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Abstract

Einstein’s general relativity is based on a tensorial, nonlinear equation for the spacetime
metric. The gravitational interaction is however so weak that, in most circumstances, the
equations can be solved perturbatively. This is true in early-time cosmology, for the inspiral
of binary systems, and even after black holes merge, releasing the equivalent of multiple
solar masses in gravitational waves. In this thesis, we analyze a range of problems that can
be addressed assuming a background gravitational field and small fluctuations over it. We
will progress from problems where the perturbative hypothesis can be tested and holds,
to ones that begin to show nonlinear effects, ending with an application of perturbation
theory to quantum gravity, where it is only a working hypothesis.

We first analyze the dynamics of black hole binaries immersed in a dense gas environ-
ment or interacting with a stellar companion. For binaries in a dense environment, we
study the effect of accretion and dynamical friction on the gravitational wave emission.
We derive the modification of the gravitational wave phase in the assumption of small
accretion rates, and assess whether future gravitational wave observatories could detect
this effect. For black holes in a binary with a white dwarf, we identify new evolutionary
relations and propose a method to infer the black hole and white dwarf masses and their
luminosity distance from the gravitational wave signal alone.

Next, we study how isolated black holes react to perturbations, in the simplified setting
of spherical symmetry and negative cosmological constant. We show that modes belonging
to the linear spectrum can be excited nonlinearly. We further find that nonlinear effects
can change the black hole mass at percent level, and that this effect can be explained by
the flux of characteristic excitations through the black hole horizon.

Finally, we propose a new definition of the semiclassical Einstein equations for cos-
mological spacetimes. We propose that the source on the right hand side of the Einstein
equations could be the amount of stress-energy above the instantaneous ground state. In
this more speculative application, the linear order semiclassical approximation is not guar-
anteed to hold. If our hypothesis were confirmed, however, the vacuum stress-energy above
the instantaneous ground state would not renormalize the cosmological constant, hinting
at a resolution of the longstanding problem connected to its observed value.
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Chapter 1

Introduction: the frontiers of gravity

1.1 Classical gravity

We live in a great era for gravitational physics. Observations of the cosmos and its com-
ponents are being made over an incredible range of scales. We are now sensitive to scales
close to the cosmological horizon, through the cosmic microwave background (Planck [20],
near-future missions CMB-S4 [5], the Simons Observatory [18]), and through observations
of the large scale structure, gravitational lensing and baryon acoustic oscillations (Sloan
Digital Sky Surveys [22] and near-future Euclid [25], Rubin Observatory [132], DESI [81]
and Nancy Grace Roman Space Telescope, formerly WFIRST [218]). We are also more
sensitive to tensor cosmological perturbations (or the primordial gravitational wave back-
ground) than ever before, thanks to the successors of BICEP [16], pulsar timing [29, 139, 92]
and other planned gravitational wave detectors. On smaller scales, current observations
are probing black hole horizons through the gravitational wave emission of merging black
holes [9], as well as the behavior of matter in the vicinity of horizons – by the tracking
of stellar orbits (GRAVITY [15, 14]) or the observation of accretion disks emission (Event
Horizon Telescope [104]).

For the first time in human history, we are probing the Universe not only through elec-
tromagnetic radiation, but through gravity waves themselves. This was the result of the
decades-long experimental, numerical and theoretical effort of the gravitational-wave com-
munity. LIGO and VIRGO (to be soon joined by KAGRA [82]) are now detecting tens of
black hole binary coalescences at every observing run, with 39 events detected in the latest
one [11]; see Fig. 1.1. Current gravitational-wave detectors are sensitive to signals with fre-
quencies falling in the ∼ 10–103 Hz range, corresponding to the merger frequencies of black
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Figure 1.1: Total number of gravitational wave detections made by the LIGO-Virgo
Collaboration as a function fo the effective volume-time (VT) during which the network
was sensitive to (binary neutron star) coalescences [11].

holes with total mass 10–103M�. In the next one to two decades, the sensitivity in this
frequency range will be improved with two proposed detectors, the Einstein Telescope [165]
and the Cosmic Explorer [206]. In addition, space-borne detectors such as the Laser Inter-
ferometer Space Antenna (LISA) [31], DECIGO [137], TianQin [176], together with pulsar
timing arrays (SKA [134] and IPTA [128]), will probe brand new frequencies. These new
observatories will detect, at frequencies below 1 Hz and as low as nHz, new classes of grav-
itational wave sources: massive black hole binaries, extreme-mass-ratio inspirals, galactic
binaries containing one or two stars, and (stochastic) gravitational wave backgrounds. In
the dawning era of gravitational-wave astronomy, gravitational-wave observations will be
able to probe the structure, evolution, and composition of the Universe. Multimessenger
(i.e., electromagnetic and gravitational wave) observations, moreover, promise to be even
stronger probes of the Universe than the sum of the two parts.

The observations of the past ten years paint a picture of the Universe that is simpler
than we could have, in some sense, hoped for. These observations have put stringent
bounds on the presence of primordial tensor modes and primordial non-Gaussianities, as
well as modifications of gravity at large and small scales. Most recently, gravitational-wave
observations have bounded several possible alternatives to general relativity by constrain-
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Figure 1.2: Sensitivity of present and future gravitational-wave detectors and the charac-
teristic strain of their most important sources [185, 1].

ing deviations in the inspiral, merger and ringdown signals from compact binary coales-
cences [9, 7, 13]. As physicists, we had hoped that inconsistencies between the predictions
of our standard theories and observations would point us to resolutions of crucial prob-
lems related to gravity: the nature of dark matter and dark energy, the beginning of the
Universe, and the quantum completion of general relativity. But so far, no such inconsis-
tencies have emerged. The reported tension in the value of the Hubble constant inferred
from early and late Universe measurements [229] is still (allegedly) subject to systematic
uncertainties [100]. The resolution or confirmation of this tension might need to wait for
gravitational-wave standard sirens.

On the one hand, the simplicity of the picture emerging from recent observations implies
that, if physics beyond our current models is to be discovered, it will require further effort.
For gravitational wave observations, constraining new physics might require us to model
and independently constrain complicated ordinary-matter and nonlinear effects. This will
challenge our predictive abilities and require us to construct more accurate analytical and

3



numerical models to describe matter effects, extreme mass ratios, eccentric binaries and
nonlinearities. In this direction, effort is being put in refining existing analytical formalisms
to describe the coalescence of compact objects: expansions where velocities are assumed to
be small compared to the speed of light (post-Newtonian [102]) and fields are assumed to
be weak (post-Minkowskian [44, 45] and -Newtonian); and the self force program, where
the mass ratio is used as the small expansion parameter [203]. A promising new approach
is based on scattering amplitudes techniques, and is finding increasing applications in
gravitational wave calculations (e.g., [231]). Numerical relativity played a crucial role in the
first detection of gravitational waves, and continues to push its frontiers towards eccentric,
precessing and unequal mass binaries, as well as theories beyond general relativity [54, 67].

Besides describing known effects with higher accuracy, discovering new physics might
require thinking outside the box, and identifying effects (and causes) that have been so
far overlooked. On the other hand, the simplicity of the observed Universe could be seen
as a clue, rather than a curse. Such simplicity might indicate, for example, that the
application of a few fundamental principles of quantum mechanics and general relativity
could explain the beginning of the universe and its current accelerated expansion, without
the introduction of additional degrees of freedom.

Despite their simplicity, current observations not only exclude exotic gravitational
scenarios, but also provide a wealth of information on the workings of the Universe.
Gravitational-wave observations in the past five years have identified the sources producing
gamma-ray bursts in the merger of binary neutron stars [6, 184, 115], discovered an envi-
ronment where r-process nucleosynthesis occurs [199], discovered black holes with masses
missed by X-ray observations and discovered compact, stellar-mass black hole binaries.
These observations have also helped to constrain the neutron star equation of state [103]
and the properties of the population of compact binaries [83].

Future gravitational-wave detectors will address more key questions in astrophysics and
cosmology: how (and if) super-massive black holes merge; how (and if) different classes of
binaries evolve into compact orbits; what is the internal structure of neutron stars and their
merger products; what surrounds super-massive black holes at the center of galaxies; how
massive black holes grow in mass with their host galaxies. Future detections will also probe
further the distribution of matter in our Galaxy and the Universe, the nature of dark mat-
ter and the expansion of the Universe. A particularly promising avenue is the possibility
of characterizing dark matter through gravitational-wave observations. In some settings,
this can rely solely on the demonstrated fact that dark matter gravitates, independently
of its other interactions with ordinary matter. Gravitational-wave observations could, for
instance, probe the existence of primordial black holes, detect dark-matter-induced envi-
ronmental effects leading to the dephasing of the signal or the spin-down of black holes,
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probe the existence of exotic compact objects, and that of stochastic backgrounds associ-
ated with nonperturbative phenomena (phase transitions, topological defects, inflationary
pre- or re-heating, extra dimensions) [43]. Thinking about the new observatories under
construction, physicists and astrophysicists alike certainly hold on to one thought: “It
would be unprecedented in the history of astronomy if the gravitational radiation windows
being opened did not reveal new, enigmatic sources” [88], like the heavy black hole binaries
already observed.

1.2 Quantum gravity

Fully quantum effects of gravity are expected to only become relevant at very high energies –
or small scales, such as inside a black hole or at the Big Bang – and can be safely neglected
in interpreting many of the observations mentioned so far. However, some aspects of
quantum gravity in the classical limit can be important for the description of two of the
targets of gravitational-wave and cosmological observations: black hole horizons and the
accelerated expansion of the Universe. These effects usually fall in the region of validity of
semiclassical gravity, i.e., leading (first) order in an expansion in Planck’s constant.

The idea that black holes could hold a key to the interpretation of quantum and semi-
classical gravity has been around since the singularity theorems by Penrose and Hawking.
These theorems showed the inevitability of a breakdown of the classical theory beyond
black hole horizons and at very early time in cosmology. The discovery of the Hawking
radiation mechanism further strengthened this connection. Nowadays, the related informa-
tion paradox has become a fundamental puzzle whose resolution is a basic test for theories
of quantum gravity. LIGO and Virgo’s detections of gravitational waves from a variety
of sources has also revived the hope that quantum or semiclassical effects could be de-
tected or constrained with data. There are suggestions that quantum effects at the black
hole horizon (e.g., firewalls [24]) or the quantization of the black hole area [38, 39] could
produce observable effects in the gravitational wave emission of black hole binaries. A
train of echoes is predicted to follow the merger signal of these binaries, as modes that do
not satisfy the quantization condition are reflected non-classically at the black hole hori-
zon [110, 66]. Under some assumptions on the discretization unit for the black hole mass
and the properties of the quantized spectrum, horizons would absorb and emit radiation
in the 102–103 Hz range, accessible to ground-based detectors [21].

The accelerated expansion of the Universe, first detected with supernovae observa-
tions [207, 197] and confirmed by several other probes, is so far consistent with a constant
dark energy component (for which the pressure is equal to minus the energy density) or,
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equivalently, a cosmological constant introduced in the left-hand side of the Einstein equa-
tions. The most recent Planck analysis sets the observed value of the dark energy denstiy
in a ΛCDM Universe to ρΛ = 7.2583 × 10−121M4

Pl [20]. Near future observations will im-
prove the current measurement of the dark energy density, and put stronger constraints
on the equation of state. Long before precision measurements, however, the cosmological
constant was considered a natural element of a general relativistic theory of gravity, fully
consistent with the symmetries of Einstein’s theory. In a quantum field theory perspective,
it was also natural to conclude that the vacuum energies of matter fields would gravitate,
and contribute to the energy density of the Universe as a cosmological constant. The ob-
served value of this constant, however, is many orders of magnitude smaller than what any
quantum field theory estimate would suggest.

The standard argument showing this discrepancy is rather naive, and does not respect
Lorentz invariance in flat spacetime [144]. The argument goes as follows: the calculation
of the vacuum energy density of, e.g., a scalar field, involves an integral over momenta
that diverges in the ultraviolet. A cut-off in momentum space is therefore introduced
and set to the energy scale at which other degrees of freedom may come into play, i.e.,
the Planck scale. One then finds that the vacuum energy density is proportional to the
fourth power of the cut-off scale, or ρΛ ∼ M4

Pl ∼ 1076 GeV4 (see, e.g., [72, 236]). Cut-off
regularization, however, does not respect the assumed symmetry of the spacetime in this
calculation (a Minkowski metric), and the resulting stress energy tensor is not proportional
to the metric, as would be required to interpret the result in terms of a cosmological con-
stant. When using a covariant regularization scheme, such as dimensional or Pauli-Villars
regularization, the discrepancy between the predicted and observed value of the cosmo-
logical constant is reduced and acquires a logarithmic dependence on the renormalization
scale. The vacuum energy density of electrons alone is then found to be proportional to
ρΛ ∼ −m4

e log(m2
e/µ

2) ∼ −10−14 GeV4, where µ is an arbitrary renormalization scale. Un-
fortunately, prediction and observation are still separated by tens of orders of magnitude,
and even a sign. This is because the negative contribution of fermions dominates over the
one of bosons in the Standard Model. This brief discussion should serve to prove that the
cosmological constant problem is challenging in its very definition, with wildly different
estimates still appearing in the literature. The modern cosmological constant problem is
usually phrased in terms of technical naturalness, by noting that the cosmological constant
does not remain small as we extend our effective field theory to higher energies and include
more massive degrees of freedom [61].

The cosmological constant problem has continued to challenge our understanding of
quantum field theory and semiclassical gravity for the past fifty years. For this reason,
Hollands and Wald call for caution over the cosmological constant problem, and suggest
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that attention should rather be paid to the consistent formulation of quantum field theory
on curved spacetime [129]. At the moment, the physics community has not agreed on
a quantum theory of gravity, or produced one that could consistently address either the
semiclassical approximation or the cosmological constant problem from first principles. All
existing approaches to quantum gravity, from the ones inspired by quantum field theory,
to the ones led by the geometrical interpretation of Einstein’s theory, have attempted
to tackle this problem with little success. String theory seems to predict a multitude of
ways to realize a spacetime with accelerated expansion. A recent series of “swampland”
conjectures could narrow down these “quintessence” models and explain the observed dark
energy. These conjectures, however, do not currently stand on solid ground, and might
be already in tension with cosmological data [23]. In some sense, the development of
theoretical predictions around the cosmological constant remains far behind the advances
in cosmological observations.

1.3 Summary and outline

Gravitational physics is deeply connected, per its fundamental nature, to the most pressing
questions in physics, and to many traditionally distinct research areas. This thesis, as a re-
sult, embraces both observations and theoretical modeling, and develops at the intersection
of astrophysics, gravitational-wave astronomy and cosmology.

We start by discussing the connection between gravitational wave sources and their
astrophysical environments. Gas-rich environments, such as active galactic nuclei (AGNs),
can affect the evolution of black hole binaries and their gravitational wave signal. In
this thesis, we focus on the effect of two processes, namely mass accretion and dynam-
ical friction. We describe their effect on the binary evolution (at the Newtonian level)
and their observational consequences, concentrating on the gravitational wave dephasing.
We explore in detail the detectability of these effects by LISA, finding favorable odds for
both stellar-mass and intermediate-mass black hole binaries. However, the modification of
the gravitational-wave phase induced by environmental effects is not completely unique to
them. Distinct environmental effects and modifications of gravity can be essentially degen-
erate, especially if the effect is at the threshold of detectability. It is therefore crucial to
complement gravitational-wave observations with electromagnetic follow-ups, which might
characterize the environment of the binary and detect specific electromagnetic signatures.
We found that this will be possible with observatories scheduled to come online before or
at the same time as LISA, such as the X-ray telescope Athena [178] and the radio telescope
SKA [3].
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While the effect of matter in the environment is weak in most black hole binaries in
compact orbits, matter within the binary can be a primary driver of the dynamics even
at short separations. This is the case, for instance, when a black hole is in a binary with
a white dwarf, and the binary is sufficiently close to allow for mass exchange between
the companions. The gravitational-wave frequency evolution of the binary is then funda-
mentally affected by mass transfer, and this will clearly be detectable with LISA. In this
thesis, we make important steps in the modeling of the gravitational wave signal of white
dwarf–black hole binaries. Our main result is the identification of a new relation for the
evolutionary tracks followed by this class of binaries. This can be used as a new obser-
vational tool, which will allow for the inference of the masses and luminosity distances of
white dwarf–black hole binaries.

Astrophysical phenomena in the inspiral phase are only one of the modeling challenges
facing gravitational-wave astronomy. The ringdown, the gravitational-wave signal imme-
diately following a binary merger, has recently presented us with observational challenges
that have nothing to do with matter effects, and everything to do with the properties of
the Einstein equations. The latter being complicated, nonlinear tensorial equations, it was
suspected that linear black hole perturbation theory would fail for a few dynamical times
after a remnant black hole is formed in a merger. The analysis of state-of-the-art numeri-
cal simulations has revealed that this might not be the case, or that nonlinearities might
not take the form we expected. While the implications of these analyses are still being de-
bated, in this thesis we attempt to characterize nonlinearities by performing “experiments”
on a simplified black hole system. Our choice of testing ground is a scalar field-black hole
system in spherically symmetry and with a negative cosmological constant. The scalar
field allows to study interesting dynamics (absent in pure gravity in spherical symmetry),
while the anti de Sitter (AdS) asymptotics (with reflective boundary conditions) can boost
nonlinear behavior, because of the absence of dissipation. In this system, we can set the
initial conditions for the scalar field to match a linear mode configuration. Thanks to the
orthogonality of the linear modes, we can easily identify extra modes in the scalar ringdown
as having been generated nonlinearly. Our main result is that nonlinearities excite modes
within the linear spectrum, rather than producing completely new features. This is an
important step in the understanding of ringdown nonlinearities, although much remains to
be done.

Gravitational physics, despite its nonlinear features, is fairly well understood at the
classical level. A much bigger challenge is revealed whenever we try to incorporate elements
of quantum mechanics into general relativity. The semiclassical approximation for gravity
is the final topic of this thesis. We propose a minimal modification of the standard approach
to semiclassical gravity in a cosmological setting, and study its implications with a focus on
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the cosmological constant problem. The proposal consists in a redefinition of the quantum
contribution to the right hand side of the Einstein equation, i.e., a redefinition of the
expectation value of the stress energy tensor of the matter fields. We find that our proposal,
within its assumptions and limitations (free theories on a Friedman-Robertson-Walker
background spacetime), indicates a possible path to the resolution of the decades-long
conundrum surrounding the value and renormalization of the cosmological constant.

In Chapter 2 we give a brief summary of astrophysical phenomena potentially relevant
to gravitational-wave sources containing a black hole. We then present our results on mass
accretion and dynamical friction in black hole binaries, and on mass transfer in white-dwarf
black hole binaries.

In Chapter 3 we summarize the status of the nonlinearity problem in the black hole
ringdown. We then describe our set up and present the analysis of numerical simulations.
We conclude with the calculation of the back-reaction of scalar perturbations onto the
black hole mass, and discuss the potential steps we could take in the future to push further
our understanding of nonlinearities in more realistic systems.

In Chapter 4, we begin by summarizing the standard semiclassical approximation in
gravity, and the present status of the cosmological constant problem. We describe our
proposal for a renormalized stress-energy tensor, clearly stating the assumptions made
and its implications for the renormalization of the cosmological constant. We conclude by
providing a possible pathway to overcome our simplifying assumptions.

In this thesis, we use the metric signature (−,+,+,+) and natural units, G = c = 1
unless stated otherwise.

9



Chapter 2

Astrophysical environments

2.1 Black holes in astrophysical environments

The gravitational wave signal from a binary containing a stellar mass or intermediate mass
black hole (BH) is affected by matter effects if

• the binary companion is not a black hole but a star (broadly defined to include non-
standard objects such as boson stars [214]). Examples most relevant to gravitational-
wave (GW) observations are neutron star–black hole binaries [111] and white dwarf–
black hole binaries; or

• the binary is immersed in a matter-rich environment, such as an active galactic
nucleus (AGN) [224] or a dark matter over-density (spike, whose existence is however
debated) [99]. Black hole binaries may form preferentially in the gas-rich nuclear
regions surrounding AGNs [175] – as a result, e.g., of third body interactions with
the central black hole or fragmentation/instabilities of the AGN accretion disk.

Supermassive black holes at the center of merging galaxies or extreme mass-ratio in-
spirals (EMRIs) would deserve a separate treatment, which is beyond the scope of this
Chapter. Here we will focus on stellar mass and intermediate mass black holes.

There is currently little evidence that the stellar mass black holes observed by gravitational-
wave detectors live in gas-rich environments. The only exception is GW190521, the most
massive compact binary merger observed by the LIGO/Virgo Collaboration to date, with
progenitor black-hole masses of 85+21

−14M� and 66+17
−18M� [10, 12]. Remarkably, the Zwicky

10



Transient Facility observed an optical flare (ZTF19abanrhr), interpreted as coming from
the kicked GW190521 merger remnant moving in an AGN disk [118]. The flare occurred
∼ 34 days after GW190521 (the delay being ascribed to the remnant’s recoil) in AGN
J124942.3+344929 at redshift z = 0.438. If confirmed, this would be the first electro-
magnetic counterpart to a BH coalescence. Unfortunately, evidence in support of this
association is not sufficiently strong to make this claim [30].

