive data store that can transform the layout of the data as it gets old can
speed-up the data cleaning tasks by up to an order of magnitude, as we show in Chapter
4.

1.1.3 Dissertation’s hypothesis

In this dissertation, we consider scalability as a first-class citizen for data cleaning work-
flows and propose that data cleaning tasks can achieve scalability and high-quality solutions
by adopting the following three principles:

• Using a new primitive-based re-writing of the existing algorithms that allows for effi-
cient implementations for multiple computing frameworks. As mentioned in Section
1.1.1, re-designing algorithms for a new computing framework, for example a dis-
tributed framework, is a daunting task. To facilitate the end-user in overcoming
this challenge, the existing algorithms can be decomposed into data-operations such
as joins, group-by, etc., which are well understood across many computing frame-
works. These data-operations will then allow for rewrites of the existing algorithms

4

independent of the framework, analyze their costs, and explore the space of possible
designs.

• By efficiently involving domain expert’s knowledge to reduce computation and im-
prove quality. Domain experts are expected to provide high-quality solutions for
many data cleaning tasks, such as identifying errors, consolidating duplicates, and
generating fixes for errors. However, using domain experts is costly and time consum-
ing, making it difficult to scale when used näıvely. If we can develop techniques that
involve domain experts to fetch only the most valuable information, we can reduce
the computation while achieving high-quality results.

• By using an adaptive data store that can transform the data layout based on access
pattern. As mentioned in Section 1.1.2, many of the data cleaning tasks need to fetch
entries in both row-at-a-time and column-at-a-time pattern. Having a single storage
system than can transform the layout of the data based on its access pattern can
significantly improve the data access time, thereby speeding-up the cleaning tasks.

1.2 Contributions and outline

As part of an attempt to build scalable data cleaning workflows, we make contributions
under each of the principles proposed in the previous section. Our contributions are the
following:

1. Distributed discovery of constraints: Following the principle of using a new
primitive-based re-writing, we consider the discovery step (see Figure 1.1) of clean-
ing workflows and propose a set of primitive data-operations that can be used to
rewrite the distributed version of constraint discovery algorithms. Constraints are
expressed using the formal language of integrity constraints (ICs), such as functional
dependencies (FDs), denial constraints, etc., and discovering these rules is considered
as a major part of the data profiling task [15], which is responsible for discovering
the metadata. Many of the previous constraint discovery (also known as dependency
discovery) algorithms have assumed a centralized setting where data is stored locally.
Therefore, deploying them on distributed platforms näıvely results in a high com-
munication cost, as most of these algorithms often use large intermediate results to
optimize computation cost.

To facilitate efficient distributed versions of constraint discovery algorithms, we de-
compose existing algorithms into six logical primitives, corresponding to data pro-
cessing steps separated by communication barriers. These primitives allow us to

5

rewrite the discovery algorithms, analyze the computation and communication costs
of each step, and explore the space of possible distributed designs, each with different
performance characteristics.

2. Framework for faster clustering selection for de-duplication: Following the
principle of involving domain experts, we propose a faster clustering selection frame-
work with human-in-the-loop for data de-duplication. The problem of data de-
duplication is also viewed as a clustering task [51]. Here, the goal is to put records
corresponding to the same physical entity in the same cluster, while separating the
records corresponding to different entities into different clusters. Solving the de-
duplication problem then means finding the right clustering. In practice, we try
out an ensemble of clustering algorithms, and further, each algorithm with different
hyper-parameter values, with the goal of selecting the “best” clustering. A clustering
is defined to be better than another clustering based on a certain loss function. Com-
puting the loss function for a clustering requires knowledge of whether a pair of items
belong to the same entity or not. This knowledge is often known to domain-experts.
As an abstraction, we assume that an “oracle” is in possession of this knowledge.
However, querying the oracle is costly. To obtain the true value of the loss function,
one would need to query the oracle for every pair of items, i.e. O(n2) queries [60],
where n is the number of items. For large datasets, making queries for O(n2) pairs
is either infeasible or extremely costly. We propose a novel framework which allows
us to select the best clustering by making a bounded number of queries to an oracle,
with the bound independent of n.

3. Storage engine to speed up data cleaning tasks: Finally, in line with the
principle of an adaptive data store, we propose a Log-Structured Merge (LSM) Tree
based storage engine. In Section 4.1, we observe that many data cleaning tasks such
as detecting constraint violations, detecting outliers, and data de-duplication access
recent data row-at-a-time to detect and fix errors, whereas old data is accessed via
column scans to collect evidences towards fixing errors in the recent data. This access
pattern has also been observed in many Hybrid Transactional-Analytical Processing
(HTAP) applications, such as content recommendation, real-time inventory/pricing,
high frequency trading, and IoT [74]. Therefore, it has motivated the development
of several HTAP systems such as SAP HANA [47], MemSQL [7], and IBM Wildfire
[28], which employ hybrid data layouts. The data in these systems is stored in
different formats throughout their lifecycle. Recent data is stored in a row-oriented
format to serve On-Line Transactional Processing (OLTP) workloads and support
high data rates, while older data is transformed to a column-oriented format for On-

6

Line Analytical Processing (OLAP) access patterns. Such systems can be described
as having a lifecycle-aware data layout.

We observe that a Log-Structured Merge (LSM) Tree [75] is a natural fit for a lifecycle-
aware storage engine due to its high write throughput and level-oriented structure,
in which records propagate from one level to the next over time. To the best of our
knowledge, the RDBMSs used by current data cleaning workflows are either pure
row-store systems such as MySQL or Postgres, or pure column-store systems such
as MonetDB. We show that the data cleaning tasks run faster on our LSM-Tree
based storage engine, when compared to running them on Postgres and MonetDB.
In addition to the data cleaning tasks, this storage engine can also be integrated
with RDBMS systems, such as MySQL that allows for different storage plugins,
to run real-time analytics applications such as content recommendation, real-time
inventory/pricing, and high frequency trading.

Outline: The outline of the dissertation is as follows: In chapter 2, we show how to
have efficient distributed implementations of dependency discovery algorithms. In chapter
3, we give the details of our novel framework which allows selection of the best clustering
by asking bounded number of queries to an oracle. In chapter 4, we present the LSM-Tree
based storage engine that can speed-up data cleaning workloads. Finally, in chapter 5, we
provide concluding remarks along with a discussion of future work.

7

Chapter 2

Distributed Dependency Discovery

Column dependencies such as candidate keys or Unique Column Combinations (UCCs),
Functional Dependencies (FDs), Order Dependencies (ODs) and Denial Constraints (DCs)
are critical in the error detection step of data cleaning. In addition to that, they are deemed
important in many data management tasks such as schema design, data analytics and query
optimization. Despite their importance, dependencies are not always specified in practice,
and even if they are, they may change over time. Furthermore, dependencies that hold on
individual datasets may not hold after performing data integration. As a result, there has
been a great deal of research on automated discovery of dependencies from data; see, e.g.,
[15, 66] for recent surveys.

Existing work on dependency discovery proposes methods for pruning the exponential
search space in order to minimize computation costs. However, existing methods assume
a centralized setting where the data are stored locally. In contrast to centralized settings,
in modern big data infrastructure, data are naturally partitioned (e.g., on HDFS [86])
and computation is parallelized (e.g., using Spark [94]) across multiple compute nodes. In
these cases, it is inefficient at best and infeasible at worst to move the data to a centralized
profiling system, motivating the need for distributed profiling.

In distributed environments, ensuring good performance requires minimizing compu-
tation and communication costs. A näıve solution to minimize communication costs is to
allow no data communication at all: each node locally discovers dependencies from the
data it stores, and then we take the intersection of the locally-discovered dependencies. To
see why this approach fails, consider a table with a schema (A,B) and assume the table is
partitioned across two nodes: the first node storing tuples (a1, b1), (a1, b1), and the second
node storing tuples (a1, b2), (a1, b2). The FD A → B locally holds on both nodes but it

8

does not hold globally over the whole table. We show in Figure 2.1a that this problem
gets worse quickly, even for as few as ten nodes, where the majority of the dependencies
discovered locally do not hold on the entire dataset (TPC-H lineitem table with one million
rows [11]). Notably, discovering dependencies from a sample has a similar problem.

Another possible solution is to parallelize existing non-distributed dependency discovery
algorithms in a straightforward way. The problem with this approach is that existing
algorithms often generate large intermediate results to minimize computation, leading to
high communication overhead. Other problems include parallelizing the computation and
load balancing—issues that, naturally, were not considered in centralized implementations.

In this work, we argue that to implement efficient distributed algorithms, an end-user
needs to (i) systematically analyze the space of possible optimizations, i.e., identify the
core data processing steps and optimize for both computation and communication when
parallelizing these steps, and (ii) tune the physical implementations of these steps, i.e.,
design a distribution strategy for a given workload and the available computational and
memory resources. To facilitate the end-user in overcoming these challenges, we decompose
existing dependency discovery algorithms into six logical primitives, corresponding to data
processing steps separated by communication barriers. The primitives allow us to rewrite
the algorithms, analyze the computation and communication costs of each step, and explore
the space of possible distributed designs, each with different performance characteristics.

From the point of view of an end-user, our primitive-oriented framework decouples
writing distributed versions of the algorithms from tuning their physical implementations.
We refer to the logical rewrites using our primitives as logical discovery plans or LDPs, and
their physical implementations as physical discovery plans or PDPs. We present case stud-
ies (Sections 2.5 through 2.7), showing how our primitives allow us to explore the space of
possible designs. In particular, for each algorithm, we write two LDPs using our primitives.
One LDP follows the design principles of the original non-distributed implementations, and
the other LDP modifies the original algorithm to make it distribution-friendly. We then
demonstrate that different physical implementations of the primitives lead to different
PDPs for the same LDP.

Figure 2.1b illustrates the impact of exploring different design options using our prim-
itives. We compare the performance of three versions of the FastFDs algorithm [93] for
FD discovery on a homicide data set with 100,000 rows and 24 columns. The first version,
single-node, is the original FastFDs algorithm executed on a single machine. The second,
original-dist is a distributed version of the original algorithm running on a 55-worker Spark
cluster, which is faster than the single-machine solution but has a significant communica-
tion overhead. The third, dist-friendly, is a distribution friendly version that reduces the

9

(a) Drop in precision (i.e., the fraction of
locally discovered FDs that hold over the
entire dataset) with number of nodes

(b) Computation and communication costs
of FastFDs

Figure 2.1: Precision of naive solution for distributed FD discovery and performance of
three FastFDs implementations

data communication costs and is over an order of magnitude faster than original-dist.

Our contributions in this work, are as follows.

1. We propose a generalized framework for analyzing dependency discovery algorithms
(including UCCs, FDs, ODs and DCs), which consists of six primitives that serve as
building blocks of existing algorithms.

2. Using case studies, we illustrate how the primitives allow us to (i) decouple logical
designs from physical implementations, and (ii) analyze the cost of individual data
processing steps.

3. Using the proposed primitives, we implement and experimentally evaluate different
distributed versions of seven existing dependency discovery algorithms on several real
datasets.

2.1 Prior Work

There has been recent work on parallelizing dependency discovery algorithms across mul-
tiple threads, but it considers a singe-node shared-everything architecture where commu-
nication costs are not a bottleneck [48]. There is also some early work on distributed FD
discovery. However, it suffers from the same issues as the näıve solution we mentioned ear-
lier (i.e., it returns locally-discovered FDs which may not hold globally) [65], or it assumes

10

tid ID GD AC PH CT ST ZIP SAL TR STX

t1 1009 M 304 232-7667 Anthony WV 25813 5000 3 2000
t2 2136 M 719 154-4816 Denver CO 80290 60000 4.63 0
t3 0457 F 636 604-2692 Cyrene MO 64739 40000 6 0
t4 1942 F 501 378-7304 West Crossett AR 72045 85000 7.22 0
t5 2247 M 319 150-3642 Gifford IA 52404 15000 2.48 50
t6 6160 M 970 190-3324 Denver CO 80251 60000 4.63 0
t7 4312 F 501 154-4816 Kremlin AR 72045 70000 7 0
t8 3339 F 304 540-4707 Kyle WV 25813 10000 4 500

Table 2.1: Tax data records

that data are partitioned vertically and ensures efficiency by limiting the search space to
FDs with single attributes [64].

2.2 Preliminaries

We begin by defining important concepts used in dependency discovery algorithms. Ta-
ble 2.2 explains important symbols used in this chapter.

Definition 1. Relational model: Let R = {A1, A2, ..., Am} be a set of attributes de-
scribing the schema of a relation R and r be a finite instance of R.

2.2.1 Dependencies

Definition 2. Minimal unique column combination: An attribute combination X ⊆
R is a unique column combination (UCC) if X uniquely identifies tuples in r. X is a
minimal UCC if no proper subset of it is a UCC.

Definition 3. Minimal functional dependency: Let X ⊂ R and A ∈ R. A functional
dependency (FD) X → A holds on r iff for every pair of tuples ti, tj ∈ r the following is
true: if ti[X] = tj[X], then ti[A] = tj[A]. An FD X → A is minimal if A is not functionally
dependent on any proper subset of X.

Definition 4. Minimal order dependency: Let X be a list of distinct attributes of R
and A ∈ R. An order dependency (OD) X 7−→ A holds iff sorting r by X means that r is

11

also sorted by A. An OD X 7−→ A is minimal if A is not order dependent on any proper
subset of X.

Definition 5. Denial constraint: A Denial constraint (DC) ψ is a statement of the
form ψ : ∀ti, tj ∈ r,¬(P1 ∧ ... ∧ Pk) where Pi is of the forms v1φv2 with v1, v2 ∈ tx[A],
x ∈ {i, j}, A ∈ R and φ ∈ {=, 6=, <,≤, >,≥}. The expression inside the brackets is a
conjunction of predicates, each containing two attributes from R and an operator φ. An
instance r satisfies ψ iff ψ is satisfied for any two tuples ti, tj ∈ r.

Definition 6. Predicate space: It is defined as the space of all possible expressions of
the form v1φv2 with v1, v2 ∈ tx[A], x ∈ {i, j}, A ∈ R and φ ∈ {=, 6=, <,≤, >,≥}.

Example 2.2.1. Consider the tax dataset in Table 2.1. The set {AC,PH} is a UCC.
Two persons with same zip code live in the same state, therefore the FD ZIP → ST holds.
The single tax exemption decreases as salary increases, therefore the OD SAL 7−→ STX
holds. If two persons live in the same state, the one earning a lower salary has a lower
tax rate, therefore the following DC holds: c : ∀ti, tj ∈ R, ¬(ti.ST = tj.ST ∧ ti.SAL <
tj.SAL ∧ ti.TR > tj.TR).

In the remainder of this chapter, discovering dependencies refers to discovering minimal
dependencies.

2.2.2 Data structures

Definition 7. Equivalence classes: Equivalence class of a tuple t ∈ r with respect to
an attribute set X ⊆ R is denoted by [t]X = {u ∈ r|∀A ∈ X t[A] = u[A]}. The set
πX = {[t]X |t ∈ r} contains the equivalence classes of r under X.

Note that πX is a partition of r such that each equivalence class corresponds to a unique
value of X. Let |πX | be the number of equivalence classes in πX , i.e., the number of distinct
values of X.

Definition 8. Evidence sets: For any two tuples ti and tj, in r, their evidence set
EV (ti, tj) is the set of predicates satisfied by them, drawn from some predicate space P .

Recall the predicate space considered by DCs from Definition 5, namely those with two
attributes from R and an operator from φ. In Table 2.1, tuples t2 and t6 give EV (t2, t6) =
{t2.ID 6= t6.ID, t2.ID ≤ t6.ID, t2.ID < t6.ID, t2.GD = t6.GD, t2.CT = t6.CT, t2.ST =

12

Symbol Meaning
R A relation
r An instance of R
n Number of tuples in r
m Number of attributes R
πX Equivalence classes of X ⊆ R

EV (ti, tj) Evidence set due to tuple pair (ti, tj)
k Number of workers/compute nodes
Y Maximum computation done by any worker
X Maximum data sent to any worker

Table 2.2: Summary of symbols

t6.ST, ...}. For FDs and UCCs, it suffices to consider a restricted space of predicates
that identify which attribute values are different. Here, EV (t2, t6) = {t2.ID 6= t6.ID,
t2.AC 6= t6.AC, t2.PH 6= t6.PH, t2.ZIP 6= t6.ZIP}. As we will show in Section 2.3, some
algorithms use evidence sets to identify dependencies that do not hold.

Definition 9. Partition refinement: Partition π refines partition π′ if every equivalence
class in π is a subset of some equivalence class of π′.

Distributed methods: We assume a map-reduce style of computation, where map
jobs perform local computation, followed by a data communication step and a reduce step
to compute the final results in parallel. Intermediate results are stored on a distributed
file system such as HDFS, or maintained in memory, e.g., as Spark Resilient Distributed
Datasets (RDD) [94]. Suppose we have k workers or compute nodes. Let Xi and Yi be
the amount of data sent to the ith worker and the computation done by the ith worker,
respectively [36]. The runtime of a distributed algorithm depends on the runtime of the
slowest worker. Thus, we will compute the following quantities for each tested algorithm:

X = max
i∈[1,k]

Xi Y = max
i∈[1,k]

Yi

We compute these costs at the granularity of data values instead of tuples or columns.
This makes our analysis independent of the data partitioning scheme (e.g., horizontal vs.
vertical).

13

2.3 Algorithms

We classify dependency discovery algorithms into three categories: schema-driven, data-
driven and hybrid.

Schema-driven algorithms: this class of algorithms traverses an attribute lattice in
a breadth-first manner, an example of which is shown in Figure 2.2b for R = {A,B,C,D}.
The nodes in the ith lattice level, denoted Li, correspond to sets of i attributes. Each node
also stores the equivalence classes (Definition 7) corresponding to its attribute set. Edges
between nodes are based on a set containment relationship of their attribute sets. The
time complexity of schema-driven algorithms depends mainly on the size of the lattice,
which is exponential with respect to the number of columns, but it is linear on the number
of tuples, and therefore these algorithms work well for large datasets with few columns.

Consider the TANE [53] algorithm for discovering FDs (FastOD [90] is similar but it
discovers ODs). For each lattice level, TANE performs three tasks: generate next level,
compute dependencies, and prune. To generate the next level, TANE first creates new
attribute sets by combining pairs of attribute sets from the current level; e.g., combining
AB and AC gives ABC. This corresponds to a self-join of the current level’s attribute
combinations. Next, new equivalence classes are created by intersecting pairs of equivalence
classes from the current level. For example, in Figure 2.2a we have πA = {{1, 3}, {2, 4},
πB = {{1}, {2}, {3, 4}}, πC = {{1, 2, 3}, {4}} and πD = {{1, 2}, {3}, {4}}. Intersecting πC
and πD gives π{C,D} = {{1, 2}, {3}, {4}}.

Once the attribute sets and equivalence classes for the next level Ll have been generated,
the compute dependency task discovers FDs of the form X \A→ A for all X ∈ Ll, and for
all A ∈ X. To determine if X \ A → A, TANE checks if πX\A refines (Definition 9) πA.
For example, in Figure 2.2a, D → C holds because πD refines πCD; however, C → D does
not hold because πC does not refine πCD.

Compute dependencies is simpler for FD and UCC discovery but more complex for
ODs. For FDs, it suffices to check if |πX\A| = |πX |. For UCCs, X is a UCC if |πX | = r,
i.e., if all equivalence sets are singletons. On the other hand, for an OD X 7−→ Y to hold,
every set in πX\A must be a subset of some set in πA and furthermore the elements must
be ordered in the same way.

Finally, prune leverages the fact that only minimal dependencies are of interest; for
example, if A → D holds then AB → D is not minimal. Depending on the algorithm,
various pruning rules are applied to eliminate nodes from the lattice that cannot produce
non-minimal dependencies. If a node is pruned, then any nodes connected to it can also be
eliminated. For example, for FDs, a node labelled with an attribute set X can be pruned

14

A B C D
a a a a
b b a a
a c a c
b c d e

(a) Relation instance (b) Attribute lattice

Figure 2.2: Example relation instance and attribute lattice

if X is a key or X \ A → A was found to hold. Returning to our example, CD is pruned
because D → C holds, and the following nodes are pruned because they correspond to
keys: AB, AD, BC, and BD.

Data-driven algorithms: this class of algorithms examines pairs of tuples to identify
evidence sets (Definition 8) and violated dependencies; in the end, any dependencies not
found to be violated must hold. The time complexity of data-driven algorithms depends
on the number of tuples, but not on the number of columns, and therefore these algorithms
work well for small datasets with many columns.

Consider the FastFDs [93] algorithm for FD discovery. Returning to Figure 2.2a, we get
the following evidence sets (expressed concisely as attributes whose values are different)
from the six tuple pairs:

EV (t1, t2) = {A,B}, EV (t2, t3) = {A,B,D}, EV (t1, t4) = {A,B,C,D},
EV (t1, t3) = {B,D}, EV (t2, t4) = {B,C,D}, EV (t3, t4) = {A,C,D}

After FastFDs generates evidence sets, for each possible right-hand-side attribute of an
FD, it finds all the left-hand-side attribute combinations that hold. Say A is the right-
hand side attribute currently under consideration. The algorithm first removes A from
the evidence sets, giving {{B}, {B,C,D}, {B,D}, {C,D}}. Next, FastFDs finds minimal
covers of this set, i.e., minimal sets of attributes that intersect with every evidence set. In
this example, we get BC and BD, and therefore we conclude that BC → A and BD → A.
FastDC [37] works similarly to discover DCs.

FastFDs avoids considering all n(n − 1)/2 pairs of tuples when generating evidence
sets. Instead, it only considers pairs of tuples that belong to the same equivalence class
for at least one attribute. For example, in Figure 2.2a, tuples 1 and 4 are not in the
same equivalence class for any of the four attributes. In these cases, a tuple pair has

15

Primitive TANE FASTOD FastFDs FastDCs HyFD HyUCC Hydra
genEQClass(X, I) � � � � � �
genEV Set(ti, tj, P) � � � � �

checkRefinement(X, Y, I) � � � �
join(Si, Sj, p) � � � � � � �
setCover(S) � � � � �

sort(S,Comparator) � � � � � �

Table 2.3: Summary of primitives and their usage across algorithms

no attributes in common and therefore the corresponding evidence set is all of R, which
trivially intersects with every possible cover.

Hybrid algorithms: these algorithms switch back and forth between schema-driven
and data-driven phases; examples include HyFD [77], HyUCC [78] and Hydra [32]. For
example, HyFD starts with a data-driven phase, but it generates evidence sets only from
a sample of tuples. From these evidence sets, HyFD identifies FDs that have not been
violated by the sampled tuple pairs (but may be violated by some other tuple pairs). To
represent these potential FDs, HyFD uses an FDTree data structure, which is a prefix-tree,
each of whose nodes corresponds to a set of attributes. Next, to validate the potential FDs,
HyFD switches to a schema-driven phase, which traverses the FDTree level-wise, similarly
to how TANE traverses the attribute lattice level-wise. At some point, HyFD may switch
back to a data-driven phase and generate evidence sets from a different sample of tuples,
and so on. HyUCC [78] and Hydra [32] are similar to HyFD but Hydra switches only once
from the data-driven phase to the schema-driven phase.

2.4 Primitives

Our approach to design efficient distributed methods for dependency discovery is to identify
the data processing steps and explore different implementations of these steps. To realize
this approach, we propose a general framework consisting of six primitives listed below. We
identified the primitives by decomposing existing algorithms into common data processing
steps whose distributed implementations are well-understood. For example, as explained
in Section 2.3, generating the next lattice level in schema-driven algorithms consists of a
join (to generate new lattice nodes) and a group-by operation (to generate new equivalence
classes). Similarly, generating evidence sets consists of a join.

16

1. Generate equivalence classes (genEQClass): (X, r) → πX
Given set X ⊆ R and data instance r, this primitive computes πX . This is similar
to the relational group-by operator and can be implemented by sorting or hashing
the data. This primitive is used to verify if dependencies hold by schema-driven
algorithms and to decide which tuple pairs to examine by data-driven algorithms.

2. Generate evidence set (genEV Set): (ti, tj, P) → EV (ti, tj)
Given a pair of tuples ti, tj ∈ r, this primitive generates a set of dependencies (defined
under a predicate space P) that are violated by this tuple pair, i.e. EV (ti, tj). Recall
from Section 2.2 that DCs have the most general predicate space while FDs, ODs
and UCCs have simpler predicate spaces. This primitive is used in data-driven and
hybrid algorithms.