When black holes do inhabit a gas-rich environment, or posses a stellar companion,
environmental/matter effects can manifest in several forms. We list a few of them below:

• mass accretion, either from the surrounding matter or from the binary companion.
Matter accreted can be ordinary or exotic/dark;

• tidal interactions within the binary;

• dynamical friction, planetary migration (the effect of differential gas torques in an
accretion disk) or other forms of gravitational pull exerted by the surrounding matter;

• electromagnetic field effects (magnetic fields, electric charge, or even superradiant
growth of photons acquiring mass in a plasma [85], an effect still being debated [48,
65]).

For a comprehensive review, see [34]. Environmental effects can also depend on the presence
of a third (or more) body, as is the case for

• Kozai-Lidov resonances [155, 145], which can induce eccentricity in the binary and
leave a dynamical imprint on the gravitational wave signal;

• Doppler shifts, when the binary orbits around a third body, causing its distance from
the detector to vary;

• gravitational lensing, which could produce multiple images and also affect the single
gravitational wave signal [105];

• Shapiro delay, and other relativistic effects such as spin-orbit and spin-spin cou-
plings [241, 106].

Most of these effects are not relevant (or only marginally, for instance in the case of
gravitational lensing) to current gravitational wave detections made by the LIGO-Virgo
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Collaboration. Some effects will however be relevant at lower gravitational wave frequen-
cies, when the binary components are further apart and their gravitational attraction will
not be necessarily the dominant dynamical drive. Even at lower gravitational wave fre-
quencies, most of these effects will only be relevant for a subset of events: those located in
a sufficiently dense environment, on a sufficiently tight orbit around a third body, or those
events equipped with a stellar member in the binary [34, 64].

Matter effects, if detected, could provide information on the environment where the
binary formed and identify the binary as belonging to a specific population (e.g., AGN
binaries [221, 124]). They can also narrow down the search for electromagnetic counter-
parts, suggesting, e.g., to cross-correlate the gravitational wave localization with AGN
catalogues. However, matter effects could also obstacle tests of gravity at low gravitational
wave frequencies, where signals could be modified in a similar way by, e.g., a time-varying
Newton’s constant or a vacuum dipole emission [36, 73, 117].

In this Chapter, we describe a range of matter effects, their consequences on the gravi-
tational wave signal and their observability by future observatory LISA. Matter accretion
from the surroundings of stellar origin and intermediate mass black hole binaries (SOBHB
and IMBHB, respectively) is the topic of Section 2.2, while Section 2.3 briefly discusses
analogous results related to dynamical friction. SOBHBs will be first observed in the LISA
∼ mHz band, and will then disappear for weeks/months before entering the & 1 Hz band
of ground detectors, where they merge [215]. Despite this frequency gap, piercing together
the LISA low-frequency regime and the terrestrial high-frequency merger will allow for
effectively observing these systems for 105–106 GW cycles. Therefore, even small inac-
curacies in modeling the GW phase evolution will bias the estimation of the parameters
(and particularly the merger time) or even prevent detection by LISA. IMBHBs might be
detected by LISA for the first time for a whole range of total masses and mass ratios, with
the lighter binaries spending more time in band. While the existence of intermediate-mass
black holes has not been confirmed yet, several candidates exist (see, e.g., Ref. [179] for a
review), and they might also provide seeds for the growth of the supermassive black holes
that are ubiquitously observed in the local universe (see, e.g., [179, 150]). While their
formation mechanism is unknown, proposed scenarios include direct collapse of massive
first-generation, low-metallicity Population III stars [163, 210], runaway mergers of mas-
sive main sequence stars in dense stellar clusters [180, 168]; accretion of residual gas onto
stellar-origin black holes [154]; and chemically homogeneous evolution [169].

Both SOBHBs and IMBHBs offer the potential to constrain low-frequency modifications
of the phase evolution, if the latter are included in the GW templates used for the analysis
in the LISA band. The results of Sections 2.2 and 2.3 extend the work of Barausse,
Cardoso and Pani [34] by computing the leading order GW phase correction for binaries
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with comparable masses, and better estimating the detectability of these effects with Fisher
matrix analyses and population estimates.

Section 2.4 also deals with mass accretion onto a black hole but, this time, the mass is
being transferred within the binary rather than from the surrounding environment. The
binaries we have in mind, white dwarf–black hole (WDBH) systems, have received little
attention compared to other classes of galactic binaries (see however [227]). Population
studies predict that tens of thousand of mass-transferring WDBHs could form in the Milky
Way (see, e.g., [131], [242]), but the rates are still uncertain by more than an order of
magnitude. The expectation is that binaries containing a black hole will be subdominant
in the range of frequencies relevant for LISA (0.1− 1 mHz, see, e.g., [188]). In particular,
although Breivik et al. [56] suggest that LISA might not see any detached WDBHs in the
Galaxy, Kremer et al. [147] find that a few events could come from systems formed through
binary interactions in Galactic globular clusters. Overall, these sources are often discarded
in BH population synthesis simulations (e.g., [148]) and further investigations are needed
to predict the rate of their mass-transferring phase.

These systems are particularly exciting because, as we will show in Section 2.4, LISA
could be the first observatory to confirm their existence – or at the very least, provide a
complementary investigation of this elusive population. There are no confirmed observa-
tions of WDBH binaries from electromagnetic surveys, although these binaries, like other
mass-transferring systems, are expected to emit across a broad spectrum and have even
been suggested to produce gamma-ray bursts [95]. The X-ray binary X-9, in the glob-
ular cluster 47 Tucanae, might host a white dwarf (WD) and a BH ([181], [225], [78]),
but the system is also consistent with a neutron star accretor. Other candidates include
XMMUJ122939.7 + 075333 in a globular cluster of the Virgo Galaxy NGC 4472 [161].

In Section 2.4, we present a semi-analytical model for mass-transferring white dwarf–
black hole binaries and derive a new relation for their evolutionary tracks. We use the latter
to show that LISA observations could infer the binary masses and luminosity distance,
something not possible without the new evolutionary relation or for other galactic binaries.

2.2 Mass accretion from the surrounding gas

2.2.1 Accretion in the gravitational waveform

An accreting binary can be described by a Hamiltonian H(q, p), where the masses m1, m2

vary adiabatically, dmi/dt � mi
ω
2π

. As shown for instance in [149] and [217], the action
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variables Iq =
∮
pdq/(2π) are adiabatic invariants. To see this, consider a Hamiltonian

H(q, p, λ) which is a function of an adiabatically varying parameter λ. The energy will
then vary with time according to

dE

dt
=
∂H

∂t
=
∂H

∂λ

dλ

dt
. (2.1)

Averaging over a period, 〈x〉 = 1
T

∫ T
0
x dt, and using the fact that over a period λ varies

slowly, the equation above becomes

〈dE
dt
〉 = 〈∂H

∂λ
〉dλ
dt
. (2.2)

We can use dq
dt

= ∂H
∂p

to rewrite the period as T =
∮

dq
∂H
∂p

, and take the energy approximately

independent of the adiabatic parameter, dE
dλ

= ∂H
∂λ

∣∣
q

+ ∂H
∂p

∂p
∂λ

∣∣∣
q

= 0, to rewrite

〈dE
dt
〉 =

dλ

dt

1

T

∫ T

0

∂H

∂λ
dt = −dλ

dt

1∮
dq
∂H
∂p

∮
�
�∂H
∂p

∂p
∂λ

�
�∂H
∂p

dq . (2.3)

Bringing the last result to the left-hand side, we find∮
dq

[
〈dE
dt
〉 ∂p
∂E

+
dλ

dt

∂p

∂λ

]
= 0, (2.4)

which implies the conservation of the action variables defined above, 〈dI/dt〉 = 0.

In the case of a Newtonian binary, working in polar coordinates r, φ and in the center
of mass frame, we then have that Iφ = pφ and Ir =

∮
prdr/(2π) are conserved under

accretion 1. The latter implies that circular orbits remain circular under accretion, while the
former is equivalent to the conservation of the orbital angular momentum under accretion.
Then, to leading order, angular momentum is only lost through GWs [198],

L̇GW = −32m2
1m

2
2M

1/2

5 r7/2
= −32

5
µ2ω7/3M4/3 . (2.5)

where M = m1 + m2 is the total mass, µ = m1m2/M is the reduced mass and ω is the
orbital angular frequency. Defining the reduced angular momentum L̃z = Lz/µM , the
evolution of the binary can be obtained through

˙̃Lz =
L̇GW
µM

. (2.6)

1Ref. [71] showed that accretion and dynamical friction can actually increase the eccentricity of the
binary, but this effect is subdominant at the frequencies considered in this Chapter.
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Integrating Eq. (2.6), one can find the evolution of the orbital frequency induced by GW
emission,

ωGW(t) =

(
ω
−8/3
0 − 256

5
M2/3 µ t

)−3/8

, (2.7)

where ω0 = πf0 is the orbital frequency at t = 0 in terms of the initial GW frequency. The
time as a function of the orbital frequency is found inverting Eq. (2.7),

tGW(ω) = tc −
5

256µM2/3 ω8/3
, (2.8)

where tc is the merger time in the Newtonian approximation, corresponding to ω →∞ in
(2.7). In the stationary-phase approximation, the GW phase in frequency space h(f) ∼
|h(f)|eiφ(f) can be computed from the evolution of the angular frequency [89, 164]

φGW(f) = 2πftc + φc − 2

∫ tc

t

ωGW(t′)dt′ = 2πftc + φc +
3

4
(8πMf)−5/3 , (2.9)

where φc is the phase at merger and M = µ3/5M2/5 is the chirp mass of the system.

We shall now compare these known results with what happens in the presence of mass
accretion. We assume that the binary is surrounded by gas and that both bodies are
accreting mass at a same fraction of the Eddington rate,

fEdd,i =
ṁi

ṁEdd

, (2.10)

where ṁEdd ' 2.2 × 10−8
(
mi
M�

)
M� yr−1 is the Eddington accretion rate (obtained from

the Eddington luminosity assuming radiative efficiency of 10%). Then the two component
masses grow in time as

mi(t) = mi,0 e
fEdd t/τ , (2.11)

where τ = 4.5×107 yr is known as the Salpeter time scale and mi,0 is the initial mass of the
i-th body. The subscript zero in this section will always refer to a quantity measured at the
beginning of the gravitational wave observation. When this time dependence is taken into
account in the expression for the angular momentum, Eq. (2.6) acquires an extra term:

˙̃Lz =
L̇GW
µM

− L̃z
˙(µM)

µM
. (2.12)

In this equation, all masses should be considered time dependent, except the ones appearing
in the angular momentum radiated by GWs. This is because accretion may or may not
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be adiabatic compared to GW emission, depending on the frequencies at play. We have
verified that results do not depend strongly on this assumption.

Accretion will in general be accompanied by a drag force ~Fdrag due to the fact that the
accreted material carries some angular momentum. This effect can be quantified as

~Fdrag,i = ṁi(~vgas − ~vi) . (2.13)

for each mass, where ~vi is the velocity of the i-th body and ~vgas is the gas velocity. For
simplicity we parametrize this effect with a constant factor ξ, fixed by the relative velocity
between the gas and the perturber [35, 34, 76],

~Fdrag,i ' −ξ ṁi~vi → L̇drag = −ξ µ̇ r2ω . (2.14)

Note that the parameter ξ can be positive (drag) or negative (pull, see, e.g., [123]). At
leading order in fEddξ, the term L̇drag/µM should be added to the right-hand side of
Eq. (2.12) to take the effect of drag into account.

We can now solve the total angular momentum variation equation for the orbital fre-
quency,

ωacc(t) = 53/8efEdd
(3ξ+5)
τ

t

5ω
−8/3
0 −

768µ0M
2/3
0 τ

(
efEdd

(24ξ+35)
3τ

t − 1
)

(24ξ + 35)fEdd

−3/8

, (2.15)

where M0 and µ0 are the initial values of the total and reduced mass, respectively. The
quadrupolar radiation emitted by the source under GW emission and accretion is rep-
resented in Fig. 2.1 in the time domain. Eq. (2.15) cannot be inverted exactly to find
t = t(ω). We therefore use a perturbative expansion valid when the accretion correction

is small, i.e., we assume tacc(ω) = tGW(ω) + fEdd t
(1)
acc(ω) +O(f 2

Edd). We verified this to be
an excellent approximation in all realistic situations, including when fEdd ∼ 1–100. This is
because the dimensionless parameter always appears in the combination fEdd · t/τ , and the
evolution times scales that we consider are always smaller than the Salpeter time scale.

In terms of the GW frequency, we find

t(1)
acc(f) = −

25
(
π16/3f 16/3(24 ξ + 35)− 3π16/3f

16/3
0 (8 ξ + 15) + 10 π16/3 (ff0) 8/3

)
393216π32/3 (ff0) 16/3µ2

0M
4/3
0 τ

. (2.16)

Finally, we can compute the contribution of accretion to the GW phase in the stationary
phase approximation, expanding φ = 2πftacc −

∫ tacc
0

2ωacc dt = φGW + φacc + O(f 2
Edd) to
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Figure 2.1: Schematic evolution of the gravitational wave signal from an accreting black
hole binary, in the ten years before merger and in the presence of accretion. To the eye,
the signal resembles vacuum emission.

first order in fEdd to identify φacc. We find, again as a function of the GW frequency,

φacc =− fEdd (8 ξ + 15)
75M0

851968 τ
(πfM0) −13/3 + fEdd

25

32768π8/3 f
8/3
0 M5/3

0 τ
(πfM0) −5/3

+ fEdd (3 ξ + 4)
25

19968π13/3 f
13/3
0 M10/3

0 τ

− fEdd (24 ξ + 35)
25

196608π16/3 f
16/3
0 M13/3

0 τ
(πfM0) . (2.17)

In the expression above, the terms linear in frequency and independent of frequency can
be reabsorbed in the definition of the time to coalescence tc and the phase at coalescence
φc, respectively. Eq. (2.17) tells us that the GW signal will be dominated by the effect
of accretion if the frequency is sufficiently low. By comparing the size of the leading-
order phase term in the vacuum waveform – ∼ f−5/3, 0th order in a post-Newtonian (PN)
expansion2 – and the -4PN term (f−13/3) induced by accretion, we find that accretion is

2In the GW phase, a nPN correction scales as v2n ∼ f2n/3 relative to the leading-order general rela-
tivistic term.
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the dominant effect at frequencies below3

facc '
1

π

(
25

3

45

6656

fEdd

τ

)3/8

M−5/8 . (2.18)

While in Eq. (2.17) we show all the terms of the expansion, we have verified that the -4PN
term dominates. The inclusion of the 0PN term changes the results detailed below by less
than 1%. This is expected since most of the binary evolution in the LISA band takes place
at large separation/low frequencies. In other words, the black hole binaries analyzed in this
Section will emit GWs well above the frequency at which accretion becomes subdominant,

f � 1.1× 10−4

(
fEdd

1

)3/8( M
10M�

)−5/8

Hz . (2.19)

In the analysis presented below we also discarded the terms proportional to the drag
coefficient ξ, which would add an additional parameter in our waveform and require proper
modeling of the distribution of the gas and its velocity around the black holes. From the
functional form of Eq. (2.17) we can see that neglecting the drag does not affect the
frequency dependence of the GW phase, while it might affect the size (and even the sign)
of the effect. However, fEdd and ξ enter the two leading terms in Eq. (2.17) in different
combinations, which could help disentangle the two effects if both terms are detected and
if the two effects are of comparable strength.

2.2.2 First estimate of the effect of accretion

As a result of accretion, the phase evolution accelerates and the binary merges earlier (i.e.,
in less time and in fewer GW cycles) than in vacuum. In Fig. 2.2 we show the time T
needed for a SOBHB to enter the band of ground detectors (top panel), the time difference
∆T in the delay to enter a ground-based detector frequency band (f = 10Hz) induced by
accretion (middle panel), and the difference ∆φ in the total (accumulated) GW phase due
to accretion (bottom panel), as functions of the initial GW frequency in the LISA band and
for various SOBHB masses. All these quantities can be computed either numerically solving
Eq. (2.12) or using the perturbative expansions in Eqs. (2.16–2.17). The two approaches
are in excellent agreement because the contribution of accretion is subdominant in all cases.

As a useful rule of thumb, time differences ∆T > 10 s [215] and phase differences & 1
rad [109, 157] are large enough to be detectable. For low initial frequency, the effect of

3In the absence of other non-vacuum, beyond-general relativity effects.
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Figure 2.2: Time T needed to enter the band of terrestrial detectors neglecting accre-
tion (top), time difference caused by accretion (middle), and corresponding GW phase
difference (bottom), as functions of the initial GW frequency for three equal-mass stellar
origin black hole binaries. We choose fEdd = 1 as a reference, since the time and phase
differences scale linearly with fEdd at leading order. The full (empty) circles mark the
points corresponding to T = 10 yr (T = 4 yr). The systems to the right of the full (empty)
circles therefore have T < 10 yr (T < 4 yr).

accretion on ∆T and on the phase is stronger, but the time T is also very large, i.e., multi-
wavelength observations will be impossible in practice. One may try to detect accretion
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with LISA data alone, but note that the mission’s duration will not exceed 10 yr (with
a nominal duration of 6 yr), due to the finite consumables carried by the spacecraft. For
these reasons, we mark in Fig. 2.2 the phase and time differences for a SOBHB that enters
the band of ground detectors in 10 (4) yr by full (empty) circles. The part of the curves
to the right of these circles then corresponds to T < 10 yr (T < 4 yr), which would make
a joint LISA+ground detection possible in practical terms. Overall, the results of Fig. 2.2
(which scale linearly with fEdd) suggest that only fEdd > 0.1 would give a potentially
detectable effect, i.e., ∆T > 10 s and ∆φ & 1. We will verify this with more rigorous
techniques in the following.

2.2.3 Fisher matrix and rates

In order to quantify the ability of multiband SOBHB detections and standalone IMBHB
observations to constrain the accretion model, we perform a Fisher matrix analysis to ex-
plore the whole parameter space. Note that the Fisher matrix analysis is only valid for large
signal-to-noise ratios (SNRs) [226]. Therefore, we expect it to provide only qualitatively
correct results for SOBHBs in the LISA band (for which the SNR is at most 15 − 20 in
the most optimistic cases, see below). Nevertheless, we expect the Fisher matrix analysis
to be accurate for the IMBHBs we consider, for which SNR = O(100).

In the Fisher analysis we only account for the contribution due to accretion in the
GW phase, and neglect the subleading contribution to the amplitude. Since accretion is
important at low frequency, high-order PN terms (including the spin) should be irrelevant
for our analysis, but we include them for completeness and to estimate possible correlations.
For simplicity, in the Fisher analysis we also neglect the motion of the antenna during the
observation.

Finally, we consider two situations: one (referred to as LISA+Earth) in which we sim-
ulate a multiband SOBHB detection (LISA combined with a ground-based interferometer)
and another (referred to as LISA-only) in which we simulate a standalone (either SOBHB
or IMBHB) detection by LISA. In the LISA+Earth case, to simulate a multiband detection
one can follow two options: combine statistically the noise curves of LISA with that of a
given ground-based detector or, alternatively (but less rigorously), assume that the merger
time can be computed independently by the ground-based detector, so that the dimension
of the parameter space of the analysis is effectively reduced. In the Fisher analysis, we
follow the latter, simpler approach, and we therefore effectively remove the merger time
from the template parameters in the LISA+Earth case.

We adopt the LISA noise curve reported by [31], whose high frequency part is based
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Figure 2.3: Fisher matrix percentage uncertainties on the Eddington ratio for IMBHBs
across parameter space. We show different mass ratios (q = m1/m2, from left to right),
redshift z and source-frame mass m1.

on a single link optical measurement system noise of 10 pm/
√

Hz.We adopt a TaylorF2
template approximant for spinning binaries up to 3.5PN order [98], with the addition of
the leading-order accretion term presented in Eq. (2.17). Therefore, our GW template
for the Fisher analysis has seven parameters (masses, merger time and phase, the two
dimensionless spins χ1,2, besides the Eddington accretion ratio fEdd).

Given a waveform template h(~ζ, f) in the frequency domain and a set of waveform

parameters ~ζ, the error associated with the measurement of parameter ζa (with all other
parameters marginalized upon) is σa =

√
Σaa, where the covariance matrix Σab is given by

the inverse of the Fisher matrix, Γab =
(
∂ζah|∂ζbh

)
~ζ=~ζ0

. Here, ~ζ0 are the injected values of

the parameters, and the inner product is defined by

(g|h) = 4 Re

∫ fmax

f0

df
h̃(f)g̃∗(f)

Sh(f)
, (2.20)

where Sh(f) is the detector noise spectral density.