3. Partition refinement (checkRefinement): (πX , πY) → {True, False}
This primitive returns true if πX refines πY and false otherwise. Schema-driven and
hybrid algorithms use this primitive. As discussed in Section 2.3, in UCC and FD
discovery, this primitive can return true or false by comparing the counts of |πX |
and |πY |, whereas in OD discovery, it needs to check the ordering of tuples within
matching equivalence classes.

4. Join (join): (Si, Sj, p) → {x ∪ y | x ∈ Si ∧ y ∈ Sj ∧ p}
This primitive joins two sets of elements, Si and Sj, using p as the (optional) join
predicate. Schema-driven (and hybrid) algorithms use the join when generating at-
tribute sets for the next lattice level; here, it is a self-join of the previous level’s
attribute sets. Data-driven (and hybrid) algorithms join pairs of tuples to generate
evidence sets.

5. Cover (setCover): {s1, s2, ..., sc} → {smin1 , smin2 , ...}
Given a set of evidence sets S = {s1, s2, ..., sc} where si ⊆ R, this primitive computes
all minimal covers sminj ⊆ R, and therefore the dependencies that hold given S. Cover
is used in all data-driven and hybrid algorithms.

6. Sort (sort): (S, Comparator) → S
This primitive sorts the set S based on the provided comparator. FastOD sorts
tuples within equivalence classes and checks for proper ordering during the partition
refinement check. Data-driven algorithms sort evidence sets based on their cardinality
to speed up the minimal cover operation. Hybrid algorithms use sorting during
sampling (of tuple pairs to generate evidence sets).

17

Table 2.3 highlights the expressiveness of the primitives and their usage across seven
popular and state-of-the-art dependency discovery algorithms. As mentioned earlier in
the chapter, we refer to logical rewrites of the algorithms using the primitives as logical
discovery plans (LDPs) and their physical implementations as physical discovery plans
(PDPs).

Design space: There are many possible physical implementations of our primitives.
As in DBMSs, one important factor to consider is the size of the input compared to the
available memory, e.g., to determine when to use a hash-join or a sort-merge-join. Similar
choices exist in distributed frameworks such as Spark and Map-reduce. In particular,
different distribution strategies have different memory footprints, suggesting a space of
possible optimizations. In Sections 2.5-2.7, we explore this optimization space with the
help of our primitives. We consider TANE as a schema-driven example, FastFDs as a
data-driven example and HyFD as a hybrid example (however, our conclusions apply to
other algorithms within these three categories). For each case study, we show that different
LDPs exist and we show two (of the many possible) distributed PDPs for each LDP. One
PDP, which we call large-memory plan or lmPDP, assumes that each worker’s memory is
large enough for all computations; the other, which we call small-memory plan or smPDP,
assumes that the data may spill to external storage. For the PDPs, we assume Spark to be
the data processing framework. We show that different PDPs have different performance
characteristics in terms of communication and computation cost, but we defer the issue
of automatically selecting the best PDP for a given workload and system configuration to
future work.

2.5 Case study 1: TANE

We start by studying TANE [53]. As explained in Section 2.3, for each lattice level,
schema-driven algorithms such as TANE compute dependencies holding in this level, prune
the search space based on the discovered dependencies, and generate the next level. The
execution plans presented in this section can be easily extended to discover order dependen-
cies [90] as follows. Discovering ODs is more expensive than FDs because, as discussed in
Section 2.3, verifying ODs requires a refinement check and an ordering check. Thus, to im-
plement the checkRefinement primitive, complete equivalence classes must be examined
(not just the number of equivalence classes, i.e., the number of distinct values).

18

1 TANE (Relation r, Schema R)
2 for A ∈ R do
3 L1 = L1 ∪

{(A, genEQClass(A, r))}
4 l = 1
5 while Ll 6= φ do
6 computeDependencies(Ll)
7 prune(Ll)
8 generateNextLevel(Ll)
9 l++

10 computeDependencies (Level Ll)
11 for X ∈ Ll do
12 for A ∈ X do
13 checkRefinement(X/A, X,

(|πX/A|, |πX |))

14 generateNextLevel (Level Ll)
15 for (X, πX , Y, πY) ∈ join(Ll, Ll) do
16 πX∪Y = genEQClass(X ∪ Y ,

(πX , πY))
17 Ll+1 = Ll+1 ∪ {(X ∪Y , πX∪Y)}

(a) Logical discovery plan 1

1 TANE (Relation r, Schema R)
2 for A ∈ R do
3 L1 = L1 ∪

{(A, |genEQClass(A, r)|)}
4 l = 1
5 while Ll 6= φ do
6 computeDependencies(Ll)
7 prune(Ll)
8 generateNextLevel(Ll)
9 l++

10 computeDependencies (Level Ll)
11 for X ∈ Ll do
12 for A ∈ X do
13 checkRefinement(X/A, X,

(|πX/A|, |πX |))

14 generateNextLevel (Level Ll)
15 for (X, πX , Y, πY) ∈ join(Ll, Ll)

do
16 πX∪Y = genEQClass(X ∪ Y , r)
17 Ll+1 = Ll+1 ∪ {(X ∪Y ,

|πX∪Y |)}

(b) Logical discovery plan 2

Figure 2.3: TANE algorithm

19

2.5.1 LDP 1: Original TANE

Figure 2.3a shows the first LDP written using our primitives, which follows the design prin-
ciples of the original TANE algorithm: compute new equivalence classes by intersecting the
previous level’s equivalence classes. To implement this, the input to the genEQClass prim-
itive in line 16 consists of a new attribute combination X ∪ Y and the equivalence classes
πX and πY from the previous level. Furthermore, the lattice stores attribute combinations
and their associated equivalence classes (lines 3 and 17).

Large-memory PDP

Generating first level : In lines 2-3, we generate equivalence classes for the first lattice level,
i.e., for single attributes. This is implemented by distributing the columns in R across the
k workers in a round-robin fashion. Each worker scans the tuples in r and hashes their
values to compute equivalence classes for the columns assigned to it.

Computing dependencies : As discussed in Section 2.3, to check if an FD X \ A → A
holds, it suffices to verify that |πX\A| = |πX |. Thus, we distribute the counts of the
equivalence classes (i.e. |πX |) in the current lattice level Li (i.e., the dependencies to
check) across the k workers in a round-robin fashion and we broadcast the counts for
attribute combinations in Li−1 to each worker.

Pruning : The driver machine then receives the discovered dependencies from the work-
ers and applies pruning rules to the current lattice level. Lattice nodes that have not been
pruned are used to generate the next level.

Generating next level : This requires a (self-) join to produce new attribute combinations
and their equivalence classes. We implement the join as a map-reduce job, in which each
worker creates a subset of nodes in the next lattice level. We use a distributed self-join
strategy called the triangle distribution strategy [36], which was shown to be optimal in
terms of communication and computation costs. Next, a map job generates new equivalence
classes, in which each worker creates equivalence classes for the nodes it has generated
during the join. New equivalence classes are created by intersecting pairs of equivalence
classes from the previous level. For example, if a worker receives equivalence classes for AB
and AC during the join, it can create equivalence classes for ABC. The new equivalence
classes are written to the distributed filesystem.

Cost analysis: To generate equivalence classes in the first lattice level, the computa-
tion is linear in terms of the number of tuples (single pass to hash the tuple values), and

20

the columns are equally shared across all the workers. The cost of computing dependen-
cies is negligible since we only need to compare counts of equivalence classes (line 13). To
generate the next level of equivalence classes, the cost of the triangle distribution strategy
is given by [36]: Xi ≤ |I| ∗

√
2/k, and Yi ≤ |I|(|I| − 1)/2k, where |I| is size of the input to

the join, which is a lattice level (Ll) in our case. Due to pruning, we compute equivalence
classes for |Ll+1| attribute combinations and not for all pairs of attribute combinations
resulting from the self-join. This approximation gives: Yi ≤ 2n|Ll+1|/k. Aggregating the
costs for up to m levels in the lattice, we get X ≤ 2mn

√
2/k, and Y ≤ 2m2n/k. The factor

of 2n in Y is because the intersection of two equivalence classes requires a scan over each
one, which is 2n in the worst case.

Small-memory PDP

Note that generating equivalence classes is memory-intensive due to the size of the attribute
lattice. In the small-memory PDP, we focus on an alternative implementation of this task.

Generating first level : Our strategy in the lmPDP was to use each worker to generate
equivalence classes for multiple columns. Here, our strategy is to use multiple workers to
generate one column’s equivalence classes. We do this by using Spark’s distributed groupBy
operation. This has two advantages: it reduces the memory load per worker and allows
Spark to take care of spilling the computation to disk.

Generating next level : The lmPDP required O(n2m/
√
k) memory for the triangle distri-

bution strategy (which is the memory footprint given in [36]), and the equivalence classes
assigned to a worker also must fit in its memory. In smPDP, we consider two regimes
of memory capacity at a worker: (1) not enough memory to use the triangle distribution
strategy, and (2) even less memory such that even the equivalence classes do not fit. For
regime (1), we implement the self-join using Spark’s cartesian operation and let Spark
do the memory management. For regime (2), each worker reads the required equivalence
classes πX and πY from external storage in chunks (small enough to fit in memory) to
create πX∪Y . Note that while doing this, a worker needs to make multiple passes over the
input equivalence classes.

Cost analysis: To generate the first level’s equivalence classes, the input to each
groupBy call is a column from R of size n. In the worst case, the data can be skewed such
that all n tuples belong to the same group and are shuffled to a single worker, and this
can happen for each column. Since each worker initially does roughly the same amount
of computation in the map stage, we get X ≤ nm and Y ≤ nm/k. The communication
cost is greater than that for lmPDP for generating the first level. To generate the next

21

level, the cost for both memory regimes is higher than the cost in lmPDP. For regime (1),
Spark’s cartesian operation does more data shuffling than the triangle strategy. For regime
(2), the cost is even greater due to the need to make multiple passes over the equivalence
classes.

2.5.2 LDP2: Modified TANE

LDP1 computes new equivalence classes by intersecting pairs of equivalence classes from the
previous lattice level. This requires materializing and communicating equivalence classes
to workers, which is expensive. In fact, the equivalence classes for a given lattice level
may be larger than the input dataset. We now suggest an alternative LDP that computes
new equivalence classes directly from the data instead of computing them using the previous
level’s equivalence classes.

Figure 2.3b shows LDP2, with changes highlighted in blue. The primitive genEQClass
now takes as input a column combination and the tuples in r (Line 3 and 16). Also, note
the difference in line 3 and 17: a lattice level now includes attribute combinations and the
number of the corresponding equivalence classes, not the equivalence classes themselves.

Large-memory PDP

The implementation to generate equivalence classes for the first level and to compute de-
pendencies is the same as in LDP1 from Section 2.5.1. To generate the next level, we again
use the triangle strategy to implement the self-join, which divides new attribute combi-
nations among workers. Equivalence classes are not materialized with the corresponding
attribute combinations, but we do need to store the number of equivalence classes for each
attribute combination, which is needed to checkRefinement. Workers then compute the
new equivalence classes assigned to them directly from the data (using hashing).

Cost analysis: The cost to generate the first lattice level and compute dependencies is
the same as in Section 2.5.1. The cost of the self-join is negligible because it only involves
attribute combinations and not the equivalence classes. Therefore it does not depend on
the number of tuples n. To generate equivalence classes for a new lattice level, each worker
is responsible for roughly the same number of attribute combinations (i.e. |Ll+1|/k), and
using hashing it requires a single pass over the data (i.e., nm). Doing this for up to m
lattice levels gives: Y ≤ nm2m/k, and X ≤ nm ∗ m. When compared to lmPDP in
Section 2.5.1, the communication cost of this plan is significantly lower because it avoids
communicating the previous level’s equivalence classes to the workers.

22

Furthermore, LDP2 creates opportunities for further reduction of communication cost
for the Spark framework. The Broadcast mechanism in Spark allows data to be cached at
the workers for the lifetime of a job. Thus, if each worker’s memory is large enough to
store the input dataset, it only needs to be sent once and can be reused for each lattice
level. In our experimental evaluation (Section 2.8), we exploit this optimization whenever
possible.

Small-memory PDP

We borrow the strategy from Section 2.5.1: we use multiple workers to generate equivalence
classes for a particular attribute combination using Spark’s groupBy. The difference is that
we only save the number of equivalence classes, not the equivalence classes themselves, since
new equivalence classes are always computed from the input dataset, not from previous
level’s equivalence classes.

Cost analysis: The cost of generating the first level is the same as in Section 2.5.1,
and the cost of the self-join and computing dependencies is the same as in Section 2.5.2.
To generate equivalence classes using groupBy for a particular lattice level, the number of
calls made to groupBy is the same as the number of nodes in the lattice. In the worst case,
each call will re-partition the data (i.e. n tuples) to compute groupBy. Hence, the cost
of this smPDP is higher than the cost of the lmPDP (Section 2.5.2) because it requires
much more data shuffling. However, this smPDP still has a lower cost than the smPDP in
Section 2.5.1 because it avoids the expensive cartesian operation to create new equivalence
classes by intersecting the previous level’s equivalence classes (which, in the worst case,
means that each worker may need to be sent the entire previous lattice level).

2.6 Case study 2: FastFDs

We now study FastFDs [93]. As explained in Section 2.3, the general strategy of data-
driven algorithms is to generate evidence sets and then find minimal covers of the evidence
sets. We note that the plans shown in this section can also be applied to the FastDCs
algorithm for discovering DCs. The difference is that a richer predicate space will be used
by genEV Set.

23

1 fastFD (Relation r, Schema R)
2 EVI = {}
3 generateEvidence(r, R)
4 EVI = sort(EVI)
5 FDs = setCover(EVI)
6 generateEvidence (Relation r, Schema R)
7 EQ = {}
8 for A ∈ R do
9 EQ = EQ ∪ genEQClass(A, r)

10 for π ∈ EQ do
11 for (ti, tj) ∈ join(π,π) do
12 EVI = EVI ∪ genEVSet(ti,tj, {6=})

(a) Logical discovery plan 1

1 fastFD (Relation r, Predicate P = {6=})
2 EVI = {}
3 generateEvidence(r)
4 EVI = sort(EVI)
5 FDs = setCover(EVI)
6 generateEvidence (Relation r)
7 for (ti, tj) ∈ join(r,r) do
8 EVI = EVI ∪ genEVSet(ti,tj, P)

(b) Logical discovery plan 2

Figure 2.4: FastFDs algorithm

24

2.6.1 LDP1: Original FastFDs

Figure 2.4a shows the first LDP that follows the main idea of original FastFDs algorithm
[93], which is to compare only those tuple pairs which belong to the same equivalence class
for at least one attribute. Lines 8-9 compute the equivalence classes for all attributes in
R. Then, lines 10-12 perform a join operation on each equivalence class to compare tuples
and generate evidence sets. Note that the predicate space used by genEV Set consists of
just inequalities (line 12), which is sufficient for FDs. Finally, we sort the evidence sets by
their cardinality and compute their minimal covers (lines 4-5).

Large-memory PDP

Implementing lines 8-9 is similar to generating the first level of equivalence classes in TANE
(Section 2.5.1): by distributing the columns among workers in a round-robin fashion, with
each worker generating equivalence classes for multiple columns using hashing.

Next, generating evidence sets (lines 10-12) requires two jobs. First, a map-reduce job
implements a self-join that joins pairs of tuples within the same equivalence class. For
example, returning to Figure 2.2a, equivalence classes for A generate tuple pairs (1,3)
and (2,4); equivalence classes for B generate (3,4), and so on. To implement this type
of self-join in a distributed fashion, we use the Dis-Dedup+ algorithm from [36]. This
algorithm was originally proposed for data deduplication, where a dataset is partitioned
into blocks, potentially by multiple partitioning functions, and tuple pairs from the same
block are checked for similarity. Observe that our scenario is similar, in which a dataset is
partitioned into blocks via equivalence classes and FastFDs only needs to compare tuple
pairs from the same equivalence class (block). Afterward, a map job generates evidence
sets, in which each worker computes evidence sets for the tuple pairs it created during the
self-join.

Finally, we sort the equivalence classes and compute minimal covers. We do these steps
locally at the driver node because FastFDs uses a depth-first-search strategy to compute
all minimal covers, which is inherently sequential [70, 81].

Cost analysis: The cost analysis for generating equivalence classes is the same as for
TANE in Section 2.5.1. Next, we examine the cost of generating evidence sets. If the size
of an equivalence class j is Bj, then the number of comparisons done to generate evidence
sets for all tuple pairs from this equivalence class is Bj(Bj − 1)/2 ≈ B2

j /2. Assuming c is
the total number of equivalence classes, the total number of comparisons when generating
evidence sets is W =

∑c
j=1 B

2
j /2. Each tuple pair comparison takes m amount of work,

25

therefore the total work done is m ∗W . With this, we can directly use the cost analysis
of Dis-Dedup+ from [36], which gives us X ≤ 5m2max(n/k,

√
2W/k), and Y ≤ 5mW/k.

Note that we have m “blocking functions” and m amount of work is required to compare
(all m attributes of) each tuple pair.

Small-memory PDP

To generate equivalence classes (lines 8-9 in Figure 2.4a), we again use multiple workers to
generate equivalence classes for one attribute using Spark’s groupBy, as in Section 2.5.1 for
TANE. To generate evidence sets, (lines 10-12) we can off-load the (self) join operation (line
11) to Spark using the cartesian operation over RDDs (but we need to filter out redundant
pairs). In this case, Spark internally does the memory management of the RDD, spilling to
disk if required. Note that the cartesian operation will be called once for each equivalence
class.

Cost analysis: The cost analysis of generating equivalence classes is same as in Section
2.5.1. Next, each call to the cartesian operation shuffles tuples from the input equivalence
class across multiple workers such that some tuples might be sent to multiple (or all)
workers. When combining the data shuffle across all calls to the cartesian operation, each
worker might end up seeing close to all the input tuples multiple times. This gives a much
higher communication cost compared to the lmPDP (Section 2.6.1).

2.6.2 LDP2: Modified FastFDs

The Dis-Dedup+ algorithm is the current state-of-the-art, but it still incurs a non-trivial
communication and computation cost. One problem is the redundant pair-wise tuple com-
parisons. Consider the equivalence classes πA = {{1, 3}, {2, 4}} and πC = {{1, 2, 3}, {4}}
from the example in Section 2.3. According to LDP1, tuple 1 and tuple 3 are compared
twice because they co-occur in two partially overlapping equivalence classes. Also, increas-
ing the number of attributes increases the overlap of equivalence classes, thereby increasing
the number of redundant pair-wise tuple comparisons. This is also evident from the m2

factor in the cost analysis of Dis-Dedup+ in Section 2.6.1. It is possible to eliminate this
problem, but it would require an expensive comparison of all pairs of tuples in order to
eliminate duplicate tuple pairs. In LDP2, we explore this idea, which trades off com-
munication for computation. Figure 2.4b shows the pseudocode for LDP2, with changes
highlighted in blue. In particular, in line 7, we perform a self join on the complete relation
r.

26

Large-memory PDP

We again use the triangle join strategy from [36] to implement the join in line 7. This
requires one map-reduce job to compute a full self-join of r and then a map job to generate
evidence sets from all tuple pairs.

Cost analysis: Applying the cost analysis for triangle join strategy, we get: X ≤
nm
√

2/k and Y ≤ mn2/2k. This is an improvement over the cost of lmPDP in Section
2.6.1, specially when m is large, which is a typical use case for FastFDs.

Small-memory PDP

The triangle join strategy in the lmPDP has a memory footprint of O(nm/
√
k) per worker.

When each worker’s memory is smaller than that, we off-load the join implementation to
Spark’s cartesian operation (we filter out redundant tuple pairs), and let Spark do the
memory management.

Cost analysis: [36] showed that triangle strategy is optimal in terms of communication
cost when implementing the self-join. Therefore, the cost of implementing the self-join
using the cartesian operation cannot be lower. However, compared to the smPDP in
Section 2.6.1, this implementation can still perform better when m is large because each
tuple is compared exactly once.

2.7 Case study 3: HyFD

In this section, we analyze the HyFD algorithm [77]. As outlined in Section 2.3, HyFD
alternates between data-driven and schema-driven phases. We note that HyUCC [78] and
Hydra [32] can also be implemented using the plans described in this section, with some
modifications. HyUCC [78] works similarly to HyFD, with pruning rules designed for UCC
discovery. Hydra discovers DCs and hence uses a richer predicate space than FD and UCC
discovery. Unlike HyFD, Hydra switches from the data-driven phase to the schema-driven
phase only once, after the rate of generating DC violations drops below a user-supplied
threshold.

27

(a) Logical discovery plan 1 (b) Logical discovery plan 2

Figure 2.5: HyFD algorithm

2.7.1 LDP1: Original HyFD

Figure 2.5a shows the LDP of HyFD based on the original algorithm [77]. As in FastFDs,
it begins by generating equivalence classes for all the attributes in R (lines 6-7). Then in
the data-driven phase, similar to FastFDs, it generates tuple pairs and the corresponding
evidence sets. Compared to FastFDs, the difference is that not all tuple pairs are generated.
Instead, HyFD picks one attribute A at a time and uses its equivalence classes to decide
which tuple pairs should generate new evidence sets. To decide which attribute to use,
the algorithm maintains a ranking of the attributes based on how many FDs have been
violated according to their evidence sets. This process is referred to in [77] as focused
sampling (line 12).

Next, two tuples, ti and tj, within the same equivalence class are compared only if

28

j − i = window, where j and i are their positions in the equivalence class, and window is
a threshold, with different attributes having different values of window. This corresponds
to a join with a window predicate in line 15. Whenever an attribute is selected in the
data-driven phase, its window value is incremented, which leads to new tuple pairs being
generated.

The data-driven phase stops when newly generated evidence sets fail to identify new
FD violations (encapsulated in the continueDataDriven check in line 17). The evidence
sets collected so far (line 16) are then used to generate FDs that have not yet been violated
via set cover (lines 20-21) and inserts them into the FDTree.

The schema-driven phase traverses the FDTree level-wise; the getLevel function in lines
23 and 32 retrieves all attribute sets from a given level. For each attribute set, HyFD checks
which FDs hold via checkRefinement (Line 29). The original HyFD implementation
computes equivalence classes directly from the data (Line 26), and not by intersecting
the previous level’s equivalence classes. This corresponds to our LDP2 for TANE (Section
2.5.2). HyFD returns to the data-driven phase if the schema-driven phase spends too much
time on a particular FDTree level (encapsulated in the continueSchemaDriven function
in line 30).

Large-memory PDP

We implement lines 6-7 in the same way we generated first-level equivalence classes in
TANE in Section 2.5.1. Next, we use the following strategy to generate evidence sets in
lines 14-16. If the selected attribute A (in line 12) has c equivalence classes, then we need
to equally distribute these c equivalence classes across k workers. As in [36], we use a load
balancing heuristic that arranges the equivalence classes in increasing order of their sizes,
and divides them into g = c/k groups, each group with k equivalence classes. Next, one
equivalence class from each group is sent to a worker in round-robin fashion, such that
each worker receives g equivalence classes. Each worker then uses the window parameter
to decide which tuple pairs to generate. Finally, a map job generates evidence sets from
the tuple pairs. The implementation of generating new equivalence classes and checking
refinement is same as in TANE, described in Section 2.5.2.

Cost analysis: The cost of generating equivalence classes is the same as in Section
2.5.1. The cost of generating evidence sets in one iteration of the loop in lines 13-19 in
the data-driven phase is X ≤ cm|Bmax|/k and Y ≤ cm|Bmax|/k where Bmax is size of the
largest equivalence class (each worker receives c/k equivalence classes and each of them
could be of size at most Bmax).

29

In the worst case, if HyFD discovers all the FDs using the data-driven phase, then the
data-drive phase can be performed up to n times (the size of the largest equivalence class
for a given attribute can be n, and therefore the window threshold can be incremented
up to n times). The cost of generating equivalence classes and checking refinement in the
schema-driven phase is the same as in TANE in Section 2.5.2.

Small-memory PDP

In the lmPDP, we assigned multiple equivalence classes (c/k of them) to each worker. In
the smPDP, we reduce the memory footprint of each worker by assigning each equivalence
class to multiple workers. Essentially, we use multiple workers to perform the join in line 15
and then equally distribute all the generated pairs across workers to generate evidence sets.
We implement the join using Spark’s join operation and the window parameter controls
which keys to join. We borrow the implementation of generating equivalence classes (lines
6-7 and 25-26) from TANE, as described in Section 2.5.2

Cost analysis: The communication cost of this implementation is higher than that of
lmPDP, simply because multiple rounds of data shuffle (one for each equivalence class) are
needed to generate tuple pairs. Additionally, the cost of generating equivalence classes in
this PDP is higher than the cost in lmPDP in Section 2.7.1. We know this from the cost
analysis of TANE in Section 2.5.2.