The results of the Fisher matrix analysis for IMBHBs (in the LISA-only scenario) are
shown in Figure 2.3. We find that 50% or lower relative uncertainties on Eddington-level
accretion could be achieved for binaries with redshift below ∼ 0.2, and with primary masses
below ∼ 1000M�. However, the number (and the very existence) of IMBHBs in the LISA
band is very uncertain. We cannot therefore draw conclusions on the number of systems
for which LISA could detect accretion.
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On the other hand, our Fisher-matrix analysis, coupled with simulated astrophysical
populations calibrated to the LIGO/Virgo data, can easily provide estimates of the num-
ber of SOBHBs detectable by LISA for which accretion can be measured. The intrinsic
number of SOBHBs merging per (source-frame) unit time and (source-frame) masses is
given by [127]

dṄ

dm1dm2

=

∫
dz R

ddC
dz

d2p

dm1dm2

4πd2
C , (2.21)

where dC is the comoving distance, R = 53.2 Gpc−3yr−1 is the best estimate for the in-
trinsic merger rate measured by the first and second LIGO/Virgo runs [8], the probability
distribution function for the source-frame masses – d2p/dm1dm2 – is given by “model B”
of [8], while

ddC
dz

=
1

H0

√
Ωm(1 + z)3 + ΩΛ

is computed using a fiducial cosmology H0 = 67.9 km/s/Mpc, Ωm = 0.306, ΩΛ = 0.694 [17].
In order to obtain synthetic astrophysical catalogues of merging as well as inspiraling
sources, we use Eq. (2.21) to simulate mergers in a period much longer than the LISA
mission duration, by assuming a uniformly distributed merger time tc. The latter can be
easily converted into the initial GW frequency f0 = [5/(256 tc)]

3/8M−5/8/π, where f0, tc,
and the chirp mass M must be computed in the same (detector- or source-) frame.

We constrain the comoving distance in the range dC ≤ 2 Gpc and the initial source
frame GW frequency in the range f0 ∈ [4 mHz, 10 Hz]. For the chosen mass model we
generate 20 realizations, and for each realization we consider two LISA mission durations
(4 or 10 yr), for a total of 40 catalogues.

In the LISA-only case for SOBHBs, we assume that a single event within the catalog
is detected if either of the following conditions occurs [186, 223]

tc < 100 yr and SNR ≥ 15, or

tc > 100 yr and SNR ≥ 10 ,

where the latter SNR threshold is lower because binaries with long merger times are ac-
curately described by Newtonian waveforms in the LISA band [167] and can be therefore
detected by a different search strategy [223], akin, e.g., to the one used for white-dwarf
binaries.

In the LISA+Earth case, the SNR threshold is lower for events that can be detected
on Earth [186, 223]

tc < 10 yr and SNR ≥ 9.5 . (2.22)
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LISA-only

Tobs All fEdd 100% 50% 10%

4 yr 77 ± 8
1 0 0 0

10 1.6 ± 1.4 0.6 ± 0.6 0

10 yr 182 ± 10
1 1.5 ± 1.2 0.4 ± 0.7 0

10 11 ± 3 9.5 ± 2.7 1.5 ± 1.2

LISA+Earth

Tobs All fEdd 100% 50% 10%

4 yr 88 ± 8
1 0.1 ± 0.2 0 0

10 4.1 ± 2.3 1.7 ± 1.2 0.1 ± 0.2

10 yr 207 ± 11
1 5.2 ± 1.9 1.1 ± 1.2 0.1 ± 0.2

10 36 ± 4 32 ± 3 5.2 ± 1.9

Table 2.1: Number of detectable SOBHB events for various configurations. “All” stands
for the total number of detectable events, whereas 100%, 50%, and 10% stand for the
number of events for which fEdd is measured with a relative error of 100%, 50%, and 10%,
respectively, according to the Fisher analysis. All numbers are averaged over 20 catalogues
and presented with 1 σ errors. Super-Eddington accretion will be detectable for a good
fraction of multiband events if the LISA mission duration is 10 years.

These events would indeed be detected through an archival search following their ground-
based detection.

For the simulated astrophysical populations we then use a Fisher matrix analysis to
quantify the possibility to measure fEdd at a given precision. Table 2.1 shows the average
number of detected SOBHBs, and the number of SOBHBs for which fEdd can be measured
within a given precision. The results are obtained by averaging the Fisher matrix over
sky position and source inclination (while neglecting, as already mentioned, the LISA
constellation’s motion), for different injected values of fEdd. Our results for the total
number of detected events are consistent with [223, 215].

In particular, for the LISA+Earth case and a 10 yr mission, super-Eddington accretion
fEdd ≈ 10 can be measured within 50% precision in about 15% of the total detectable
events (≈ 200), while a measurement within 10% is only possible in ∼ 2% of the events.
Note that the statistical errors scale approximately linearly with fEdd. Therefore, when
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injecting a lower accretion rate the number of events for which accretion is measurable is
significantly smaller. For example, fEdd = 1 is marginally detectable in . 1 event in the
most optimistic scenario, whereas smaller values of the accretion rates are not measurable.

As expected, a multiband observation improves the measurements of a negative-PN
term, including the -4PN term due to accretion: the event rates for the LISA-only case
are thus smaller by a factor of a few relative to the LISA+Earth case.

2.2.4 Prospects for multimessenger astronomy and conclusions

In [63] we also performed a more refined Markov Chain Monte Carlo (MCMC) analysis for
the best candidate events. According to the MCMC analysis, both SOBHBs and IMBHBs
can be localized in the sky to within the fields of view of X-ray and radio instruments such
as the Athena Wide Field Imager (WFI) and SKA, ∆ΩAthena = 0.4 deg2, ∆ΩSKA = 0.5 deg2

[3, 177]. This will allow the relevant region of the sky to be covered in a single viewing4,
thus potentially allowing for the coincident detection of an X-ray and/or radio counterpart
to strongly-accreting black hole binaries. Even if the sky localization was biased, as might
be the case for IMBHBs, we estimated that the true position would still fall inside the field
of view of the instruments. In the following, we compute the X-ray and radio emission of
the binaries, and estimate the necessary integration time for detection by single instrument
viewing.

We start by estimating the X-ray flux. For this purpose, we assume that the accretion
process has radiative efficiency η = 0.1 (which is good approximation at fEdd < 1), and that
only a fraction ηX = 0.1 of the electromagnetic radiation is emitted in X-rays (“bolometric
correction”). We find the X-ray flux from a single accreting black hole to be

FX ' 1× 10−13fEdd

( M
M�

)(Mpc

dL

)2

erg cm−2 s−1 . (2.23)

This should be compared with the flux sensitivity of the Athena WFI for a given integration
time, Tint. Following [174], Athena’s flux sensitivity for a 5σ detection is

FAthena
X = 1× 10−15

(
103 s

Tint

)1/2

erg cm−2 s−1 . (2.24)

4In some cases, the correlation between the sky position angles can imprint an asymmetric shape to
the localized region, which might therefore partially fall outside the field of view. However, this would still
only require O(1) viewings.
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The minimum integration time for a binary where only one black hole is emitting is then
given by

Tint ' 8× 10−2 f−2
Edd

(
dL

Mpc

)4 (
M�
M

)2

s . (2.25)

Note that if the two black holes have similar mass and are both accreting, the cumulative
flux is given by twice the value in Eq. (2.23) and therefore the minimum integration time
is one fourth of that in Eq. (2.25).

For the best-candidate SOBHB event in our synthetic astrophysical catalogues, the
required exposure time is Tint & 1× 106 f−2

Edd s. Thus, even if we were to assume fEdd ≈ 1,
the integration time would have to be of several days. Assuming super-Eddington accretion
fEdd > 1 is unlikely to help as the radiative efficiency is expected to be considerably lower
than our assumed η = 0.1, i.e., the bolometric luminosity is not expected to significantly
exceed the Eddington luminosity [216, 204, 211]. Moreover, as previously discussed, high
accretion rates in SOBHBs likely require environments with large gas densities, whose
optical thickness further reduces the chances of an electromagnetic detection. For the
considered IMBHB systems, the required integration time is between 24 and 2 hours for
Eddington-level accretion, for the light and heavy systems, respectively. This estimate
suggests that detection of X-ray counterparts will be possible for highly-accreting IMBHBs.

A binary system in external magnetic fields may also launch dual radio jets, which
get amplified by the coalescence [195] relative to similar jets observed in isolated black
holes [220]. See also [183] for simulations that yield ∼100 times larger (though less colli-
mated) fluxes than [195]. Assuming a fiducial value η = 0.1 for the radiative efficiency of
the process and ηradio = 0.1 for the fraction of emission in the radio band, the corresponding
peak flux5 is [195, 222]

Fflare ' 2× 10−13 fEdd q
2

(
DL

Mpc

)−2(
M

M�

)
× erg cm−2 s−1 , (2.26)

where q ≤ 1 is the mass ratio. The flare flux can then be compared with the SKA-mid
sensitivity in the phase 1 implementation. The required sensitivity at frequency νSKA for
SKA,

FSKA = 5× 10−16

(
10−2 s

Tobs

)1/2 (νSKA

GHz

)
erg cm−2 s−1 , (2.27)

is reached for an observation time Tobs ∼ 10−2 s for our best SOBHB event. The observation
time should be smaller than the duration of the merger (i.e., the duration of the flare) for

5The peak sensitivity is reached when the orbital velocity is equal to that of the innermost circular
orbit.
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the system [220], Tflare ∼ 25 M
100M�

ms. This condition is not satisfied for SOBHBs. There
is however the concrete possibility to detect a signal in the radio band for IMBHBs, for
which for the light and heavy systems Tobs ≈ 40 – 4 ms < Tflare. The performance of full
SKA should improve by an order of magnitude with respect to Eq. (2.27), reducing the
required integration time by a factor 100.

In conclusion, SOBHBs and IMBHBs will provide the opportunity to measure the effect
of accretion, which might affect the GW waveform at low frequencies. Our analysis suggests
that a multiband detection with LISA and a ground-based detector will be able to measure
the accretion parameter of strongly-accreting SOBHBs to within 50% precision for a few
events. For these systems, neglecting accretion in the waveform template might lead to
biases in the recovered binary parameters. These biases can be alleviated by an accurate
measurement of the time of coalescence by a ground-base detector.

IMBHBs in the local universe, if they exist as LISA sources, might also provide very ac-
curate measurements of the accretion rate. Overall, for these systems the effect of accretion
should be included in the waveform to avoid bias in the intrinsic binary parameters.

Finally, accretion does not affect sky localization by LISA for SOBHBs and it impacts
that of IMBHBs only mildly. In both cases, the measurement errors are typically well within
Athena and SKA’s fields of view. Furthermore, the X-ray flux expected from strongly-
accreting binaries is comparable with Athena’s sensitivity and is well above the sensitivity
of future missions such as Lynx [4]. Likewise, in the case of jets the radio signal from
IMBHBs could be detectable by SKA. Our analysis shows that the simultaneous operation
of Athena/SKA and LISA would therefore provide the thrilling opportunity to detect the
electromagnetic counterpart of highly accreting black hole binaries.

2.3 Dynamical friction

Gas surrounding a black hole binary, besides being accreted, can also exert a gravitational
influence over the moving bodies, an effect known as dynamical friction (DF).

Consider a black hole binary immersed in gas of density ρ. Assuming that the binary’s
center of mass (CoM) is approximately comoving with the gas, dynamical friction exerts
a drag force on each black hole in the direction of the black hole velocity ~vi in the CoM
frame,

FDF,i = 4πρ(Gmi)
2I(ri, vi)/v

2
i , (2.28)

at Newtonian order, where ri is the distance of the black hole from the CoM. We assume
that the black holes’ orbital velocity is much larger than the speed of sound of the gas:
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vi � cs. This is supported by the fact that vi is relativistic when the binary is in the LISA
band. We use the analytic expression of the “Coulomb logarithm” I(r, v) at high Mach
numbers Υi = vi/cs provided in [141] for a single perturber in circular orbit in a gas,

I(ri, vi) = log

(
ri

rmin(0.11Υi + 1.65)

)
, (2.29)

where rrim = 2Gmi/c
2 is the smallest scale in the problem, in this case set by the black

hole radius (but results depend only mildly on the choice of rmin). This expression was
validated against simulations up to Υ = 8, but we extrapolate further taking the limit of
large Mach numbers and keeping only the leading term in this expansion (see also [143]),
I(ri, vi) ' log (ri/(rmin0.11Υ)). Following [141] (see also [192, 33, 162]), we only include the
effect of the wake created by each black hole on itself, and neglect the companion’s [142].
For f / 0.3 Hz this is a good approximation, since the orbital separation of a typical stellar-
and intermediate-mass black hole binary in the LISA band is larger than the wake’s size.

We consider here, as an example, the AGN disk claimed to have hosted the GW event
GW190521 [10, 12, 118]. From this association, Graham et al. [118] find an AGN disk aspect
ratio (height to galactocentric radius) H/a ∼ 0.01, and gas density ρ ∼ 10−10 g/cm3. We
assume here that the speed of sound is given by cs ≈ vorb(H/a) ' 50 km/s [112], where
vorb is the speed of the orbit around the supermassive black hole (SMBH) at the center
of the AGN assuming that the binary is in a migration trap at ' 700GMSMBH/c

2, with
MSMBH ' 108−9M�.

In absence of dynamical friction, the orbital energy of the binary would only decrease
as a result of GW emission. If we take into account the energy lost to the gas through
dynamical friction, we obtain an equation for the orbital angular velocity as a function of
time,

Ėorb = PGW + FDF,1v1 + FDF,2v2 , (2.30)

where Eorb is the binary orbital energy and PGW = 32/5Mm2
1m

2
2 (GM/ω2)−5/3 is the power

emitted in GWs. Similarly to the case of accretion discussed in Section 2.2, we can assume
that gravitational wave emission and DF are adiabatic processes, and solve Eq. (2.30)
perturbatively to first order in the subdominant effect. This allows us to compute ωDF(t),
tDF(f) and the GW phase modification. In this approximation, the dynamical friction-
induced phase correction first enters at −5.5PN order:

φDF ' −ρ
25π(3ν − 1)M2(1 + z)2

739328 ν2
γDF [πfM(1 + z)]−16/3 , (2.31)

with γDF = −247 log (f/fDF)−39+304 log(20)+38 log (3125/8) and fDF = cs/[22π(m1 +m2)],
being ν = m1m2/(m1 +m2)2 the symmetric mass ratio.
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Figure 2.4: Time needed to enter the band of terrestrial detectors neglecting accre-
tion (top), time difference caused by dynamical friction (middle), and GW phase difference
induced by friction (bottom), as functions of the initial GW frequency for three equal-mass
SOBHBs. We choose ρ = 10−10 g/cm3 as a reference, since the time and phase differences
scale linearly with ρ. The final frequency is always f = 1 Hz. The phase difference is
computed as the difference in the term (2.31) between the initial and final frequencies.

The effect of dynamical friction on the GW signal can again be estimated by computing
the delay and the GW phase shift induced by the effect. This is done in Figure 2.4,
where the gas density is chosen to match the one inferred from the claimed counterpart
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to GW190521. Time differences ∆T > 10 s and phase differences & 1 rad are again
deemed large enough to be detectable. For dynamical friction, inspired by GW190521, we
also considered higher system masses. From Figure 2.4, we see that gas densities above
∼ 10−10 g/cm3 would be marginally detectable for systems entering the band of ground-
based detectors in a year or more. In [224] we also performed a more detailed Fisher
matrix exploration of this effect across the system parameters consistent with GW190521,
confirming that these densities could be constrained at percent level. We therefore conclude
that effect of realistic levels of DF are stronger and easier to detect than reasonable levels
of accretion (Eddington level or below). In [224] we also performed an MCMC analysis
for a single system with the effects of mass accretion, dynamical friction and a peculiar
acceleration all present at the same time, and found that the −4PN (i.e., accretion and
peculiar acceleration) and −5.5PN (i.e., DF) terms could be measured separately thanks
to their distinct frequency dependence. The MCMC analysis also confirmed that percent
level precision on densities of the order of 10−10 g/cm3 could be achieved with a multiband
strategy.

2.4 Mass transfer from a stellar companion

Our last topic in this chapter is again a matter-dominated gravitational wave source in-
volving a black hole. In the case of white dwarf–black hole binaries, however, the black hole
is not accreting gas from its surroundings, but rather from the binary companion itself.

2.4.1 Evolution of mass transferring white dwarf-black hole bi-
naries

We consider white dwarf-black hole binaries (WDBH) binaries on a circular orbit with
separation a. We model their evolution from the onset of mass transfer, when the WD
overfills its Roche lobe. Our treatment follows that of [171], with appropriate adjustments
for the BH component. We use the zero-temperature mass-radius relation of [228] for the
WD6. We define the total mass M = mBH +mWD and the mass ratio q = mWD/mBH ≤ 1.

6Note that the accretion disk surrounding the BH can heat the WD. We will discuss this caveat further
in the conclusions.
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Mass transfer

The overfill factor indicates by how much the donor overfills its Roche lobe, ∆ = RWD−RL.
Mass transfer occurs when ∆ > 0 and increases monotonically with the overfill. We use
the adiabatic approximation of [171] (see also [235]):

ṀWD = −F (mBH,mWD, a, RWD)∆3 . (2.32)

See [171] for the definition of F . We assume an accretion disk forms around the BH and
that matter is transferred from the innermost stable circular orbit (ISCO) at a radius
RISCO [75]. We account for the limited efficiency of the BH to accrete by setting:

ṁBH = min (−ṁWD εISCO, ṁEdd(mBH)) , (2.33)

where ṁEdd = 2.2×10−8mBH year−1 is the Eddington accretion rate and εISCO is the specific
mass-energy at the ISCO [75]. Therefore mass is not necessarily conserved, accounting for
possible loss through winds.

Orbital separation

We assume that the variation of total angular momentum is due to GW emission and loss
of matter:

J̇orb + J̇BH + J̇WD = −J̇GW − J̇loss, (2.34)

with J̇GW = 32
5
G3

c5
mBHmWDM

a4
Jorb. Following [227], we assume isotropic re-emission and take

J̇loss = −q Ṁ
M
Jorb. We neglect the angular momentum of the accretion disk surrounding the

BH, assuming that Mdisk �MBH throughout the evolution.

We assume that the WD is tidally locked. This is justified in low-mass-ratio systems
such as WDBH binaries, since the synchronization time-scale decreases as the mass ratio
squared, τsync ∼ q2 [62]. Moreover, disk accretion can also contribute to synchronizing
the star rotation with the orbit [243]. The angular momentum of the donor can then be
written as JWD = IWDΩ, Ω being the orbital angular frequency and IWD = kmWDR

2
WD the

momentum of inertia of the donor. The factor k is a function of the WD mass, for which
we use the fit provided in [171]. Using Kepler’s law, the variation in angular momentum
of the donor is:

J̇WD = IWDΩ

(
λ
ṁWD

mWD

− 3

2

ȧ

a
+
ṁBH + ṁWD

mWD

1

2 (1 + 1/q)

)
, (2.35)
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Figure 2.5: Evolution of the mass accretion rate, WD mass, GW frequency and its first
derivative. The system has masses mWD = 1M� and mBH = 7M� at the time of first
Roche lobe filling. The overlaid orange dashed line is the equilibrium solution described in
Appendix A.

where λ = 1+2 d logRWD

d logmWD
+ d log k

d logmWD
. Note that the variation of the donor angular momentum

was not included in the treatment of [171].

We assume no tidal torque acts on the BH, so its angular momentum varies only as a
result of the matter accreted at RISCO,

J̇BH = jISCOṁBH, (2.36)

where jISCO is the specific angular momentum at the ISCO [75].
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The equation for the orbital separation of the white dwarf–black hole binary can be
derived from Eqs. (2.34), (2.35) and (2.36) and reads

ȧ

2a
= − 1

1− 3(1 + q)kr2
2

[
J̇GW

Jorb

+

(
1− q

2(1 + q)
+

1

2
qkr2

2 + (1 + q)λkr2
2

)
ṀWD

MWD

+

(
q − q

2(1 + q)
+

1

2
qkr2

2 + jGR

√
(1 + q)rISCO

)
ṀBH

MWD

]
, (2.37)

where ri = Ri/a.

Overfill and black hole spin

We evolve the over-fill factor according to

∆̇ = RWD

[
(ζWD − ζrL)

ṁWD

mWD

− ȧ

a

]
, (2.38)

where ζWD = d logRWD

d logmWD
and ζrL = d logRL/a

d logmWD
can be derived using Eggleton’s approxima-

tion for the mass-radius relationship of cold WDs and Eggleton’s Roche lobe fitting for-
mula [101], respectively.

The angular momentum of the BH can be written in terms of the dimensionless spin χ,

JBH =
G

c
m2

BHχ . (2.39)

The accreting BH will spin up according to Eq. (2.36), from which we obtain

χ̇ =

(
c

G

jISCO

mBH

− 2χ

)
ṁBH

mBH

. (2.40)

The evolution of the BH spin is not our main focus and has little effect on the overall
evolution of the binary. We therefore neglect for simplicity other factors affecting the spin
evolution, such as radiation emitted by the accretion disk and fix the initial BH spin to
χ = 0.1.
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Figure 2.6: Evolutionary tracks of 400 WDBH binaries and their polynomial fits (black
line). We focus on frequencies relevant to LISA.

2.4.2 Evolutionary tracks relations

We numerically integrate equations (2.32), (2.33), (2.34), (2.38) and (2.40), starting from
the onset of mass transfer. The long term evolution of a typical WDBH binary is shown in
Figure 2.5. The cap in the BH accretion rate on the top panel is due to accretion reaching
the Eddington limit. As expected for mass-transfer dominated systems where the accretor
is much more massive than the donor, the binary outspirals, giving a negative ḟ .

Mass transfer proceeds rapidly at first, but quickly settles into an equilibrium rate.
Equilibrium is attained when the increase in the Roche lobe matches the one in the WD
radius. Thus, we obtain the equilibrium mass transfer rate by setting the right hand side
(rhs) of Eq. (2.38) to 0, see Appendix A.

Across parameter space, the mass of the WD follows an evolutionary track as a function
of the GW frequency, which is approximately independent of the accretor mass and the
initial conditions, as displayed in Figure 2.6, left panel. We span initial WD masses between
[0.2, 1.2]M�, initial BH masses in the range [3, 20]M� and only keep points from the
equilibrium stage. These tracks can be compared with the ones traced by WD accreting
binaries in [57]. Our WDBH tracks follow a slightly different trajectory and show a more
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HF LF

m̃BH m̃WD D̃L m̃BH m̃WD D̃L

100%
Fit 0.99+0.01

−0.01 0.99+5.7×10−8

−5.8×10−8 1.05+0.11
−0.14 1.04+0.40

−0.36 0.97+2.8×10−7

−2.8×10−7 0.98+0.35
−0.29

Full 1.01+0.08
−0.04 0.99+0.02

−0.04 1.06+0.11
−0.15 1.03+0.44−0.38 0.98+0.04

−0.05 0.98+0.35
−0.29

75%
Fit 0.99+0.01

−0.01 0.99+7.7×10−8

−7.8×10−8 1.39+0.16
−0.20 1.05+0.55

−0.47 0.97+3.8×10−7

−3.8×10−7 1.28+0.59
−0.47

Full 1.01+0.08
−0.04 0.99+0.02

−0.04 1.05+0.13
−0.16 1.03+0.61

−0.49 0.98+0.05
−0.05 0.96+0.44

−0.35

Table 2.2: Uncertainties on individual masses and distances normalized to the injected
values, obtained with the fit to the global evolutionary tracks relations (Fit) and with the
full results of numerical simulations (Full). The GW frequency f and ḟ are measured
within 5×10−7 Hz and 5×10−18 Hz s−1 for the HF system, assuming a duty cycle of 75%.
These measurements are an order of magnitude worse for the LF system.

pronounced dependence on the accretor mass, resulting in a larger spread in the tracks
(and hence fit residuals).

The absence of tidal interactions yields an additional relation between ḟm
−2/3
BH and

f . We show this relation in Figure 2.6, right panel. Once again, the relation is roughly
independent of the accretor mass and initial conditions. In Appendix A we explain how
this relation can be derived from the equilibrium solution.

We fit both evolutionary track relations with a quartic polynomial

log(y) =
n∑
i=0

ai log(f [Hz])i , (2.41)

see Figure 2.6. The fit coefficients are listed in Appendix B.

2.4.3 Parameter estimation with LISA

In the case of almost monochromatic sources such as WDBH and double WD binaries, the
two GW polarizations take the simple form:

h+ = A0
1

2

(
1 + cos2(ι)

)
cos
(
φ0 + 2πft+ πḟt2

)
, (2.42)

h× = A0 cos(ι) sin
(
φ0 + 2πft+ πḟt2

)
, (2.43)
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where A0 = Mc

DL
(πMf)2/3 is the amplitude of the signal, M = m3

BHm
3
WD/M is the chirp

mass of the binary, ι is the inclination of the binary with respect to the line of sight, and
φ0 is the initial phase. Thus, GW observations provide us A0, f and ḟ and we cannot infer
the individual masses without further assumptions. In order to assess how the universal
relations we derived can be combined with LISA measurements, we consider an accreting
WDBH system at two different stages of its evolution:

• “high frequency” (HF ): mBH = 7.02M�, mWD = 0.10 M�, f = 5 mHz, ḟ = −3.8 ×
10−16 Hz s−1;

• “low frequency” (LF ): mBH = 7.02M�, mWD = 0.06 M�, f = 3 mHz, ḟ = −3.2 ×
10−17 Hz s−1;

We compute LISA’s response following [87, 209] to generate mock data and perform a
full Bayesian analysis to infer the posterior distribution of the parameters of the source.
For the noise level, we use the SciRdv1 curve [158] including a confusion noise due to the
galactic foreground in addition to the instrument noise [166]. The parameter estimation
is performed with the nested sampling algorithm Multinest [108]. We assume a mission
duration of 6 years and two values of the duty cycle: 100% and 75%. We set the distance
to DL = 10 kpc and simulate the effect of a reduced duty cycle by placing the source
further. For almost monochromatic sources, the angles essentially affect the signal to
noise ratio (SNR) and have little impact on our analysis. For a duty cycle of 100%, the
HF and LF systems have SNRs of 91 and 26 respectively. Systems at frequencies below
3 mHz, although more numerous, have little chance of being detected due to the galactic
foreground. With a duty cycle of 75%, f and ḟ are measured within 5 × 10−7 Hz and
5× 10−18 Hz.s−1 for the HF system and an order of magnitude worse for the LF system.

In Table 2.2 we report the estimates of the binary masses (normalized to the injected
values) directly using the fits to the evolutionary tracks of Figure 2.6. We can use these
results to infer the chirp mass and, from the measurement of A0, the distance to the source.
We find a reasonable agreement with the injected values (within 5%). However for the HF
system, the injected values lie outside the 90% confidence intervals. This is because the
systematics of the model dominate over the statistical uncertainty. In particular, the very
narrow range for MWD is due to the extremely good measurement of f . To correct for this,
we estimate numerically the values of α1 and α2 that best align the evolutionary tracks,
mWD m

−α1
BH and ḟWD m

−2/3−α2

BH as functions of f . The exponents α1 and α2 are frequency
dependent and are determined for each system in the frequency range of observation. We
then convolve LISA posteriors with the aligned tracks to infer mBH and mWD.
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Figure 2.7: Left: Posterior distributions of the GW frequency and its first derivative
normalized to the injected values. We show posteriors for the high (HF) and low frequency
(LF) systems, at 75% duty cycle. The contours indicate the 50 and 90% confidence re-
gions and the dashed lines represent the true values (equal to 1 in our normalization).
Right: Posterior distributions for binary masses and luminosity distance, obtained with
the rescaled universal relations, as described in Sec. 2.4.3.

In Figure 2.7, we show how the measurement of f and ḟ together with this procedure
translates into a measurement of the WD and BH masses for the two systems assuming a
75% duty cycle. Table. 2.2 also shows the improvement as compared to fit-based measure-
ments and the very good agreement between the injected and the inferred values obtained
with this procedure. MBH is less well constrained than MWD because it relies on the mea-
surement of ḟ . The measurement is worse for the LF system due to the lower value of ḟ
which results in it being measured not as well during the 6 year mission. We note that the
results are less affected by a reduced duty cycle. Finally, even in the worst scenario the
uncertainty on MBH is sufficiently small to unambiguously identify the accretor as a BH.
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2.4.4 Conclusions

Mass-transferring binaries containing a BH and a WD have been an elusive target, despite
being predicted by population synthesis models. In this Chapter we show that combining
LISA observations with semi-analytic evolution models provides an estimate of the masses
of both binary components as well as the distance to the source, which is information not
usually accessible from galactic binary GW observations.

WDBH binaries are potential sources of electromagnetic radiation, in particular X-
ray emission. The HF and LF systems considered in this work would have respectively
X-ray luminosity of 9 × 1038 erg s−1 and 1 × 1038 erg s−1 for radiative efficiency of 0.1,
well within the capabilities of current facilities. The fact that we are yet to convincingly
identify WDBH binaries among X-ray sources could be explained by the lower rates of
these systems, and the difficulty to classify the binary components from electromagnetic
emission alone. GW observations such as the ones described in this work, on the other hand,
could unequivocally identify the BH companion. The very good localization of the source
by LISA, O(1 deg2), could then provide the opportunity to observe an electromagnetic
counterpart. In future work, we will explore the potential synergy between LISA and
future electromagnetic surveys (Athena+, Square Kilometer Array) and the detectability
of both GW and electromagnetic emission in the Milky Way and nearby galaxies.

To detect and learn the most from these systems with LISA, more detailed modeling will
be crucial. This work did not take into account, for instance, the potentially disruptive
effect of accretion winds on the accretion stream itself, and its potential variability on
short timescales. Moreover, the use of Eggleton’s approximation for the Roche lobe radius,
which was derived for stars made of incompressible fluids, could introduce a bias in our
result. Such bias is hard to quantify because the true relation is unknown. However, our
methodology is robust to changes in the Roche lobe radius relation, and we expect our
main finding to hold, i.e., LISA could be the first observatory to unambiguously identify
WDBH binaries.

Assuming a simple black body law for the BH and the WD, we estimate that emission
from the BH disk could heat up the WD to O(105) K. Such low temperatures, if interpreted
as core temperatures, have very little impact on the mass-radius relation [37] and therefore
the cold WD assumption remains a good approximation. A caveat is that the results of [37]
were obtained for cooling sequences of isolated WDs. More simulations of heated WDs as
in [200] could provide further insight on the effect of illumination on the evolution of
WDBH binaries. WDs with masses lower then the ones considered in this work might also
exhibit a stronger dependence on the temperature, see, e.g., [91]. Recent hydrodynamical
simulations [78] have suggested that mass tranfer in WDBH binaries could be unstable
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above WD masses 0.2 M�, leading the binary to merge. It would be interesting to extend
our model to lighter WDs, in a mass range where finite temperature effects might become
relevant.

Finally, we checked that the presence of tidal torques would not affect our results
significantly for small synchronization timescales (τ . 100 yrs). This study could therefore
apply to broader classes of galactic binaries.
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Chapter 3

Black hole ringdown

3.1 The problem: why so linear?

The ringdown is the final phase of a black hole binary merger, beginning (approximately)
at the formation of the binary’s common horizon. During the first few dynamical times,
the merger product is extremely deformed. The ringdown is the process of relaxation of
this deformed object through the emission of gravitational waves.

The response of a black hole to an external perturbation, if we exclude very early and
late times, is characterized in general relativity by a spectrum of ringing, decaying modes,
known as quasi normal modes (QNMs). More specifically, QNMs are solutions of the
linear perturbation equations with ingoing and outgoing (in asymptotically flat spacetimes)
conditions at the horizon and at infinity, respectively. These boundary conditions imply
that QNMs are discrete modes with complex frequencies,

hQNM ∼ e−iωt, ω = ωR + iωI , (3.1)

where h is the metric perturbation, although similar arguments apply to perturbations of
other fields. This can be understood in analogy to quantum mechanics, where an outgoing
probability flux at one or more boundaries implies that the total probability inside the
system must decay over time. This decay is associated with the frequency of the modes
acquiring an imaginary part, corresponding to the inverse decay time of the mode.

The QNM frequencies of a black hole are identified by their angular quantum numbers l,
|m| ≤ l and an overtone number n, so that n = 0 corresponds to the least rapidly decaying
mode (the fundamental mode). QNMs do not form, in general, a complete basis, because
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the system of linearized equations and boundary conditions do not define a self-adjoint
problem. QNMs were however recently found to be orthogonal under a specific symmetric
bilinear form [121]. For a more complete review of the topic, see [41] or [189].

Because QNMs are a property of the linearized general relativistic equations for the
gravitational field, and because they do not form a complete basis, we might have expected
a sum of QNMs to provide only a poor fit to the gravitational wave signal very close to
merger. The binary merger, roughly corresponding to the peak in the luminosity of the
gravitational wave signal, is the most nonlinear stage of the evolution of the binary, and
requires numerical relativity simulations for an accurate description. It was suggested early
on that QNMs could however provide accurate fits very early in the ringdown [153], and
renewed interest in this question was stirred in 2019 by Giesler et al. [116].

Fig. 3.1 and Table 3.1 summarize the findings of [116]. The ringdown signal of a
numerical simulation from the SXS catalog [2, 55] is modeled with a finite sum of QNMs
with angular numbers l = 2, m = 2 and overtone number up to N = 7, i.e., the metric
perturbation

h2,2 =
N−1∑
n=0

Ane
iφne−iωn(t−tpeak). (3.2)

Here ωn are the QNM frequencies predicted by general relativity for the mass and spin of
the remnant, while An and φn are the amplitudes and phases determined by a least squares
fit. The residuals of the fit, shown in Fig. 3.1, are small, but above the numerical noise
(measured as the residuals of two simulations with different resolution). This indicates a
good fit and supports the absence of over-fitting, or fitting of numerical noise.

Reference [116] shows that an increasing number of QNMs fits the data better at earlier
times, with the N = 7 model (used in Fig. 3.1) fitting the full ringdown after the peak
luminosity of the GW signal. These results were later confirmed [46] and extended to
counter-rotating modes (ωR < 0) [93] and other harmonics [86], and a similar analysis was
recently performed at the black hole horizon (rather than at infinity) [187].

The implications of these analyses are still being debated. These results might indicate
either that linear theory is an excellent approximation even very close to the time of
merger, or that QNMs form a sufficiently good basis that a large enough combination of
these modes can fit even nonlinear features. Despite some attempts to rule out the latter
possibility, the evidence is still not conclusive [187]1.

1Giesler et al. [116] as well as Baibhav et al. [32] argue that the inclusion of more overtones improves
the precision with which they can recover the properties of the remnant (mass and spin), and that this
would suggest that their model is physically justified.
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Figure 3.1: Fit and residuals for the numerical ringdown waveform SXS:BBH:0305 h =
hNR

+ − ihNR
× and the fit model (3.2). The simulation remnant has mass M equal to 0.952

of the total system mass Mtot, and remnant dimensionless spin χ = 0.692. Results are
reproduced following [116]. Notice that, thanks to the scale invariance of the Einstein
equations in vacuum, the results are invariant under simultaneous rescaling of the time
and space units and the total system mass. The amplitude of the gravitational wave is to
be interpreted as h(t) ∼ r/Mtot × h(t, r).

These questions are not simply of theoretical interest. The ringdown is currently used
to test general relativity and in particular the no-hair theorem, which predicts that the
perturbations of a black hole should only depend on its mass and spin (and charge).
Currently, these tests are limited by the signal-to-noise ratio of current gravitational-wave
detections, which only allow for one or two modes to be measured. Black hole spectroscopy,
a proposed tool to test the no-hair theorem in future detections, will do so by comparing
the inferred frequencies of multiple harmonic or overtone modes [97, 42]. Harmonic or
overtone modes can be better suited for black hole spectroscopy depending on the mass
ratio and signal-to-noise ratio of the event [193, 135]. This program relies on the idea
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n ωM A φ

0 0.529− i0.081 0.97 1.47

1 0.517− i0.245 4.17 −0.68

2 0.496− i0.414 11.0 2.86

3 0.467− i0.587 21.3 −0.27

4 0.436− i0.758 27.7 2.67

5 0.419− i0.924 20.4 −0.73

6 0.419− i1.103 6.20 2.16

Table 3.1: Frequency of the QNMs (in units of the inverse remnant BH mass) of the
remnant black hole of the simulation SXS:BBH:0305, together with the amplitudes and
phases returned by the fit of Fig. 3.1. The QNM frequencies were computed with a Python
package of the Black Hole Perturbation Toolkit [219]. Ref. [116] only included positive
frequency modes, and we do the same here – for an analysis including negative frequency
modes, see [93].

that QNMs are physical properties of the black hole emission, rather than mere fitting
functions. Understanding this distinction and sharpening the theoretical predictions of
the ringdown signal in general relativity are therefore important to our ability to test
the theory in the future. Null tests of general relativity are possible without a detailed
theoretical understanding of the nonlinear contributions to the ringdown, being based on
numerical waveforms [7, 84]. However, the interpretation of a potential deviation from the
numerical prediction would require detailed modeling, and the latter could also allow for
more stringent tests—e.g., by allowing one to “stack” several detections [239].

In the following sections, we investigate the nonlinear properties of the ringdown in
a simplified setting: a gravitating scalar field in a black hole spacetime, with Anti de
Sitter (AdS) asymptotics and spherical symmetry. Our strategy will be to perturb the
system with a variety of initial conditions, and study its nonlinear response. The linear
properties of Schwarzschild-AdS black holes have been studied at length for their relevance
to holography, starting from [74, 130, 69, 68] (with a focus on black holes that are large
compared to the AdS length-scale). Because the AdS boundary (equipped with reflecting
boundary conditions) does not allow modes to dissipate at infinity, AdS spacetimes have
been used as an ideal testing ground for nonlinearities in general relativity, see, e.g., [120].
In our analysis, we will focus on small black holes, where the reflection effects associated
with the AdS boundary can be neglected (at least at early times) and the evolution more
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closely resembles the one in asymptotically flat black holes, although with longer QNM
decay times. We describe the system and the analysis in Sections 3.2.1, 3.2.2 and 3.2.3. We
present our results in Sections 3.2.4 (for QNM perturbations) and 3.2.5 (for compact pulse
perturbations), and describe the backreaction on the black hole in Section 3.2.6. Finally,
we discuss possible future developments in Section 3.3. In this Chapter, we use units in
which 8πG = c = 1.

3.2 An investigation in a simplified setting

3.2.1 Scalar field in a Schwarzschild-Anti de Sitter spacetime

We study the ringdown of a massless scalar field φ in a Schwarzschild-AdS spacetime in
spherical symmetry. This system is described by the equations of motion

Gab −
3

L2
gab = Tab, (3.3)

∇a∇aφ = 0, (3.4)

where Gab is the Einstein tensor, L is the AdS length scale, related to the cosmological
constant by 3/L2 = −Λ. The scalar field stress-energy tensor Tab reads

Tab =
1

16π
[∂aφ

∗∂bφ+ ∂aφ∂bφ
∗ − gab∂cφ∗∂cφ] . (3.5)

We restrict the problem to spherical symmetry by using the following ansatz for the metric,

ds2 = −A(v, r)dv2 + 2dvdr + Σ(v, r)dΩ2
2. (3.6)

In the absence of perturbations and for a vanishing scalar field, the solution to the equations
of motion is the Schwarzschild-AdS spacetime,

ds2 = −fSAdS(r)dt2 + fSAdS(r)−1dr2 + r2dΩ2
2 (3.7)

with fSAdS(r) = 1 − 2M
r

+ r2

L2 . Scalar field perturbations in this background are charac-
terized by scalar QNMs, which solve the linearized scalar field equation. For the ansatz
φ = e−iωtR(r)Y m

l (θ, ϕ) (in terms of the spherical harmonics Y m
l ), the linearized equation

reduces to an equation for the radial function

d

dr

(
r2fSAdS(r)

d

dr
R

)
+

(
ω2r2

fSAdS(r)
− l(l + 1)

)
R = 0 . (3.8)
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This equation can be reduced to a Schroedinger-like equation by introducing the tortoise
coordinate dr∗

dr
= f−1

SAdS(r), and redefining the radial function R = r−1X(r),

d2

dr2
∗
X + (ω2 − VSAdS(r))X = 0, (3.9)

where VSAdS(r) = −fSAdS(r)
(
l(l+1)
r2

+
f ′SAdS(r)

r

)
. The potential goes to zero at the horizon,

i.e., r → r+ or r∗ → −∞, and goes to infinity at spatially infinity as a consequence of the
AdS asymptotics of the background. The boundary conditions for the scalar field QNMs
are therefore the standard ingoing conditions at the horizon,

φ ∼ e−iω(t+r∗), r∗ → −∞, (3.10)

while near spatial infinity the radial function has two solutions, behaving as φ ∼ const. and
φ ∼ r−3 respectively. The latter asymptotic behavior is consistent with reflective boundary
conditions at the AdS boundary, and is therefore picked as the second condition identifying
QNM solutions of the scalar field.

In what follows, the QNM frequencies and QNM radial profiles were computed numer-
ically using Leaver’s method [152, 114] with a Mathematica notebook developed by the
authors of [52]. The full system of equations (3.3–3.4) was solved in spherical symmetry
with the numerical code developed by Bosch, Green, and Lehner in [51] and used in [52]
to study the dynamical excitation of hairy black holes in AdS. The code uses ingoing
Eddington-Finkelstein coordinates (v, r) and a finite difference scheme with mixed second
and fourth order radial derivative operators, and fourth order Runge-Kutta discretization
for the time evolution. The radial domain is compactified to reach the AdS boundary, by
using the radial coordinate ρ = 1/r, 0 < ρ < 1/r0, with r0 lying just inside the black hole
horizon. The black hole singularity is excised from the domain. Numerical simulations are
provided boundary data (the ADM mass M) and initial data, i.e., the initial value of the
scalar field φ along the slice v = 0.

3.2.2 Excitation coefficients and perturbation theory beyond lin-
ear order

Before we move on to the analysis of the numerical results, let us take a closer look at
the system described by Eqs. (3.3–3.4) through the lens of perturbation theory. The QNM
excitation coefficients for Kerr black holes, predicting the amplitude and phase of QNMs
as a function of the initial perturbation, were first introduced and computed by Berti and
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Cardoso [40], building on the theoretical framework of Refs. [152, 153, 151]. Here we adapt
the treatment of [40] to the case of a scalar perturbation of a SAdS black hole.

As explained above Eq. (3.9), the equation for the scalar field can be reduced, at first
order in perturbation theory, to a Klein Gordon-like equation,

− d2

dt2
X +

d2

dr2
∗
X − VSAdS(r)X = 0, (3.11)

where we have momentarily re-introduced the time dependence. We can define a Laplace-
Fourier transform of the field variable X,

X̂(ω, r) =

∫ +∞

0

dtX(t, r)e+iωt. (3.12)

This is a Laplace transform in the sense that we are only interested in times t ≥ t0, but
the Laplace variable s = iω is taken to be complex. The inverse transform is

X(t, r) =
1

2π

∫ +∞+ic

−∞+ic

dωX̂(ω, r)e−iωt. (3.13)

where the contour of integration is taken to run above the real line in the complex ω plane
(c > 0). The transform must satisfy

d2

dr2
∗
X̂(ω, r) + (ω2 − VSAdS(r))X̂(ω, r) = I(ω, r), (3.14)

where the function I(ω, r) is related to the initial conditions of the field2 at t = 0, φ(0, r) =
r−1X(0)(r) and φ̇(0, r) = r−1Ẋ(0)(r), by the properties of the derivative of the transform3,

I(ω, r) =
[
iωX(0)(r)− Ẋ(0)(r)

]
. (3.17)

2The perturbations equations are invariant under time translation and we are therefore free to set the
initial time to t = 0.