2.7.2 LDP2: Modified HyFD

A drawback of LDP1 is its high communication cost during the data-driven phase, which
is amplified if the data-driven phase is repeated multiple times. Also, as in FastFDs, there
could be redundant evidence sets due to overlapping equivalence classes.

In LDP2 (Figure 2.5b), we use the learnings from FastFDs: instead of computing ev-
idence sets from tuple pairs that belong to the same equivalence class, we generate tuple
pairs directly from the data. This means that focused sampling no longer applies as we are
sampling tuples directly from the data and not from the equivalence classes over specific
attributes. We use random sampling without replacement, as explained below, which is
easier to parallelize. As before, changes are highlighted in blue. In line 5, we randomly
partition the dataset into k groups, and in line 6, we generate all possible pairs of groups,
including pairs of the same group. Then, the data-driven phase uses pairs of groups instead
of equivalence classes. In particular, line 12 samples k pairs of groups without replacement,

30

and lines 13-14 join each pair of groups to generate tuples pairs and the corresponding
evidence sets.

Large-memory PDP

Random partitioning of the data in line 5 is implemented using a simple map-reduce job:
mappers assign partition IDs to tuples and reducers group tuples belonging to the same
partition ID. Then, another map-reduce job implements the join in Line 6 which generates
pairs of groups.

In line 12, we sample k pairs of groups without replacement which are distributed across
k workers. Therefore, each worker is responsible for generating evidence sets from one pair
of groups. The implementation of equivalence class generation and checking refinement is
the same as in LDP1 in Section 2.7.1.

Cost analysis: With k workers, the cost of generating evidence sets in each iteration
of the data-driven phase is: X ≤ 2nm/k and Y ≤ mn2/k2. This is because two groups
of size mn/k each are sent to every worker and every worker generates all the tuple pairs,
i.e., mn2/k2. The data-driven phase can run up to (k + 1)/2 times. To see this, note
that every group must be joined with every other group, including itself, which amounts
to k(k + 1)/2 group-wise comparisons. With k workers in parallel, each working on one
group-pair, the k(k+ 1)/2 comparisons can be packed into (k+ 1)/2 jobs. This gives X ≤
(2nm/k)∗(k+1)/2 ≈ nm, which is the size of the data. Compared to the lmPDP in Section
2.7.1, this implementation performs more computation but much less data communication.
The cost of the schema-driven phase is the same as in TANE in Section 2.5.2. The random
partitioning step in line 5 and the join in line 6 use tuple identifiers and do not involve
significant computation (only a linear scan of tuple IDs), and hence their cost is negligible
compared to the other operations.

In this LDP (and its lmPDP and smPDP), we use a cost-based approach to decide
when to switch between the phases. That is, we switch to the other phase if the com-
munication cost plus the computation cost of proceeding with the current phase exceeds
the cost of operating in the other phase. The switching conditions are encapsulated in the
continueDataDriven (line 15) and the continueSchemaDriven (line 27).

Small-memory PDP

The data-driven phase of lmPDP assumes that two groups of size nm/k each fit in each
worker’s memory to generate evidence sets. However, we can reduce the size of each group

31

by creating more groups in line 5. The drawback is that we will perform fewer comparisons
in each round of the data-driven phase, hence possibly generating fewer evidence sets. The
implementation of generating equivalence classes (lines 6-7 and 25-26) is borrowed from
TANE, as described in Section 2.5.2.

Cost analysis: The cost of generating evidence sets in each iteration of the data-driven
phase will reduce in proportion to the number of groups generated in line 5. However, the
data-driven phase can run more times as compared to the lmPDP (Section 2.7.2). For
example, if we generate 2k groups instead of k groups (as in Section 2.7.2), then the data-
driven phase can run up to (2k + 1) times. With k workers in parallel, each working on
one group-pair, the 2k(2k+ 1)/2 comparisons can be packed into (2k+ 1) jobs. This gives
X ≤ (2nm/2k) ∗ (2k + 1) ≈ 2nm, which is twice the communication cost in Section 2.7.2.
Additionally, the cost of generating equivalence classes in this PDP is higher than the cost
in Section 2.7.2. We know this from the cost analysis for TANE in Section 2.5.2.

2.8 Experiments

We now present the evaluation of different algorithms and their different implementa-
tions. In Section 2.8.2 we show that the large memory PDPs of the modified logical plans
(LDP2s) are more computation and communication efficient than the large memory PDPs
of LPD1s. In Section 2.8.3, we show that our smPDPs can discover dependencies when
worker memory is small compared to the data size, but their runtimes are significantly
higher. We then demonstrate that our implementations scale well with the number of
worker machines, rows, and columns (Section 2.8.4). In Section 2.8.5 we evaluate large
and small memory plans under different cluster settings. In Section 2.8.6 we evaluate the
distributed implementations against single-node implementations. Finally, we examine the
relative performance of various algorithms on different datasets (Section 2.8.7).

2.8.1 Experimental Setup

We performed the experiments on a 6-node Spark 2.1.0 cluster. Five machines run Spark
workers and one machine runs the Spark driver. Each worker machine has 64GB of RAM
and 12 CPU cores and runs Ubuntu 14.04.3 LTS. On each worker machine, we spawn 11
Spark workers, each with 1 core and 5GB of memory. The driver machine has 256GB of
RAM and 64 CPU cores, and also runs Ubuntu 14.04.3 LTS. The Spark driver uses one
core and 50GB of memory. We run Spark jobs in standalone mode with a total of 55
executors (11 workers times 5 worker nodes).

32

LDP1 LDP2

T
A
N
E

lm
P

D
P

- Materializes equivalence
classes (EQCs) in both PDPs
- Uses memory intensive triangle
distribution strategy for join

- Computes EQCs directly from data
- Computes multiple EQCs at each
worker, hence memory intensive

sm
P

D
P

- Uses cartesian operation
for join

- Computes each EQC using
multiple workers

F
a
st
F
D
s

lm
P

D
P - Can perform redundant tuple

comparisons
- Each worker works on multiple
EQCs, hence memory intensive

- Uses self-join to compare tuples
exactly once
- Uses triangle distribution [36]

sm
P

D
P

- Multiple workers work on
each EQC

- Implements self-join via
cartesian operation

H
y
F
D

lm
P

D
P - Data-driven (DD) phase same

as LDP1 lmPDP in FastFDs
- Schema-driven (SD) phase
same as LDP2 lmPDP in TANE

- Performs self-join split
across multiple runs of this phase
- SD phase same as LDP2 lmPDP
in TANE

sm
P

D
P - DD phase same as

LDP1 smPDP in FastFDs
- SD phase same as LDP2
smPDP in TANE

- Compares fewer tuples in each
DD phase to reduce memory
- SD phase same as LDP2 smPDP
in TANE

Table 2.4: Comparison of logical and physical plans

All algorithms are implemented in Java. We obtained the source code for TANE,
FastFDs, HyFD, Hydra, and HyUCC from the Metanome GitHub page [8]. We obtained
the source code for FastDCs and FastODs from the respective authors. We use similar
datasets as those used in recent work on dependency discovery [76]: adult, TPC-H lineitem,
homicide, fd-reduced, ncvoter and flight. Their properties (number of rows, number of
columns, number of functional dependencies) are summarized in Table 2.8.

In Table 2.4, we summarize our physical and logical plans to help understand the results
in this section. As a general guideline: (1) smPDPs are suitable when workers have small
memory, but these plans reduce memory footprint at the cost of communication (X); (2)
LDP2s are faster than LDP1s.

2.8.2 Comparison of LPD1s and LPD2s

We use two datasets to compare the two LDPs studied in Sections 2.5-2.7: one with a large
number of rows (lineitem) and one with a large number of columns (homicide). To ensure
that the LDP1 implementations finish within a reasonable time, we delete a fraction of
rows from these datasets. For lineitem, we use 0.5 million rows, and for homicide, we use
100,000 rows. We focus on large memory PDPs for this comparison because analysis has

33

shown that the runtime in the small memory regime is significantly higher (also shown
empirically in Section 2.8.3). Therefore, for both LDPs, we use the lmPDP as described
in Sections 2.5-2.7. For each tested algorithm, we measure data shuffle amount in MBs,
and we instrument the code to separately report computation time and time spent during
communication (which we assume to be the total time minus the computation time).

TANE: Figures 2.6(a-b) show the communication runtime (“X time”), the computation
runtime (“Y time”), and the maximum data sent to any worker (“X size”) for TANE
LDP1 (Section 2.5.1) and LDP2 (Section 2.5.2). LDP1 exceeded the time limit of 24
hours (denoted “TLE”) on the homicide dataset and was nearly an order of magnitude
slower on the lineitem dataset. These speedups are in agreement with the cost analysis in
Section 2.5.1 and 2.5.2. For LDP2, we cache the dataset at the workers (using Spark’s
Broadcast mechanism) to avoid re-reading it when computing equivalence classes for the
next level. This explains why the communication size and time are lower in LDP2.

FastFDs: Figures 2.6(c-d) show the runtime and maximum data sent to any worker
for FastFDs LDP1 (Section 2.6.1) and LDP2 (Section 2.6.2). Again, LDP2 is significantly
more time and communication-efficient. In the cost analysis in Section 2.6, we pointed out
that the computation and communication cost of the LDP1 becomes worse as the number
of attributes increases. This is evident from Figure 2.6(c-d), where the improvement on
homicide is 14x and on lineitem it is 2.5x.

HyFD: Figures 2.6(e-f) show the runtime and maximum data sent to any worker for
HyFD LDP1 (Section 2.7.1) and LDP2 (Section 2.7.2). As discussed in Section 2.7, the
data-driven phase can lead to a high volume of data shuffle if the dataset has many columns.
This explains why LDP1 performs poorly on homicide which has 24 columns. We observed
that due to the large schema of homicide, LDP2 spent most of the time in the data-driven
phase. On lineitem, the algorithm spent more time in the schema-driven phase because
of the smaller schema. On the other hand, LDP1 did a few rounds of sampling, and due
to the focused sampling strategy, it was able to discover a significant number of non-FDs.
This significantly pruned the search space of the schema-driven phase, allowing LDP1 to
be as fast as LDP2. However, LDP2 still performs less data shuffling than LDP1 because
the data are cached in the workers’ memory, and therefore we only need to send it once at
the beginning of the data-driven phase.

2.8.3 Comparison of smPDPs

In this experiment, we reduce each worker’s memory from 5GB to 1GB. This is small
enough that for our largest dataset, lineitem, its equivalence classes do not fit in a worker’s

34

0	

100	

200	

300	

400	

0	

200	

400	

600	

800	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(a) TANE lineitem

0	

0.5	

1	

1.5	

2	

2.5	

0	

5000	

10000	

15000	

20000	

25000	

30000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

TLE	

(b) TANE homicide

0	

5	

10	

15	

20	

25	

0	

1000	

2000	

3000	

4000	

5000	

6000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

	ti
m
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(c) FastFDs lineitem

0	

2	

4	

6	

8	

0	

500	

1000	

1500	

2000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(d) FastFDs homicide

0	

20	

40	

60	

80	

0	

50	

100	

150	

200	

250	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(e) HyFD lineitem

0	

500	

1000	

1500	

2000	

2500	

3000	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

time	 shuffle	 time	 shuffle	

LDP1	 LDP2	

M
B	

tim
e	
(s
ec
s)
	

Y	time	 X	time	 X	size	(MB)	

(f) HyFD homicide

Figure 2.6: Comparison of communication and computation cost of LDP1 and LDP2 of
TANE, FastFDs, and HyFD. We only consider lmPDPs here.

memory. We use the smPDPs, which are designed for this scenario. We use LDP2 for
each algorithm because in the previous experiment (Section 2.8.2) we saw that LDP1 has

35

lineitem 6Mx16 TANE FastFDs HyFD
lmPDP 1.9 hrs ≈3 days 3.9 hrs
smPDP 3.9 hrs ≈106 days 8.5 hrs

Table 2.5: Runtimes of smPDPs compared to lmPDPs (for LDP2)

102

103

104

 5 10 15 20 25 30 35 40 45 50 55

Ru
nt

im
e

se
cs

workers
TANE

FastFDs
HyFD

HyUCC
FastODs
FastDCs

Hydra

(a) large-memory plans (lmPDPs)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35 40 45 50 55
Ru

nt
im

e
se

cs

workers
TANE FastFDs HyFD

(b) small-memory plans (smPDPs)

Figure 2.7: Scalability with the number of workers of LDP2 plans

a higher runtime, which gets worse in the small memory regime.

Table 2.5 shows the runtimes for TANE, FastFDs and HyFD. The runtime of the
smPDPs is almost twice as high as the corresponding lmPDPs for TANE and HyFD. For
FastFDs, we extrapolate the runtimes by running it on datasets with 100K, 300K, 500K,
and 700K rows because FastFDs has quadratic complexity in number of rows, and lineitem
has 6 million rows. The smPDP of FastFDs is an order of magnitude slower than the
lmPDP.

2.8.4 Scalability

We now show scalability in terms of the number of workers, the number of rows, and the
number of columns. In addition to TANE, FastFDs and HyFD, we test FastODs, FastDCs,
Hydra and HyUCC. We use lmPDP and LDP2 to make sure all algorithms terminate in
reasonable time. For DC discovery, it has been reported in previous work that FastDCs
is significantly slower than Hydra [32], so we restrict FastDCs to discover DCs with at
most 5 predicates. Note that our distributed implementations perform DC discovery from

36

101

102

103

104

105

 100 200 300 400 500 600 700 800 900 1000
100

101

102

103

104

105

106

R
un

tim
e

se
cs

D
ep

en
de

nc
ie

s
[#

]

lineitem rows (thousands)
TANE

FastFDs
HyFD

HyUCC
FastOD
FastDC

Hydra
#UCCs

#FDs
#ODs

Figure 2.8: Scalability (of lmPDP of LDP2) with the number of rows (in thousands) for
lineitem

100

101

102

103

104

105

 10 20 30 40 50 60
100

101

102

103

104

105

106

R
un

tim
e

se
cs

D
ep

en
de

nc
ie

s
[#

]

ncvoter cols
TANE

FastFDs
HyFD

HyUCC
FastOD
FastDC

Hydra
#UCCs

#FDs
#ODs

Figure 2.9: Scalability (of lmPDP of LDP2) with the number of columns for ncvoter

evidence sets centrally at the driver (by finding a minimal set cover). Therefore, this
restriction has the same impact on the distributed and non-distributed implementations.

Worker Scalability

We first demonstrate nearly linear scalability with the number of workers. We vary the
number of Spark workers from 6 to 55. Figure 2.7a shows the results for large memory
plans of the LDP2s. We use the lineitem dataset with 0.5 million rows for TANE, FastFDs,
HyFD, HyUCC, and Hydra and with only 100k rows for FastOD, and FastDCs (because of
their high sensitivity to the number of tuples, as will be shown in Section 2.8.4). Note that
the y axis is logarithmic and the dashed line shows linear scaling for reference. FastFDs

37

and FastDCs are impacted more by the number of workers because their complexity is
quadratic in the size of the input. TANE outperforms FastFDs because the dataset has
a small schema, and HyFD closely follows TANE because HyFD spent most of the time
in the schema-driven phase. Scale-out of FastODs is similar to TANE, and scale-out of
HyUCC and Hydra is similar to HyFD. Recall that FastODs and FastDCs are running on
a smaller dataset, so their runtimes are relatively low.

Figure 2.7b shows that the small memory plans also show nearly linear scalability with
the number of workers. For this experiment, we again reduced the memory of each worker
to 1GB and tested the scalability on the largest dataset, i.e. lineitem (we ran FastFDs only
on 100K rows because of its sensitivity to number of rows). We do not report the smPDP
runtimes of OD and DC discovery algorithms because they exceeded the time limit and
did not scale well to large data sets.

Row Scalability

Next, we test scalability with the number of rows. We use the lineitem dataset and test
all seven algorithms: TANE, FastFDs, HyFD, HyUCC, FastOD, FastDCs, and Hydra.
Results are shown in Figure 2.8 (with logarithmic y-axes), including algorithm runtimes
and the number of dependencies that were discovered.

TANE and FastOD behave similarly and their runtime grows almost linearly with the
number of rows. FastOD is similar to TANE but partition refinement for order dependency
discovery is more expensive, resulting in much longer runtimes for FastOD compared to
TANE. HyFD and HyUCC behave similarly and they closely follow the scalability of TANE;
they both spend most of the time in the schema-driven phase due to smaller schema of
lineitem. HyUCC is similar to HyFD, as described in Section 2.7.2.

FastFDs and FastDCs perform similarly and their runtime grows almost quadratically
with the number of rows. However, for lineitem, there are 64 predicates that define the
space of DCs. Thus, the minimal set cover operation in FastDCs [37] is significantly more
expensive. As expected, the performance of Hydra is significantly better than FastDCs,
even when we restrict FastDCs to DCs with at most 5 predicates. We also tested row
scalability using homicide and observed similar trends.

Column Scalability

We now evaluate scalability with the number of columns. We use the ncvoter dataset,
which has a sufficient number of columns and 10,000 rows. We restrict FastDCs, Hydra and

38

FastOD to fewer columns because of their high sensitivity to the schema size. Results are
shown in Figure 2.9, including algorithm runtimes and the numbers of various dependencies
that were discovered. Again, the y-axis is logarithmic. As expected, TANE and FastODs
runtimes increase exponentially with the number of columns because these algorithms are
schema-driven. FastDCs and Hydra runtimes increase exponentially because the predicates
space of DCs increases significantly with the number of columns. The runtime of FastFDs
stays almost linear with the number of columns, and it performs best among the FD
discovery algorithms. HyFD performs similar to FastFDs due to the low cost of the data-
driven phase. However, HyFD still needs to switch to the schema-driven phase and hence it
does not perform as well as FastFDs. The behaviour of HyUCC is similar to HyFD. Recall
that we restrict FastDCs to discover DCs only with up to 5 predicates, so its runtimes are
lower than those of Hydra. We also tested column scalability using the flight dataset and
observed similar trends.

2.8.5 Experiments with different cluster settings

We now test the smPDPs and lmPDPs (of LDP2) under different cluster settings. For
a fixed cluster memory of 55GB, we consider different numbers of workers and worker
memory as shown in Table 2.6. With different cluster settings we try to represent different
real-world cluster scenarios and the goal is to suggest implementations that are suitable
for each scenario. We observe that for memory-intensive algorithms such as TANE and
HyFD, the lmPDPs suffer when worker memory is low (due to thrashing) and eventually
run out of memory when more workers are used with smaller memory. Therefore, running
smPDP is advisable when cluster memory is small. On the other hand, FastFDs is more
computation-intensive, and therefore it is always advisable to use more workers and the
lmPDP (the smPDP is significantly slower because of the cartesian operation in Spark).

Cluster setting lineitem 6Mx16 lineitem 0.5Mx16
Plans # workers worker-memory TANE HyFD FastFDs

smPDP 55 1GB 3.9 hrs 8.5 hrs 17.4 hrs
lmPDP 28 1.9GB OOM OOM 1.1 hrs
lmPDP 15 3.6GB 5.7 hrs 10.6 hrs 2.0 hrs
lmPDP 10 5.5GB 4.2 hrs 9.6 hrs 2.9 hrs

Table 2.6: Runtimes under different cluster settings

We also test the smPDP and lmPDP plans under different worker memory settings
(1GB, 2GB, and 4GB), keeping the number of workers fixed at 55. The goal of this

39

0	

2000	

4000	

6000	

8000	

500,000	 1,000,000	 2,000,000	 3,000,000	

	ti
m
e	
(s
ec
s)
	

#rows	

single	node	 6	workers	 28	workers	 55	workers	

(a) TANE on lineitem

0	

200	

400	

600	

800	

1000	

10,000	 25,000	 50,000	 75,000	 100,000	

tim
e	
(s
ec
s)
	

#rows	

single	node	 6	workers	 28	workers	 55	workers	

(b) FastFDs on homicide

Figure 2.10: Single-node vs distributed performance

experiment is to determine if more memory helps. We observe that as long as there is
enough memory for the dataset and for the intermediate results, increasing memory does
not impact the runtime. In fact, when there are many small jobs (as in the smPDPs),
over-provisioning can be harmful because Spark’s garbage collection runs more frequently.

2.8.6 Distributed vs. Single-Node Runtimes

We now compare the performance of single-node (or non-distributed) implementations
against the distributed implementations (lmPDP LDP2). We run the single machine im-
plementations on one machine from our cluster (12 CPU cores and 64GB RAM). We run
the distributed implementations on 55 workers with 5GB memory each. We use lineitem
and homicide datasets.

Table 2.7 shows that TANE single-node ran out of memory on lineitem with 6M rows
whereas the distributed version finished in about 2 hours. Both single-node and distributed
versions exceeded the time limit of 24 hours for homicide because of the large schema. Fig-
ure 2.10a further shows the runtimes for different sizes of the lineitem dataset, where the
single-node implementation ran out of memory at about 3M rows, and the distributed
implementation took less time than the single-node implementation, even with only six
workers (having 5GB of memory each). We also tested our LDP2 (which is more compu-
tation intensive) of TANE on a single node, and found that it performed about 5x slower
than the original implementation using the lineitem dataset with 500K rows.

FastFDs benefits from the parallelism of the distributed implementations. The single-
node implementation exceeded the time limit of 24 hours for all datasets except homicide
100K rows (Table 2.7), whereas the distributed version finished in much less time for all

40

but the lineitem 6M rows dataset. Figure 2.10b further shows the runtimes for different
sizes of the homicide dataset and different numbers of workers. Even with only six workers,
the distributed algorithm’s runtime is significantly lower than the single-node runtime. We
also tested our LDP2 on a single node and found that it performed 5x faster than the
original single-node implementation using the homicide dataset with 100K rows.

HyFD1 is the most memory and computation efficient single-node algorithm, and out-
performs the distributed version as long as the dataset fits on a single machine (Table 2.7).
When we reduced the single machine memory to 8GB, the lineitem dataset did not fit in
memory; however, smPDP terminated in about 8 hours when executed on a Spark cluster
with five machines (with 55 workers) restricted to 8 GB RAM each (40GB total, 0.7GB
per worker).

Single node Distributed LDP2 lmPDP
Dataset (#rows) TANE FastFDs HyFD HyFD 12 threads TANE FastFDs HyFD
lineitem (500K) 413 TLE 124 43 100 1617 197
homicide (100K) OOM 71581 115 74 25832 114 179

lineitem (6M) OOM TLE 3396 1124 6854 TLE 14311
homicide (0.6M) TLE TLE 745 683 TLE 3152 3113

Table 2.7: Runtimes (in seconds) of single-node and distributed implementations

2.8.7 Experiments on Different Datasets

Finally, we evaluate (lmPDP implementations of LDP2s of) TANE, FastFDs and HyFD
on several datasets with at least 14 and up to 109 columns. We omit FastDCs, Hydra and
FastOD because these algorithms do not perform well on datasets with a large number
of columns. Results are shown in Table 2.8. Adult is the smallest dataset, and all three
algorithms finished in a reasonable time. lineitem has a large number of rows (6 million),
meaning that FastFDs struggles but TANE and HyFD perform better. However, HyFD
takes longer than TANE because, as mentioned before, HyFD incurs the overhead of creat-
ing partitions and it does not prune keys. homicide and ncvoter are examples where HyFD
switches between the two phases and discovers FDs the fastest. For ncvoter, FastFD ran
out of memory at the driver because the search space for minimal set covers grew large.
For fd-reduced, TANE performs best because almost all of the discovered FDs are present
in the third level of the lattice; this is observed in HyFD [77] as well. For the flight dataset,

1HyFD is the only existing algorithm that has a multi-threaded implementation in Metanome. We run
it on 12 threads, which equals the number of physical cores on our machine.

41

HyFD spent most of the time in the data-driven phase, but it still had to validate millions
of FDs in the schema-driven phase, and hence it could not beat FastFDs.

Recent work [76, 77] has compared FD discovery algorithms on similar datasets and
concluded that schema-driven algorithms are suitable for datasets with many rows and
data-driven algorithms are suitable for the datasets with many columns. Hybrid algo-
rithms perform best by spending most of their time in either the data-driven phase or
the schema-driven phase, depending on their relative cost. We observed similar trends in
the distributed versions of these algorithms (and additionally explored scalability with the
number of workers).