3Let us compute the transform of the time derivative,∫ ∞

0

dtẊ(t, r)eiωt = X(0)(r)− iω

∫ ∞

0

dtX(t, r)eiωt, (3.15)

assuming X(r)→ 0 for t→∞. The transform of the second time derivative is then∫ ∞

0

dtẌ(t, r)eiωt = Ẋ(0)(r)− iω

∫ ∞

0

dtẊ(t, r)eiωt = Ẋ(0)(r)− iωX(0)(r)− ω2

∫ ∞

0

dtX(t, r)eiωt. (3.16)

This tells us that the transform of −d2X/dt2 is −Ẋ(0) + iωX(0) + ω2X̂.
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Figure 3.2: Integration contour used to evaluate the transform of (3.20). The integral is
originally defined with a contour running above the real line from left to right. The crossed
circles mark zeros of the Wronskian, or the QNM frequencies, and the semicircle at infinity
carries a non-zero contribution, associated with the direct propagation of the perturbation
to the observer along null geodesics.

The general solution to Eq. (3.14) can be found via the Green’s function of the homogeneous
equation, defined in terms of two independent solutions X̂r+ , X̂∞. These are defined by
their behavior at the horizon and at infinity,

lim
r→r+

X̂r+ ∼ e−iωr∗ , lim
r→+∞

X̂r+ ∼ B∞(ω)r + A∞(ω)/r2, (3.18)

and
lim

r→+∞
X̂∞ ∼ 1/r2. (3.19)

We can then write the solution to (3.14) in terms of the Green’s function

X̂(ω, r) = X̂∞(ω, r)

∫ r∗

−∞
dr′∗

X̂r+(ω, r′∗)I(ω, r′∗)

W (ω)
+ X̂r+(ω, r)

∫ 0

r∗

dr′∗
X̂∞(ω, r′∗)I(ω, r′∗)

W (ω)
,

(3.20)
where W = 3B∞(ω) is the Wronskian of the two solutions (3.18), (3.19). From the asymp-
totic behavior of X̂r+ , Eq. (3.18), we realize that the QNM frequencies are defined as the
values of ω for which B∞(ω) = 0.

To go back to the time domain, we need to plug this solution in the inverse transform,
Eq. (3.13). The integrand exhibits poles at the QNM frequencies, where the Wronskian
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W is zero. However, the integrand does not present any branch cuts (which are present,
e.g., in asymptotically flat spacetimes), thanks to the asymptotic behavior of the potential.
The integral along a closed contour (represented in Fig. 3.2) would therefore receive con-
tributions from the semi-circle at infinity and the original integral above the real line, and
is equal to the sum of the residuals associated with all the poles, located in the lower-half
plane at the QNM frequencies. In this work, we focus on the QNM contribution to the re-
sponse, and neglect the contribution of the semicircle at large |ω| enclosing the poles in the
complex plane. The contribution of the semicircle corresponds to the direct propagation
of the perturbation to the observer. We therefore only evaluate the residuals, finding

X(t, r) =
∑
n

iA∞(ωn)

(
dW

dω

)−1
∣∣∣∣∣
ωn

[∫ 0

−∞
dr′∗I(ωn, r

′
∗)X̂ωn(ωn, r

′
∗)

]
X̂ωn(ωn, r)e

−iωnt

∼
∑
n

iA∞(ωn)

(
dW

dω

)−1
∣∣∣∣∣
ωn

[∫ 0

−∞
dr′∗I(ωn, r

′
∗)X̂ωn(ωn, r

′
∗)

]
1

r2
e−iωnt, (3.21)

where we defined the QNM radial profile X̂ωn = X̂∞

∣∣∣
ωn

= X̂r+/A∞

∣∣∣
ωn

, normalized to

unity at the AdS boundary. In the second line, we approximated the profile away from
the black hole, X̂ωn ∼ r−2. Here we are not making any assumptions about how the initial
perturbation I(ω, r) is localized, and we are integrating over the whole spacetime outside
the horizon.

From this expression, the QNM excitation coefficients are defined as

Cn = iA∞(ωn)

(
dW

dω

)−1
∣∣∣∣∣
ωn

[∫ 0

−∞
dr′∗I(ωn, r

′
∗)X̂ωn(ωn, r

′
∗)

]
, (3.22)

and are therefore proportional to the overlap integral of the initial condition with the
relevant QNM profile. The prefactors, which are independent of the initial condition and
only depend on the properties of the background geometry and the type of perturbation
considered, are known as the excitation factors,

Bn = iA∞(ωn)

(
dW

dω

)−1
∣∣∣∣∣
ωn

. (3.23)

The discussion above applies to the leading linearized order in the scalar perturba-
tions, and neglects the backreaction on the black hole geometry. We now briefly explore
the equations governing perturbations beyond leading order, reviewing and extending the
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results of [69, 130]. With our investigations of ringdown nonlinearities in mind, we study
the dynamical response of the system (3.3), (3.4), to a scalar, spherically symmetric QNM
perturbation, φ(t = 0, r) = φn(r). We assume this produces a small perturbation of the

background SAdS solution g
(0)
ab = gSAdS

ab . Schematically, we can write

gab = g
(0)
ab + εh

(1)
ab + ε2h

(2)
ab + . . . , (3.24)

φ = 0 + εφ(1) + . . . , (3.25)

where ε is a small parameter used to keep track of the order of the perturbations.

The metric perturbations can be reduced, in spherical symmetry, to spherically sym-
metric modes, which are also even-parity modes. The metric perturbation at order n is
first written in the Regge-Wheeler gauge,

h
(n)
ab =


H

(n)
0 (t, r)fSAdS(r) H

(n)
1 (t, r) 0 0

H
(n)
1 (t, r) H

(n)
2 (t, r)f−1

SAdS(r) 0 0

0 0 r2K(n)(t, r) 0

0 0 0 r2K(n)(t, r) sin2 θ

 . (3.26)

After a series of manipulations involving the Bianchi identities, all four free metric functions
H

(n)
0 , H

(n)
1 , H

(n)
2 , K(n) can be written in terms of a single master variable, Ψ

(n)
g . For the

scalar field these manipulations are not required, because the scalar field coincides with
its master variable up to a factor of r, X(n) = Ψ

(n)
s . These steps allow us to write the

perturbation theory equations at all orders as(
− d2

dt2
+

d2

dr2
∗
− VSAdS,i(r)

)
Ψ

(n)
i (t, r) = S

(n)
i (t, r) with i = s, g. (3.27)

The potential VSAdS,i
4 takes a different shape for scalar and gravitational perturbations,

but is the same at all orders: perturbations of the same type are governed by the same
differential operator on the left-hand side at all orders. The source, on the right-hand
side, can contain all lower order perturbations and their derivatives, with r∗-dependent
coefficients. What we need to solve, order by order, are therefore decoupled wave equations
with a given potential and a given source. Notice that we can only separate the time and
radial variables in the absence of a source, i.e., at leading order in the perturbation.

From the structure of the equations of motion (3.3–3.4) we realize that the leading
order perturbation φ(1) is not sourced, and only depends on the background solution and

4The potential of even-parity spin-2 perturbations of SAdS is given in Ref. [69].
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the initial conditions. Thus, it satisfies the standard equations for the spin-0 QNMs of
a SAdS black hole, Eq. (3.9), and can be solved using the Green’s function method, as
explained at the beginning of this section. The initial conditions of our choice imply a
non-zero first order scalar perturbation, whose QNM content is set by the QNM excitation
coefficients of Eq. (3.22).

At order O(ε), the metric is not sourced by the scalar field, which enters the stress-
energy tensor (and therefore the Einstein equation) quadratically. We can thus set this
term, not directly sourced by the initial condition, to zero. The first order at which the
metric perturbation is sourced by the scalar field is Ψ

(2)
g . The latter satisfies an equation

of the form(
− d2

dt2
+

d2

dr2
∗
− VSAdS,g(r)

)
Ψ(2)
g = a(r)φ(1)∗φ(1) + b(r)φ(1)∗

,r φ(1)
,r + c(r)φ

(1)∗
,t φ

(1)
,t , (3.28)

where a, b, c are given functions of r (we omit the explicit expressions for brevity). To

solve this equation, we could transform the master variable and the source, Ψ
(2)
g (ω, r) =∫ +∞

t0
dt eiωtΨ

(2)
g (t, r), S

(2)
g (ω, r) =

∫ +∞
t0

dt eiωtS
(2)
g (t, r)5. This reduces Eq. (3.28) to(

∂2
r∗ + ω2 − Vg

)
Ψ(2)
g (ω, r) = S(2)

g (ω, r) (3.29)

This expression allows us to conclude that second order gravitational perturbations will
be a sum of the same QNMs characterizing the leading order perturbations, as they are
governed by the same differential operator.

3.2.3 The analysis

In the following Sections, we study the scalar field at the AdS boundary – hereafter
φ(t) ∼ φ(t, r)r3 – as well as the black hole horizon area as a function of time, produced
with numerical simulations of the fully nonlinear (although spherically symmetric) equa-
tions (3.3–3.4). We study the system for different initial scalar field configurations, starting
from a QNM initial perturbation of overtone number n,

φ(v = 0, r) = Apertφn(r). (3.30)

We normalize the QNM radial profiles so that max
r
φn = 1 and vary the overall perturbation

amplitude Apert. We also consider more generic compact pulse perturbations,

φ(v = 0, x = 1/r) =

{
−Apert(x− xmin)3(x− xmax)3 for x ∈ [xmin, xmax]

0 otherwise,
, (3.31)

5The initial condition for Ψ
(2)
g vanishes, so there is no term analogous to I(ω, r) in Eq. (3.14)
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In order to understand the QNM content of the scalar field ringdown induced by the
initial perturbation, we fit the boundary data with the model

φN+,N− =

N+−1∑
n=0

A+ne
iωn(t−t0)+ϕ+n +

N−−1∑
n=0

A−ne
−iω∗n(t−t0)+ϕ−n , (3.32)

where the two sums contain the positive and negative frequency modes respectively, ω+n =
ωn,R + iωn,I and ω−n = −ω∗n = −ωn,R + iωn,I, where ωn,R > 0. We perform least square
fits of the boundary data, where we hold all frequencies fixed to their true values and
determine the value of the amplitudes A and phases ϕ. The true frequencies are taken to
be the scalar QNM frequencies (computed according to [52]) for a black hole of mass equal
to the final mass, or ADM mass of the system. The fits are performed between times t0
and T , which might not coincide with the start and end time of the simulation.

We estimate the numerical noise as the residuals between our main datasets and higher
resolution simulations, |φ− φ higher res.|. In order to estimate the global goodness of the fit,
we compute the mismatch,

M = 1− 〈φ, φfit〉√
〈φ, φ〉〈φfit, φfit〉

, (3.33)

where 〈f, g〉 =
∫ T
t0
f(t)g∗(t) dt. The lower the mismatch, the better the fit reproduces the

data over the entire time series. Finally, we estimate the trade-off between a better fit and
a higher number of parameters, i.e., the over-fitting, by computing the Akaike Information
Criterion (AIC) [173],

AIC = 2k + n log(RSS) (3.34)

where n is the number of data points, k is the number of parameters and RSS =
∑

i |φi −
φi fit|2 is the residual sum of squares. The AIC allows to compare different statistical models
(in this case, with a different overtone content), weighing both the increase in parameters
and the decrease in residuals. A model with lower AIC is preferred relative to a model
with higher AIC.

For concreteness, we focus on a small black hole in AdS, r+ � L, and set L = 1,
MADM = 0.104 (unless stated otherwise).

3.2.4 Results: quasi normal mode perturbations

Typical ringdown data is shown in Fig. 3.3 for an initial perturbation composed of the first
overtone, n = 1. We notice that the ringdown starts directly from the perturbing mode,
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Figure 3.3: Scalar field ringdown to a n = 1 perturbation with Apert = 0.1. Left : real
and imaginary part of the scalar field at the AdS boundary. Dashed lines indicate higher
resolution data. Right : absolute value of the real part and of the full scalar field at the AdS
boundary. This plot reveals the nonlinear feature, i.e., the emergence of two lower-n quasi
normal modes. For visual comparison, we plot the slopes of the fundamental (dotted) and
first overtone (dashed).

with no sign of an “immediate response” phase. This can be explained by the fact that
the QNM radial profile extends up to the black hole horizon and the AdS boundary from
the very first slice of the simulation. For this reason, we can start fitting the data with our
QNM models at t0 = 0. The data does not present significant features at late times – and
indeed we do not expect power law tails in SAdS. We can therefore fit up to T ' 300M .

By inspecting the right panel in Fig. 3.3, we can identify the first overtone (i.e., the
perturbing mode) in the initial segment of the data and a mix of the positive and negative
frequency fundamental modes (±ω0,r+iω0,i, with a longer decay time) in the later segment.
This simple model suggested by visual inspection is confirmed by a least square fit. Fig. 3.4
shows how the residuals significantly decrease from well above the numerical noise as we
add the modes n = +0, n = −0 and n = 1 to the fit model. The evidence for overtones
above the perturbing mode, n > 1, is very weak, as can be seen from Fig. 3.4 and Table 3.2.
The residuals do not improve significantly when increasing the total number of overtones
N . From Table 3.2, we see that the amplitudes of the first three modes remain consistent
with the minimal model as overtones are added, while the amplitudes of the n = 2 mode has
a 100% variation when going from N = 2 to N = 3. The mismatch decreases significantly
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Figure 3.4: Scalar field ringdown to an n = 1 perturbation with Apert = 0.1. The minimal
model is composed of the two fundamental modes and the first overtone (the perturbation),
in green. For the minimal model, the fit residuals run below the numerical noise only in
the late ringdown, indicating some over-fitting The residuals do not decrease significantly
when higher overtones n > 1 are added, meaning that there is weak evidence supporting
their presence in the data.

when reaching the minimal model N = 1, but fluctuates around the minimum value for
N = 2, 3. The variation of the AIC seems to indicate slight preference for models with
higher N . For simplicity,we omit the negative frequency first overtone, n = −1, which also
does not lower the residuals significantly.

Generalizing to other overtone perturbations, we find strong evidence that the per-
turbing mode sources at a lower amplitude all modes with n < npert, with positive and
negative frequency. For instance, a n = 1 perturbation sources n = ±0, a n = 2 perturba-
tion sources n = ±0, n = ±1, etc. The fundamental mode also follows this pattern, and
does not source any modes, not even its negative frequency companion, at least not at a
level detectable by our methods and with our level of numerical noise.

To identify the mechanism that sources lower n modes, we perturb the system with ini-
tial QNM perturbations with different amplitudes. We generically find that the perturbing
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|M| δAIC A+0 A−0 A1 A2 A3

+0 0.9338 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000

±0 0.9690 0.0001 0.0032 0.0006 0.0000 0.0000 0.0000

±0, N = 1 0.0040 -1.3914 0.0033 0.0006 0.5139 0.0000 0.0000

±0, N = 2 0.0074 -1.4936 0.0033 0.0006 0.5148 0.0140 0.0000

±0, N = 3 0.0065 -1.5895 0.0033 0.0006 0.5152 0.0208 0.0186

Table 3.2: Analysis of the scalar field ringdown to an n = 1 perturbation with Apert = 0.1.
We consider fit models with different overtone content. We show, in order, the mismatch
between the data and the fit, the variation of the Akaike information criterion, and the
amplitudes of the overtones resulting from the least-squares fit.

mode sources lower modes cubically,

An<npert ∼ A3
pert, (3.35)

with O(10− 0.1) prefactors. This is shown in Fig. 3.5 for n = 1 and n = 2 perturbations,
but we confirmed this pattern up to n = 106. A cubic relation clearly indicates the presence
of a nonlinear effect. In our perturbative analysis of Eqs. (3.3–3.4) in Section 3.2.2, we saw
that a perturbation δφ enters the equation for the metric quadratically through the stress
energy tensor, δg ∼ δφ2. A higher order perturbation of the scalar field is then sourced
(at leading order) by a product of the original perturbation and the metric perturbation,
δφδg ∼ δφ3, which explains the cubic dependence found in the numerical data.

The cubic relation is equally consistent with two types of nonlinearities:

• a dynamical nonlinearity;

• a nonlinearity on the initial slice (i.e., in the initial conditions). The perturbing
mode is constructed as a scalar QNM of the background black hole, originally set to
have mass equal to the ADM mass of the system. However, the constraint equations
require that the ADM mass must be distributed between the black hole and the
scalar field at v = 0 (or the very next time step), and the true initial mass of the
black hole is therefore lower then the ADM mass. For this black hole, our initial
perturbation is not exactly a quasi normal mode. In this sense, other modes can be

6At higher n, the number of parameters to fit increases as 4(n − 1), and we are less confident in the
amplitudes of high-n overtones recovered by the fit.
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Figure 3.5: Left : amplitudes of sourced modes as a function of the perturbation amplitude
(n = 1), superposed with a cubic fit, in black. The amplitudes deviate from the cubic
relation when the perturbation is too weak compared to numerical noise, and this happens
at higher amplitudes for higher modes. Right : second overtone perturbation, n = 2.

directly sourced by the initial conditions, eluding the fact that in linear theory, QNMs
cannot source modes with different overtone numbers because of their orthogonality
properties [121].

Our results are compatible with both explanations, and we have not found a way, so far, to
distinguish between them. In some sense, these are two aspects of the nonlinear equations,
and will both come into play for more generic perturbations, as we discuss in the next
Section.

For completeness, we also studied larger black holes (r+ � L) perturbed with single
QNMs. We omit these results for brevity. We find that lower overtones are excited nonlin-
early (cubically) also in larger black holes, at least at early times. Our late-times numerical
data is more affected by numerical noise for larger black holes.

Building up to more general perturbations, we also perturb the system with a mix
of scalar QNMs. As an example, we consider a perturbation composed of the n = 2
and n = 3 overtones, in a 30%–70% mix, with total amplitude Apert = 0.05. We fit the
data with models with an increasing number of other modes, and find that the fit residuals
decrease significantly when the positive and negative first overtone and fundamental modes
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Figure 3.6: Scalar field ringdown to a perturbation composed of a mix of the n = 2 and
n = 3 modes. We compare the fit residuals for different fit models. The fit improves
substantially with the inclusion of the n = ±1 and n = ±0 modes, absent in the initial
data and generated nonlinearly.

are included, in addition to the perturbing modes; see Fig. 3.6. The presence of these
modes, not contained (at the linear level) in the initial perturbation, signals again that
nonlinearities are at play. In particular, the amplitudes of the nonlinearly generated modes
are consistent with being sourced by both the n = 3 and n = 2 initial perturbations (as
a sum, at the order of magnitude level). This is seen by comparing the amplitudes of the
modes resulting from the fit with the ones predicted by a cubic fit of five n = 2 and n = 3
perturbation datasets (along the lines of Fig. 3.5), see Table 3.3. We find again only small
evidence for the presence of higher modes, n > 3, in the form of a small decrease of the
AIC value, the residuals and the mismatch.

3.2.5 Results: compact pulse perturbations

We now consider a more realistic class of perturbations: compact pulses. Compact pulse
perturbations introduce a new feature in the scalar field ringdown: a prompt response,
caused by the delay with which the pulse reaches the AdS boundary (where we extract
the scalar field value over time). The prompt response is not a superposition of QNMs, as
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A2 A3 A+0 A−0 A+1 A−1

pert = 2 + 3 0.11 0.34 3.3 10−5 1.2 10−5 2.3 10−4 3.7 10−5

pert = 2 0.11 0.00 2.3 10−6 0.6 10−6 1.8 10−5 0.2 10−5

pert = 3 0.00 0.34 8.9 10−6 3.4 10−6 6.0 10−5 1.1 10−5

Table 3.3: Scalar field ringdown sourced by a mix of the second and third overtones. The
table compares the amplitudes found by a fit of the ringdown data (first row) with the
predictions obtained by perturbing the black hole with one mode of varying amplitude
at a time, and fitting the nonlinear (cubic) generation of lower modes (see Fig. 3.5 and
discussion in the text).

understood from the analysis of the Green’s function of the linearized equation7. Therefore,
we start our fits after this feature has passed and QNMs are clearly identifiable, see Fig. 3.7,
left panel.

We fit for the amplitudes of low n overtones as described in the previous sections, and
vary the amplitude of the compact pulse perturbation. By comparing the amplitudes of
the QNMs with the amplitude of the pulse (Fig. 3.7, right panel), we find a predominantly
linear relation between them. In this case, the dominant phenomenon is therefore a direct
excitation of QNMs by the initial perturbation, allowed by the linear order equations.

This is however not the whole story. Modes are also excited nonlinearly, although at
lower amplitude. The best way to explore the purely nonlinear features of the ringdown is
to subtract the linear response from the nonlinear data. We therefore generate both full
nonlinear data (NL), and data produced with a modification of the numerical code where
the interaction with gravity is switched off by setting G = 0. This produces what we call
linear data (L). We checked that this is the best way to remove the linear response (at
least for the range of perturbation amplitudes explored) as follows. We compared the linear
subtraction with two other candidates: the subtraction of data generated with a black hole
mass given by solving the constraint equation for the given initial scalar data (“initial
mass” data), and with the subtraction of the Cowling approximation, which consists in
solving the constraint on the initial slice and evolving forward with G = 0. We compare
these three possibilities in Fig. 3.8, left panel, which shows that the linear data achieves
the largest subtraction.