Dataset # Columns # Rows # FDs TANE FastFDs HyFD
adult 14 32,560 78 50 secs 23 secs 101 secs

lineitem 16 6,000,000 4,145 1.9 hrs >48 hrs 3.9 hrs
homicide 24 600,000 637 38.1 hrs 53 mins 51 mins

fd-reduced 39 250,000 89,571 86 secs 648 secs 228 secs
ncvoter 60 1,000,000 2,638,634 >48 hrs MLE 43.2 hrs
flight 109 1,000 1,150,815 >24 hrs 99 secs 351 secs

Table 2.8: Runtimes on different datasets

42

Chapter 3

A semi-supervised framework of
clustering selection for de-duplication

As the data accumulates from multiple sources over time, many errors creep into the data.
For example, many records end up having duplicate entries. Data de-duplication is a
central task in managing large scale databases. The goal is to detect records in a database
that correspond to the same real word entity.

The problem of data de-duplication can be viewed as a clustering task. Here, the
goal is to put records corresponding to the same physical entity in the same cluster while
separating the records corresponding to different entities into different clusters. Clustering
for de-duplication has many characteristics which are different from standard clustering
problems. Many popular clustering algorithms like k-means or k-median receive as input
the value k, that is the number of clusters to output. This information is unknown in de-
duplication applications. In any dataset, the number of different-cluster pairs (i.e. different
entity pairs) is order of magnitude greater than the number of positive or same-cluster pairs
(i.e. same entity pairs). Hence, common machine learning tools of classification prediction
(learning a binary classifier over the set of pairs of instances) do not automatically transfer
to this domain as the dataset is heavily skewed towards the negative pairs.

The framework of correlation clustering is very natural for modelling the problem of
data de-duplication [26]. Here, de-duplication is viewed as an optimization problem over
graphs. More formally, given a dataset X and a complete graph G over the set. The edges
of the graph are labelled 0 or 1. An edge label of zero indicates that the corresponding
vertices have been deemed to be in different cluster while an edge label of one indicates that
the corresponding vertices should be in the same cluster. The motivation for edge labelling

43

is the following. Often the practitioner can design a pairwise similarity function over the
pairs of points. The pairs whose similarity is above a certain threshold are deemed as
positive (or same-cluster) and the remaining pairs are deemed to be negative (or different-
cluster). Sometimes, the similarity metric is also learned from training data.

Given the graph, the goal of correlation clustering is to find a clustering of the dataset
which correlates ‘as much as possible’ with the given edges. In other words, find a clustering
which minimizes the correlation loss w.r.t the given edges. Correlation loss is defined as
the sum of edges labeled zero within a cluster plus the number of edges labeled one across
different clusters. However, solving this optimization problem is NP-Hard [26].

Recently, [60] introduced the framework of restricted correlation clustering (RCC) to
model de-duplication problems. This framework has two important differences from the
standard correlation clustering formulation. Firstly, the goal is to find a clustering from a
given class F of clusterings. In correlation clustering, the optimization problem was to find
a clustering over the set of all possible clusterings of the dataset. In the framework of RCC,
the optimization problem is restricted over a given class F of clusterings. Secondly, the
goal of correlation clustering was to find a clustering which correlates as much as possible
with the given edges. In this framework, the goal is to find a clustering which correlates as
much as possible with the unknown target clustering. Formally, given a set X, an unknown
target clustering C∗ of X and a class F of clusterings of X, the goal is to find a clustering
C from the set F which minimizes the correlation loss w.r.t the unknown target clustering;
the sum of different-cluster edges (w.r.t C∗) within a C-cluster plus the sum of same-cluster
edges across different C-clusters.

This framework is highly suitable for de-duplication applications. The target clustering
C∗ should be understood as the ground truth clustering. That is, C∗ is the clustering where
only records corresponding to same entity are in the same cluster. The more interesting
aspect of the framework is introduction of the class F . For many real-world applications,
the optimal solution to the correlation clustering is the desired solution. However, the
negative NP-Hardness results make it infeasible to find that solution. In such scenarios, a
reasonable objective could be the following. Run a variety of efficient clustering algorithms
available and obtain different clusterings of the dataset. Then choose the clustering which
is ‘closest to’ the ground truth clustering. For example, one can have F = {T1, . . . , Ts}
where each Ti is a hierarchical clustering of X. Then the goal of RCC is to find a pruning
in the hierarchical clustering which is closest to the ground truth clustering.

The framework of RCC tries to find a clustering which is closest to the ground truth
clustering. In the absence of any information about the ground truth, one can not hope to
solve the problem. The framework provides ‘indirect’ information about the ground truth

44

in the following two ways. Firstly, we allow the algorithm to make same-cluster queries to
an oracle. The oracle should be understood as a human expert who has knowledge about
the ground truth clustering. Given two records from a dataset the expert answers yes or
no depending upon whether the two records refer to the same entity or not. Secondly,
the user designed or learned similarity (or distance) function provides indirect information
about the ground truth. Pairs of records whose distance is below a certain threshold are
likely to belong to the same cluster (correspond to the same entity).

To solve the RCC problem, we adopt the following strategy. We get a small set of
labelled samples of pairs of points with the help of our oracle. Our sampling procedure
uses two sub-procedures. One for sampling negative or different-cluster pairs and one for
positive or same-cluster pairs. We then choose the clustering which makes the smallest
number of ‘mistakes’ on the sample. In our work [59], we show that this strategy is
theoretically sound. Our method only finds a clustering which performs best on the sampled
pairs of points. But we prove that this sampling based approach is guaranteed to find a
clustering which is ‘close’ to the best clustering in F . Informally, the best performer on
the sample is guaranteed to be close to the best true performer or the optimal solution of
the RCC problem. A more formal description of the results is deferred to Section 3.3.

Another important contribution of this work is the sampling sub-procedure for positive
pairs. In many datasets, the similarity function is such that it supports locality sensitive
hashing (LSH). We use this fact to obtain a procedure which requires only linear pre-
processing time and can sample according to the distribution P+ (the uniform distribution
over the same-cluster pairs). We also prove that the number of queries to the same-
cluster oracle (to sample one positive pair) is upper bounded by a small constant and
is independent of the size of the dataset. We carry extensive experimental evaluation of
our framework on a diverse class of clustering algorithms and across multiple real world
datasets.

3.1 Preliminaries

Given X, a clustering C of the set X partitions it into k disjoint subsets or clusters. The
clustering C can also be viewed as a {0, 1}-function over the domain X [2] := {(x1, x2) :
x1 6= x2}. Here, C(x1, x2) = 1 iff x1, x2 belong to the same cluster according to C.

We allow a clustering algorithm to make queries to a human oracle in the following
way.

45

Definition 10 (Same-cluster oracle [23]). Given a set X and an unknown target clustering
C∗. A same-cluster C∗-oracle receives a pair (x1, x2) ∈ X [2] as input and outputs 1 if and
only if x1, x2 belong to the same cluster according to C∗.

From the perspective of de-duplication, a same-cluster oracle receives two records x1 and
x2. The oracle returns 1 if x1 and x2 correspond to the same real-world entity. Otherwise,
the oracle responds 0.

Definition 11 (Correlation loss[26]). Given graph G = (X,E) where X is the set of
vertices (the given dataset to be clustered) and E is the set of edges. The correlation loss
of a clustering C w.r.t the edges E is defined as

corrLE(C) = corrNE(C) + corrPE(C), where (3.1)

corrNE(C) = |{(x, y) : C(x, y) = 1 and E(x, y) = 0}|,
corrPE(C) = |{(x, y) : C(x, y) = 0 and E(x, y) = 1}|

A weighted version of the loss function places weights of w1 and w2 on the two terms and
is defined as

corrLw1,w2

E (C) = w1 corrNE(C) + w2 corrPE(C) (3.2)

The goal of correlation clustering is to find a clustering which minimizes the (weighted)
correlation loss. For our purposes, it is more relevant to consider a loss function which takes
values in the range [0, 1]. Also, we consider the correlation loss w.r.t a target clustering C∗

rather than the edges E.

Definition 12 (Normalized correlation loss[60]). Given domain X and a target clustering
C∗. The loss of a clustering C w.r.t the target C∗ is defined as

LC∗(C) = µ LP+(C) + (1− µ) LP−(C), where (3.3)

LP+(C) = P
(x,y)∼P+

[
C(x, y) = 0],

LP−(C) = P
(x,y)∼P−

[
C(x, y) = 1]

where P+ is the uniform distribution over X
[2]
+ = {(x, y) : C∗(x, y) = 1} and P− is the

uniform distribution over X
[2]
− = {(x, y) : C∗(x, y) = 0}.

46

The normalized correlation loss measures two quantities for the clustering C. The first
is the fraction of the true positive pairs that C gets wrong (or loss over the positive pairs).
The second is the fraction of true negative pairs that C gets wrong (or the loss over the
negative pairs). It then obtains a weighted sum of the two losses.

Lets observe the relation between Defns. 11 and 12. Define γ0 := P[C∗(x, y) = 1],
that is the probability of true positive (or same-cluster pairs) in the dataset. Using
the notation of Defn. 11, we see that corrPC∗(C) = γ0|X [2]|LP+(C) and corrNC∗(C) =
(1 − γ0)|X [2]|LP−(C). Normalising by |X [2]| and choosing µ = w2γ0

w1(1−γ0)+w2γ0
gives us the

normalized version of the loss function.

Definition 13 (Informative metric [60]). Given a metric space (X, d), a target clustering
C∗ and a parameter λ. We say that the metric d is (α, β)-informative w.r.t C∗ and λ if

P
(x,y)∼U2

[
d(x, y) > λ | C∗(x, y) = 1

]
≤ α (3.4)

P
(x,y)∼U2

[
C∗(x, y) = 1 | d(x, y) ≤ λ

]
≥ β (3.5)

Here U2 is the uniform distribution over X [2].

In deduplication applications, often the distance function is such that pairs with dis-
tance within a certain threshold are likely to be in the same cluster. The definition of an
informative metric formalizes this intuition. It says that most of the true positive pairs
have a distance of atmost λ between them. Also, amongst all pairs with distance ≤ λ, at
least a β fraction of them belong to the same cluster.

Definition 14 (γ-skewed). Given X and a target clustering C∗. We say that X is γ-skewed
w.r.t C∗ if

P
(x,y)∼U2

[
C∗(x, y) = 1

]
≤ γ

In de-duplication applications, most of the pairs are negative (or belong to different
clusters). The above definition states this property formally. We are now ready to introduce
the framework of restricted correlation clustering.

3.2 Restricted Correlation Clustering (RCC)

We know that finding the clustering which minimizes the correlation loss is NP-Hard.
Moreover, it is NP-Hard even when we are allowed access to a same-cluster oracle [17].

47

Observe that the requirement of correlation clustering is very demanding. The algo-
rithm is required to find a clustering over the set of all possible clusterings of the domain
X. In the restricted framework, we change the goalpost slightly. The algorithm is now
required to find a clustering C from a finite class F (of clusterings of X).

Definition 15 (Restricted correlation clustering (RCC)). Given a clustering instance
(X, d), an unknown target clustering C∗ and weighting parameter µ. Given a finite class
F of clusterings of the set X. Find C ∈ F such that

Ĉ = arg min
C∈F

LC∗(C) (3.6)

3.2.1 Relation to practical applications

Consider the following scenario from the practitioner’s point of view. The practitioner
wants to implement correlation clustering. However, he/she knows that the problem is NP-
Hard. The practitioner has prior knowledge that one of the many hierarchical clustering
algorithms (like single-linkage or max-linkage or average-linkage or complete-linkage) is
suitable for his/her dataset1. A hierarchical clustering algorithm outputs a clustering tree.
Every pruning of the tree is a clustering of the original dataset. He/she would now like
to know which amongst these clustering algorithms is suitable for his task. After having
fixed the algorithm, the practitioner would then like to know which amongst these many
prunings he/she should chose.

The framework of restricted correlation clustering is applicable in such scenarios. When
F = {T} where T is a hierarchical clustering of X, the goal of RCC is to find the pruning
from the tree T which has minimum normalized correlation loss. When F = {T1, . . . , Ts}
where each Ti is a hierarchical clustering of X. Then the goal of RCC is to find a pruning
with minimum loss amongst the prunings of all the s trees. Note that finding the pruning
of the tree is the same as choosing the stopping point criteria when running linkage-
based algorithms. Hence, the framework can help us choose the right stopping point for a
particular hierarchical clustering algorithm.

If F = {C1, . . . , Cs} where each Ci is a clustering of the set X then the goal is to find
a clustering with minimum loss. Note that F can be any of the examples as defined above
or a union of these or some other finite class.

1A nice overview of hierarchical clustering techniques can be found in [69]

48

3.2.2 Solution strategy

In the RCC framework, we wish to minimize the loss which depends on the unknown
target clustering C∗. However, in the absence of any information about C∗, there is no
hope to find a clustering that minimizes LC∗ . Hence, to solve the RCC problem we allow
the clustering (or learning) algorithm to make queries to a C∗-oracle.

Our goal is to calculate quantities LP+(C) and LP−(C) (Defn. 12) for each of the
clusterings C ∈ F and then choose the clustering with minimum loss. To calculate both
these quantities exactly, for each pair of points in our dataset, we would need to know
whether they belong to the same-cluster or different-cluster. In other words, we would
need access to the complete ground truth clustering C∗. Thus, instead of calculating these
two quantities exactly we want to estimate them from a small sample, sampled according
to the distributions P+ and P−.

One strategy to estimate LP+(C) (and LP−) could be the following. Sample a set S+

(and S−) of pairs using the distribution P+ (and P−). Compute the fraction of mistakes
made by each clustering C on S+ (and S−). Using the standard results from vc-dimension
theory, it is known that using this procedure we can estimate LP+ for each of the clusterings
C ∈ F . Similarly, we could also estimate LP− . Using the two estimates, we could then
estimate the loss LC∗ for each of the clusterings in our class and choose the clustering
which has the smallest loss.

The main problem in this approach is that the distributions P+ and P− are unknown
(as the target clustering C∗ is not known). In Section 3.3, we discuss two approaches
which (approximately) sample according to these distributions. Then, we show how these
sampling procedures can be used to estimate LC∗ for all the clusterings in our class F .

3.3 Sampling for Restricted Correlation Clustering

We first describe the procedure P0 which samples according to P−. Then we describe
the procedure P1 which samples approximately according to the distribution P+. The
procedure P0 is the same as described in [60]. However, we state the algorithm here for
completeness.

The procedure samples a pair uniformly at random. Then using the oracle it checks if
the sampled pair is negative and terminates if such a pair is found. If not then the process
is repeated again. From the algorithm description it is clear that to sample one negative
pair we might need to make more than one query to the C∗-oracle. However, since the

49

Algorithm 1: Procedure P0 for negative pairs

Input: A set X and a C∗-oracle.
Output: (x, y) such that C∗(x, y) = 0

1 while TRUE do
2 Sample (x, y) using U2

3 if C∗(x, y) = 0 then
4 Output (x, y)

5 end

6 end

number of negative pairs is much greater than the number of positive pairs (γ-skewed)
the number of ‘wasted’ queries to the oracle is small. The proof2 of this result is given in
Lemma 17 of [59].

3.3.1 Sampling positive pairs

We now discuss our procedure P1 which approximates the distribution P+. We show that
the procedure samples according to a distribution T which has the following property. The
loss LT (Defn. 12) and the loss LP+ for any clustering are close to one another. Hence,
estimating the loss of a clustering w.r.t the distribution T also gives an estimate of the
loss of that clustering w.r.t P+. Now, we discuss the details of the sampling procedure.

Our metric d is (α, β)-informative w.r.t the target clustering C∗. That is, amongst all
pairs with distance λ at least β-fraction are positive. The sampling strategy of [60] was
the following. Construct a set K = {(x, y) : d(x, y) ≤ λ} and then sample uniformly from
the set K till a positive sample is found. Since most of the positive pairs have distance
≤ λ, this sampling procedure approximates P+ (the uniform distribution over the set of
true positives). However, constructing the set K requires Θ(|X|2) time. This makes the
sampling procedure impractical for many situations. In this section, we will use techniques
from locality sensitive hashing (LSH) combined with rejective sampling to develop a sam-
pling procedure P1. We will show that P1 needs only linear pre-processing time (to build
the hash maps) and outputs a positive pair sampled approximately according to P+.

2Some of the Theorems in this Section are contributions of Shrinu Kushagra, hence omitted from
this dissertation. Instead, we provide references to the Theorems and Lemmas in [59], where they were
originally presented as a joint work.

50

Locality Sensitive Hashing (LSH)

Before we describe our technique, we introduce some relevant notation. A hash function
h : X → N maps the set X onto the set of natural numbers. Thus, a hashing function
partitions the input of size n intom ≤ n different buckets (or blocks) B1, . . . , Bm where each
Bi = {x : h(x) = bi} for some bi. Given (X, d), a Locality Sensitive Hashing (LSH) scheme
w.r.t the distance metric d (or a similarity metric) aims to partition X into buckets such
that ‘similar’ items map to the same bucket with high probability and ‘dissimilar’ items end
up in different buckets with high probability. For example, MinHash scheme w.r.t Jaccard
similarity measure [34, 33] is a common LSH-based hashing scheme. Another example is
SimHash scheme w.r.t hamming similarity measure [35].

Definition 16 (LSH-based hashing algorithm). Given a set (X, d) and parameter s. An
LSH-based hashing algorithm (or scheme) A outputs s different partitions P1, . . . , Ps of X.
Denote Pi = {Bi1, . . . , Bini

}. We say that A is (ε, ε′)-tight w.r.t d and λ, λ′ if

• If d(x, y) ≤ λ then P[b(x, y) = 1] > 1− ε

• If d(x, y) > λ′ then P[b(x, y) = 1] < ε′

where b(x, y) = 1 if and only if x, y are together in atleast one of the blocks Bij.

Infact, in [59] it is shown that by choosing s (and other parameters) appropriately, we
can construct LSH schemes which are (ε, ε′ = s ln(1 + ε))-tight w.r.t λ and λ′ = 2λ ln(1 +
1/ε). Thus, for simplicity of notation, we say that A is ε-tight w.r.t λ to mean that it is
(ε, ε′)-tight w.r.t λ, λ′ as chosen above.

The ε-tightness assumption of the hashing scheme means that any (x, y) pair which is
farther in the distance metric has low probability of being together in any of the blocks
created by the hashing function. Similarly, any pair which is close in the distance metric
have a high probability of being together in at least one of the blocks. Throughout the
remainder of this section, we will assume that the hashing scheme satisfies ε-tightness.

We now describe our sampling procedure. Let B := {P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤
j ≤ |Pi|} be the set of blocks outputted by the hashing scheme and let Q := {(x, y) ∈ Bij}.
We first choose a block B ∈ B with probability proportional to |B|2 (the number of pairs
in the block). Then we sample a pair uniformly at random from this block B. Note that
this strategy doesn’t give us a uniform sample from Q. This is because a pair (x, y) may be
present in multiple blocks. To get the uniform sample, we reject the pair with probability

51

inversely proportional to a(x, y) (the number of blocks in which x, y are together). This
approach based on rejection sampling ensures that we have a uniform sample from Q.

Next, we check if the pair satisfies d(x, y) ≤ λ. Note that the LSH-based scheme tries
to put similar points in the same bucket, hence the probability of success at this step is
‘high’. Finally, we check if C∗(x, y) = 1. Our sampling procedure P1 is described in Alg.
2.

Algorithm 2: Sampling procedure P1 for positive pairs

Input: A set X, a hashing algorithm A, a C∗-oracle and parameter λ.
Output: (x, y) such that C∗(x, y) = 1

Pre-compute:
1 Use an LSH-based hashing scheme A to obtain partitions {P1, . . . , Ps}.
2 B := {P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤ j ≤ |Pi|}.

Sampling:
1 while TRUE do
2 Sample a block B from B with probability ∝ |B|2.
3 Sample (x, y) uniformly at random from B2.
4 Let a(x, y) = {(x, y) ∈ B2 : B ∈ B}.
5 Sample u uniformly at random from [0, 1].
6 if u > 1

|a(x,y)| then

7 continue.

8 end
9 if d(x, y) ≤ λ and C∗(x, y) = 1 then

10 Output (x, y).

11 end

12 end

Theorem 8 in [59] shows that with high probability the procedure P1 samples a pair ac-
cording to a distribution T which approximates P+. To sample one same-cluster pair, we
might need to make more than one same-cluster query to the C∗-oracle. Lemma 9 in [59]
shows that with high probability, the number of queries made by P1 to sample one positive
pair is upper bounded by a small constant.

The pre-compute stage uses a hashing algorithm to obtain s different partitions, which
runs in O(n) time (n = |X|). Theorem 10 in [59] shows that under reasonable assumptions,
the time taken to sample one same-cluster pair is upper bounded by a constant with high
probability.

52

So far we have seen how to sample (approximately) according to the distributions P+

and P−. We sample a ‘small’ set of true positive (or same-cluster) and true negative (or
different-cluster) pairs using our distributions. We then choose the clustering Ĉ ∈ F with
the minimum number of mistakes on the sampled pairs. We describe this procedure in
Alg. 3.

Algorithm 3: Empirical Risk Minimization

Input: (X, d), a set of clusterings F , a C∗-oracle, parameter λ and sizes m+

and m−.
Output: C ∈ F

1 Sample a sets S+ and S− of sizes m+ and m− using procedures P1 and P0

respectively.
2 For every C ∈ F , compute

P̂ (C) =
|{(x, y) ∈ S+ : C(x, y) = 0}|

|S+|

N̂(C) =
|{(x, y) ∈ S− : C(x, y) = 0}|

|S−|

3 Define L̂C∗(C) = µP̂ (C) + (1− µ)N̂(C).

4 Output arg minC∈F L̂C∗(C)

Theorem 11 in [59] shows that as long as the number of labelled positive (m+) and

negative (m−) pairs are in O(VC-Dim(F)
ε2

) then our algorithm finds a clustering Ĉ which is
close to the best clustering in F . Here, VC-Dim is a combinatorial property which measures
how ‘complex’ or rich the class of clusterings is. Note that the number of samples needed
is independent of the size of the dataset X.

For common classes, like F = {T1, . . . , Ts} where each Ti is a hierarchical clustering of
X, [60] showed that the VC-Dim(F) is in o(log s). Thus for such classes a small number
of samples suffice to find a clustering which is close to the best clustering in F .

3.4 Evaluation

We now present the evaluation of our framework on a simulated and four real world
datasets. In Section 3.4.2 we show that our framework is generic and can be used to

53

simulated publications products I products II restaurants
Clustering true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss

ArtPt 0.091 0.105 0.023 0.005 0.206 0.170 0.153 0.160 0.094 0.110
Star 0.052 0.060 0.100 0.050 0.207 0.190 0.231 0.170 0.041 0.045

ApproxCorr NAa NA 0.180 0.145 0.380 0.310 0.373 0.340 0.094 0.065
Markov 0.011 0.000 0.017 0.010 0.159 0.130 0.125 0.085 0.045 0.030

NäıveDedup 0.397 0.365 0.497 0.495 0.413 0.405 0.394 0.380 0.094 0.080
C1 (single) 0.019 0.025 0.016 0.018 0.150 0.110 0.131 0.120 0.022 0.015

C2 (complete) 0.005 0.005 0.009 0.009 0.150 0.130 0.135 0.065 0.034 0.040
C3 (weighted) 0.002 0.000 0.005 0.006 0.110 0.110 0.107 0.070 0.019 0.020
C4 (average) 0.001 0.000 0.007 0.017 0.120 0.100 0.099 0.060 0.019 0.020

Mean loss difference 0.016 0.014 0.027 0.035 0.010

Table 3.1: True loss and the loss estimated by our framework.

aAlgorithm did not finish within a reasonable time limit because of the high computational cost.

25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.06107 51 0.06 204 0.025 1023 0.024

C2 (complete) 0.04177 50 0.02 210 0.005 1024 0.016
C3 (weighted) 0.03831 50 0.02 203 0.015 1027 0.016
C4 (average) 0.03489 52 0.02 207 0.020 1043 0.013

Table 3.2: Simulated dataset: Impact of number of samples on the loss of the clustering

choose amongst many of the classes of algorithms for de-duplication. We also show that
our framework can always choose a clustering which is close to the best clustering (algo-
rithm) from a given class of clustering (algorithms) and our estimated loss for each of the
clustering is very close to the true loss of these clustering algorithms. In Section 3.4.3 we
show that our framework is robust to upto 10% of oracle mistakes, which far exceeds the
intended settings dealing with human experts. Finally, in Section 3.4.4 we show that in
our framework a relatively small number of samples are enough to accurately estimate the
loss of a clustering.

3.4.1 Evaluation setup

Algorithms In our evaluation we use four graph based clustering algorithms: (1) Ar-
ticulation point clustering (ArtPt) [39], (2) Star clustering (Star) [24], (3) Approximate
correlation clustering (ApproxCorr) [26], (4) Markov clustering (Markov) [91]. These graph
based algorithms have been used for de-duplication problems as shown in previous work
[51]. Hierarchical clustering algorithms are very effective and have been widely used to
perform de-duplication. We consider 4 different linkage methods for hierarchical cluster-
ing: single linkage (C1), complete linkage (C2), weighted linkage (C3), and average linkage
(C4). In addition to this we also implemented a heuristic based de-duplication algorithm

54

25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.11075 51 0.08 208 0.055 1031 0.041

C2 (complete) 0.37172 50 0.34 204 0.315 1035 0.334
C3 (weighted) 0.29622 51 0.14 203 0.260 1037 0.239
C4 (average) 0.26877 50 0.20 204 0.195 1027 0.202

Table 3.3: Publications dataset: Impact of number of samples on the loss of the clustering

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 100 200 300 400 500 600 700 800 900 1000

lo
ss

iterations
estimated true

(a) Single linkage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600 700 800 900 1000

lo
ss

iterations
estimated true

(b) Complete linkage

Figure 3.1: Simulated dataset: Loss reported for every iteration of hierarchical clustering

(NäıveDedup) where any two data points are considered similar if their distance is below
a certain threshold. The output of this algorithm is pairs of data points which are marked
similar.

Datasets For our evaluation we use five datasets. First dataset is a simulated dataset
of ten thousand strings of length 20 where we simulate a clustering over the set of strings
and use it as our ground truth. We use Jaro distance [57] as the distance metric for strings.
To simulate a clustering we generate some seed strings and then for each seed string we
generate multiple secondary strings by slightly editing the seed string. Each cluster of
strings resembles a single entity. Second dataset is a real-world bibliographical information
of scientific publications [1]. The dataset has 1879 publication records with duplicates.
The ground truth of duplicates is available. To perform clustering on this dataset we first
tokenized each publication record and extracted 3-grams from them. Then, on 3-grams we
used Jaccard distance to define distance between two records. Next two datasets are lists
of E-commerce products: First dataset contains 1,363 products from Amazon, and 3,226
products from Google, and the ground truth has 1,300 matching products. Second dataset
contains 1,082 products from Abt, and 1,093 products from Buy, and the ground truth has
1,098 matching products. Both these products datasets are publicly available at [3]. The
fifth dataset is a list of 864 restaurants from the Fodor’s and Zagat’s restaurant guides that
contains 112 duplicates. This dataset is also publicly available at [4]. To perform clustering

55

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
ss

iterations
estimated true

(a) Single linkage

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
ss

iterations
estimated true

(b) Complete linkage

Figure 3.2: Publications dataset: Loss reported for every iteration of hierarchical clustering

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20

m
ea

n
lo

ss
 d

iff
er

en
ce

oracle mistakes percentage
simulated

publications
products I
products II

restaurants

Figure 3.3: Impact of oracle mistakes

on the products and restaurants datasets we normalized the records (product or restaurant
description) using standard techniques from natural language processing, namely; denoising
text, word tokenization, normalization, and stemming and lemmatization. Given a record,
this process gives us a list of word tokens. For each token, we first obtained a vector
representation of the word using Global Vectors for word representations (GloVe [79]). We
averaged this representation across word tokens to obtain the representation of a single
record. We use cosine similarity to define the distance between two records. For the
simulated and publications datasets, our distance metric was Jaccard and hence we use
the MinHash [34] as the hashing scheme. For the rest of the datasets, we used SimHash
[35] as the hashing scheme. For all the datasets we use ground truth as the oracle that can
answer same-cluster queries. To calculate the true loss of a clustering (i.e. LC∗(C)) we
access all of the ground truth. Our framework uses only a sample of the ground truth to
estimate the loss of a clustering. To judge the performance of our framework we compare
the estimated loss L̂C∗(C) against the true loss.

56

3.4.2 Clustering selection

In this experiment we demonstrate that our framework is generic and can be used to choose
the best clustering algorithm amongst any of the classes of algorithms for de-duplication.
We used our framework on all the algorithms mentioned in Section 3.4.1. The results
on five datasets are summarized in Table 3.1. For each dataset we report the loss of the
true-best clustering (LC∗(C)) and the estimated loss of the best clustering selected by our
framework L̂C∗(C). This experiment highlights two main features of our framework: (i)
our framework can always choose a clustering close to the best clustering algorithm from
a given class of clustering algorithms using only a small number of samples, which is 200
(100 positive samples, and 100 negative samples) for all datasets and all the algorithms
in Table 3.1. (ii) Our estimated loss for each clustering is very close to the true loss of
these clustering algorithms. At the bottom of the table we report the mean loss difference
between estimated loss and true loss computed over all the algorithms.

We would also like to emphasize that in our framework we sample only once for each
dataset and use that sample to estimate the loss of all the clusterings. In Figure 3.1 and
3.2 we show that our sample can very closely estimate the loss of every clustering generated
at each iteration of the hierarchical clustering. Similarly, for Table 3.1 we sampled only
once for each dataset and evaluated all the clusterings generated by each algorithm. Note
that, each of the graph based algorithms have a hyper-parameter, i.e. the threshold on the
edge weights. Edges with weights above this threshold represent dissimilar items and are
pruned from the graph. For each of the graph based clustering algorithm we applied our
framework on multiple values of the hyper-parameter and report only the ones with least
true loss. However, for every choice of the hyper-parameter we observed that the estimated
loss was very close to the true loss.

3.4.3 Effect of oracle mistakes

In this experiment we show that our framework is effective in real-world scenarios where
the oracle may not be perfect and can make mistakes. Whenever the oracle classifies a
similar pair as dissimilar or a dissimilar pair as similar we count it as a mistake. In our
datasets we artificially introduce such mistakes and vary their ratio from 0%, to 20%. In
Figure 3.3, we show that our framework can closely estimate the clustering loss up to
10% of oracle mistakes, which, in real-world far exceeds the intended settings dealing with
human experts. The Y-axis in Figure 3.3 reports the mean difference between true loss
and estimated loss over all the clusterings selected in Table 3.1.

57

3.4.4 Impact of sample size

As mentioned in Section 3.3.1, the number of labelled positive and negative samples re-
quired by the framework are O(VC-Dim(F)

ε2
), which is a small constant, independent of the

size of the data. In this experiment we show that a small number of samples are enough
to estimate the true loss (LC∗(C)). We consider four different clusterings, each one picked
at random from the four hierarchical clustering methods (C1 - C4). Table 3.2 and 3.3
reports the loss for simulated and publications dataset, respectively. For each dataset we
increased the number of positive and negative samples and measured the loss. The table
also shows the true loss of the clustering. It can be seen that the estimated loss calculated
by our framework is close to the true loss even with 25 positive samples and 25 negative
samples. In addition to this, the loss does not change much by increasing the number of
samples. Which means that there is no incentive to sample more. We also show that the
number of queries performed by our framework are close to the sample size, which are
orders of magnitude less than O(|X|2). For example, in the simulated dataset and single
linkage clustering (C1) with 25 positive and 25 negative samples our framework performed
51 queries, that means only one query was wasted. Similarly, 4 queries were wasted for
100 positive and 100 negative samples, and so on.

3.5 Related Work

The problem of evaluating clustering algorithms for the de-duplication problem was consid-
ered by [51]. They carried out extensive experimental evaluation of different graph-based
clustering algorithms on a simulated dataset of strings. They showed that these algorithms
perform “extremely well in terms of both accuracy and scalability.” Our framework differs
from theirs in many crucial ways. To evaluate a clustering algorithm, we do not need
access to the complete ground truth clustering. We can find clustering closest to the best
clustering even when given access to a small number of oracle answers. Our framework
is generic and can work for any class of clustering algorithms, be it graph-based (as was
considered by [51]) or hierarchical clustering or any other de-duplication heuristic.

Another class of work related to ours is related to the problem of correlation clustering[26]
and its many variants. For example, [43] considered the problem of weighted correlation
clustering. In this framework, the edge labels are allowed to be any real number in [0, 1] in-
stead of just zero or one. They showed that this problem is NP-Hard and gave a O(log |X|)
approximation algorithm for the same. Besides correlation clustering, some application ori-
ented works have also modelled de-duplication as a clustering problem. For example, [52]

58

assumed that the set of duplicate records are transitive. Finding the clustering of the given
graph G is now equivalent to computing the connected components of G.

Many application oriented works have also tried to address the problem of data de-
duplication. Many works have focused on designing the right metric (or similarity measure)
for the given dataset. Once this measure is defined, pairs of points whose distance are below
a certain threshold (or whose similarity is above a certain threhhold) are deemed to be
duplicates (or belonging to the same cluster). For example, to capture duplicates in the
data generated due to typographical errors (like spelling mistakes), edit distance is used
[63]. Jaro distance [57] is another measure which tries to capture typographical errors.
Phonetic-based similarity measures tries to capture words which are similar sounding.
Other measures try to capture the similarity in numerical data. A nice overview of such
techniques can be found in [46]. While hand-designing a similarity measure for the given
domain is quite popular. Some works also try to learn this function from labelled examples.
For example, [38] and [31] use supervised learning techniques (like SVM) to try to learn
the weights in the distance function.

Another theme in our work is the notion of human supervision for the clustering task.
Many works have tried to introduce the supervision into the clustering problem. For
example, [58], [30] and [29] introduced the concept of link/don’t link constraints. Here,
besides the usual input the clustering algorithm also receives a set of pairs of points which
should belong to the same cluster and a set of pairs of points which should not belong to
the same cluster. The algorithm then finds a clustering which respects these constraints.
Continuing this line of work, [23] introduced an interactive version of these constraints
called same-cluster queries. Here, the clustering algorithm interacts with an oracle by
asking whether two points belong to the same or different cluster. The oracle responds
by answering ‘yes’ or ‘no’ depending on whether the two points belonged to the same
clustering according to some ground truth clustering.

59

Chapter 4

LSM-Tree based storage engine for
data cleaning workloads

The need for real-time analytics or Hybrid Transactional-Analytical Processing (HTAP)
is ubiquitous in present-day applications such as content recommendation, real-time in-
ventory/pricing, high-frequency trading, blockchain data analytics, and IoT [74]. Many of
these applications typically have multiple data sources, such as multiple sensors, multiple
inventory warehouses, and so on, which continuously generate a high volume of data that
needs to be pre-processed, cleaned, and stored for analytics. Data cleaning in these appli-
cations is mostly performed on the newer data, whereas the older data, which is relatively
cleaner, is used for analytics and for collecting evidences towards detecting and fixing errors
in the new data. For example, column histograms for outlier detection are constructed over
the older data. Similarly in data de-duplication, hash functions are applied on columns of
old and new data to generate blocks of similar values. We observe that the data clean-
ing tasks in these applications access newer data in an On-Line Transactional Processing
(OLTP) style, i.e., they fetch rows of data to check for errors and possibly update them
with the correct values, whereas older data is accessed in an On-Line Analytical Processing
(OLAP) style, i.e., they scan columns to build histograms, generate blocks, etc. A typical
cleaning workflow for these applications is shown in Figure 4.1 where the cleaning tasks
are same as in Figure 1.1 of Chapter 1 but they access new data in OLTP style (shown
in bold grey lines) and old data in OLAP style (shown in bold black lines) This access
pattern is also in-line with the access pattern of the HTAP applications [74], which fetch
new data in OLTP style (e.g., for alerting) and old data in OLAP style (e.g., for weekly or
monthly business reports).

Recent systems, such as SAP HANA [47], MemSQL [7], and IBM Wildfire [28], support

60

Figure 4.1: Data access pattern of cleaning workflows.

this access pattern by employing hybrid data layouts, in which data is stored in different
formats throughout their lifecycle. Recent data is stored in a row-oriented format to
serve OLTP workloads and support high data rates, while older data is transformed to
a column-oriented format for OLAP access patterns. Such systems can be described as
having a lifecycle-aware data layout.

We observe that a Log-Structured Merge (LSM) Tree [75] is a natural fit for a lifecycle-
aware storage engine. LSM-Trees are widely used in key-value stores (e.g., Google’s
BigTable and LevelDB, Cassandra, Facebook’s RocksDB), RDBMSs (e.g., Facebook’s My-
Rocks [71]), blockchains (e.g., Hyperledger uses LevelDB), and data stream and time-series
databases (e.g., InfluxDB). While Cassandra and RocksDB can simulate columnar stor-
age via column families, we are not aware of any lifecycle-aware LSM-Trees in which the
storage layout can change throughout the lifetime of the data. We fill this gap in our
work, by extending the capabilities of LSM-based systems to efficiently serve data cleaning
workloads and real-time analytics workloads.

An LSM-Tree is a multi-level data structure with a main-memory buffer and a number
of levels of exponentially-increasing size (discussed in detail in Section 4.2). Periodically,
or when full, the buffer is flushed to Level-0. When Level-0, which stores multiple flushed
buffers, is nearly full, its data are merged into the sorted runs residing in level one (via a
compaction process), and so on. We observe that LSM-Trees provide a natural framework
for a lifecycle-aware storage engine due to the following reasons.
1 LSM-Trees are write optimized: All writes and data transfers between levels are
batched, allowing high write throughput.

61

2 LSM-Trees naturally propagate data through the levels over time: At any
point in time, the buffer stores the most recent data that have not yet been flushed, and
lower levels contain data from subsequent time intervals. For example, if a workload has a
steady rate of new inserts, then the buffers may store the entries inserted in the last hour,
Level-0 may contain data between one hour and 24 hours old, and levels one and beyond
store even older data.
3 Different levels can store data in different layouts: Data may be stored in row
format in the buffer and in some of the levels, and in column format in other levels. This
suggests a flexible and configurable storage engine that can be adapted to the workload.
4 Compaction can be used to change data layout: Transforming the data from a
row to a column format can be done seamlessly during compaction, when a level is merged
into the next level.

We make the following contributions in this work.

• We show that the data cleaning tasks in real-time analytics applications have a
lifecycle-aware data access pattern. The recent data is accessed in OLTP style,
whereas old data is accessed in OLAP style.

• We propose the Real-Time LSM-Tree, which extends the design of a traditional LSM-
Tree with the ability to store data in a row-oriented or a column-oriented format in
each level.

• We characterize the design space of possible Real-Time LSM-Trees, where different
designs are suitable for different workloads. To navigate this design space, we provide
a cost model to select good designs for a given workload.

• We develop and empirically evaluate LASER, a Lifecycle-Aware Storage Engine for
Real-time analytics based on Real-Time LSM-Trees. We implement LASER using
RocksDB, which is a popular open-source key-value store based on LSM-Trees. We
show LASER can speedup data cleaning workloads, by upto 2x compared to Postgres
(a row-store RDBMS) and an order of magnitude compared to MonetDB (a column-
store RDBMS).

4.1 Lifecycle-aware access pattern in data cleaning

As shown in Figure 4.1, data cleaning consists of three steps: discovery, error detection,
and error repair. Out of these, discovery is an offline task performed occasionally. Whereas,

62

error detection and error repair are done online as new data enters the system, therefore
interact with the data store more frequently than the discovery step. The error detection
phase consists of detecting three types of errors: outliers, duplicates, and constraint viola-
tions [14]; and the data repair phase involves techniques that update the data with fixes
[55]. In this section, we analyze the data access patterns of these individual tasks and show
that they access recent data in row-oriented style and old data in column-oriented style.

• Outlier detection: This involves detecting column values that deviate from the
distribution of the values in a column of a table. Common algorithms to identify the
distribution of column values involve building models like histograms, or Gaussian
and multivariate Gaussian mixtures [14]. Building these models require column scans
over the historical data. However, to detect outliers in the recently inserted entries, we
fetch these entries row-at-a-time and compare them against these models. Therefore,
for detecting outliers, the new data is accessed in row-oriented style and old data via
column scans.

• Duplicate detection: As mentioned in Chapter 3, duplicate detection involves se-
lecting pairs of entries that belong to the same real-world entity. A popular technique
in duplicate detection is to apply a hash function, such as minHash or SimHash, that
puts similar entries in the same block, then test the pairs of entries within a block for
duplicates. The hash functions are typically applied only over a small set of columns
that can help in grouping similar entries. For example, in an employee table, columns
such as firstname and lastname are good candidates for applying MinHash scheme
w.r.t. the Jaccard similarity measure. Therefore, applying a hash function involves
scanning a small set of columns. In the next step of duplicate detection, each of
the recently inserted entries need to be tested if it is a duplicate of any older entry
or not. This requires fetching recent entries one-by-one and fetching the old entries
that co-occur with this entry in a block and testing them for duplicates. Therefore,
the second step accesses all of the recent data and a small portion of the old entries
(which co-occur in a block) in a row-oriented style.

• Constraint violations: This refers to values that violate integrity constraints such
as Functional Dependencies (FDs) and Denial Constraints (DCs). The data access
pattern for detecting constraint violations is similar to outlier detection. Integrity
constraints are defined over a set of columns and the entries are considered erroneous
if their column values do not conform to a given integrity constraint. To validate
the recently inserted data against these constraints we again fetch new data row-
at-a-time and scan the columns of the old data to find the entries that match the

63

constraint condition. For example, consider FD {zip → city, state}, to check if a
recently inserted entry conforms with the FD we need to scan old data for columns
zip, city, and state and select tuples where zip value matches the zip value of the
recent entry, and check if the city and state values also match.

• Error repair: The workload pattern of repairing errors is simpler than the er-
ror detection tasks. Since most of the repairing techniques fix data in-place [55], the
workload consists of only update operations. Moreover, we expect most of the repair-
ing to happen in the recent data, since old data is assumed to be cleaner. Therefore,
the workload consists of update operations mostly updating the recent data.

We summarize these tasks and their data access pattern in Table 4.1.

Task Access pattern
Outlier detection: detect column
values of the recent data that deviate
from the distribution of the values in a
column

Row-access: detect outliers in the re-
cent data one entry-at-a-time.
Columnar-access: scan columns to
generate histograms

Duplicate detection: detect if
recently inserted entries are duplicate
to some of the older entries. Use hash
functions to put similar entries in a
block. Then, check entries within a
block for duplicates.

Row-access: most of the recent en-
tries and any old entries that co-occur
with the recent entries in a block.
Columnar-access: scan a subset of
columns which are used by the hash
function

Constraint violations: detect any
recent entries that do not conform to
integrity constraints

Row-access: fetch recent entries row-
at-a-time to check for constraint viola-
tions
Columnar-access: scan columns,
which are part of the constraints, to
fetch entries which match the recent
data

Error repair: update the entries
with correct column values

Row-access: most of the updates to
the recent data, with few occasional up-
dates to old data.

Table 4.1: Data access pattern of the data cleaning tasks

64

Figure 4.2: LSM-Tree with leveling merge strategy

4.2 Overview of LSM-Trees

We now describe the LSM-Tree, on which the storage engine is based.

4.2.1 Design

Compared to traditional read-optimized data structures such as B-trees or B+-trees, LSM-
Trees focus on high write throughput while allowing indexed access to data [68]. LSM-Trees
have two components: an in-memory piece that buffers inserts and a secondary-storage
(SSD or disk) piece. The in-memory piece consists of trees or skiplists, whereas the disk
piece consists of sorted runs.

Figure 4.2 shows the architecture of an LSM-Tree, with the memory piece at the top,
followed by multiple levels of sorted runs on disk (four levels, numbered zero to three, are
shown in the figure). The memory piece contains two or more skiplists of user-configured
size (two are shown in the figure). New records are inserted into the most recent (mutable)
skiplist and into a write-ahead-log for durability. Once inserted, a record cannot be mod-
ified or deleted directly. Instead, a new version of it must be inserted and marked with a
tombstone flag in case of deletions.

Once a skiplist is full, it becomes immutable and can be flushed to disk via a sequential
write. Flushing is executed by a background thread (or can be called explicitly) and does
not block new data from being inserted into the mutable skiplist. During flushing, each
skiplist is sorted and serialized to a sorted run. Sorted runs are typically range-partitioned
into smaller chunks called Sorted Sequence Tables (SSTs), which consist of fixed-size blocks.
In Figure 4.2, we show sorted runs being range-partitioned by key into multiple SSTs. For

65

example, the sorted run in Level-1 has four SSTs; the first SST contains values for the keys
in the range 0-20, the second in the range 21-50, and so on. Each SST contains a list of
data blocks and an index block. A data block stores key-value pairs ordered by key, and
an index block stores the key ranges of the data blocks.

As sorted runs accumulate over time, query performance tends to degrade since multiple
sorted runs may be accessed to find a record with a given key. To address this, sorted runs
are gradually merged by a background process called compaction. The merging process
organizes the disk piece into L logical levels of increasing sizes with a size ratio of T . For
example, a size ratio of two means that every level is twice the size of the previous one. In
Figure 4.2, we show four levels with increasing sizes. The parameters L and T are user-
configurable in most LSM-Tree implementations, and their value depends on the expected
number of entries in the database.

Two common merging strategies are leveling and tiering [41, 68]. Their trade-offs are
well understood: leveling has higher write amplification but it is more read-optimized than
tiering. Furthermore, the “wacky continuum” [42] provides tunable read/write performance
by adjusting the merging strategy and size ratios. Our Real-Time LSM-Tree is independent
of the merging strategy, but we will use the leveling strategy in LASER since this is also
used by RocksDB.

In leveling, each level consists of one sorted run, so the run at level i is T times larger
than the run at level i − 1. As a result, the run at level i will be merged up to T times
with runs from level i− 1 until it fills up. If multiple versions of the same key exist, then
only the most recent version is kept, and any key with a tombstone flag is deleted. In
practice, merging is done at SST granularity, i.e., some SSTs from level i − 1 are merged
with overlapping SSTs in level i. This divides the merging process into smaller tasks,
bounding the processing time and allowing parallelism. Sorted runs in Level-0 are not
partitioned into SSTs (or have exactly one SST) because they are directly flushed from
memory. Some implementations, such as RocksDB, make an exception for Level-0 and
allow multiple sorted runs to absorb write bursts.

The merging process moves data from one level to the next over time. This puts
recent data in the upper levels and older data in the lower levels, providing a natural
framework for a lifecycle-aware storage engine proposed in this chapter. In Figure 4.3,
we present the results of an experiment using RocksDB with an LSM-Tree having five
levels (zero through four), with Level-0 starting at 64MB and T = 2. We inserted data
at a steady rate until all the levels were full, with background compaction enabled. We
show the distribution of keys in terms of their time-since-insertion for two compaction
policies commonly used in RocksDB: kByCompensatedSize (Figure 4.3a) prioritizes the

66

(a) Compaction prioritized by size
(kByCompensatedSize)

(b) Compaction prioritized by time
(kOldestSmallestSeqFirst)

Figure 4.3: Distribution of keys across levels based on time

largest SST, and kOldestSmallestSeqFirst (Figure 4.3b) prioritizes SSTs whose key range
has not been compacted for the longest time. For both compaction priorities, each level
has a high density of keys within a certain time range. We will use time-based compaction
priority because it is better at distributing keys based on time since insertion. Dong et. al.
[44] provide aggregate statistics such as the number of files, amount of data, etc., at each
level of an LSM-Tree for three applications. Our observation of time based distribution of
data across levels, as reported in Figure 4.3, complements their statistics as we provide a
more fine grained trace of how data spreads across levels.

A point query starts from the most recent data and stops as soon as the search key
is found (there may be older versions of this key deeper in the LSM-Tree, but the query
only returns the latest version). First, the in-memory skiplists are probed. If the search
key has not been found, then the sorted runs on disk are searched starting from Level-0.
Within a sorted run, binary search is used to find the SST whose key range includes the key
requested by the query. Then, the index block of this SST is binary-searched to identify the
data block that may contain the key. Many LSM-Tree implementations include a bloom
filter with each SST, and an SST is searched only if the bloom filter reports that the key
may exist. We assume that the ranges of SSTs, the index blocks of SSTs, and bloom
filters fit in main memory and are cached, as illustrated in Figure 4.2. For range queries,
all the skiplists and the sorted runs are scanned to find keys within the desired range. In
many implementations (including RocksDB), range queries are implemented using multiple
iterators, which are opened in parallel over each sorted run and the skiplists. Then, similar
to a k-way merge, keys are emitted in sorted order while discarding old versions.