We therefore subtract the linear data from the nonlinear, and fit the difference for the

7As mentioned in Section 3.2.2, while QNM can be associated with the poles of the Green’s function in
the complex ω plane, the prompt response is associated with the contribution of the semicircle at infinity.
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Figure 3.7: Left : Amplitude of the scalar field in response to a compact pulse perturbation
of amplitude A = 0.05. The prompt response part of the data is highlighted in red. Right :
The amplitude of first overtone and fundamental modes (positive and negative frequency)
versus the compact pulse amplitude, overlaid with a linear fit. Note that positive and
negative frequency modes have almost identical amplitudes and are overlaid in the plot.

QNM amplitudes and phases. As displayed in Fig. 3.8, right panel, the amplitudes in the
subtracted data have approximately cubic relations with the pulse amplitude: we find best
fits A ∼ A2.5

pert and A ∼ A3.2
pert for the first overtone and fundamental modes, respectively.

This shows that also for generic and realistic initial data nonlinear interactions have the
effect of further exciting QNMs, extending the results of the previous Section. In either
case, we find no evidence of the presence of nonlinear features that cannot be described by
QNMs.

3.2.6 Theoretical predictions: area increase

We now take a step back from the numerical data, and study how QNMs can backreact on
the black hole spacetime. We start by writing the black hole metric in ingoing Eddington-
Finkelstein coordinates, which are horizon-penetrating,

ds2 = −fdv2 + 2dvdr + r2dΩ2 , (3.36)
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Figure 3.8: Left : Comparison between three methods for subtracting the linear response
of the perturbed scalar field. The linear approximation subtracts the most out of the full
nonlinear data. Right : Approximately cubic relation between the QNM amplitudes in the
subtracted data and the pulse amplitude.

where v = t+ r∗, with the tortoise coordinate defined by dr∗

dr
= f−1. Close to the horizon,

a scalar QNM can be approximated as

φ ∼ Ar+ e
−iωvY m

l (θ, ϕ) , (3.37)

with ω = ωR + iωI the complex mode frequency, ωI < 0, and Ar+ the complex horizon
amplitude (dimensionless in units in which the AdS length is set to L = 1). This approx-
imation applies to both Schwarzschild-AdS as well as Schwarzschild black holes, as the
behavior of the scalar field at the horizon is independent of the properties of the spacetime
far away. For a static black hole, the time-like Killing vector can be written as

ta =

(
∂

∂t

)a
=

(
∂

∂v

)a
−
(
∂

∂r∗

)a
=

(
∂

∂v

)a
− f

(
∂

∂r

)a
. (3.38)

This vector defines a conserved scalar field energy current,

Ja = −T abtb , (3.39)

where the scalar field stress-energy tensor was defined in Eq. (3.5). The integrated energy
flux across the event horizon is then given by

Φ(v) =

∫
horizon

dΩnaJ
a (3.40)
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where na is the inward normal to the horizon, na = −ta8. Focusing on spherically symmetric
perturbations, l = m = 0, and using the normalization Y 0

0 = 1/2
√
π, we find

Φ(v) =
|ω|2
8π
|Ar+ |2e2vωI . (3.41)

We find a positive flux, meaning that energy is being dumped into the black hole. In
geometric units, we expect an energy per unit time to be dimensionless, and indeed the
dimensions of ω and A would cancel out. Energy is falling into the black hole at an
exponential rate, with a time scale given by half of the mode decay time, τ ' (2ωI)

−1.
We stress again that this result is valid for scalar QNMs of both Schwarzschild-AdS and
Schwarzschild black holes, and really any spherically symmetric, static black hole. The am-
plitude measured at the horizon, Ar+ is in general a complicated function of the amplitude
measured at infinity, as this relation depends on the full radial QNM profile.

A positive flux of energy through the horizon causes the latter (and therefore the black
hole mass) to grow over time. The horizon area A is related to the irreducible mass by

A = 16πM2
irr . (3.42)

For a Schwarzschild black hole, the irreducible mass is equal to the black hole mass, Mirr =
M , and the area varies according to9

dA
dv

∣∣∣∣
S

= 32πMΦ(v) . (3.43)

For a single QNM we find that the area will grow over time as

A(v) = A(0) +
2M |ω|2

∣∣Ar+∣∣2
ωI

e2vωI . (3.44)

In AdS, the black hole mass and the irreducible mass are related by M = Mirr(1 + 4M2
irr).

Inverting this relation for M > Mirr > 0, we find (for L = 1)

Mirr =
32/3 − 3

√
3
(√

3
√

27M2 + 1− 9M
)2/3

6
3
√√

3
√

27M2 + 1− 9M
. (3.45)

The area variation is then given by

dA
dv

∣∣∣∣
SAdS

= 32πMirr
dMirr

dM
Φ , (3.46)

8We follow Wald’s convention [232], Eq. (12.3.20), page 320.
9On the horizon, we can use interchangeably v or t.
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Figure 3.9: The area variation caused by QNM perturbations of amplitude A = 0.05
(n = 1 and n = 3). The analytical prediction (for a numerically determined QNM horizon
amplitude) is overlaid as a dashed line.

which implies

A(v) = A(0) +
2Mirr|ω|2

∣∣Ar+∣∣2
ωI

dMirr

dM
e2vωI . (3.47)

The formulas above can be used to predict the change in mass of the BH in our numerical
simulations. Using numerical QNM profiles, we can find a numerical relation between the
QNM amplitude at infinity (the simulation output) and the amplitude at the horizon
appearing in Eq. (3.47). This is shown in Fig. 3.9 for two examples, initialized with
a n = 1 and a n = 3 perturbation. Fig. 3.9 shows excellent agreement between the
predicted and the numerical evolution of the horizon area, which grows by 2–4 %. In
particular, it confirms that the area variation timescale is set by the imaginary part of the
frequency of the dominant (the perturbing) QNM. The numerical data therefore confirms
the backreaction mechanism identified analytically in this Section.
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3.3 Future prospects

The results of the previous sections point at two conclusions: that 1) nonlinearities in the
scalar field–black hole system contribute to the amplitude of modes belonging to the linear
spectrum and that 2) the absorption of QNMs can change the black hole mass over time
at percent level, whit a timescale set by the dominant mode’s decay time. These results,
although limited to scalar perturbations in AdS black holes in spherical symmetry, might
explain why models with a sufficient number of overtones can fit the ringdown signal close
to merger, as in the recent study by Giesler et al. [116].

In the future, in order to further connect these two observations, we could make use of
the Laplace-transform formalism outlined in Section 3.2.2 and Refs. [152, 153, 151]. This
formalism predicts that, at linear level, the QNM amplitudes are given by the black hole
excitation coefficients. In turn, these are given by the product of the excitation factors,
which only depend on the black hole parameters, and an overlap integral between the QNM
radial profile and the Laplace transform of the initial condition. Excitation factors and
coefficients have been computed for Schwarzschild and Kerr black holes [40, 244], but the
numerical methods could be easily extended to asymptotically AdS ones. Some nonlinear
effects – such as the change in the black hole mass – could also be accounted for in the
formalism, e.g., by studying the overlap of QNM profiles associated with the initial and
final mass, or by applying the formalism of the QNM excitation coefficients to higher order
perturbations sourced by lower order ones.

More importantly, it remains to be seen whether the two conclusions mentioned above
apply to gravitational perturbations of Kerr black holes, which describe the sources ob-
served by gravitational wave detectors. To answer analogous questions in more realistic
settings, it will be necessary

• to identify the initial conditions of the black hole ringdown in a binary merger. This
step is complicated by the fact that numerical simulations use coordinates that are
not easily mapped to the ones used in, e.g., the Teukolsky formalism for perturbations
of Kerr. Recently, there has been interest in the numerical study of nonlinearities
surrounding the black hole horizon after a binary merger [190], and in the dynamical
formation of the binary’s common horizon [201, 202]; these investigations could prove
useful to identify the initial conditions of the ringdown following a binary merger.
The authors of [159, 208] also suggest using the close limit approximation [205] or
the extreme-mass-ratio limit [27, 156] to black hole mergers to gain insight into the
initial conditions of the ringdown;
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• to investigate QNM interactions beyond linear order. A first step in this direction
was taken by Ripley et al. [208], who studied second order perturbations of Kerr
neglecting the backreaction on the black hole mass and spin. These preliminary
investigations support a conclusion similar to the one of this thesis, i.e., that the
predominant effect of perturbations beyond linear order is to excite modes belonging
to the QNM spectrum (although these results have not yet been compared to fully
nonlinear numerical evolution). The formalism and publicly available code of Ripley
et al. [208] could be extended to allow for the reconstruction of the full metric at
second order (not just the radiation at null infinity) and even go beyond second
order, by using the steps outlined by Green, Hollands and Zimmerman [122].
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Chapter 4

Semiclassical approximation in
gravity

4.1 The standard approach

The semiclassical approximation is a technique originally designed for applications in non-
relativistic quantum mechanics, where it is known under the WKB acronym (after Wentzel,
Kramers and Brillouin [58, 146, 238]). In particular, it is commonly used to solve problems
involving quantum tunneling. The approximation relies on taking the mathematical limit
~ → 0. This limit requires care, as ~ will appear both in the dynamical equations and in
the wave function1. Although it is more correct to talk about the limit of dimensionless
parameters (such as the ratio of the action and ~), rather than natural constants, keeping
track of the powers of ~ is a useful trick in many practical calculations. Expansions in ~
rarely converge, but can be seen as asymptotic expansions.

The semiclassical approximation is widely used in the context of quantum theories of
gravity. It has been applied widely, with the more promising applications being the early
universe and black hole spacetimes. In absence of a full quantum theory of gravity, which
would allow for a self-consistent derivation of this approximation, the semiclassical formal-
ism in the presence of gravity is commonly built from the bottom up. A bottom-up semi-
classical theory is built to satisfy some of the principles of the classical theory, together with
principles of quantum mechanics or quantum field theory. However, a bottom-up approach

1For instance, when considering the classical limit of the state of a particle, the state must become
localized in phase space in such a limit.
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to semiclassical gravity has its limitations: many of the guiding principles of quantum field
theory, which we might have liked to carry over to the semiclassical approximation, are
incompatible with general relativity. This is the case for Poincaré invariance, which in turn
allows us to choose a unique representation of the commutation relations.

Despite these obstacles, it is still possible to construct a semiclassical theory that pre-
serves all the principles of general relativity and some of the principles of quantum field the-
ory. This is attempted by the algebraic approach to quantum field theory on curved space-
times, as summarized by Hollands and Wald in [129]. In the presence of (non-conformally
invariant) matter fields, both in gravitational and non-gravitational settings, the physical
problem acquires multiple scales and one may consider different approximations: one in
which all fields are treated as quantum, one in which some fields are treated classically
and some are quantized, or the limit in which all fields are treated classically. Since we
do not yet agree on a quantum theory of matter and gravity, we will be interested in
the intermediate case, with matter fields quantized and the gravitational field treated as
classical. Rather than expanding in ~, one uses the separation of scales between heavy
(background) fields – like the homogeneous degrees of freedom of the gravitational field,
associated with the volume of the universe (in a spatially closed model) – and light fields
(gravitons and other matter fields). The heavy fields are treated classically, while the light
fields are quantized. One should however always bear in mind that this procedure does
not lead to a consistent stand-alone theory, and will only be a good description within its
regime of validity.

The semiclassical approximation will in most cases correspond to what is known as
quantum field theory in curved spacetime [47, 113, 233]. This is unless non-perturbative
effects of gravity are relevant, i.e., unless the relevant saddle point solution for the grav-
itational field is not a classical, real, metric. This is the case for the line of investigation
initiated by the no-boundary proposal of Hartle and Hawking [126] and Vilenkin’s tunnel-
ing proposal [230]. In these proposals for the early universe, the metric (in minisuperspace
models, the scale factor) behaves inherently non-classically. When such non-classical back-
grounds are considered, the semiclassical limit for the matter fields can give unexpected
results: see, e.g., [94] for an application to inflation.

Consider the case of quantum electrodynamics, which has often been used as a toy
model to understand the semiclassical limit of gravity (see, e.g., [49, 140]). In the semi-
classical approximation, the backreaction of a quantum field φ (giving rise to a current
Jµ) onto a background electromagnetic field Aµ can be derived within the effective action
formalism. This derivation can be found in many quantum field theory textbooks, such as
Schwartz’s [213]. One first defines – through a path integral – the generating functional of
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in-out expectation values of the current operator,

Z[Aµ] =

∫
Dφ eiS[φ,Aµ] ∼

∑
n

1

n!

〈0out|(iJµ)n|0in〉
〈0out|0in〉

Anµ, (4.1)

where the action S is the action of the field φ (including self-interactions) plus the inter-
action term ∼ JµA

µ. The integration is over all field configurations φ. Ideally, the contour
would be deformed in the complex field space so that the integral becomes absolutely con-
vergent. This definition of the path integral (which would involve Picard-Lefschetz theory)
has not yet been succesfully applied to infinite dimensional integrals, and is beyond the
scope of this introduction. The integral can alternatively be made convergent with the
addition of a small convergence factor in the action, ∼ iεφ2 with ε > 0.

In the expression above, we can expand the integration variable around the classical
solution, φ = φcl + δφ, with δS/δφ|φcl = 0,

Z = eiS[φcl,Aµ]

∫
Dδφ ei δS[δφ] = eiS[φcl,Aµ] N. (4.2)

Notice that after the split the remaining integral over the fluctuations is independent of the
background field (which only appeared in terms quadratic in φ). The remaining integral
can therefore be identified with the vacuum normalization N = 〈0out|0in〉−1. Compar-
ing (4.1) and (4.2), we can define the effective action, Γ[Aµ] = S[φcl, Aµ], and from this the
expectation value of the current,

δΓ[Aµ]

δAµ

∣∣∣∣
Aµ=0

= 〈0out|Jµ|0in〉. (4.3)

The in-in (out-out) vacuum expectation values can be derived, at zero loops in the inter-
action strength, from the in-out expressions by substituting the classical solution defined
by the retarded (advanced) propagator rather than the Feynman one [237]. Weinberg
discussed how the in-in formalism is complicated by the presence of interactions in [237].

We now have all the ingredients to derive the semiclassical equation describing the
backreaction of the quantized field onto the background. We first define the reduced
action for the background field by integrating out the quantized one,∫

DAµ eiSred[Aµ] =

∫
DAµ

∫
Dφ eiS[φ,Aµ]+iSB [Aµ] =

∫
DAµN eiΓ[Aµ]+iSB [Aµ] (4.4)

where SB is the action of the background, in this case the standard action for the electro-
magnetic field. The classical equation of motion for the background is then

δSred

δAµ
=

δΓ

δAµ
+
δSB
δAµ

= 0, (4.5)

65



which reads
∂νF

µν = 〈0in| Jµ|0in〉 , (4.6)

once we ensure causality by substituting the in-in expectation value, as explained above.

By analogy, the backreaction of quantized matter fields onto the gravitational one can
be computed via a semiclassical Einstein equation,

1

8πG
Gµν + ρΛgµν = 〈T̂µν〉 . (4.7)

In this Chapter, we use units in which c = ~ = 1 but G is a dimensionful constant. The
expectation value of the stress-energy tensor is evaluated on a chosen state – the choice
of state will be a central topic in the remainder of this Chapter. This equation will be
discussed further in Section 4.3. We stress again that Eq. (4.7) is usually postulated, rather
than being derived from a complete theory.

In this Chapter, we present a proposal to modify the semiclassical Einstein equa-
tion (4.7), in an attempt to resolve or at least shed new light on the cosmological constant
problem. In the next Section, we briefly review modern and historical views on the cosmo-
logical constant problem. We present our proposal in detail in Section 4.3, and draw our
conclusions and discuss potential improvements to the proposal in Section 4.4.

4.2 The cosmological constant problem

Clear expositions of the cosmological constant problem can be found in many reviews (see
in particular [236, 61, 194, 172]). In this Section we give a brief overview of the problem,
with emphasis on the subtleties of its very definition.

Several observations have now confirmed that our universe is filled with a vacuum
energy density. The analysis of the Planck 2018 datasets found [20]

ρΛ = 7.2583× 10−121M4
Pl, (4.8)

From quantum field theory, we learned that constants of nature are related to infinities in
perturbative calculations by renormalization,

ρΛ obs = ρΛ bare + ρΛ vacuum, (4.9)

where the contributions to ρΛ vacuum arise from the right hand side of (4.7), and can be
thought of as radiative corrections from bubble diagrams. This standard argument can
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already be questioned: is the semiclassical expansion involving gravity convergent, or at
least asymptotic, and therefore a reliable approximation? What is the appropriate scale
at which we should compute this contribution, and therefore which background metric
should we use, a cosmological metric or a Minkowski metric? Do results depend on the
background metric of choice? If we use a cosmological metric, is the non-uniqueness of the
vacuum going to affect the result? What regularization scheme should we use to preserve
the covariance of the semiclassical Einstein equation? Cut-off regularization, often used
in back-of-the-envelope arguments on the cosmological constant problem, is not covariant
and leads to inconsistencies, as mentioned in Chapter 1.

Even once these questions are addressed, two fundamental problems with the cosmo-
logical constant remain: its radiative instability and the coupling between ultraviolet (UV)
and infrared (IR) physics. The cosmological constant is said to be radiatively unstable be-
cause vacuum terms in (4.9) do not die away as we consider more interaction terms in the
theories contributing to the stress-energy tensor (such as quartic interactions in a scalar
field theory). In other words, higher loop terms are not suppressed compared to lower
ones, and renormalization would be equally important at each step (see, e.g., Padilla’s
review [194]). The coupling of UV and IR is manifested in the fact that fields with heavier
masses, which we would normally associate with high energies (UV physics), dominate over
light (IR physics) fields in their contributions to the vacuum energy, as the latter go like
ρΛ vacuum ∼ m4 even in covariant regularization schemes such as dimensional regularization
or Pauli-Villars. If renormalization is carried out at low energies, when only light fields
are relevant, the match between the renormalized quantity and the observed one is lost at
higher energies, when more massive fields need to be taken into account [61].

The literature contains a long list of proposals claiming to resolve the cosmological
constant problem. We can recognize two categories of solutions: ones that challenge the
standard calculation of the radiative contributions to the cosmological constant, and ones
that work within the standard framework, but find ways to make the radiative contribu-
tions small. Solutions in the first category might claim that vacuum fluctuations do not
exist at all or challenge the standard appeal to experimental evidence around the Casimir
effect [182, 50] or the Lamb shift, see [133], often claimed to prove the existence of vac-
uum fluctuations. Proposals in the second category might rely on symmetries (such as
supersymmetry), alternative quantum formulations of gravity (such as unimodular grav-
ity [26]), modifications of gravity (at short [19] or long distance [79]), or dynamical effects
(such as Coleman’s universe multiplication [80], membrane nucleation [59]). Some of these
proposals have already been disproved formally (Coleman’s theory) or experimentally (su-
persymmetry2), while others are still being tested and debated.

2Supersymmetry has been excluded at sufficiently low scales to be incompatible with a straightforward
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In the following Sections, we work within the relatively well established framework
of the semiclassical Einstein equation and its renormalization, and we propose a small
modification to the way renormalization is performed in curved spacetimes.

4.3 An effective stress-energy tensor

4.3.1 Proposal

We begin by considering the semiclassical Einstein equation (4.7). The metric is treated
as a classical background field, while matter fields are quantized. We regard (4.7) as an
effective field theory that arises as the low energy limit of a more fundamental theory of
gravity [96]. We also neglect higher order curvature terms that, in the ultraviolet, would
arise on either sides of the equation. The expectation value of the stress-energy tensor
〈T̂µν〉Ψ = 〈Ψ| T̂µν |Ψ〉 in the quantum state of the field, |Ψ〉, is a divergent quantity which
we assume to be covariantly regularized.

In Minkowski spacetime, if the Hamiltonian has a ground state |0M〉, one can chose it
as a gravitational reference state. One postulates that it is only the stress-energy above
the stress-energy of this state that gravitates:

〈T̂µν〉
ren.

Ψ = 〈T̂µν〉Ψ − 〈T̂µν〉M . (4.10)

Even in flat spacetime, there might exist several ground states. However, one can choose
the ground state |0M〉 of the Hamiltonian that respects the Poincaré symmetry of the
background. This state also plays the role of the vacuum state, in the sense that it is the
no-particle state.

As discussed in the introduction, in a generic curved spacetime, there is no unique
notion of a vacuum state or a gravitational reference state. In this work, we therefore
specialize to homogeneous and isotropic (FLRW) spacetimes in n-dimensions.

Assumption 1. The background metric is that of an n-dimensional FLRW spacetime.

In order to preserve the symmetries of FLRW spacetimes, the expectation value 〈T̂µν〉
can only have two independent non-zero components: the energy density ρ = nµnν〈T̂µν〉,
where nµ is the unit normal to the homogeneous hyper-surfaces, and the pressure p defined
by the relation 〈T̂ 〉 = (n− 1) p − ρ. For most of this section, we will use the preferred

resolution of the cosmological constant problem.
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foliation that exists on an FLRW spacetime such that the homogeneous hyper-surfaces are
parametrized by the time coordinate t ≡ x0 and nµ =

√
−g00 (1, 0, ..., 0).