67

N number of entries

L total number of levels

T size ratio between adjacent levels

B # of row style entries in a block

Bji #entries in blocks at CG j at level i

pg number of blocks in Level-0

c number of columns

s range query selectivity (i.e., # entries selected)

Π set of projected columns

gi #column groups at level i, 1 ≤ gi ≤ c

cg sizeji size of jth CG at level i

CGi CGs at level i

Eg
i estimated number of CGs required by a projection

EG
i estimated sum of sizes of CGs required by a projection

Table 4.2: Summary of terms used in this chapter

4.2.2 Cost Analysis

We now summarize the cost of LSM-Trees in terms of writes, point queries, range queries,
and space amplification [41, 40, 68]. We assume that leveling is used for compaction, that
sorted runs are not partitioned into SSTs, and that the LSM-Tree is in a steady state, with
all levels full and the volume of inserts equal to the volume of deletes.

Table 4.2 summarizes the symbols used in the analysis. Let N be the total number of
records, T be the size ratio between consecutive levels, and L be the number of levels. Let
B denote the number of records in each data page, and let pg denote the number of pages
in Level-0. For example, with a 4kB page and each record of size 100 bytes, B = 40; with
Level-0 of size 64MB, pg = 16, 000. Level-0 contains at mostB.pg entries, and level i (i ≥ 0)
contains at most T i.B.pg entries. Furthermore, the largest level contains approximately
N.T−1

T
(≈ TL.B.pg) entries. The total number of levels is given by Equation 4.1.

L =

⌈
logT

(
N

B.pg
.
T − 1

T

)⌉
(4.1)

Write amplification: Inserted or updated keys are merged multiple times across
different levels over time, therefore the insert or update I/O cost is measured in terms of
write amplification. The worst-case write amplification corresponds to the I/O required to
merge an entry all the way to the last level. An entry in level i is copied and merged every

68

time level i− 1 fills up and is merged with level i. This can happen up to T times. Adding
this up over L levels, each entry is merged L.T times. Since each disk page contains B
entries, the write cost for each entry across all the levels is O(T.L

B
).

Point queries: The worst-case lookup cost for an existing key is O(L) without bloom
filters because the entry may exist in the last level, requiring access to one block (whose
range overlaps with the search key) in each level along the way. With bloom filters, the
average cost of fetching a block from the first L− 1 levels is (L− 1).fpr, plus one I/O to
fetch the entry from last level, where fpr is the false positive rate of the bloom filter. In
practice, fpr is roughly 1%, giving an I/O cost of O(1).

Range queries: Let s be the selectivity, which is the number of unique entries across
all the sorted runs that fall within the target key range. If keys are uniformly spread across
the levels, then in each level i, s/TL−i entries will be scanned. With B entries per block,

the total number of I/Os is O(s
B

L∑
i=0

1
TL−i). Since the largest level contributes most of the

I/O, the cost simplifies to O(s
B

).

Space amplification: This is defined as amp = N
unq
− 1, where unq is the number of

unique entries (keys). The worst-case space amplification occurs when all the entries in
the first L − 1 levels correspond to updates to the entries in the largest level. The first
L− 1 levels contain 1

T
of the data. Therefore, 1

T
of the data in the last level are obsolete,

giving a space amplification of O(1
T

).

4.3 Real-Time LSM-Tree Design

4.3.1 Definitions

Lifecycle-driven hybrid workloads: We target data cleaning workloads and the real-
time analytics workloads with high data ingest rates and access patterns that change with
the lifecycle of the data. These workloads include a mix of writes and reads, with recent
data accessed by OLTP-style queries (point queries, inserts, updates), and older data by
OLAP-style queries (range queries) [12]. From a storage engine’s viewpoint, we represent
these workloads as combinations of inserts, updates, deletes, point reads, and scans. With
key as the row identifier, row as the tuple with all the column values, and Π as the set of
projected columns (e.g., Π = {A,C} means that the query requires values for columns A
and C only), we consider the following operations:

• insert(key, row): inserts a new entry.

69

• read(key, Π): for the given key, reads the values of columns in Π.

• scan(keylow, keyhigh, Π): reads the values of the columns in Π where the key is in
the range keylow, and keyhigh. Range queries based on non-key column values also
use this operator by simply scanning all the entries and filtering out the entries that
are not within the range.

• update(key, valueΠ): updates the values of the columns in Π for the given key.
valueΠ contains the column identifiers and their new values. For example, valueΠ =
{(A, nva), (B, nvb)} indicates new values for columns A and B for the given key.

• delete(key): deletes the entry identified by key.

We assume that read and update access recently inserted keys with a wide Π (almost
all the columns), while scan accesses a range of keys spanning historical and recent data
with a narrow Π (one column or a few columns depending on the age of the data).

Column groups (CGs): Hybrid storage layouts support HTAP workloads defined
above [74]. A hybrid storage layout is defined by column groups (CGs) that are stored
together as rows [27]. Suppose we have a table with four columns: A, B, C, and D.
In a row-oriented layout, there is a single CG corresponding to all the columns. In a
column-oriented layout, each column corresponds to a separate CG. Other hybrid layouts
are possible, e.g., two CGs of < A,B,C > and < D >, where the projection over columns
A, B, and C is stored in row format, and the projection over D is stored separately.
Column groups are advantageous when certain column values are co-accessed often in the
workload.

4.3.2 Design Overview

The key insight that makes the Real-Time LSM-Tree a natural fit for a lifecycle-aware
storage engine is that different levels may store data in different layouts. This creates a
design space.

Design space: The design space for Real-Time LSM-Trees can be characterized by
the column groups used in each level. In Figure 4.4, we show three examples. On the left,
we show an extreme design point corresponding to a row-oriented format, which is used
by existing LSM-Tree storage engines, and is suitable for OLTP. On the right, we show
the other extreme, corresponding to a pure columnar layout, which is suitable for OLAP.
In the middle, we show a hybrid design, in which Level-0 is row-oriented, levels 1 and 2

70

Figure 4.4: Design space of Real-Time LSM-Trees, with example column group (CG)
configurations.

use different combinations of CGs, and Level-3 switches to a pure columnar layout. This
design may be suitable for mixed or HTAP workloads, with a column group configuration
depending on the access patterns during the data lifecycle.

In the Real-Time LSM-Tree design, we keep the in-memory component and Level-0
the same as in the original LSM-Tree, as described in Section 4.2, to maintain high write
throughput. However, the on-disk levels beyond Level-0 are split into CGs, where each CG
stores its own sorted runs. As we will see in Section 4.4, each such sorted run is associated
with tail indices and bloom filters to answer queries that access columns within the CG.

Since different levels may have different CG configurations, a Real-Time LSM-Tree
must be able to change the data layout as data move from one level to another. As we will
explain in Section 4.4.4, this can naturally be done during the compaction process.

CG containment assumption: In principle, the space of Real-Time LSM-Trees con-
sists of all possible combinations of CGs in each level. However, we make a simplifying
assumption since access patterns throughout the data lifecycle tend to change from row-
friendly OLTP to column-friendly OLAP. In particular, we assume that any CG in level
i must be a subset of (i.e., contained in) a single CG in level i − 1, for i ≥ 1. Returning
to Figure 4.4, the design in the middle has two column groups in Level-1: < A,B > and
< C,D >. This means that, for example, a CG of < A,B,C >, or a CG of < B,C >
is not a valid choice in Level-2. This assumption also simplifies layout changes during
compaction, as we will see in Section 4.4.4.

No replication assumption: For some workloads, data in a given level may be
touched by both OLTP and OLAP style queries, meaning that no single CG layout is
suitable for that level. This may be true especially in the last level, which stores the oldest
and the majority of the data. For these workloads, a level can be replicated to maintain
two layouts, similar to the “fractured mirrors” approach [80], at the cost of storage and

71

write amplification. However, we expect such situations to be rare in practice because
OLTP patterns tend to be limited to recent data in real-time analytics workloads [74, 12],
which are expected to fit in the first few levels.

4.4 LASER Storage Engine

We now describe the design of LASER – our HTAP storage engine based on Real-Time
LSM-Trees. LASER borrows several concepts from column-store systems [13]: a data
model for storing column groups (Section 4.4.1), column updates (Section 4.4.2), and
“stitching” individual column values to reconstruct tuples (Section 4.4.3). LASER also
requires a mechanism to change the data layout from one level to the next in the Real-
Time LSM-Tree (Section 4.4.4).

4.4.1 Column Group Representation

Since entries in an LSM-Tree are stored across multiple sorted runs and levels, column
scans do not access the data contiguously. To fetch data in sorted order from different
levels, we need to locate entries by their keys. Therefore, we store the keys along with
the column group values, as shown in Figure 4.5. This is known as simulated columnar
storage [13], and incurs read and storage overhead compared to storing only the column
values in a contiguous data block. However, in LSM-Trees, this overhead is reduced due
to the leveling merge strategy, and can be further reduced by compressing the data blocks
and delta-encoding the keys within each data block. For example, in our evaluation, we
observed that näıvely storing keys along with column group values took 86GB of disk space,
using Snappy compression took 51GB, and delta-encoding the keys further reduced the
space usage to 48GB. Storing the same amount of data in a pure column-store (MonetDB
[54]), which stores only the column values, requires 43GB.

4.4.2 Write Operations

Inserts are performed in the same way as in original LSM-Trees, where an entry is inserted
in the in-memory skiplist, and is eventually moved to lower levels via flush and compaction
jobs. Insertion of an existing key (and a corresponding value, containing the values of
the remaining attributes) acts as an update, whereas insertion of an existing key with a
tombstone flag acts as a deletion.

72

Figure 4.5: Simulated column-group representation

Updates of individual columns may be implemented in two ways. A straightforward
way is to fetch the entire tuple that is to be updated, modify the column that is being
updated, and re-insert the entire tuple. This is the standard approach in a row-oriented
storage engine. Column-oriented storage engines [62, 88] and some HTAP storage engines
[22] allow updates of individual columns. Similarly, in LASER, we allow insertion of
partial rows that contain only the updated column values. Partial rows are eventually
merged with complete rows, or other partial rows, at the time of compaction, and any older
column values are discarded. For example, suppose we have four columns, < A,B,C,D >,
and suppose we update columns B and C of the tuple with key 100. Here, we insert
the following key-value pair: 100 : −, b′, c′,− where b′, c′ are the updated values, and −
denotes an unchanged value. If, during compaction, we find another entry for the same
key, 100 : a, b, c, d, then the two entries are merged to give 100 : a, b′, c′, d.

4.4.3 Read Operations

Point queries (with projections) are handled by searching for the given key in the
skiplist, and then down the levels until the latest value is found. To support projections
efficiently, in each level, we only probe the CGs that overlap with the projected columns,
and the query result is returned as soon as the values for all of the projected columns are
found. Since we allow updates of individual columns, (the latest version of) a given tuple
may exist partially in one level and partially in another. For example, in Figure 4.6, the
latest values of A and B for tuple 108 exist in Level-0, but the values of C and D exist in
Level-2.

73

Figure 4.6: ColumnMergingIterators and LevelMergingIterators

Range queries (with projections) are also handled by opening iterators for each
level and returning values in a sorted order, while discarding older versions of the entries.
We optimize range queries with projections by opening iterators only for the overlapping
column-groups in each level. As was the case for point queries, subsets of column values
may be found across different levels. We use LevelMergingIterators to merge values across
levels, and to stitch column values within a level we use ColumnMergingIterators. We
provide the details of these iterators in Section 4.4.4.

4.4.4 Real-Time LSM-Tree Compaction

In Section 4.2, we described the compaction process used by LSM-Trees to improve query
performance. In LASER, we also utilize compaction to change the data layout. A com-
paction job selects a level that overflows the most, and merges all of its entries with the next

74

Figure 4.7: Sorted runs of a Real-Time LSM-Tree with two highlighted compaction jobs.

level. Using this approach in LASER would require merging entries from all the CGs of an
overflowing level with the next level. However, since we allow individual column updates,
as mentioned in Section 4.4.2, different CGs can fill up at different rates. For example,
certain column groups (bank balance, inventory) may be updated more frequently than
others (contact information, item description). Therefore, treating all the CGs in the same
way when scheduling a compaction job might push certain CG values to deeper levels even
when top levels are not full, and therefore disrupt the distribution of entries across levels
based on time. We modify the compaction strategy to select the most overflowing CG in
the most overflowing level. To determine if a CG is overflowing, we define the capacity of
a CG within a level by proportionally dividing the level capacity across all the CGs, and
any CG that exceeds its capacity is identified as an overflowing CG.

We call this strategy a CG local compaction strategy, in which the span of a compaction
job is limited to only one CG from level i and the overlapping CGs at level i+ 1. We show
two example compaction jobs in Figure 4.7. Compaction job 1 merges entries from CG
< A,B > in level-1 to overlapping CGs (i.e., < A >; < B >) in level-2. Similarly,
compaction job 2 is limited to only CG < C > in level-2 and level-3. To perform CG local
compaction, we require two types of merging iterators: LevelMergingIterators that merge
entries from different levels, and ColumnMergingIterators that combine column values from
different CGs within the same level.

LevelMergingIterators support range queries and compaction jobs by fetching and
merging qualifying tuples from each level, and discarding old attribute values when multiple
versions are found for the same key. Figure 4.6 shows LevelMergingIterators collecting
tuples from three levels to answer a range query for keys between 50 and 108. Only the
latest versions of keys 107 and 108 are returned.

ColumnMergingIterators combine values from different column groups within the
same level. For each LevelMergingIterator, multiple ColumnMergingIterators are opened.
Since there can exist only one version for each key and column value within a level, these

75

iterators do not have to discard old versions. Instead, they fetch all the required column
values for each key, some of which may be empty due to column updates. In Figure 4.6, we
show ColumnMergingIterators for each level. In level-0, the iterators return partial values
for 108 because the corresponding entry corresponds to an update of columns A and B.
Similarly, in level-1, key 107 has a partial value.

The above iterators are used by CG local compaction in the following way: we first
identify the most overflowing level, and the most overflowing CG at that level. Then, we
identify the overlapping CGs in the next level, open LevelMergingIterators for both levels,
and open the required ColumnMergingIterators for the respective LevelMergingIterators.
Once the iterators are opened, entries are emitted in sorted order and are written to the
new sorted run belonging to the next level.

4.5 Cost Analysis of LASER

In this section, we analyze the cost of each operation supported by LASER, and compare it
with the cost of a purely row-oriented LSM-Tree (Section 4.2) and a purely column-oriented
LSM-Tree (a special case of a Real-Time LSM-Tree with as many CGs as columns). Table
4.3 summarizes the operations and their costs.

We use the variables listed in Table 4.2. Let 1 ≤ gi ≤ c be the number of CGs at level
0 ≤ i ≤ L, where c is the total number of columns. The size of the jth (1 ≤ j ≤ gi) CG
at level i is defined as the number of columns in the CG and is represented by cg sizeji.
cg sizeji is c for all column-groups at all levels for a row-style LSM-Tree and 1 for all
column-groups at all levels for a column-style LSM-Tree. For each level i, we have the
following relation between c, gi, and cg sizeji:

c =

gi∑
j=1

cg sizeji (4.2)

We define Bji to be the number of entries in a data block of a jth CG at level i.
From Section 4.2, we know that a row-style LSM-Tree contains B entries in a block.
The block size, in bytes, is fixed for an LSM-Tree; for example in RocksDB, it is 4kB
by default. If D is the block size in bytes, then we have D = B.(key-size + value-
size) = B.(1.dt size+c.dt size), where dt size is the average datatype size of the columns,
which includes the column value and the key. This can be generalized for a Real-Time LSM-
Tree, in which a block contains Bji entries: D = Bji.(1+cg sizeji).dt size. For example, in

76

Figure 4.5, the relationship between the number of entries in a block of CG < A,B >, and
CG < C > is D = B<A,B>.(1 + 2).dt size = B<C>.(1 + 1).dt size, or B<A,B> = 2.B<C>/3.
The relationship between B and Bji is as follows.

Bji = B.
(1 + c)

(1 + cg sizeji)
(4.3)

This gives Bji = B.(1 + c)/2 for all column-groups at all levels for a column-style LSM-
Tree. As cg sizeji reduces, Bji increases because we can pack more entries of smaller CG
size in a block.

Write amplification: We start with the cost of write amplification for insert(key, row)
operations. For a row-style LSM-Tree, the write amplification is the same as described in
Section 4.2, i.e., O(T.L

B
). For a column-style LSM-Tree, each level has c column-groups

(each with one column). Therefore, the write amplification is O(c.T. L
Bji

), where Bji =

B.(1 + c)/2 for all CGs. For a Real-Time LSM-Tree, the write amplification is summed
across all the CGs and all the levels. For example, in level-2 of the Real-Time LSM-Tree
shown in Figure 4.7, entries will be merged for CGs < A,B >;< C >;< D > where
B02 = B(1 + 4)/(1 + 2) = 5B/3 (i.e., for CG < A,B >) and B12 = B22 = 5B/2. For each
CG, the merge cost is given by T/Bji (because entries are merged T times, as explained in

Section 4.2). The total write amplification cost is: O(
L∑
i=0

gi∑
j=1

T/Bji). Using Equations 4.2

and 4.3, this simplifies to O(T.L
B

+ T
B.c

L∑
i=0

gi). The second term (i.e. T
B.c

L∑
i=0

gi) represents

the overhead of storing keys along with CG values due to the simulated column group
representation. This overhead is at most TL/B (because 1 ≤ gi ≤ c) in a column-style
LSM-Tree.

W := O

(
T.L

B
+

T

B.c
.
L∑
i=0

gi

)
(4.4)

Point lookups: The cost for a row-style LSM-Tree is the same as in Section 4.2, i.e.
O(1) (assuming the false positive rate of bloom filters is much smaller than 1). For a
column-style LSM-Tree, the cost is equal to the number of column groups containing the
columns projected by the query. For a Real-Time LSM-Tree, this cost is similarly equal to
the number column-groups containing the projected columns, summed over all the levels.
We use Eg

i (1 ≤ Eg
i ≤ gi) to define the number of column-groups required at level i. For

example, if there are two CGs, < A,B >;< C,D >, in level i, then Eg
i = 2 when the

projection is Π = {A,C} and Eg
i = 1 when Π = {A,B}. The total I/O cost is bounded

77

by O(
L∑
i=0

Eg
i).

P := O(
L∑
i=0

Eg
i) (4.5)

Range queries: The I/O cost for a row-style LSM-Tree is the same as in Section 4.2,
i.e., O(s

B
). For a column-style LSM-Tree, this depends on the number of CGs containing

the projected columns. Therefore, the I/O cost is O(|Π|. s
B.c

) (here, Bji = B.(1 + c)/2).
For a Real-Time LSM-Tree, different levels contribute different costs depending on the CG
configuration. Anytime a CG contains one or more columns projected by the query, the
entire block of that CG must be fetched. Therefore, for each level, we have O(

∑
j∈Gi

si/Bji),

where si is the selectivity at level i, and Gi is the set of CGs containing the projected
columns. In Section 4.2, we defined s to be the selectivity of a range query for all the
levels; selectivity si for an individual level i can be estimated by dividing s by the capacity
of that level. Using Equation 4.3, we obtain the following cost for each level: O(si

c.B

∑
j∈Gi

(1+

cg sizeji)). We define EG
i :=

∑
j∈Gi

(1+cg sizeji), i.e., the sum of the sizes of all the required

CGs and corresponding keys. For example, if there are CGs < A,B >;< C,D > in level i,
then EG

i = 6 when the projected columns are Π = {A,C} and EG
i = 3 when Π = {A,B}.

The overall cost of a range query is:

Q := O(
L∑
i=0

si.E
G
i /c.B) (4.6)

Update amplification: The update amplification for a row-style LSM-Tree is the
same as the insert amplification: O(L.T

B
). For a column-style LSM-Tree, the cost depends

on the number of column values that are updated due to our CG local compaction strategy
(Section 4.4.4). The amplification is given by O(L.T.|Π|

B.c
), where Π is the set of updated

columns. For a Real-Time LSM-Tree, update amplification depends on the sum of the sizes
of the required CGs. This is estimated by EG

i (see range query cost above). Therefore, the
amplification of an update operation is

U := O(
L∑
i=0

T.EG
i /c.B) (4.7)

Space amplification: As explained in Section 4.2, similar to a row-oriented LSM-
Tree, the worst-case space amplification in a Real-Time LSM-Tree happens when the first

78

L− 1 levels contain updates of entries in the last level. The fraction of entries in the first
L− 1 levels is still 1

T
. Therefore, the space amplification is still O(1

T
).

Operation Row-style LSM-
Tree

Real-Time LSM-
Tree

Column-style LSM-
Tree

Insert amplifica-
tion (W)

O(T.L
B

) O(T.L
B

+
T.

L∑
i=0

gi

B.c
) O(T.L

B
)

Existing key
lookup (P)

O(1) O(
L∑
i=0

Eg
i) O(|Π|)

Range query (Q) O(s
B

) O(
L∑
i=0

si.E
G
i

c.B
) O(|Π|.s

c.B
)

Update amplifi-
cation (U)

O(T.L
B

) O(
L∑
i=0

T.EG
i

c.B
) O(T.L.|Π|

c.B
)

Table 4.3: Summary of operations and their costs.

4.6 Design Selection

In this section, we describe how to select a suitable Real-Time LSM-Tree design for a
given workload using the cost analysis from Section 4.5. Our goal is to find an optimal CG
configuration for each level to minimize the total I/O cost for a given workload. Finding an
optimal CG layout for a given workload has been studied in the context of hybrid database
systems. Solutions span from heuristics [82] to complex modeling techniques that allow
ranking the candidate CGs [16, 50].

In the context of LSM-trees, the problem is critically different due to the flexibility of
assigning a different layout for each level of the tree. That is, we are not searching for a
single CG layout across the whole data and tree, but rather we are searching for an optimal
layout for each level of the tree in a way that holistically optimizes the overall performance.
A critical invariant is the CG containment constraint described in Section 4.3.2, (a CG at
level i must be a subset of some CG at level i − 1). LASER makes a decision per level
regardless of whether the LSM-tree is based on leveling (one run per level), tiering, or lazy
leveling (where there may be several runs per level). This is because in the latter case,
runs overlap in terms of the range of values stored, and so all runs will see the same access
patterns given a workload at this level.

79

In the remainder of this section, we define the optimization problem in the context of
Real-Time LSM-trees, and we describe our search algorithm, which is inspired by Hyrise
[50] and brings novel design elements to allow different layouts in every level of the tree
and to ensure CG containment.

4.6.1 Input

Parameters: To find an optimal CG layout for a given workload, LASER requires: 1)
parameters defining the Real-Time LSM-Tree structure, and 2) parameters defining the
workload. As explained in Section 4.5, the costs of the operations depend on the Real-Time
LSM-Tree structure, which is defined by the parameters T , L, and B (Section 4.2), and on
the CG configuration CG. We represent the workload by wl, which is a set of operations.
Let w be the number of insert operations, p be the number of read operations for existing
keys, q be the number of scan operations, and u be the number of update operations in
wl. Since we are searching for an optimal CG layout for each level independently, we
additionally define level i’s workload by wli, and similarly, pi, qi, and ui represent the
number of read, scan, and update operations, respectively, served at level i.

Obtaining parameter values: We assume that the values of the LSM-Tree parame-
ters (T , L, B) are fixed based on the data size (N) and the Operating System configuration
(e.g., page size). Past research has shown how to tune T and L in an LSM-tree [42, 40, 41].
Furthermore, B is usually fixed based on a 4kB block size (as in RocksDB). Overall, these
parameter choices are orthogonal to LASER: they govern the high-level LSM-tree archi-
tecture while LASER optimizes the architecture within each run. As for the workload, we
assume that, at the logical level, it consists of SQL statements. For the LASER storage
engine, we convert the workload to the operations defined in Section 4.3.1. Profiling the
workload wli at each level allows us to determine the values for w, pi, qi, ui, and si. The
workload profile can be collected either from the current instance of the storage engine,
or from a secondary copy of the LSM-Tree data. As long as the secondary copy and the
primary copy have the same distribution of the data with respect to time, the profile will
look similar. The layout of the secondary LSM-Tree could either be the same layout of
the primary LSM-Tree, or if this is the very first profile, the secondary copy can have all
the levels with pure row layout. Finally, the values for Eg

i and EG
i are determined by the

workload trace and the CG configuration under consideration, as discussed in Section 4.5.

80

4.6.2 Optimization Problem

Cost function: Let Wk be the cost of the kth write operation in the workload, obtained
using Equation 4.4; we define Pk, Qk and Uk similarly based on Equations 4.5 through
4.7. Following previous work on LSM-Tree design [41], we compute the cost of a workload
for a given CG configuration CG by adding up the costs of each operation, as shown in
Equation 4.8.

cost(CG) =
w∑
k=1

Wk +

p∑
k=1

Pk +

q∑
k=1

Qk +
u∑
k=1

Uk (4.8)

Since we need to find an optimal CG configuration at each level using per-level workload
statistics, the cost function in Equation 4.8 can be split into per-level cost, given by the
following equation:

cost(CGi) := (4.9)

w.T.gi
B.c

+

pi∑
k=1

Eg
ik +

qi∑
k=1

sik.E
G
ik

c.B
+

ui∑
k=1

T.EG
ik

c.B

Here, CGi = {cgi1, cgi2, ..., cgig} is the partitioning of columns into g groups at level i that
satisfies the CG containment constraint.

Optimization problem: For each level i, we want to find an optimal CGi such
that cost(CGi) is minimized for the workload wli and the CG containment constraint is
satisfied. This leads to the following optimization problem:

∀i : 1 ≤ i ≤ L (4.10)

CG∗i = argmin
CGi

cost(CGi)

s.t. :

∀cgij ∈ CGi ∃ cg(i−1)k ∈ CG(i−1) | cgij ⊆ cg(i−1)k

Recall that we keep level-0 row-oriented, so the CG containment constraint is trivially
satisfied for level-1.

4.6.3 Solution

Previous work [50] takes the following three-step approach: 1) pruning the space of candi-
date CGs, 2) merging candidate CGs to avoid overfitting, and 3) selecting an optimal CG

81

layout from the candidate CGs. The CG containment constraint can be added to the first
step, further pruning the space of candidate CGs.

Let {a1, a2, ..., ac} be the attributes in relation R, and let Πj be the projection of the jth

operation (point lookup, range query, or update operation) at level i. In the first step, we
generate a CG partitioning with the smallest subsets, where every subset contains columns
that are co-accessed by at least one operation. This is done by recursively splitting the
attributes of R using the projections Πj. For example, suppose R = {a1, a2, a3, a4}, and let
Π1 = {a2, a3, a4}, Π2 = {a1, a2}, and Π3 = {a1, a2, a3, a4}. Then, splitting using Π1 gives
subsets: {a1}, {a2, a3, a4}, and further splitting using Π2 gives subsets: {a1}, {a2}, {a3, a4}
(Π3 does not split any subsets).

The next step is to merge the subsets from the previous step. This is beneficial for
point queries, which typically have wider projections, while smaller subsets are beneficial
for range scan operations, which typically have narrow projections. This tension between
the access patterns of point queries and scan operations is used to decide which subsets
should be merged. We merge smaller subsets only if the cost of running the workload with
the larger subsets is lower. To systematically evaluate all merging possibilities, we start
with the smallest subsets from the previous step, and consider all possible permutations of
them for merging.

Finally, in the third step, we generate all possible CG partitions (covering all attributes
of R) from the subsets generated in the previous step, and output the least-cost solution
(the cost is given by Equation 4.9).

To satisfy the CG containment constraint, when considering level i, we change the
initial set of attributes R to be the set of attributes from one CG at level i − 1, and we
separately execute our solution for each CG at level i− 1. For example, if level-2 has CGs:
< a1, ..., a4 >; < a5, ..., a8 >, then we solve two CG selection problems for level-3, one with
R = {a1, ..., a4} and one with R = {a5, ..., a8}. The design selection algorithm starts with
level-1, where the complete schema R is split into CGs using the three steps described
above. Then, this process is repeated for level-2 onwards, where each CG at level i− 1 is
split into optimal CGs for level i. The worst case time complexity of finding an optimal
CG configuration at a single level is given by [50], which is exponential in the number
of partitions generated in the first step. The overall worst case time complexity for all
levels equals the number of levels times the worst case complexity of each level. Since the
number of partitions is small in practice [50] and the CGs get smaller from one level to
the next, the actual time taken by the design selection algorithm is expected to be small.
For example, in our evaluation (Section 4.7), design selection took only 3 seconds for 100
columns and 8 LSM-Tree levels.

82

4.7 Evaluation of LASER

In the experimental evaluation of LASER, we show that:

• The empirical behaviour of LASER matches the cost model from Section 4.5,

• LASER can outperform pure row-store, pure column-store, and other column-group
hybrid designs

• Finally, LASER can speed up data cleaning workloads.

Experimental setup: We deployed LASER on a Linux machine running 64-bit
Ubuntu 14.04.3 LTS. The machine has 12 CPUs in total across two NUMA nodes, run-
ning at 1.2GHz, with 15MB of L3 cache, 16GB of RAM, and a 4TB rotating Seagate
Constellation ES.3 disk.

LASER implementation: We implemented LASER on top of RocksDB 5.14. We
added the components described in Section 4.4: simulated CG layout, CG updates, support
for projections in queries, LevelMergingIterators and ColumnMergingIterators, and the CG
local compaction strategy. We reused other necessary but orthogonal components provided
by RocksDB, such as in-memory skiplists, index blocks for SSTs, bloom filters, snapshots,
and concurrency. To collect workload traces for design selection, we modified the RocksDB
profiling tools to collect per-level statistics about operations and their projections. We
implemented the design selection algorithm as an offline process that takes in the workload
trace and the LSM-Tree parameters as input.

LASER configuration: Unless specified otherwise, we use the leveling compaction
strategy with kOldestLargestSeqFirst compaction priority, with a maximum of 6 com-
paction threads. We use the RocksDB default values of other parameters such as Level-0
size, SST size, and compression.

Alternative compaction strategies: While we use leveling in our experiments, the
results are orthogonal to the compaction strategy: regardless of the strategy, the number
of entries in every level remains constant given a fixed size ratio (T). For example, tiering,
the write optimized merging strategy, or lazy leveling and the wacky continuum [42], which
balance read and write costs, only affect the number of runs within a level but do not affect
the number of entries in a level (since runs will simply be smaller with those strategies
compared to leveling). In our experiments, we vary the size ratio (T), which affects how
entries spread across the levels and the number of levels. This is critical as it affects the
number of column-group layouts a Real-Time LSM-tree can hold simultaneously.

83

4.7.1 Workloads

We evaluate the performance of LASER over two types of workloads: 1) generic HTAP
workloads: they are used to analyze the behaviour of LASER empirically and compare its
performance against other storage layouts and systems. 2) data cleaning workloads: these
workloads mimic various data cleaning tasks (described in Section 4.1) and are used to
demonstrate the speedup offered by LASER when compared to other systems.

Generic HTAP workloads: We generate HTAP workloads using the benchmark
proposed by previous works [22, 25]. The benchmark consists of the following queries that
are common in HTAP workloads: (Q1) inserts new tuples, (Q2) is a point query that selects
a specific row, (Q3) is an aggregate query that computes the maximum values of selected
attributes over selected tuples, (Q4) is an arithmetic query that sums a subset of attributes
over the selected tuples, and (Q5) is an update query that updates a subset of attributes
of a specific row. These queries are written in SQL as follows:

Q1: INSERT INTO R VALUES (a0, a1, ..., ac)
Q2: SELECT a1, a2, ..., ak FROM R WHERE a0 = v
Q3: SELECT MAX(a1), ...,MAX(ak) FROM R WHERE a0 ∈ [vs, ve)
Q4: SELECT a1 + a2 + ...+ ak FROM R WHERE a0 ∈ [vs, ve)
Q5: UPDATE R SET a1 = v1, ..., ak = vk WHERE a0 = v

The parameters k, v, vs, and ve, control projectivity, selectivity, overlap between queries,
and access patterns throughout the data lifecycle. The benchmark includes two types of
tables: a narrow table (with 30 columns) and a wide table (with 100 columns). Each
table contains tuples with a 8-byte integer primary key a0 and a payload of c 4-byte
integer columns (a1, a2, ..., ac). Unless otherwise noted, the experiments use the table with
30 columns, with uniformly distributed integer values as keys. In all experiments, we
run an initial data load phase, followed by a steady workload phase in which we record
measurements such as total workload time and latency.

Data cleaning workloads: These workloads represent the data cleaning tasks men-
tioned in Table 4.1. We consider data cleaning scenarios for real-time analytics applications
where new data is continuously ingested and data cleaning tasks are performed at regular
intervals to detect and fix errors in the recently inserted data. We consider a table as
described for HTAP workloads above, but with 60 columns. We found that the previous
work on error detection [14], which considers real-world datasets, has a maximum of 60
columns in their tables. We use query Q1 to continuously insert data. Query Q2 is used to
select recently inserted entries, whereas a modified form of query Q4, labeled Q4c, is used
to scan columns.

84

Q4c: SELECT a1, a2, ...ak FROM R WHERE a0 ∈ [vs, ve)

Query Q5 is used to repair the errors. Using these sets of queries we represent four types
of cleaning workloads:

1. Outlier represents the tasks of outlier detection. We consider four columns for this
task, and scan them individually to build histograms. Rows of recent entries are
fetched to detect if they are outliers or not.

2. Constraint represents the task of detecting constraint violations. We consider four
Functional Dependency (FD) constraints, each with either 2 or 3 columns. These
columns are scanned to check if any of the old entries match with the column values
of the new entries, and whether they conform with the FD or not.

3. Dedup represents the task of detecting duplicates. We consider four columns for
applying the hash function. Then, fetch rows of recent entries and any matching
older entries.

4. Complete represents a complete data cleaning workload suite, including all the three
error detection techniques and update operations for fixing the errors. This workload
represents many real-world scenarios where a collection of data cleaning tasks are
performed simultaneously [14, 87, 55].

4.7.2 Validation of Cost Model

Goal: We begin by validating the cost of point reads, range scans, and write amplification
presented in Section 4.5.

Methodology: For a fixed schema and system environment (i.e., fixed c and B) the
cost of these operations depends on the query projection size and the CG configuration.
We validate the cost model using the narrow table and T = 2, as well as the wide table
with T = 10. For the narrow table, we consider six Real-Time LSM-Tree designs, in which
the CG sizes vary from 1 to 30, covering the extreme pure row and pure column layouts,
and other designs in between. For each design, we use g = 30/cg size equi-width column
groups in each level, and we set cg size to a value in {1, 2, 3, 6, 15, 30}. In each design,
the LSM-Tree has 8 levels with Level-0 in row-format. For the wide table, we consider 4
Real-Time LSM-Tree designs, with cg size values in {1, 4, 10, 100}, and 5 LSM-Tree levels.
To generate read and scan operations, we use Q2 and Q3, respectively, and we vary k from

85

1 to 30 to control the projection size. The queries are executed after the load phase (400
million entries loaded into the narrow table, and 200 million entries into the wide table)
with the OS cache cleared, and we measure the average latency. The write amplification
cost of the LSM-Tree is reflected in the background compaction process. To measure the
compaction time, we first loaded all the entries in Level-0, with compaction disabled, and
then scheduled compaction manually and measured its runtime. Compaction is completed
when no level exceeds its capacity.

Results: Figures 4.8 and 4.9 show the latency of read operations with respect to the
projection size and the number of CGs, respectively. The left figures correspond to the
narrow table and the right figures correspond to the wide table. In Figure 4.8, when the
CGs are small (i.e., similar to a column-oriented layout), latency increases linearly with
the projection size because more CGs need to be fetched from disk. However, when the
CGs are large (i.e., similar to a row-oriented layout), latency stays unchanged with the
projection size because for any projection size, all the columns are fetched. This is also
implied by the point query cost given by Equation 4.5, which is plotted in black dotted
lines for cg size=1 (top line) and for cg size=30/100 (bottom line). The empirical data in
Figure 4.8 are in-line with the cost equation.

In Figure 4.9, we vary the number of CGs while keeping the projection sizes fixed. For
wide projections (i.e., fetching complete rows), the cost increases linearly with the number
of CGs, because each CG is fetched in a separate disk I/O. However, for narrow projections
(i.e., fetching a single column value), the I/O cost stays unchanged because a single disk
I/O is enough to fetch the required column value. This is consistent with the point query
cost given by Equation 4.5, which is plotted in black dotted lines for projection size 30/100
(top line) and 1 (bottom line) in Figure 4.9.

In Figures 4.10 and 4.11, we measure the latency of scan operations with respect to the
projection size and CG size, respectively. Again, the left figures correspond to the narrow
table and the right figures correspond to the wide table. Similar to Figure 4.8, we vary the
projection sizes in Figure 4.10. For small CGs (i.e., similar to a column-oriented layout),
latency increases linearly with the projection size because more disk I/O is required to
fetch more CGs. However, for large CGs (i.e., similar to a row-oriented layout), latency
stays almost constant with projection size, because many columns are fetched in a single
disk I/O. This is consistent with the range query cost given by Equation 4.6, which is
plotted in black dotted lines for CG size 1 (top line) and 30/100 (bottom line) in Figure
4.10.

In Figure 4.11, we vary the CG size while keeping the projection sizes fixed. For wider
projection sizes, latency should stay constant with CG size, because almost all the columns

86

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20 25 30

la
te

nc
y

(m
s)

projection size

1
2

3
6

15
30

(a) T=2

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(m
s)

projection size

1 4 10 100

(b) T=10

Figure 4.8: Read operation: average latency w.r.t. projection size for different CG sizes

need to be fetched irrespective of the CG layout, hence keeping the disk I/O cost constant.
However, we see a latency decrease as we increase the CG size; this is because of the
simulated CG layout used in LASER. For large CGs, we fetch the key only once, whereas
for smaller CGs, the key is fetched along with each CG, hence increasing the latency.
The change in latency for wider projection sizes is proportional to const1/cg size+ const2
(derived from Equation 4.6), as shown by the top black dotted line in the Figure 4.11. For
smaller projections, we expect latency to increase with CG size because of the overhead
of fetching unnecessary columns. This is empirically observed in Figure 4.11 and matches
the cost given by Equation 4.6. Similar observations were made in prior work on HTAP
systems that allow configurable column groups [18, 22].

In Figure 4.12, we show that compaction time (which reflects write amplification) for
different CG sizes matches our write amplification cost. The cost given by Equation 4.4 is
shown using a black dotted line for reference. This completes the empirical validation of
the cost model described in Section 4.5, which is an important component of our design
selection algorithm in Section 4.6.

4.7.3 Performance of LASER

Goal: We show that LASER can speed up mixed workloads that change with the data
lifecycle. We compare the performance of LASER’s Real-Time LSM-Tree storage layout
against pure row-oriented, pure column-oriented, and certain fixed column-group layouts.

87

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20 25 30

la
te

nc
y

(m
s)

CGs

1 10 20 30

(a) T=2

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(m
s)

CGs

1 25 50 100

(b) T=10

Figure 4.9: Read operation: average latency w.r.t. #CGs for different projection sizes

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 5 10 15 20 25 30

la
te

nc
y

(s
ec

)

projection size

1
2

3
6

15
30

(a) T=2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(s
ec

)

projection size

1 4 10 100

(b) T=10

Figure 4.10: Scan operation: average latency w.r.t. projection size for different CG sizes

We also compare LASER with a row-store DBMS: Postgres, and a column-store DBMS:
MonetDB [54].

Methodology: We generate an HTAP workload (HW) using queries Q1 − Q5. To
emulate a data lifecycle, we continuously insert new data (Q1) at a steady rate of 10,000
insert operations per second. This ensures that entries continuously move from one level
to the next. Along with the inserts, we issue 100 updates per second, i.e., one percent of
the insert rate, via Q5, where a randomly chosen column value is updated for a recently
inserted key. This update pattern mimics updates and corrections frequently taking place
in mixed analytical and transactional processing [25]. Furthermore, we control the access
patterns throughout the data lifecycle by selecting k, v, vs, and ve for queries Q2 − Q4

such that the upper levels of the LSM-Tree are mostly accessed by point read operations

88

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 5 10 15 20 25 30

la
te

nc
y

(s
ec

)

cg-size

1 10 20 30

(a) T=2

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(s
ec

)

cg-size

1 25 50 100

(b) T=10

Figure 4.11: Scan operation: average latency w.r.t. CG sizes for different projection sizes

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30

co
m

pa
ct

io
n

tim
e

(m
in

s)

CGs

(a) T=2

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

co
m

pa
ct

io
n

tim
e

(m
in

s)

CGs

(b) T=10

Figure 4.12: Write amplification: compaction time w.r.t. # CGs

and wider projections, whereas lower levels are accessed by scan operations and narrower
projections. This allows us to generate a lifecycle-driven hybrid workload, as described in
Section 4.3.1, to stress test LASER’s Real-Time LSM-Tree.

We use two variants of Q2 for point access of recent data: HW-Q2a and HW-Q2b.
The v value in each variant is determined by a normal distribution over the time-since-
insertion values of the keys. In Figure 4.14a, we show the two distributions from which
v is selected. The mean of the first distribution is 0.98 (typically accessing data from
in-memory skiplists, Level-0, or Level-1), and 0.85 for the second distribution (typically
accessing data from Level-2 or Level-3); each distribution has a standard deviation of 0.02.
Q2a queries fetch all 30 attributes, whereas Q2b fetches columns 16-30.

For analytical operations, we use Q4, which accesses columns 21-30 for 5% of the keys,

89

 0

 200

 400

 600

 800

 1000

 1200

 1400

rocksdb

cg-size-15
cg-size-6

cg-size-3
cg-size-2

cg-size-1
postgres

monetdb
HTAP-X

LASER

To
ta

l w
or

kl
oa

d
tim

e
(m

in
s) >24hr

>24hr
>24hr

(a) Workload runtime of different designs

100
101
102
103
104
105
106
107
108

Q1 Q2a/b Q5

La
te

nc
y

(u
s)

(b) Average latency of inserts (Q1), point queries
(Q2a, Q2b), updates (Q5).

 0

 500

 1000

 1500

 2000

 2500

Q3 Q4

La
te

nc
y

(s
ec

)
rocksdb
cg-size-15
cg-size-6
cg-size-3
cg-size-2
cg-size-1
postgres
monetdb
LASER

(c) Average latency of range queries (Q3, Q4).

Figure 4.13: LASER performs the best on the HTAP workload (HW).

and Q3, which accesses columns 28-30 for 50% of the keys. Since our keys are uniformly
distributed integer values, these queries access data from all the levels, but the amount of
data scanned at level i + 1 is a factor T = 2 more than that scanned at level i. Table 4.4
summarizes the properties of these operations.

We first load 400 million entries, and then execute the workload until another 20 million
entries are inserted. Queries HW-Q2a and HW-Q2b are spread uniformly, whereas Q3 and
Q4 are executed towards the end. Queries Q2 −Q4 are issued using four concurrent client
threads, whereas a separate client thread is responsible for write operations (Q1 and Q5).

The CG configuration used by LASER for this workload is labelled D-opt (see Figure

90

(a) Q2a: mean=0.98,
Q2b: mean=0.85

L0 :< 1-30 >
L1 :< 1-30 >

L2 :< 1-15 >< 16-30 >
L3 :< 1-15 >< 16-30 >

L4 :< 1-15 >< 16-20 >< 21-30 >
L5 :< 1-15 >< 16-20 >< 21-30 >

L6 :< 1-15 >< 16-20 >< 21-27 >< 28-30 >
L7 :< 1-15 >< 16-20 >< 21-27 >< 28-30 >

(b) Design D-opt used by LASER

Figure 4.14: Read operation patterns and optimal design used in Section 4.7.3

Query Projection (k) Key (v) distribution Count

Q1 1-30 uniform 10,000/sec

Q2a 1-30 normal,0.98,0.02 500,000

Q2b 16-30 normal, 0.85,0.02 500,000

Q3 28-30 uniform, 50% of data 12

Q4 21-30 uniform, 5% of data 12

Q5 any 1 of 30 uniform, 1% of data 100/sec

Table 4.4: Summary of the HTAP workload HW

4.14b) and is obtained using the approach described in Section 4.6.3. For comparison, we
select five other designs with varying CG sizes. The design with cg size=30 corresponds to
a pure row-oriented layout, which is default RocksDB in our setting, and the design with
cg size=1 corresponds to a pure column-oriented layout. The remaining three designs cor-
respond to CG sizes that match the projections of the operations in the workload HW. The
design with cg size=15 matches the projection of Q2b, the design with cg size=3 matches
the projection of Q3, and the design with cg size=6 is partly suitable for projections of
Q3 and Q4. To test various CG layouts within reasonable time, we opted to have deeper
LSM-Trees, therefore, we set the level size ratio (T) to 2. For all the designs, the LSM-
Trees have 8 levels with Level-0 in row-format. To isolate the impact of the storage layout,
we simulate these five designs within LASER. Additionally, we executed this workload in
Postgres-9.3 (a row-store) and MonetDB 5 server v11.33.3 (a column-store) [54]. Since
Postgres and MonetDB are complete RDBMS systems, and LASER is a storage engine
with no overhead of SQL parser, and query execution, this comparison is just to give an
estimate of the performance difference due to the layouts used by LASER, Postgres, and
MonetDB.

91

Results: Figure 4.13 shows that LASER’s optimal design outperforms the other stor-
age layouts when executing the mixed workload described in Table 4.4. Figure 4.13a shows
that LASER took the least total time to execute queries Q2a, Q2b, Q3, and Q4. Designs
with cg size=1 and 2, and MonetDB did not finish within our time-limit-exceeded (TLE)
window of 24 hours. Therefore, we instead report their average latencies in Figure 4.13b
and 4.13c. In Figure 4.13b, LASER’s design has the latency close to the lowest latency
for inserts (Q1), point queries (Q2a, Q2b), and updates (Q5). The lowest latency for (Q2a,
Q2b), and (Q5) is observed for rocksdb, which is expected, as it is a pure row-store layout.
MonetDB has the highest latency, orders of magnitude slower than LASER. Insert and up-
date latencies across all the LSM-Tree designs (including LASER’s) are the same because
they all append the data to an in-memory skiplist, which is not impacted by the layout of
the disk levels. In Figure 4.13c, LASER’s latency is close to the latency of the design best
suitable for the query. For example, cg size=3 is suitable for Q3 and cg size=15 is suitable
for Q4, and LASER’s latency is close to the best latency for both of these queries. For
Q3, MonetDB performs 5x better than LASER because it stores all the data in contigu-
ous columns, making it suitable for aggregation queries. However, MonetDB performs 20x
worse than LASER for Q4. Postgres performs as well as LASER for Q4 but it performs 1.5x
worse on Q3. Since Postgres is based on B+-trees, which has very contrasting performance
characteristics from an LSM-Tree (i.e., less write-optimized, more read-optimized than an
LSM-Tree), we also compared LASER against MySQL using MyRocks storage engine [71],
which is based on LSM-Tree. We observed that MyRocks performed similar to LASER for
Q2 but performed an order of magnitude worse on queries Q3 and Q4; which is attributed
to MySQL’s row-oriented layout.

Comparison to a simulated HTAP system: Traditional HTAP systems, such as
SAP HANA [47], typically consist of a write-optimized component for inserts/updates and
point queries against recent data, and a read-optimized component for analytical queries.
To demonstrate the benefits of LASER against an ideal traditional HTAP system, we
utilize Postgres and MonetDB. That is, we extrapolate the performance of a hypothetical
HTAP system that consists of Postgres as a write-optimized component and MonetDB
as a read-optimized component. We call this system HTAP-X, and we report numbers
that represent an ideal scenario, which does not include the cost of moving data from the
row-store to the column-store component. This cost can be high if we need to persist
columnar data on disk, or relatively low if we are only keeping columnar data temporarily
in memory and then discarding the data. Even if this move happens in the ”background”,
i.e., query processing happens on the rest of the data in parallel, those background threads
could have been used for query processing, especially by the read-optimized part of the
HTAP system that will typically do large scans. In Figure 4.13a, we show results where

92

the Postgres part of HTAP-X handles Q1, Q2, and Q5, and the MonetDB part handles Q3

and Q4. The results show that LASER would perform almost 9x better than this ideal
HTAP system. The reason for the improved performance is that LASER leverages the
fundamental LSM-architecture, which is able to absorb data much faster than Postgres,
while at the same time being able to do analytical queries as fast as MonetDB due to its
hybrid layouts.

4.7.4 Speedups for data cleaning workloads

Goal: We show that LASER can speedup the data cleaning workloads described in Section
4.7.1.