Similarly to the case of a Minkowski spacetime in (4.10), we propose to define an ef-
fective3 expectation value of the stress-energy tensor by subtracting the expectation value
on a gravitational reference state, in a way that also ensures that the resulting effective
energy density that contributes to the Einstein equation is positive. The obvious choice
is to subtract the stress-energy of the state with lowest energy density in the same back-
ground. In homogeneous spacetimes, minimizing the energy density is of course equivalent
to minimizing the total energy, at any given time. We call the states that satisfy this
property ground states4 and we define them formally as follows.

Definition 1. Given a quantum field theory on an FLRW spacetime, the (instanta-
neous) ground state at time t is defined as the vacuum state

∣∣0GS(t)

〉
that respects the

symmetries of the background metric and satisfies

δψ

(
nµnν 〈ψ| T̂µν(t) |ψ〉

) ∣∣∣
t;ψ=0GS(t)

= 0 , (4.11)

where the domain of variation δψ is the set of all vacuum states that respect the symmetries
of the FLRW background.

We assume the existence of ground states in the following and we discuss this assump-
tion in Section 4.4.

Assumption 2. An instantaneous ground state exists uniquely at each moment of time.

The immediate concern in subtracting the stress-energy of the ground state is, however,
that generically no single state minimizes the energy density ρ(t) at all times simultane-
ously, in a non-stationary spacetime. The ground state at one time t0 is an energetically
excited state at another time t1. One can only speak of an instantaneous ground state∣∣0GS(t)

〉
that minimizes the energy at a given time t, while the ground states at differ-

ent times are generically different states – see the explicit example of ground state vacua
provided in Appendix C.

3The reason for calling this quantity effective instead of renormalized will be explained in Section 4.3.4.
4In the literature, the term ground state is reserved for the eigenstate of the Hamiltonian operator with

lowest eigenvalue, which might be different from the state with lowest energy density that we consider
here. This distinction is particularly important if the quantum field is coupled to the curvature. The fact
that we minimize the energy density will turn out to be important to preserve the Bianchi identity.
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What we are proposing, therefore, is to define for each time, t, its own gravita-
tional reference state, namely the energetic ground state at that time. Using this family{∣∣0GS(t)

〉
, t ∈ R

}
of instantaneous ground states, we can define the effective expectation

value of the stress-energy tensor by subtracting the ground state expectation value at every
time, as measured by an inertial observer with no peculiar velocity,

〈T̂µν〉
eff.

Ψ (t) ≡ 〈T̂µν(t)〉Ψ − 〈T̂µν(t)〉GS(t) . (4.12)

The counter-intuitive fact that this quantity is covariantly conserved is one of the main
results of this Chapter and it will be proven in the next section as Theorem 1. We then
propose that the source to the semiclassical Einstein equation for an FLRW background is
the effective part (4.12) of the stress-energy tensor expectation value,

1

8πG
Gµν − ρΛ gµν = 〈T̂µν〉

eff.

Ψ . (4.13)

4.3.2 Covariant conservation law

When we choose a time-dependent vacuum family for the subtraction as in (4.12), the
major concern is preserving the consistency of the semiclassical Einstein equation.The left-
hand side in (4.13) consists of covariantly conserved tensors. For any individual state,
the expectation value 〈T̂µν〉 of the stress-energy tensor is also covariantly conserved by
diffeomorphism invariance. However, this argument does not apply to the vacuum family
expectation value 〈T̂µν〉GS(t) because of the parametric time dependence of the state. The
reader might expect the conservation law to be broken for this quantity.

This turns out not to be the case. We find that this is a non-trivial property of the
ground state family on an FLRW background and summarize this result in the following
theorem.

Theorem 1. The ground state family expectation value of the stress-energy tensor is co-
variantly conserved on an FLRW spacetime,

∇µ〈T̂µν(t)〉GS(t) = 0 . (4.14)

Proof. The line element on an n-dimensional FLRW spacetime is given by

ds2 = −dt2 + a(t)2 dΣ2
n−1 . (4.15)
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where dΣ2
n−1 is the line element on each spatial section. For any time-parametrized family

{|ψt〉 , t ∈ R} of states that respect the homogeneity of the FLRW background, such as the
ground states, we can write

〈ψt| T̂µν(t) |ψt〉 dxµ dxν = ρ(t;ψt) dt2 + p(t;ψt) a(t)2 dΣ2
n−1 , (4.16)

where ρ(t;ψt) is the energy density and p(t;ψt) is the pressure at time t for each state
|ψt〉. Writing the components of the covariant derivative explicitly for the ground state
expectation values, we find

∇µ〈T̂µ0(t)〉GS(t) = (n− 1)
a′(t)

a(t)

[
ρ(t; 0GS(t)) + p(t; 0GS(t))

]
+
∂

∂t
ρ(t; 0GS(t)) , (4.17)

∇µ〈T̂µj(t)〉GS(t) = 0 .

Since the spatial components of the covariant derivative vanish identically, we will focus
on the time component.

There are two kinds of time-dependence in ρ(t; 0GS(t)). Firstly, for each fixed ground

state
∣∣0GS(u)

〉
at time u ∈ R, the expectation value ρ(t; 0GS(u)) ≡ 〈T̂00(t)〉GS(u) is a function

of time t, since the operator T̂00(t) evolves over time. The second one is the choice of the
parameter u that specifies the time at which the state minimizes the energy density. Our
proposal sets these two parameters equal, u = t. The same discussion applies to p(t; 0GS(u)).

Let’s distinguish between the parameters t and u for a moment and define θ = t − u.
The quantity ρ(t; 0GS(u)) depends on two of these variables independently. The first term
in (4.17) is understood as first setting u = t and then taking the derivative with respect to
t. This is equivalent to taking the partial derivative with respect to t while holding θ fixed
and then setting θ = 0,

∇µ〈T̂µ0(t)〉GS(t) =

[
∂ρ(t; 0GS(u))

∂t

∣∣∣∣
θ

+ (n− 1)
a′(t)

a(t)

(
ρ(t; 0GS(u)) + p(t; 0GS(u))

)] ∣∣∣∣
u=t

.

(4.18)

On the other hand, the standard conservation law gives ∇µ〈T̂µ0(t)〉GS(u) = 0 for every fixed
state, i.e., for every fixed u. If we first evaluate the covariant derivative for fixed u and
then set u = t, this becomes

0 =

[
∂ρ(t; 0GS(u))

∂t

∣∣∣∣
u

+ (n− 1)
a′(t)

a(t)

(
ρ(t; 0GS(u)) + p(t; 0GS(u))

)] ∣∣∣∣
u=t

. (4.19)
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A simple calculation for the derivatives on the t-u-space shows that

∂f(t, u)

∂t

∣∣∣∣
θ

=
∂f(t, u)

∂t

∣∣∣∣
u

+
∂f(t, u)

∂u

∣∣∣∣
t

, (4.20)

for every scalar function f . Hence, if we subtract (4.18) from (4.19) and use (4.20), we get

∇µ〈T̂µ0(t)〉GS(t) =
∂ρ(t; 0GS(u))

∂u

∣∣∣∣
t;u=t

. (4.21)

Note that we have not used any properties of the ground states up to this point; thus (4.21)
holds for any time-dependent family of states. The defining property of an instantaneous
ground state

∣∣0GS(t)

〉
at time t is that it minimizes the energy density ρ(t) at that time

among all states as in (4.11). This implies that
∣∣0GS(t)

〉
also minimizes the instantaneous

energy density ρ(t) among the family
{∣∣0GS(u)

〉
, u ∈ R

}
of ground states at different times.

Therefore, the right-hand side of (4.21) vanishes.

In conclusion, Theorem 1 ensures that our proposal for the semiclassical Einstein equa-
tion in (4.12) and (4.13) is consistent with diffeomorphism invariance, i.e., with the Bianchi
identity. Note that the proof of Theorem 1 relies on diffeomorphism invariance for fixed
states, since we use (4.19) to convert the time derivative at step (4.18) into a derivative
over the state parameter at step (4.21).

4.3.3 Vacua in cosmology

Naively, one might expect that the momentary ground state is the vacuum state, i.e., the
no-particle state. However, in this case, the predicted amount of particle creation would
exceed the upper bound from astrophysical observations (see [47, p. 73] and references
therein). As a result, the instantaneous ground state and the related Hamiltonian diago-
nalization were ruled out as vacuum identification criteria. The lowest energy state and
the physical no-particle state must be, therefore, distinct states for quantum field theories
in generic curved backgrounds. For recent discussions on the topic of vacuum states in
cosmology, see [125, 28, 90].

The physical vacuum states that are generally considered to be most plausible for
cosmological backgrounds belong to the family of adiabatic vacuum states. These vacua are
obtained by solving a certain perturbative expansion up to a finite number of derivatives of
the metric components. See, e.g., [160] for a rigorous definition of the concept. Originally,
the adiabatic vacuum states were introduced in [196]. The basic idea is that the criterion
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for identifying which state is the vacuum state at any given time, t, should be such that the
amount of cosmological particle creation which is predicted as a consequence of applying
this criterion is minimized.

The adiabatic vacuum identification criterion may also be motivated in a new way that
is based on first-principles, i.e., without the need to appeal to data. To this end, we begin
with the intuition that, when the universe either expands or shrinks, any field state that
possesses a nonzero particle content must in some way change over time, the change being
due to the fact that the particle content of the state has to either dilute or concentrate.
This yields a criterion for identifying the no-particle state. Namely, whatever the criterion
for singling out the vacuum state at time t is, it should be such that, when applied over a
range of times, the so-obtained vacuum states, parametrized by t, should change as little as
possible - as determined via Bogoliubov β coefficients. This then implies the conventional
adiabatic vacuum identification criterion: the amount of particle production should be
minimal. In this new way, the vacuum is identified as the state that is most immune to
dilution and concentration, so that all particle creation or annihilation that does happen
due to expansion or shrinkage is solely due to quantum parametric excitation.

Technically, the procedure for identifying the adiabatic vacua is to solve a condition on
the Wronskian of the mode function5 by a WKB-type ansatz and to approach a solution
of the equation of motion iteratively around a Minkowski-like 0-th order solution. A finite
number s of iterations gives an approximate solution failing to be exact only by terms
with at least 2s+ 2 derivatives of the metric. The mode functions for the adiabatic vacua
are then found by evaluating the initial conditions for the equation of motion along the
approximate solutions. Hence, similarly to the ground state family, the adiabatic vacuum
states

{∣∣0AV(t)

〉
, t ∈ R

}
are parametrized by the time at which they are defined. An explicit

example of the adiabatic vacuum solution is provided in Appendix C.

The rigorous definition of adiabatic vacua in the literature has focused mostly on free
theories, and might become non-trivial for generic quantum field theories. While we did
not need to specify a physical vacuum state for our main proposal (4.13), we will rely on
this concept in the following for discussing renormalization. Therefore, we include it here
as our final assumption.

Assumption 3. The adiabatic vacua exist at every time and are chosen as the physical
vacuum states.

5The Wronskian condition is obtained from the consistency requirement between the canonical commu-
tation relations of the field operators and those of the annihilation and creation operators. More details
can be found in the example in Appendix C.
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Subtracting the physical – here taken to be the adiabatic – vacuum family expectation
value should already give a renormalized (finite) stress-energy tensor, corresponding to the
quantum and classical sources from observed fields,

〈T̂µν〉
ren.

Ψ (t) ≡ 〈T̂µν(t)〉Ψ − 〈T̂µν(t)〉AV(t) . (4.22)

Clearly, this is different from the effective part defined in (4.12). We can say that, while
the effective part measures the gravitating stress-energy excitation, the renormalized part
measures the stress-energy in particle excitation over the adiabatic vacuum. The difference
between the two,

〈T̂µν〉
vac.

(t) ≡ 〈T̂µν〉
eff.

Ψ (t)− 〈T̂µν〉
ren.

Ψ (t)

= 〈T̂µν(t)〉AV(t) − 〈T̂µν(t)〉GS(t) , (4.23)

is independent of the particle content, i.e., it is a purely geometrical contribution. It
will be discussed in more detail in Section 4.3.4. Therefore, we can re-write the effective
expectation value as the sum of two contributions,

〈T̂µν〉
eff.

Ψ = 〈T̂µν〉
ren.

Ψ + 〈T̂µν〉
vac.

. (4.24)

See also the schematic representation in Figure 4.1. The first term, 〈T̂µν〉
ren.

Ψ , should match
the observed sources of gravitation. This term should be finite, because the divergence
in the expectation value on a state is the same as the divergence in its corresponding
no-particle state [47]. We are therefore assuming that the particles described by Ψ are
excitations of the adiabatic vacuum, i.e., that the adiabatic vacuum is the physical no-
particle state.

The second term in (4.24), the divergent piece 〈T̂µν〉
vac.

, measures the elevation of the
vacuum energy of the no-particle state above the ground state. After making this split
in (4.12), we write the semiclassical Einstein equation (for an FLRW spacetime) as

1

8πG
Gµν − ρΛ gµν − 〈T̂µν〉

vac.
= 〈T̂µν〉

ren.

Ψ . (4.25)

The vacuum part 〈T̂µν〉
vac.

acts as a counter-term in this equation.

4.3.4 Renormalization

Both 〈T̂µν〉GS(t) and 〈T̂µν〉AV(t) only depend on the metric, i.e., they are purely geometric
quantities. The former is also covariantly conserved by Theorem 1. The only covariantly
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Figure 4.1: The total expectation value 〈T̂µν〉Ψ of the stress-energy tensor is split into
various parts based on its ground state value and the (adiabatic) vacuum value. Note that

〈T̂µν〉
vac.

and 〈T̂µν〉GS(t) are infinite quantities.

conserved geometric tensors up to second order in derivatives of the metric are the metric
itself gµν and the Einstein tensor Gµν . We can hence write

〈T̂µν〉GS(t) = AGS gµν + BGS Gµν + higher curv. terms . (4.26)

The quantity 〈T̂µν〉AV(t), on the other hand, is not exactly covariantly conserved. Never-
theless, we prove the following result:

Theorem 2. For adiabatic vacua of at least 2nd order (at least s ≥ 1 iteration), the adi-
abatic vacuum family expectation value of the stress-energy tensor ceases to be covariantly
conserved only by terms that contain at least 4 derivatives of the metric. Schematically,
we write this as

∇µ〈T̂µν〉AV(t) = 0 +O(∂4) . (4.27)

Proof. Similarly to the proof of Theorem 1, we distinguish between the time parameter t on
which the operator T̂µν depends and the time parameter u at which an adiabatic vacuum
state is defined, before setting θ ≡ t− u = 0. Using again diffeomorphism invariance and
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the relation (4.20) between derivatives, we obtain

∇µ〈T̂µν〉AV(t) = ∇µ〈T̂ µν(t)〉AV(u)

∣∣∣
θ;u=t

=

[
∇µ〈T̂ µν(t)〉AV(u)

∣∣∣
u

+
∂

∂u
〈T̂ 0

ν(t)〉AV(u)

∣∣∣∣
t

] ∣∣∣∣
u=t

=
∂

∂u
〈T̂ 0

ν(t)〉AV(u)

∣∣∣∣
t;u=t

. (4.28)

Now, recall that the approximate solution at s-th iteration, which is used to define the
initial conditions for the adiabatic vacua, ceases to be an exact vacuum solution only at
the order O(∂2s+2). Hence, the adiabatic vacuum at u + δu differs from the one at u at
the equal time t = u only by O(∂2s+2) δu+O(δu2),

∇µ〈T̂µν〉AV(t) = O(∂2s+2) . (4.29)

If we consider the adiabatic vacua at iteration s ≥ 1, the statement of the theorem is
proven.

Using Theorem 2, we can write

〈T̂µν〉AV(t) = AAV gµν + BAV Gµν + higher curv. terms, (4.30)

for the adiabatic vacuum family at iteration s = 1. The failure of conservation is completely
contained in the higher curvature terms, which contain four derivatives of the metric.

The constant coefficients AGS, BGS, AAV and BAV are independent of the background
geometry and can only depend on the parameters of the theory, such as the field mass.
Moreover, we can prove the following result:

Theorem 3. The instantaneous ground states and the adiabatic vacua coincide at the
zero-th adiabatic order, i.e., AGS = AAV.

Proof. We smoothly flatten the FLRW background as follows: we replace the scale factor
a(t) with a(t0 + ε(t− t0)) for arbitrary t0 ∈ R and send ε to 0. The coefficients AGS, BGS,
AAV and BAV are independent of ε. When ε reaches 0, the spacetime becomes flat and
all curvature terms in (4.26) and (4.30) vanish. The Minkowski vacuum serves as both
the ground state and the adiabatic vacuum on a Minkowski spacetime. Therefore, the
expectation values 〈T̂µν〉GS(t) and 〈T̂µν〉AV(t) coincide with 〈T̂µν〉M in the flat limit ε → 0.
Since the two expectation values also converge to AGS gµν and AAV gµν , respectively, we
conclude that AGS = AAV.
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By Theorem 3, (4.23) becomes

〈T̂µν〉
vac.

= (BAV − BGS)Gµν + higher curv. (4.31)

Then, we may define the renormalized couplings for the semiclassical Einstein equation
(4.25) as

ρren.
Λ = ρΛ and Gren. =

G

1− 8πG (BAV − BGS)
. (4.32)

In accordance with the truncation of the Einstein-Hilbert action, we neglect the higher
curvature terms in (4.31). After the renormalization of the parameters, the semiclassical
Einstein equation (4.25) can finally be written as:

1

8πGren.
Gµν − ρren.

Λ gµν = 〈T̂µν〉
ren.

Ψ . (4.33)

By neglecting higher curvature terms, we are neglecting two features of the equation:
firstly, higher curvature terms would contribute to the renormalization of the parameters
of a higher curvature gravity theory, beyond the Einstein-Hilbert action. This problem is
related to the perturbative non-renormalizability of gravity and is beyond the scope of this
thesis. Secondly, the right-hand side of (4.33) fails to be covariantly conserved at higher-
than-second adiabatic order, i.e., at the neglected higher curvature terms. This violation
of the Bianchi identity in the finite part is due entirely to the choice of adiabatic vacua
to separate the finite part of the stress-energy tensor from the vacuum contribution, and
does not appear if we consistently drop all terms beyond the selected level of adiabatic
approximation.

The proposed scheme has direct consequences for the renormalization of the cosmolog-
ical constant. Recall that the counter-term in (4.25) is a difference of the stress-energy
tensor expectation values in the physical (adiabatic) vacuum and in the ground state. As
we have shown in Section 4.3.4, and in (4.32) in particular, this counter-term does not
affect the value of the parameter ρΛ = 1

8πG
Λ. This particular combination of parame-

ters that is linearly related to the cosmological constant becomes protected from vacuum
fluctuations. In this sense, our proposal contributes to the resolution of the cosmological
constant problem, under the aforementioned assumptions.

4.4 Outlook

We have argued that the expectation value of the stress-energy in the instantaneous ground
state, 〈T̂µν〉GS(t), is the good choice for the subtraction from the full stress-energy of the
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actual state of the matter fields. We have put forward two reasons. Firstly, this subtraction,
as in Eq. (4.12), ensures that the difference has a positive energy density, consistent with the
weak energy condition. Secondly, the subtraction term 〈T̂µν〉GS(t) is covariantly conserved
exactly, as we have shown in Theorem 1.

We should note that, in our proposal, ground states and adiabatic vacua have different
coefficients, BGS and BAV, at second adiabatic order. This is due to the local curvature
ambiguities in the definition of the stress-energy expectation value, as discussed in Wald’s
book [234]. Therefore, when we subtract the ground state family expectation value, we do

not remove the vacuum contribution completely: 〈T̂µν〉
vac. 6= 0. In this sense, we still allow

vacuum fluctuations to play a role in the renormalization of gravity in curved backgrounds.

Throughout our exposition, we assumed that the universe is well described by an FLRW
metric at cosmological scales, and that instantaneous ground states exist. Furthermore,
we assumed the existence of adiabatic vacua as physical vacua in discussing the renormal-
ization of the Einstein equation. In Appendix C, we analyze a free quantum field theory,
where Assumptions 2 and 3 are shown explicitly to hold. For interacting theories, the
definition and existence of ground states and adiabatic vacua might be more challenging.
In specific theories, the one-loop order can be worked out following the techniques in [170].
Other free theories (spin-2, massive spin-1) were discussed in detail in our paper [240].
These results are not included in this thesis, as they mirror the ones obtained for a scalar
field theory and presented in Appendix C. Gravitons (massless spin-2 fields) on a fixed
curved background could also be quantized along the same lines, at least in the limit in
which we can neglect their interactions. Free theories still provide important insights on
the renormalization of the cosmological constant at different scales, e.g., when considering
new degrees of freedom that might come into play as the renormalization scale is dialed.
In our proposal, the contribution of higher energy degrees of freedom to the cosmological
constant will be canceled by the ground state expectation value, similarly to their low
energy companions.

Another important approximation made in this proposal is that the universe is well
described by an FLRW metric. The most striking result of this Chapter is perhaps Theorem
1, where we prove that the ground state family expectation value of the stress-energy tensor,
〈T̂µν〉GS(t), is covariantly conserved on an FLRW background. It is tempting to search for
a generalization of this result on arbitrarily curved spacetimes. Let us try to speculate on
how this might be achieved. We specialize to n = 4 dimensions for convenience.