Methodology: We use the four data cleaning workloads described in Section 4.7.1.
For each of the workloads we have an initial data loading phase where we load 100 million
entries into the table. After the data loading phase, we have a continuous stream of inserts
at a steady rate of 10,000 inserts per second. We execute the queries of the workloads
at every 1 million entries, i.e., at every 1 million new inserts, depending on the workload,
we generate new histograms, re-apply hash functions to construct blocks, fetch column
values for constraints and so on, and finally, read the recent 1 million entries one at a time
to detect errors. In the case of a complete workload, we also perform updates (to repair
errors) after the error detection completes. We repeat these tasks for 5 iterations, i.e., we
stop the workload after inserting 5 million entries. Similar to Section 4.7.3, we compare
the performance of LASER against Postgres and MonetDB. LASER’s design is selected
using the algorithm from Section 4.6.3. We use the LSM-Tree with T= 10 and 5 levels.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Outlier Constraint Dedup Complete

Ti
m

e
(m

in
s)

postgres monetdb LASER

Figure 4.15: LASER performs better than row-store DBMS and column-store DBMS for
data cleaning workloads

93

Results: In Figure 4.15, we show that LASER takes the least time to complete the
queries in all the workloads. Similar to Section 4.7.3 results, we observe an order of
magnitude speedup when compared to MonetDB (up to 10x speedup), and around 2x
speedup when compared to Postgres.

4.8 Other envisioned usage of LASER

In addition to speeding-up data cleaning tasks, LASER storage engine is suitable for any
workloads where the access pattern changes from row-oriented access to column-oriented
access as the data gets old. Recent HTAP survey [74] indicates that this data access
pattern is prevalent in real-time analytics applications such as content recommendation,
real-time inventory/pricing, high-frequency trading, blockchain data analytics, and IoT.

LASER in its current form is just an embedded storage engine like RocksDB. Although
its API is richer than RocksDB’s simple get and put API (LASER supports column projec-
tions), it is not capable of executing SQL queries on its own and therefore requires a SQL
parser, and query optimizer on top to handle SQL workloads. Systems such as MyRocks
[71] and CockroachDB [2] already use RocksDB as an underneath storage engine, enabling
SQL workloads on LSM-Trees, therefore we believe that LASER, which is also built on
RocksDB, can be integrated as a storage engine for lifecycle-driven SQL workloads, and
we consider this as a future work.

Limitations of LASER: As mentioned in Section 4.3.2, LASER is capable of serving
row-oriented workloads and column-oriented workloads simultaneously due to the leveled
structure of the LSM-Trees. However, this leveled structure makes read and scan operations
slightly expensive because the results have to be merged from different levels. Therefore,
for pure row-oriented or OLTP workloads, or pure column-oriented workloads performing
large scans, LASER would not be an ideal choice, when compared to a pure row-store or
a pure column-store system. We observed this performance gap when we compared the
latency of column scan operations on LASER vs MonetDB (a pure column-store system).

4.9 Related Work

The proposed idea of a Real-Time LSM-Tree lies at the intersection of LSM-Trees and
HTAP storage engines. In this section, we discuss related work in these domains.

94

LSM-Trees for key-value stores and NoSQL systems: LSM-Trees are used in
key-value stores and NoSQL systems such as LevelDB [6], RocksDB [9], Cassandra [61],
HBase [5], and AsterixDB [20]. LevelDB [6] is a simple key-value embedded storage engine
open-sourced by Google. LevelDB pioneered the partitioned leveling merge policy used in
RocksDB [9] and in our system, LASER. RocksDB [9] was developed by Facebook. It is
based on LevelDB with new features added. For example, RocksDB supports additional
merging policies, including the kOldestSmallestSeqFirst policy we use in LASER. RocksDB
also supports the merge filter API that allows users to provide custom logic to garbage-
collect obsolete entries. We use this API in LASER to support the merge of column
updates. In addition to these embedded storage engines, LSM-Trees have been used in full
database management systems: HBase [5] and Cassandra [61] are distributed NoSQL data
storage systems, AsterixDB [20] is a Big Data Management System for managing semi-
structured (e.g., JSON) data, and MyRocks [71] is one of the largest sharded RDBMS
deployed by Facebook to manage the social graph data and Facebook Messenger messages.
A recent survey [68] describes how the original LSM-Tree idea [75] has been adopted by
various industry and open-source DBMSs.

Other use of LSM-Trees: The log-structured history access method (LHAM) [72]
supports temporal workloads by attaching timestamp ranges to each sorted run and pruning
irrelevant sorted runs at query time. Furthermore, LSM-trie [92] is an LSM-Tree based
hash index for managing a large number of key-value pairs where the metadata, such as
index pages, cannot be fully cached. However, LSM-trie only supports point lookups since
its optimizations heavily depend on hashing. Finally, the LSM-based tuple compaction
framework in AsterixDB [19] leverages LSM lifecycle events (flushing and compaction)
to extract and infer schemas for semi-structured data. Similarly, we exploited LSM-Tree
properties, such as data propagation through the levels over time and compaction, in
LASER.

Improvements of LSM-Trees: Recent works have optimized various components
of LSM-Trees such as allocating space for Bloom filters [40] and tuning the compaction
strategy [41]. LSM-Trees have been criticized for their write stalls and large performance
variance due to the mismatch between in-memory writes and slow background operations.
To mitigate this, Luo et. al. [67] proposed a scheduler for concurrent compaction jobs.
Later versions of RocksDB [10] also support prefix bloom filters to optimize range queries
for certain workloads, such as scans over primary and secondary index ranges. Many
of these recent improvements are orthogonal to the design of our Real-Time LSM-Tree.
In future work, we will incorporate these improvements in LASER to further improve
performance.

HTAP systems and workload-driven storage: One of the first approaches, frac-

95

tured mirrors, simultaneously maintained one copy of the data in row-major layout for
OLTP workloads and another copy in column-major layout for OLAP workloads [80]. This
approach has been adopted by Oracle and IBM to support columnar layout as an add-on.
Although these systems achieve better ad-hoc OLAP performance than a pure row-store,
the cost of synchronizing the two replicas is high. HYRISE [50] automatically partitions
tables into column groups based on how columns are co-accessed by queries. Systems such
as SAP HANA [47], MemSQL [7], and IBM Wildfire [28] split the storage into OLTP
friendly and OLAP friendly components. Data are ingested by the OLTP friendly compo-
nent, which is write-optimized and uses a row-major layout, and are eventually moved to
the OLAP friendly component, which is read-optimized and uses a column-major layout.
Peloton [22] generalizes this idea by partitioning the data into multiple components called
tiles, with different column group layouts. In this work, we described these systems as
having a lifecycle-aware data layout, and we showed that LSM-Trees are a natural fit for a
lifecycle-aware storage engine. The general idea of workload-driven storage layout has been
adopted by several systems and across different domains such as relational data [50, 16] and
Resource Description Framework (RDF) data [21]. In the relational data setting the best
layout is decided by the optimal horizontal and vertical partitioning of the data for a given
workload, whereas in the RDF data the best layout is decided by physically clustering the
frequently co-accessed triplets [21].

96

Chapter 5

Conclusion and Future Work

In this chapter, we conclude the dissertation and discuss some promising future works.

5.1 Conclusion

As maintaining data quality has become an important task for many real-world applica-
tions, existing data cleaning solutions find it challenging to scale to large datasets without
sacrificing the quality of the output. In this dissertation, we considered scalability as a first-
class citizen for data cleaning solutions and proposed the following three principles that
can help achieve scalability without sacrificing quality: 1) a new primitive-based re-writing
of the existing algorithms that allows for efficient implementations for multiple computing
frameworks, 2) efficiently involving domain expert’s knowledge to reduce computation and
improve quality, and 3) using an adaptive data store that can transform the data layout
based on the access pattern.

Following these principles, we made three contributions in this dissertation. First, we
proposed six primitives that correspond to the data processing steps of existing discovery
algorithms for UCCs, FDs, ODs and DCs. These primitives allowed us to analyze the
algorithms in terms of their communication and computation costs, and enabled an explo-
ration of the space of possible optimizations. We demonstrated this exploration via case
studies and an empirical evaluation. In particular, our experimental results showed that
the execution plans which revisit the design decisions made in the original non-distributed
algorithms outperform the straightforward distributed plans.

97

Next, we considered the framework of restricted correlation clustering (RCC) to model
the problem of data de-duplication. The goal of RCC is to choose the clustering from a
given class of clusterings which minimizes the correlation loss. The clustering algorithm
is allowed to interact with a domain expert by asking whether two points belong to the
same or different cluster. We showed that our novel hashing based sampling procedure
requires only a bounded number of labelled samples from the domain expert to find a
clustering which is close to the best clustering in the finite class. Moreover, to attain one
labelled sample, it only makes a constant number of queries to the domain expert (with high
probability). We complement our theoretical results with an extensive empirical evaluation
on a diverse class of clustering algorithms applied on multiple real-world datasets.

Finally, we presented a Log-Structured Merge (LSM) Trees based storage engine that
can speed-up data cleaning tasks. The storage engine is built on our novel idea of Real-
Time LSM-Tree, in which different levels may be configured to store the data in different
formats, ranging from purely row-oriented to purely column-oriented. We presented a
design advisor to select an appropriate Real-Time LSM-Tree design given a representative
workload, and we implemented a proof-of-concept prototype, called LASER, on top of
the RocksDB key-value store. Our experimental results showed that for data cleaning
workloads, LASER is almost 2x faster than Postgres (a pure row-store) and an order of
magnitude faster than MonetDB (a pure column-store).

5.2 Future work

In this dissertation, we considered only some of the scalability aspects of data cleaning
workflows. However, building scalable workflows would require efforts all through the data
cleaning stack shown in Figure 1.1. In the future, we plan to investigate some new ideas and
improve upon some of our existing contributions. In particular, we consider the following
tasks to be promising directions for future work.

First, designing a cost-model driven algorithm that can automatically select the best
algorithm and the best physical execution plan for a given dataset and resources. In
Chapter 2, we showed how primitives can help in exploring the design space of different
implementations of distributed discovery algorithms. This exploration can be performed
by an algorithm that can compute the cost of different versions of the distributed discovery
algorithms for a given dataset and resources, and then select the version with least cost.

Second, employing machine learning (ML) techniques in a semi-supervised fashion to
automate data cleaning tasks. For example, we may consider using ML techniques for

98

data de-duplication: to learn a classifier, or to learn the similarity function from training
samples. However, to reduce the number of training samples required, domain experts
must be involved to either provide high quality training data, or to provide certain rules
that can speed up the training process.

Third, further improving the LSM-Tree based storage engine by incorporating various
recent improvements proposed for LSM-Trees, such as optimal bloom filter space allocation,
optimal compaction strategy, and optimal scheduling of compaction jobs.

99

References

[1] Bibliography of scientific publications. https://www13.hpi.uni-potsdam.de/fileadmin/

user_upload/fachgebiete/naumann/projekte/dude/CORA.xml.

[2] CockroachDB. https://www.cockroachlabs.com/docs/stable/.

[3] E-commerce. https://dbs.uni-leipzig.de/en/research/projects/object_matching/

fever/benchmark_datasets_for_entity_resolution.

[4] Fodor’s and zagat’s restaurant guides. http://www.cs.utexas.edu/users/ml/riddle/

data.html.

[5] HBase. https://hbase.apache.org/.

[6] LevelDB. https://github.com/google/leveldb.

[7] MemSQL. http://www.memsql.com/.

[8] Metanome. https://github.com/HPI-Information-Systems/metanome-algorithms.

[9] RocksDB. https://github.com/facebook/rocksdb.

[10] RocksDB - prefix seek. https://github.com/facebook/rocksdb/wiki/Prefix-Seek.

[11] TPCH. http://www.tpc.org/tpch/.

[12] Hybrid transaction/analytical processing will foster opportunities for dramatic business in-
novation. https://www.gartner.com/en/documents/2657815, 2014.

[13] Daniel Abadi, Peter Boncz, and Stavros Harizopoulos. The Design and Implementation of
Modern Column-Oriented Database Systems. Now Publishers Inc., Hanover, MA, USA, 2013.

[14] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad
Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting data errors: Where
are we and what needs to be done? Proc. VLDB Endow., 9(12):993–1004, August 2016.

100

https://www13.hpi.uni-potsdam.de/fileadmin/user_upload/fachgebiete/naumann/projekte/dude/CORA.xml
https://www13.hpi.uni-potsdam.de/fileadmin/user_upload/fachgebiete/naumann/projekte/dude/CORA.xml
https://www.cockroachlabs.com/docs/stable/
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://www.cs.utexas.edu/users/ml/riddle/data.html
https://hbase.apache.org/
https://github.com/google/leveldb
http://www.memsql.com/
https://github.com/HPI-Information-Systems/metanome-algorithms
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/Prefix-Seek
http://www.tpc.org/tpch/
https://www.gartner.com/en/documents/2657815

[15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data: a survey.
The VLDB Journal, 24(4):557–581, Aug 2015.

[16] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating vertical and horizontal
partitioning into automated physical database design. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’04, page 359–370,
New York, NY, USA, 2004. Association for Computing Machinery.

[17] Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering
using same-cluster queries. In Latin American Symposium on Theoretical Informatics, pages
14–27. Springer, 2018.

[18] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2o: A hands-free adaptive
store. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, page 1103–1114, New York, NY, USA, 2014. Association for Computing
Machinery.

[19] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. An lsm-based tuple com-
paction framework for apache asterixdb. Proc. VLDB Endow., 13(9):1388–1400, 2020.

[20] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak R. Borkar,
Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram Faraaz, Euge-
nia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang
Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, Jian
Wen, and Till Westmann. Asterixdb: A scalable, open source BDMS. Proc. VLDB Endow.,
7(14):1905–1916, 2014.

[21] Güneş Aluç, M. Tamer Özsu, and Khuzaima Daudjee. Building self-clustering rdf databases
using tunable-lsh. The VLDB Journal, 28(2):173–195, April 2019.

[22] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the archipelago between row-
stores and column-stores for hybrid workloads. In Fatma Özcan, Georgia Koutrika, and
Sam Madden, editors, Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
583–598. ACM, 2016.

[23] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster
queries. In Advances in neural information processing systems, pages 3216–3224, 2016.

[24] J.A. Aslam, E. Pelekhov, and D. Rus. The Star Clustering Algorithm for Information Or-
ganization, pages 1–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[25] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. Optimal column layout for
hybrid workloads. Proc. VLDB Endow., 12(13):2393–2407, September 2019.

101

[26] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004.

[27] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho, Namik Hrle,
Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, Tianchao Tim Li, Guy M. Lohman,
Konstantinos Morfonios, René Müller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vi-
jayshankar Raman, Richard Sidle, Knut Stolze, and Sandor Szabo. Business analytics in (a)
blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[28] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, René Müller, Vijayshankar Ra-
man, Richard Sidle, Matt Spilchen, Adam J. Storm, Yuanyuan Tian, Pinar Tözün, Daniel C.
Zilio, Matt Huras, Guy M. Lohman, Chandrasekaran Mohan, Fatma Özcan, and Hamid Pi-
rahesh. Evolving databases for new-gen big data applications. In CIDR, 2017.

[29] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering by
seeding. In In Proceedings of 19th International Conference on Machine Learning (ICML-
2002. Citeseer, 2002.

[30] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 59–68. ACM, 2004.

[31] Mikhail Bilenko, Raymond Mooney, William Cohen, Pradeep Ravikumar, and Stephen
Fienberg. Adaptive name matching in information integration. IEEE Intelligent Systems,
18(5):16–23, 2003.

[32] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient denial constraint discovery
with hydra. Proc. VLDB Endow., 11(3):311–323, November 2017.

[33] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[34] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. Journal of Computer and System Sciences, 60(3):630–659, 2000.

[35] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388. ACM,
2002.

[36] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. Distributed data deduplication. Proc. VLDB
Endow., 9(11):864–875, July 2016.

[37] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. Proc. VLDB
Endow., 6(13):1498–1509, August 2013.

102

[38] Munir Cochinwala, Verghese Kurien, Gail Lalk, and Dennis Shasha. Efficient data reconcil-
iation. Information Sciences, 137(1-4):1–15, 2001.

[39] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[40] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable key-value
store. In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, page 79–94, New York, NY, USA, 2017. Association for Computing Machinery.

[41] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree based
key-value stores via adaptive removal of superfluous merging. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, page 505–520, New York,
NY, USA, 2018. Association for Computing Machinery.

[42] Niv Dayan and Stratos Idreos. The log-structured merge-bush & the wacky continuum.
In ACM SIGMOD International Conference on Management of Data, 2019.

[43] Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

[44] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and
Michael Strum. Optimizing space amplification in rocksdb. In CIDR 2017, 8th Biennial
Conference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11,
2017, Online Proceedings. www.cidrdb.org, 2017.

[45] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, Jan 2007.

[46] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Duplicate record
detection: A survey. IEEE Transactions on knowledge and data engineering, 19(1):1–16,
2007.

[47] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. The sap hana database - an architecture overview. IEEE Data Eng.
Bull., 35:28–33, 03 2012.

[48] E. Garnaud, N. Hanusse, S. Maabout, and N. Novelli. Parallel mining of dependencies. In
HPCS, pages 491–498, 2014.

[49] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: Theory, practice open chal-
lenges. Proc. VLDB Endow., 5(12):2018–2019, August 2012.

103

[50] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-Mauroux,
and Samuel Madden. Hyrise: A main memory hybrid storage engine. Proc. VLDB Endow.,
4(2):105–116, November 2010.

[51] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J. Miller. Framework for eval-
uating clustering algorithms in duplicate detection. Proc. VLDB Endow., 2(1):1282–1293,
August 2009.

[52] Mauricio A Hernández and Salvatore J Stolfo. The merge/purge problem for large databases.
In ACM Sigmod Record, volume 24, pages 127–138. ACM, 1995.

[53] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: an efficient
algorithm for discovering functional and approximate dependencies. Comput. J., 42(2):100–
111, 1999.

[54] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Mar-
tin L. Kersten. Monetdb: Two decades of research in column-oriented database architectures.
IEEE Data Engineering Bulletin, 35(1):40–45, 2012.

[55] I. F. Ilyas and X. Chu. Trends in Cleaning Relational Data: Consistency and Deduplication.
now, 2015.

[56] Ihab F. Ilyas and Xu Chu. Data Cleaning. Association for Computing Machinery, New York,
NY, USA, 2019.

[57] Matthew A Jaro. UNIMATCH, a Record Linkage System: Users Manual. Bureau of the
Census, 1980.

[58] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised graph
clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

[59] S. Kushagra, H. Saxena, I. F. Ilyas, and S. Ben-David. A semi-supervised framework of
clustering selection for de-duplication. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 208–219, April 2019.

[60] Shrinu Kushagra, Shai Ben-David, and Ihab Ilyas. Semi-supervised clustering for dedupli-
cation. In AISTATS, 2019.

[61] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[62] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver, Lyric
Doshi, and Chuck Bear. The vertica analytic database: C-store 7 years later. Proc. VLDB
Endow., 5(12):1790–1801, August 2012.

104

[63] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[64] Weibang Li, Zhanhuai Li, Qun Chen, Tao Jiang, and Hailong Liu. Discovering functional
dependencies in vertically distributed big data. In WISE 2015, pages 199–207.

[65] Weibang Li, Zhanhuai Li, Qun Chen, Tao Jiang, and Zhilei Yin. Discovering approximate
functional dependencies from distributed big data. In Feifei Li, Kyuseok Shim, Kai Zheng,
and Guanfeng Liu, editors, Web Technologies and Applications, pages 289–301, Cham, 2016.
Springer International Publishing.

[66] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from data—
a review. IEEE Trans. on Knowl. and Data Eng., 24(2):251–264, February 2012.

[67] Chen Luo and Michael J. Carey. On performance stability in lsm-based storage systems.
Proc. VLDB Endow., 13(4):449–462, 2019.

[68] Chen Luo and Michael J. Carey. Lsm-based storage techniques: a survey. VLDB J.,
29(1):393–418, 2020.

[69] Oded Maimon and Abel Browarnik. Nhecd-nano health and environmental commented
database. In Data mining and knowledge discovery handbook, pages 1221–1241. Springer,
2009.

[70] S.A.M. Makki and George Havas. Distributed algorithms for depth-first search. Information
Processing Letters, 60(1):7 – 12, 1996.

[71] Yoshinori Matsunobu, Siying Dong, and Herman Lee. Myrocks: Lsm-tree database storage
engine serving facebook’s social graph. Proc. VLDB Endow., 13(12):3217–3230, August 2020.

[72] Peter Muth, Patrick Neil, Achim Pick, and Gerhard Weikum. The lham log-structured
history data access method. The VLDB Journal, v.8, 199-221 (2000), 8, 02 2000.

[73] Felix Naumann and Melanie Herschel. An introduction to duplicate detection. Synthesis
Lectures on Data Management, 2(1):1–87, 2010.

[74] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. Hybrid transactional/analytical processing:
A survey. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD ’17, page 1771–1775, New York, NY, USA, 2017. Association for Computing
Machinery.

[75] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured
merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.

105

[76] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery:
An experimental evaluation of seven algorithms. Proc. VLDB Endow., 8(10):1082–1093,
June 2015.

[77] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional dependency
discovery. In SIGMOD, pages 821–833, 2016.

[78] Thorsten Papenbrock and Felix Naumann. A hybrid approach for efficient unique column
combination discovery. In Datenbanksysteme für Business, Technologie und Web (BTW
2017), pages 195–204. Gesellschaft für Informatik, Bonn, 2017.

[79] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In In EMNLP, 2014.

[80] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A case for fractured mirrors. In
Proceedings of the 28th International Conference on Very Large Data Bases, VLDB ’02, page
430–441. VLDB Endowment, 2002.

[81] John H. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229 – 234, 1985.

[82] Philipp Rösch, Lars Dannecker, Franz Färber, and Gregor Hackenbroich. A storage advisor
for hybrid-store databases. Proc. VLDB Endow., 5(12):1748–1758, August 2012.

[83] Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F. Ilyas. Real-time LSM-trees for
HTAP workloads, 2021.

[84] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. Distributed discovery of functional depen-
dencies. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019, pages 1590–1593. IEEE, 2019.

[85] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. Distributed implementations of depen-
dency discovery algorithms. PVLDB, 12(11):1624–1636, 2019.

[86] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In MSST’10.

[87] Michael Stonebraker and Ihab F. Ilyas. Data integration: The current status and the way
forward. IEEE Data Eng. Bull., 41(2):3–9, 2018.

[88] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex
Rasin, Nga Tran, and Stan Zdonik. C-store: A column-oriented dbms. In Proceedings of the

106

31st International Conference on Very Large Data Bases, VLDB ’05, page 553–564. VLDB
Endowment, 2005.

[89] Nikki Swartz. Gartner warns firms of ’dirty data’. Information Management, 41(3):6, 2007.

[90] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivastava.
Effective and complete discovery of order dependencies via set-based axiomatization. Proc.
VLDB Endow., 10(7):721–732, March 2017.

[91] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht,
2000.

[92] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An lsm-tree-based ultra-
large key-value store for small data. In Proceedings of the 2015 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’15, page 71–82, USA, 2015. USENIX
Association.

[93] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation instances - extended
abstract. In DaWaK 2001, pages 101–110.

[94] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In HotCloud’10.

107

	List of Tables
	List of Figures
	Introduction
	Scalability of data cleaning workflows
	Trade-off between scalability and quality
	Importance of a Data Store
	Dissertation's hypothesis

	Contributions and outline

	Distributed Dependency Discovery
	Prior Work
	Preliminaries
	Dependencies
	Data structures

	Algorithms
	Primitives
	Case study 1: TANE
	LDP 1: Original TANE
	LDP2: Modified TANE

	Case study 2: FastFDs
	LDP1: Original FastFDs
	LDP2: Modified FastFDs

	Case study 3: HyFD
	LDP1: Original HyFD
	LDP2: Modified HyFD

	Experiments
	Experimental Setup
	Comparison of LPD1s and LPD2s
	Comparison of smPDPs
	Scalability
	Experiments with different cluster settings
	Distributed vs. Single-Node Runtimes
	Experiments on Different Datasets

	Clustering selection for de-duplication
	Preliminaries
	Restricted Correlation Clustering (RCC)
	Relation to practical applications
	Solution strategy

	Sampling for Restricted Correlation Clustering
	Sampling positive pairs

	Evaluation
	Evaluation setup
	Clustering selection
	Effect of oracle mistakes
	Impact of sample size

	Related Work

	LSM-Tree storage engine for data cleaning
	Lifecycle-aware access pattern in data cleaning
	Overview of LSM-Trees
	Design
	Cost Analysis

	Real-Time LSM-Tree Design
	Definitions
	Design Overview

	LASER Storage Engine
	Column Group Representation
	Write Operations
	Read Operations
	Real-Time LSM-Tree Compaction

	Cost Analysis of LASER
	Design Selection
	Input
	Optimization Problem
	Solution

	Evaluation of LASER
	Workloads
	Validation of Cost Model
	Performance of LASER
	Speedups for data cleaning workloads

	Other envisioned usage of LASER
	Related Work

	Conclusion and Future Work
	Conclusion
	Future work

	References