Since our Definition 1 of ground states already relies on cosmological backgrounds, we
raise here the following question: what are the essential properties of ground states that
are necessary for Theorem 1 to hold and that can be generalized to an arbitrary curved
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spacetime?

We look for a generalization of ground states that shall extremize the local energy
density. Since the local energy density will in general be extremized by a different state
at each spacetime point when spacetime is not homogeneous, the generalized ground state
family needs to be parametrized by 4 parameters instead of one. Given any spacetime
manifold M, we therefore look for a map M→ F , u 7→ |ψu〉, where F is the Fock space
for the quantum field theory under consideration and u is the vector of parameters spanning
the states in the ground state family.

We want to define the states |ψu〉 in such a way that ∇µ 〈ψx| T̂ µν(x) |ψx〉 = 0 holds in
an open neighborhood of every point x ∈ M. Using the methods outlined in the proof of
Theorem 1, we get

∇µ〈T̂ µν(x)〉ψx = ∇µ〈T̂ µν(x)〉ψu
∣∣∣
x−u;u=x

=

(
∇µ〈T̂ µν(x)〉ψu

∣∣∣
x−u
−∇µ〈T̂ µν(x)〉ψu

∣∣∣
u

) ∣∣∣∣
u=x

=

(
∂〈T̂ µν(x)〉ψu

∂xµ

∣∣∣∣
x−u
− ∂〈T̂ µν(x)〉ψu

∂xµ

∣∣∣∣
u

)∣∣∣∣∣
u=x

=
∂〈T̂ µν(x)〉ψu

∂uµ

∣∣∣∣
x;u=x

. (4.34)

In the first line, we distinguished between the spacetime coordinate x, on which the opera-
tors depend in the Heisenberg picture, and the parameter u, which specifies the spacetime
point where the generalized ground state |ψu〉 is defined. In the second line, we subtracted
the covariant derivative at a fixed state, which is known to be zero by diffeomorphism in-
variance. The connection terms canceled in the third line. Finally, in the last line, we used
the relation (4.20) between partial derivatives for each pair of parameters (xµ, uµ)µ=0,1,2,3.

If the last line in (4.34) is well-defined and equals zero, then 〈ψx| T̂ µν(x) |ψx〉 is covari-
antly conserved. This could be taken as the definition of a ground state family in a generic
spacetime. Hence, we could generalize Theorem 1 to hold for the states {|ψx〉 , x ∈M} in
the image of any extremal map, and propose

1

8πG
Gµν(x)− ρΛ gµν(x) = 〈T̂µν(x)〉Ψ − 〈T̂ µν(x)〉ψx (4.35)

for the semiclassical Einstein equation on any curved background.
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However, the definition of the generalized ground state family provided by Eq. (4.34)
is highly non-restrictive. In particular, every constant map |ψu〉 = |ψ〉 is extremal by
definition. Recall that another feature of the ground states in FLRW spacetime was that
the difference on the right hand side of the Einstein equation maintained a positive energy
density for any state Ψ that respected the homogeneity of the background. One possible
way to replace this additional condition and determine a unique generalized ground state
among all extremal states would be to demand that the difference on the right-hand side
of (4.35) satisfies the weak energy condition for any state Ψ in a suitable set. This is a
subject for future research.
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Chapter 5

Conclusions

In this thesis, we tackled a series of problems in gravitational physics, all relevant to
current and future observations. The first part of the thesis focused on modeling the astro-
physical phenomena expected to be relevant for low-frequency gravitational wave sources.
We showed that accretion and dynamical friction induced by realistic gaseous environ-
ments (such as AGNs) could be detected in the gravitational-wave signal of stellar- and
intermediate-mass black hole binaries with LISA. Our results were based on a Newtonian
description, but relativistic effects could be included – Barausse derived the relativistic
dynamical friction force, for instance, in Ref. [33]. The latter might become important at
low or intermediate frequencies (accessible to the proposed mission DECIGO), and could
help distinguish effects that are degenerate at leading order by their distinct contributions
to higher order post-Newtonian terms. Our work, moreover, focused on the effect of the
relative motion of the binary components on the gravitational wave phase. It would be in-
teresting to explore the detectability of other effects, such as kicks imparted to the binary’s
center of mass [70], or modifications of the gravitational wave amplitude. Dark matter in
the environment can also contribute in a similar way, through accretion and friction, to
the evolution of black hole binaries. Further numerical simulations and analytic modeling
will be required to asses the detectability of dark matter effects with gravitational waves,
along the lines of Ref. [136].

One context, not explored in this thesis, where environmental effects might play a
significant role is the inspiral of extreme-mass-ratio (EMRI) binaries. Pure gravitational
models of the gravitational wave signal of EMRIs, based on the self-force approach, are
on track to reaching second order accuracy in the mass ratio [203] for the LISA mission.
At this level of accuracy, the numerous effects connected to the environment could become
relevant for EMRIs spiraling in geometrically thin accretion disks [34]. These effects should
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therefore be incorporated in self-force models, to ensure that these models realize their full
potential for testing gravity at unprecedented levels.

In our explorations of the interplay of gravitational wave emission and environmental
effects, we also discussed a class of binary systems where matter effects are not subleading
contributions, but rather dominate the dynamics. We identified a new universal relation
characterizing the long term evolution of white dwarf–black hole binaries, and used it to
infer the binary parameters with (mock) LISA observations. The simple model neglected
some of the features of the system, such as potential short-term disruptions in the accretion
flow and potential tidal interactions between the black hole accretion disk and the star. We
plan to explore how these uncertainties affect gravitational wave inference in the future.
More importantly, we would like to identify similar universal relations in double white
dwarf binaries, where the direct tidal coupling between the stars cannot be neglected.
LISA (paired with electromagnetic follow-ups) has in general the potential to advance our
understanding of many binary phases and astrophysical processes. Another interesting and
little explored target are, in this sense, common envelope binaries.

The second part of this thesis was dedicated to the study of nonlinear effects in the
culminating phase of black hole binary mergers, i.e., the ringdown. We found that, at
least for a scalar field coupled to gravity in AdS in spherical symmetry, nonlinearities
predominantly affect the amplitude of linear modes. This might safeguard the standard
analysis of the ringdown signal, which is based on linear mode combinations. Further
explorations will however be necessary to understand how (and if) more exotic nonlinear
behavior might set in for sufficiently strong perturbations, or when zero-damped modes
emerge in the spectrum of extremal black holes. The analysis of the ringdown following
binary mergers in numerical simulations has highlighted other little understood properties
of quasi normal mode excitations. The modes identified by Giesler et al. [116], for instance,
have amplitudes increasing with the overtone number. The single QNM amplitudes are
also much higher than the total signal amplitude, to which they reduce via a coherent
cancellation. This might indicate that the modes are excited in a somehow coherent way,
something that has not been explored so far in the literature, except for extremal black
holes [119].

Environmental effects can also affect the ringdown signal, providing an interesting link
between the first and second part of this thesis. Plasma in particular, a common environ-
ment for astrophysical black holes, can influence the spectrum of linear perturbations of the
electromagnetic field. Ref. [85] proposed that this phenomenon could lead to superradiant
instabilities in astrophysical black holes, and speculated that these instabilities could be
connected to fast radio bursts (FRBs). It was recently suggested, however, that nonlinear
effects will quench the development of the instability [65].
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The third and final part of the thesis developed a new renormalization scheme for
the stress-energy tensor contributing to the semiclassical Einstein equation. This was
shown to lead to a cancellation of the large contributions to the cosmological constant.
The proposal was developed in the context of purely gravitating quantum fields on a
homogeneous and isotropic (FLRW) background. A natural extension of this work would
be therefore aimed at generalizing these results to less symmetrical backgrounds, and to
interacting field theories.

The semiclassical approximation has received renewed attention in recent years, thanks
to the development of a formalism to handle Lorentzian path integrals for gravity [107].
This approach promises to bring further insight into the implications of semiclassical gravity
for cosmology, and could be perhaps used to derive (or invalidate) the results of this thesis
from a Lagrangian perspective. Other interesting applications include the nucleation of
black holes in a spacetime with a positive cosmological constant [53].
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Appendix A

White dwarf–black hole equilibrium
solutions

After the initial phase of mass accretion, a very good approximation of the mass transfer
rate between the white dwarf and the black hole can be obtained by setting the right hand
side of Eq. (2.38) to 0. Similar equilibrium solutions were studied by Marsh et al. [171] for
double white dwarf systems. We also set ṀBH = −εISCOṀWD. We find

ṀWD, e

MWD

= − J̇GW/Jorb

Keq

, (A.1)

where

Keq =
ζWD − ζrL

2
(1− 3(1 + q)kr2

WD) + (1 + q)λkr2
WD(1− εISCO)(

1

2
qkr2

WD −
q

2(1 + q)
)

+ 1− εISCO(q + jGR

√
(1 + q)rISCO). (A.2)

Using Kepler’s law, ḟ
2f

= −3ȧ
2a

and replacing Eq. (A.1) in Eq. (2.37) gives, at equilibrium:

ḟ

2f
=

3J̇GW/Jorb

Keq(1− 3(1 + q)kr2
2)

[
1 +

(
q − q

2(1 + q)
+

1

2
qkr2

2 + jGR

√
(1 + q)rISCO

)
εISCO

−
(

1 +
q

2(1 + q)
+

1

2
qkr2

2 + (1 + q)λkr2
2

)]
. (A.3)
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Furthermore,

J̇GW

Jorb

=
32

5

G3

c5

MBHMWDM

a4
∝MBHMWDM

(
M

f 2

)4/3

'M
2/3
BHMWDf

8/3. (A.4)

where in the last step we used MWD � MBH, so that M ' MBH. Finally, the late time
evolution of the other terms in Eq. (A.3) happens to have a weak dependence on MBH, so

ḟM
−2/3
BH is an almost MBH independent quantity as verified in Fig. 2.6, right panel.
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Appendix B

Fits to the white dwarf–black hole
evolutionary tracks

The coefficients for the evolutionary tracks fits described in the main text are summarized
in Table B.1. The number of digits reported in the table is needed to obtain accurate
estimates of the black hole and white dwarf masses.

a0 a1 a2 a3 a4

y = MWD[M�] 319.7593186 509.0101135 303.8011829 80.7077869 8.0347503

y = ḟM
−2/3
BH [HzM

−2/3
� /s] 142.6384491 236.4026829 136.2183828 35.5719325 3.4778346

Table B.1: Coefficients for the fits to the evolutionary tracks, displayed in Figure 2.6.
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Appendix C

Renormalized vacuum stress-energy
tensor: free scalar field

In this Appendix, we compute the stress-energy tensor expectation value in the instan-
taneous ground states and adiabatic vacua, and confirm the results of Section 4.3 for
a massive, non-minimally coupled but otherwise non-interacting scalar field. The re-
sults presented in this Appendix are not new and can be found elsewhere in the litera-
ture [47, 138, 77]. We find it convenient to rederive them here, to balance the theoretical
arguments of Section 4.3 with a concrete example. This toy model demonstrates explicitly
how instantaneous ground states give a covariantly conserved expectation value; how the
adiabatic vacua fulfill the same property up to second adiabatic order; and how the sub-
traction cancels the radiative contributions to the cosmological constant but not those to
the gravitational constant. Other examples can be found in [240].

Regularization is an essential step when dealing with a divergent expectation value.
To ensure that the vacuum expectation value of the stress-energy tensor has the correct
properties, e.g., it is covariantly conserved, it is important to use a covariant regularization
method. For a bosonic theory, we use dimensional regularization. See [191] for a comparison
of regularization techniques for scalar fields.

The only dimensionful coupling included in our examples is the gravitational constant,
which, in n spacetime dimensions, has mass dimension [G(n)] = M2−n. In dimensional
regularization, in order to preserve the correct dimensionality while expanding around
n = 4, we introduce G(n) = Gµ4−n where µ is an arbitrary mass scale and [G] = M−2. The
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second equation in (4.32) becomes

Gren. =
G

1− 8πG (BAV − BGS)µ4−n . (C.1)

For simplicity, we specialize throughout this section to the flat FLRW metric with line
element ds2 = a(t)2 (dt2 −∑n−1

i=1 dx2
i

)
where t = x0 is the conformal time and xi are

comoving coordinates. We denote derivatives with respect to the conformal time t by a
prime ′. We remind the reader that we are using units in which ~ = c = 1.

Consider a scalar field φ with the action

Sφ =

∫
dnx

√
|g|
(
−1

2
gµν ∂µφ ∂νφ−

1

2

(
m2 + ξR

)
φ2

)
, (C.2)

where m is the mass, ξ is a dimensionless coupling constant and R is the Ricci scalar. The
equation of motion for φ is given by

φ′′ + (n− 2)
a′

a
φ′ − ∂2

xφ+ a2
(
m2 + ξR

)
φ = 0 . (C.3)

We decompose the field φ into its Fourier modes,

φ(t, x) =

∫
dn−1k

(2π)(n−1)/2

1√
2
a(t)−(n−2)/2

(
χk(t) e

−ikx âk + χ∗k(t) e
ikx â†k

)
, (C.4)

where âk and â†k are annihilation and creation operators, and χk(t) is a complex mode
function. Note that this decomposition is not unique: one can choose a different set of
annihilation and creation operators or, equivalently, a different set of mode functions. Each
set of operators defines a vacuum according to âk |0〉 = 0, ∀k.

The mode functions satisfy the equation of motion

χ′′k +
(
k2 +m2a2 − (ξn − ξ) a2R

)
χk = 0 , (C.5)

where we defined ξn ≡ n−2
4(n−1)

. The scalar field is minimally coupled when ξ = 0 and
conformally coupled when ξ = ξn.

We perform the canonical quantization by imposing canonical commutation relations
[φ̂(t, x), Π̂(t, y)] = i δn−1(x− y), where Π(t, x) = δSφ/δφ

′(t, x) = a(t)n−2 φ′(t, x) is the con-

jugate momentum, as well as [âk, â
†
l ] = δn−1(k− l). Consistency between the commutation

relations implies the Wronskian condition

χk χ
′∗
k − χ′k χ∗k = 2i . (C.6)
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Since (C.5) is a second-order differential equation of a complex function, the space of
solutions is 4-dimensional for each mode k. One degree of freedom is an arbitrary global
phase. The Wronskian condition (C.6) constrains one more degree of freedom, so we are
left with 2 physical degrees of freedom for χk (for each k).

It is possible to decouple the non-physical degrees of freedom from the mode functions as
follows: we write the mode function χk(t) in the polar form as χk(t) = Rk(t) exp{−iSk(t)},
where Rk(t) and Sk(t) are real functions. In these new variables, the Wronskian condition
(C.6) becomes R2

k S
′
k = 1. This equation is solved by any positive real function Ωk(t)

with Ωk(t) = Rk(t)
−2 and Sk(t) =

∫ t
Ωk(t̄) dt̄ with an arbitrary lower limit of integration

corresponding to an arbitrary phase,

χk(t) =
1√

Ωk(t)
exp

{
−i
∫ t

Ωk(t̄) dt̄

}
. (C.7)

Then, the equation of motion (C.5) becomes

Ωk(t)
2 = ωk(t)

2 + (ξn − ξ) a(t)2R(t) +
3

4

Ω′k(t)
2

Ωk(t)2
− 1

2

Ω′′k(t)

Ωk(t)
. (C.8)

Here ωk(t)
2 = k2 + m2a(t)2. The solution Ωk can be specified by the initial value and

its time derivative (for each k), which correspond to the 2 physical degrees of freedom in
χk. The problem of defining the vacuum is therefore reduced to choosing a solution to the
non-linear differential equation (C.8).

Stress-energy tensor. The stress-energy tensor Tµν for the scalar field φ is given by

Tµν = ∂µφ ∂νφ− ξRµν φ
2 + ξ∇µ∇ν(φ

2)− ξ gµν �(φ2)− 1

2
gµν g

αβ ∂αφ ∂βφ

− 1

2
gµν
(
m2 + ξR

)
φ2 . (C.9)

We promote this to an operator T̂µν with symmetrized operator ordering1, e.g., φφ′ →
1
2
{φ̂, φ̂′}, [60]

〈0| T̂00 |0〉 =
1

4an−2

∫
dn−1k

(2π)n−1

1

Ωk

(
k2 +m2a2 + Ω2

k +
Ω′2k
4Ω2

k

+ (ξn − ξ) (n− 1)
a′ ((n− 2) a′Ωk + 2aΩ′k)

a2 Ωk

)
, (C.10a)

1Normal ordering, the standard operator ordering in QFT on flat spacetimes, does not have a generally
covariant analogue, and cannot be implemented in our setting. Symmetrized ordering, on the other hand,
is covariant.
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〈0| T̂0j |0〉 = 0 , (C.10b)

〈0| T̂ij |0〉 =
1

4an−2

∫
dn−1k

(2π)n−1

1

Ωk

(
2kikj

+ δij (ξn − ξ)
(

4ξa2R + (n− 1)
a′ ((n− 2) a′Ωk + 2aΩ′k)

a2 Ωk

)
+ δij (1− 4ξ)

(
Ω2
k − k2 −m2a2 +

Ω′2k
4Ω2

k

))
, (C.10c)

where i, j ∈ {1, ..., n− 1}. If Ωk(t) depends only on the modulus k ≡ |~k|, then all non-
diagonal terms of 〈0| T̂µν |0〉 vanish. This is the case for the adiabatic and ground state
vacua that we will consider, because of their symmetry properties.

Ground state. The instantaneous ground state at time t is given by the initial val-
ues {Ωk(t),Ω

′
k(t)} which minimize the energy density 〈0| T̂00 |0〉 at that time. Setting

∂ 〈0| T̂00 |0〉 (t)/∂Ωk(t) = 0 and ∂ 〈0| T̂00 |0〉 (t)/∂Ω′k(t) = 0 corresponds to

Ωk(t) =

√
k2 +m2 a(t)2 + 4 (n− 1)2 ξ (ξn − ξ)

a′(t)2

a(t)2 , (C.11a)

Ω′k(t) = 4 (n− 1) (ξ − ξn)
a′(t)

a(t)
Ωk(t) . (C.11b)

We clarify here that, while these initial conditions can be used together with Eqs. (C.8)
and (C.7) to define a ground state mode function at all times, we wish to compute our
expectation values at every time t on the ground state at that time. For this, it is sufficient
to directly use (C.11b).

We substitute the expressions above at every time t into (C.10a) and (C.10c). After
Taylor expanding around the number of derivatives on the scale factor a(t), we can write
the result as

〈T̂µν〉GS(t) =

(
m2

4π

)n/2
Γ
[
−n

2

](
−1

2
gµν +

n

2

ξ

ξn
(ξ − ξn)m−2Gµν

)
+O(∂4) . (C.12)

Adiabatic vacuum. In order to define the adiabatic vacua, we solve (C.8) iteratively, so
that (

W
[0]
k (t)

)2

= ωk(t)
2 , (C.13a)(

W
[s+1]
k (t)

)2

= ωk(t)
2 + (ξn − ξ) a(t)2R(t) +

3

4

(
W

[s]
k
′(t)

W
[s]
k (t)

)2

− 1

2

W
[s]
k
′′(t)

W
[s]
k (t)

. (C.13b)
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The 2nd order adiabatic vacuum at time t is then defined by the initial conditions

Ωk(t) = W
[1]
k (t) , Ω′k(t) = W

[1]
k
′(t) . (C.14)

In order to find the adiabatic vacuum expectation value of the stress-energy tensor, we
substitute (C.14) into (C.10a) and (C.10c). After expanding the result in the number of
derivatives on the scale factor, we get

〈T̂µν〉AV(t) =

(
m2

4π

)n/2
Γ
[
−n

2

](
−1

2
gµν +

n (ξn − ξ)
2ξn

m−2Gµν

)
+O(∂4) . (C.15)

Effective stress-energy tensor. Our results (C.12) and (C.15) confirm Theorems 1 and
2, since these stress-energy expectation values are a linear combination of the covariantly
conserved tensors gµν and Gµν . They also confirm Theorem 3,

AGS = AAV = −1

2

(
m2

4π

)n/2
Γ
[
−n

2

]
. (C.16)

Finally, by subtracting (C.15) and (C.12), we obtain

〈T̂µν〉
vac.

= B∆ Gµν +O(∂4) , (C.17)

where B∆ = BAV − BGS is given for the scalar theory by

B∆ =

(
m2

4π

)n/2
Γ
[
−n

2

] n
12

(
1− 24 (n− 1)

n− 2
ξ2

)
m−2 , (C.18)

confirming the results of Section 4.3.4.

In order to complete dimensional renormalization, we expand B∆ = B∆(n) around
n = 4. Depending on the parameter ξ, this can be accomplished in two different ways. If
we fix the parameter ξ to the conformal coupling number ξ = ξn for every dimension n,
we get a finite result at n = 4, namely

µ4−n B∆

∣∣
ξ=ξn

(n = 4) =
m2

288π2
. (C.19)

Alternatively, we can fix the parameter ξ to a constant independent of n and make a
Laurent expansion around n = 4 to get

µ4−n B∆

∣∣
ξ=const.

(n) =
(1− 36ξ2)m2

48π2 (4− n)
− (1− 36ξ2)m2

96π2

(
γ + log

m2

4πµ2

)
+

(1− 48ξ2)m2

96π2
+O(4− n) , (C.20)

where γ is the Euler-Mascheroni constant.
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